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ABSTRACT 

Optical processor arehitecrures for v&ous forms of the 
alternating projection neural network (APNN) are 
considered. Required iteration is performed by passive 
optical feedback using only free space and guided 
propagation. No electronics or slow optics (e.g, phase 
conjugators) are used. The processor can be taught a new 
~aining vector by viewing it only once. 

Oprical neural network architectures have been 
proposed by a number of researchers 11-51. Using the 
alternating projection neural network (APNN) algorithm 
developed elsewhere [6-91, we propose two architectures 
for a corresponding optical implementation. Required 
iteration is accomplished using only guided or free space 
propagation. No electronics or slow oprics such as phase 
conjugators are used in the feedback path. Learning can be 
performed by viewing each training vector only once. The 
network has been shown to scale well [6-91. The number 
of ~aining vectors that can be stored is on the order of the 
total number of neurons minus the number of floating (or 
output) neurons. The A P m ' s  storage capacity can be 
increased by the use of additional neurons in the hidden 
layer. 

PWEEIMm ARIES 

In this section, we present a terse overview of the 
A P m .  More detailed explanations are av~lable  elsewhere 
[6-91. 

tinuous level library vectors 
We form the library matrix 

e interconnect matrix 

The L neurons are divided into two sets: one in which the 
neural states are known and the remainder in which the 
states are unknown. Let Skim) denote the state of the kth 
neuron at time m. If the kth neuron falls into the known 
categony, then its state is clamped to the known value. 
Otherwise the sure remainsfloating and is equal to the sum 
of the neural inputs. Assume wirhout loss of generality that 
the sates of neurons 1 through P<L are known and the 
remaining Q=L-P are not. Let f denote a library vector of 
which we know the first P elements. Define the 
corresponding node operator, N, on an arbitrary vector i by 

where fk is the kth element off .  Then, in synchronous 

form, the network perlorms the operation 

S(m-t-1) = N T S(m) (1) 

where S(m) is the vector of neural states at time m. 
Convergence to f is assured if the first P rows of P form a 
matrix of full column rank. Subsuxned in this is the 
criterion that P>N. 

LAYERED IMPLEMENTATION 

By layered, we mean that the same neurons are 
always used to stimulate the network and the same set is 
always floating. In addition, there is a hidden layer of 
neurons whose principal purpose is to increase the storage 
capacity of the network. Use of a hidden layer also 
increases the convergence rate of the network and 
decreases its sensitivity to the inexactness of analog 
multiplication 191. 

In order for the APNN to converge to the proper 
solution, the number of clamped states must equal or 
exceed the number of stored library vectors. The number 
of clamped neural stares, however, can be artificially 
increased by using new hidden neurons the states of which 
are a function of the known portion of the input library 
vector. The hidden states can, in general, be any nonlinear 
combination of the clamped states. A technique commonly 
used with neural networks is to run a linear combination of 
the clamped states lhrough a sigmoidal nonlinearity to 
deternine the hidden states. Alternately, products of 
clamped states could be used 1101. Once established, the 
hidden states are treated as clamped states in the previously 
discussed analysis. Although the choice of the nonlinearity 
does not affect the response of the network to training data, 
it does affect the manner in which the network generalizes. 

A basic architechilre for optical implementation of 
the layered APNN is shown in Figure 1. The point source 
m a y  elements corresponding to the clamped and hidden 
layers provide the input to a Stanford matrix-vector 
multipfier (astigmatic focusing optics are not shown) [l l] .  
The point source m a y  for the floating layer is used only 
when training the network. The same is hue for the 
detector array at the output. Indeed. the only neurons of 
interest are the floating ones. The states corresponding to 
the floating neurons are introduced at the right to a fiber 
bundle. These intensities are fed back to the input as 
shown and the process corresponding to (1) is repeated 
iteratively until convergence. Alternately, mimors can be 
used to provide the feedback 2121. 

The astute reader will have noticed two 
implementation problems associated with the architecture 
in Figure 1. First, there is no provision to detect the ougput. 
Second, there is no apparent provision for compensating for 
absorbtive, coupling and other losses in the fecdback path. 
Each of