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ABSTRACT

An artificial neural network is developed to recognize spade-temporal
bipolar patterns associatively. The function of a formal neuron is generaliz.ed by
replacing multiplication with convolution. weights with transfer functions. and
thresholding with nonlinear transform following adaptation. The Hebbian learn­
ing rule and the delta learning rule are generaliz.ed accordingly, resulting in the
learning of weights' and delays. The neural network which was first developed
for spatial patterns was thus generaliz.ed for spatio-temporal patterns. It was
tested using a set of bipolar input patterns derived from speech signals. showing
robust classification of 30 model phonemes.

1. INTRODUCTION

Learning spatio-temporal (or dynamic) patterns is of prominent importance in biological
systems and in artificial neural network systems as welL In biological systems. it relates to such
issues as classical and operant conditioning, temporal coordination of sensorimotor systems and
temporal reasoning. In artificial systems. it addresses such real-world tasks as robot control.
speech recognition. dynamic image processing, moving target detection by sonars or radars. EEG
diagnosis, and seismic signal processing.

Most of the processing elements used in neural network models for practical applications
have been the formal neuronI or its variations. These elements lack a memory flexible to tem­
poral patterns, thus limiting most of the neural network models previously proposed to problems
of spatial (or static) patterns. Some past solutions have been to convert the dynamic problems to
static ones using buffer (or storage) neurons. or using a layered network with/without feedback.

We propose in this paper to use a "dynamic formal neuron" as a processing element for
learning dynamic patterns. The operation of the dynamic neuron is a temporal generaliz.ation of
the formal neuron. As shown in the paper. the generaliz.ation is straightforward when the activa­
tion part of neuron operation is expressed in the frequency domain. Many of the existing learn­
ing rules for static patterns can be easily generalized for dynamic patterns accordingly. We show
Some examples of applying these neural networks to classifying 30 model phonemes.
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2. FOR..\1AL NEURON AND DYNAMIC FORMAL NEURON

The formal neuron is schematically drawn in Fig. l ea). where

Input
Activation
Output
Transmittance
Node operator
Neuron operation

.r =(x I X2 ••• .ttl'
] j, i = 1,2• • • • •N
Zi , i = 1,2. • • • •N
W = (wi! Wi % ' " wiLf
1"\ where ,, (.) is a nonlinear memoryless transform
%i = T'l<wt:n (2.1)

Note that a threshold can be implicidy included as a transmittance from a constant input.

In its original form of formal neuron..t; e {O,l} and 1"\(.) is a unit step function u(·). A
variation of it is a bipolar formal neuron where Xi e {-l,l} and nt -) is the sign function sgn(· ).
When the inputs and output are converted to frequency of spikes, it may be expressed as
.t; e R and 1"\(.) is a rectifying function r(·) . Other node operatcrs such as a sigmoidal function
may be used.

We generalize the notion of formal neuron so that the input and output are functio ns of
time. In doing so. weights are replaced with transfer functions. multiplication with convolution.
and the node operator with a nonlinear transform following adaptation as often observed in bio­
logical systems.

Fig. l(b) shows a schematic diagram of a dynamic formal neuron where

Input
Activation
Output
Transfer function
Adaptation
Node operator
Neuron operation

.r(/ ) =(x 1(1) ;:2(1) ' " Xl,( l )l'
] j(l). i = 1,2•. . . •N
Z;(/ ), i =1,2• . . . •N
w (l ) =(wil (t) wd/ ) . . . W<r.(/)!'
aj (l)

" where 'l1(.) is a nonlinear memoryless transform
z;(t) = T\(aj(-t},Wj(I)T .X'( /» (2.2)

For convenience, we denote • as correlation instead of convolution. Note that convolving act)
with bet) is equivalent to correlating a(-t) with bet).

If the Fourier transforms .r(f)= F{.r(I)} , Wj (f ) =F {Wi (l )}, ]j(f) =F{Yi(l}}. and
Qj (f ) =F {aj (l)} exist. then

] j(j) = aj(j) (Wj(f)eT z(j)] (2.3)

where Wi(j)eT is the conjugate transpose of Wi(l).

I , ",tl)

'il)

)---z.

Fig. 1. Formal Neuron and Dynamic Formal Neuron.
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3. LEARNING FOR FORMAL NEURON AND DYNAMIC FORMAL NEURON
A number of learning rules for formal neurons has been proposed in the past. In the fol·

·lowing paragraphs. we formulate a learning problem and describe two of the existing learning
rules. namely, Hebbian learning and delta learning , as examples.

Present to the neural network M pairs of input and desired output samples
r t1), a-:1)} . Ie .. 1.2. • . . .M • in order. Let ~(1) = [wfl ) wi1 ) •• • wJl~T where w/1 ) is the
transmittance vector at the k-th step of learning. Likewise. let

K (l ) = (j'<I)r) j'<1~. r (l ) = [fl) 1%l ... 11~.

Z(l) = (ttl:a) tl~. and D (1) = (J{I)~) ... 2'll~- - .
where

'11
) =~(l):tl). t 1

) =!l(71») . and !l(J) =(l1(Y I) l1(Yu .. • l1(YN)f .

The Hebbian learning rule 2 is described as follows":

~(1) =~(Hl + aZ-1'ryfl)T

The delta learning (or LMS learning) rule3•4 is described as follow s:

~(1) =~(1-1) _ a{~(HJx<l ) _ a-:t)}xl1)T

(3.1)

(3.2)

The learnin g rules described in the previous section are generalized for the dynamic formal
neuron by replacing multiplication wilh correlati on. First. the prob lem is reformulated and then
the generalized rules are described as follows.

Presen t to the neural network M pairs of time-varing input and output samples
{j'<1)(l). a-:t' (I )}, k =1.2• . . . .M • in order. Let W(l ' (I) =(Wt(l)(t'(l) w41 ) (I ) . . . wl'(r))T
where wi(l)(r) is the vector whose eleme nts wi;t)(r)~ transfe r functions connecting the input j
to the neuron i at the k-th step of learning. The Hebbian learning rule for lhe dynamic neuron is
then

~(t)(I) =~(H)(I) + a( -t) . 2'lt )(I ) . xlt )(d .

The delta learning rule for dynamic neuron is then

~(t)(t) = ~(t-I)(I) _ a(- I) . {~(t-ll(I ). j'<1)(1) _ ,1(t )(I )} .xl1)(l)T •

(3.3)

(3.4)

(4.2)

This generalization procedure can be applied to other learning rules in some linear discrim­
inant systemsS • the self-organizing mapping system by Kohonens • the perceptron 7 , the back­
propagation model3 • etc. When a system includes a nonlinear operation. more careful analysis
is necesssay as pointed out in the Discussion section.

4. DELTA LEARNING. PSEUDO INVERSE AND REGULARIZATION
This section reviews the relation of the delta learning rule to the pseudo-inverse and the

technique known as regularization.4,6, a. 9, IO

Consider a minimization problem as described below: Find ~ which minimizes

R =i:lIf1) - ,1(l llli =<'11 ) _ a-:1Y('/1) _ a-:t l) (4.1)
t

subject to i 1) = w.t1) •

A solution by the delta rule is. using a gradient descent method.

W(l) = W(t-I) _ a_o_R (1)

- - aw
• Thiain~OIl assumes a suoog supervising signal at Ihe output wbile learniJli.
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where R(1) = ~ t1 ) - dtl:)ni . The minimum norm solution to the problem, ~ I is unique and
can be expressed as

~ =Q!' (4.3)

where! t is the Moore-Penrcse pseudo-inverse of! ' i.~.•

X' =lim(XTX + erl)-IXT =IimXT(X XT + erl)-I . (4.4)
- .:-'1 - - - - .:...q- - - -

On the condition that 0 < C1 < ~ where Am.a is the maximum eigenvalue of !T! . :0<1) and

dt1 ) are independent. and !!:::(l:) is uncorrelated with :0<1).

E{~ } = E {!!:::(-l} (4.5)

where E (.1:} denotes the expected value of .1:. One way to make use of this relation is to calcu­
late~ for known standard data and reline it by (4.2), thereby saving time in the early stage of
learning.

However . this solution results in an ill-conditioned W often in practice. When the prob­
lem is ill-posed as such. the technique known as regularizition can alleviate the ill-conditioning
of!!::: . The problem is reformulated by finding!!::: which minimizes

R (0') =Lny<l:' - dttln i + erLg w\1l i (4.6)
l: t

subject to f1 l = ~t) where !!: = (wl w: ... w.v f .
This reformulation regularizes (4.3) to

!!:::(O') =Q!T(! !T .;. erD-t (4.7)

which is statistically equivalent to !!:(- l when the input has an additive noise of variance a=
uncorrelated with ,r(1l . Interestingly, the leaky LM:S algorithm ll leads to a statistically
equivalent solution

!!:::(tl =~!!:::(H) _ C1{~H)r:l:) _ dtl:l}r:1)T (4.8)

2
where 0 < ~ < 1 and 0 < C1 < A.",." . These solutions are related as

E (!!:: (O')} = E (!!::(-l} (4.9)

if a'- = 1-13 when W(l:) is uncorrelated with .tl:) .11
C1 -

Equation (4.8) can be generalized for a network using dynamic formal neurons. resulting in
a equation similar to (3.4). Making use of (4.9), (4.7) can be generalized for a dynamic neuron
network as

!!::: (t : 0') =F-1(Q(j )~..cf f T(! (j 'JK (.neT + erD-1}

where F-1 denotes the inverse Fourier transform.

(4.10)

5. SYNTHESIS OF BIPOLAR PHONEME PATTERNS

This section illustrates the scheme used to synthesize bipolar phoneme patterns and to
form prototype and test patterns.

The fundamental and first three formant frequencies. along with their bandwidths. of
phonemes provided by Klatt lZ were taken as parameters to synthesize 30 prototype phoneme pat­
terns. The phonemes were labeled as shown in Table 1. An array of L (-100) input neurons
covered the range of 100 to 4000 Hz. Each neuron had a bipolar state which was +1 only when
one of the frequency bands in the phoneme presented to the network was within the critical band



Label Phoneme

1 [iY]
2 [I~
3 [cY]
4 [tal
5 [~
6 [II)
7 [~l

8 ["J
9 [0"]
10 [ \I~

11 [u.....J
12 [~1
13 [a J
14 [a.....J
15 [oYJ
16 [.....J
17 [y)
18 [rJ
19 [1]
20 If]
21 [vJ
22 [9J
23 [\J
24 [sJ
25 [zJ
26 [PJ
27 [tJ
28 [dJ
29 [kJ
30 [nJ
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of the neuron and -I otherwise. The center frequencies if.) of critical bands were obtained by
dividing the 100 to 4000 Hz range into a log scale by L The critical bandwidth was a constant
100 Hz up to the center frequency f • • 500 Hz and 0.2/. Hz when / .>500 Hz.13

The parameters shown in Table 1 were used to construct Table 1. Labels of Phonemes
30 prototype phoneme patterns. For 9. it was constructed as a
combination of t and 9. Fl. F1 ,F, were the first, second. and
third formants, and B t. B1. and B ,. were corresponding
bandwidths. The fundamental frequency F Q • 130 Hz with BQ •

10 Hz was added when the phoneme was voiced. For plosives,
there was a stop before formant traces start. The resulting bipo­
lar panems are shown in Fig.2. Each pattern had length of 5
time units. composed by linearly interpolating the frequencies
when the formant frequency was gliding.

A sequence of phonemes convened from a continuous
pronunciation of digits. {a. zero. one, two. three, four. five, six.
seven. eight, nine }, was translated into a bipolar pattern. adding
two time units of transition between two consequtive phonemes
by interpolating the frequency and bandwidth parameters
linearly. A flip noise was added to the test pattern and created a
noisy test pattern. The sign at every point in the original clean
test pattern was flipped with the probability 0.2. These test pat­
terns are shown in Fig. 3.

Fig. 2. Prototype Phoneme Patterns. (Thirty phoneme patterns are shown
in sequence with intervals of two time units.)

6. SIMULATION OF SPATI O·TEMPORAL FILTERS FOR PHONEME CLASSIFICATION

The network system described below was simulated and used to classify the prototype
phoneme patterns in the test patterns shown in the previoius section. It is an example of gen­
eralizing a scheme developed for Static patterns13 to that for dynamic patterns. Its operation is
in two stages. The first stage operation is a spade-temporal filter bank:
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(a)

I . I , .

If ~ .. LSI

(b)

Fig. 3. Test Patterns. (a) Clean Test Pattern. (b) Noisy Test Pattern.

y (t) =~(l)S(I) • and 1'(1) =!:(a (-I)J'(I )) .

The second stage operation is the " winner-take-all" lateral inhibition:

0'(1) =1'(1). and O'(I+A) =~(~ (-I ).O'(I) -li\
and

(6.1)

(6.2)

(6.5)

1 1 4
A (I) =(1 + - )/0(1) - -TI"" LO(I-nA). (6.3)
- 5N - 5N Aw<l

where h is a constant threshold vector with elements ~ =h and 0(') is the Kronecker delta
function. This operation is repeated a sufficient number of times, N• •13.1 4 The output is
0'(1 + N. 'A).

Two models based on different learning rules were simulated with parameters shown
below.
Modell (Span o-temporal Matched Filter Bank)
Let CL(t ) = 0(1) • ~k) = it in (3.3) where 2"t is a unit vector with its elements to = O(k-i) .

~(I ) =~(Il . (6.4)

4 1
h=200, and a (I) =L - 0(1-11 <1).

A"" 5
Model 2 (Spatio-temporal Pseudo-inverse Filter)
Let 1.2. =!.. in (4.10). Using the alternative expression in (4.4),

~(I ) = rl{(~(jfT! (j ) + crD-1XCT
} .

h = 0.05 . rr = 1000.0, and a (l ) = 0(1).

This minimizes

R (a,f)=Dy<kV) -~kV)ll i +rrI.llwt(j) ll i [or ail t .
k t

(6.6)



37

Because the time and frequency were finite and discrete in simulation, the result of the
inverse discrete Fourier transform in (6.5) may be aliased. To alleviate the aliasing, the transfer
functions in the prototype maw!(r ) were padded with zeros, thereby doubling the lengths .
Further zero-padding the lraI1Sfer functions did not seem to change teh result significantly .

The results are shown in Fig. 4(a)-(d). The arrows indicate the ideal response positions at
the end of a phoneme. When the program was run with different thresholds and adaptation func­
tion a (r ), the result was not very sensitive to the threshold value. but was. nevertheless affected
by the choice of the adaptation function. The maximum number of iterations for the lateral inhi­
bition network to converge was observed: for the experiments shown in Fig. 4(a) • (d), the
numbers were 44, 69. 29, and 47. respectively . Model 1 missed one phoneme and falsely
responded once in the clean test pattern. It missed three and had one false response in the noisy
test pattern. Model 2 correctly recognized all phonemes in the clean test pattern. and false ­
alarmed once in the noisy test pattern.

7. DISCUSSIO N

The notion of convolution or correlation used in the models presented is popular in
engineering disciplines and has been applied extensively to designing filters. control systems. etc.
Such operations also occur in biological systems and have been applied to modeling neural net­
works.1S•16 Thus the concept of dynamic formal neuron may be helpful for the improvement of
artificial neural network models as well as the understanding of biological systems. A portion of
the system described by Tank and Hopfield 17 is similar to the matched filter bank model simu­
lated in this paper.

The matched filter bank model (Model 1) performs well when all phonemes (as above) are
of the same duration . Otherwise. it would perform poorly unless the lengths were forced to a
maximum length by padding the input and transfer functions with · 1' s during calculation. The
pseudo-inverse filter model. on the other hand, should not suffer from this problem. However.
this aspect of the model (Model 2) has not yet been explicitly simulated.

Given a spatio- ternporal pattern of size L x K. i.e., L spatial elements and K temporal ele­
ments. the number of calculations required to process the first stage of filtering by both models is
the same as that by a static formal neuron network in which each neuron is connected to the L x
K input elements . In both cases. L x K multiplications and additions are necessary to calculate
one output value. In the case of bipolar patterns. the mutiplication used for calculation of activa­
tion can be replaced by sign-bit check and addition. A future investigation is to use recursive
filters or analog filters as transfer functions for faster and more efficient calculation. There are
various schemes to obtain optimal recursive or analog filters. IS, 19 Besides the lateral inhibition
scheme used in the models. there are a number of alternative procedures to realize a "winner­
take-all" network in analog or digital fashion.1S.20.21

As pointed out in the previous section. the Fourier transform in (6.5 ) requires a precaution
concerning the resulting length of transfer functions. Calculating the recursive correlation equa­
tion (3.4) also needs such preprocessing as windowing or truncation.22

The generalization of static neural networks to dynamic ones along with their learning
rules is strainghtforward as shown if the neuron operation and the learning rule are linear. Gen­
eralizing a system whose neuron operation and/or leaming rule are nonlinear requires more care ­
ful analysis and remains for future work. The system described by Watrous and Shastri 16 is an
example of generalizing a backpropagation model. Their result showed a good potential of the
model and a need for more rigorous analysis of the model. Generalizing a system with recurrent
connections is another task to be pursued. In a system with a certain analytical nonlinearity, the
signals are expressed by Volterra functionals, for example. A practical learning system can then
be constructed if higher kernels are neglected. For example, a cubic function can be used instead
of a sigmoidal function.
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Fig. 4. Performance of Models. (a) Model I with Clean Test Pattern. (b)
Model 2 with Clean Test Pattern. (c) Model I with Noisy Test Pattern.
(d) Model 2 with Noisy Test Pattern. Arrows indicate the ideal response

positions at the end of phoneme.

8. CONCLUSION

The formal neuron was generalized to the dynamic fonnal neuron to recognize spatia­
temporal patterns. It is shown that existing learning rules can be generalized for dynamic fonnal
neurons.

An artificial neural network using dynamic formal neurons was applied to classifying 30
model phonemes with bipolar patterns created by using parameters of formant frequencies and
their bandwidths. The mode! operates in twO stages: in the first stage, it calculates the correla­
tion between me input and prototype patterns Stored in the transfer function matrix. and. in the
second stage, a lateral inhibition network selects the output of the phoneme pattern close to the
input pattern.
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Fig. 4 (continued.)

Two models with different transfer functions were tested. Model 1 was a matched filter
bank model and Model 2 was a pseudo-inverse filter model A sequence of phoneme patterns
corresponding to continuous pronunciation of digits was used as a test pattern. For the test pat­
tern, Model 1 missed to recognize one phoneme and responded falsely once while Model 2
correctly recognized all the 32 phonemes in the test pattern. When the flip noise which flips the
sign of the pattern with the probability 0.2, Model 1 missed three phonemes and falsely
responded once while Model 2 recognized all the phonemes and false-alarmed once. Both
models detected the phonerns at the correct position within the continuous stream.
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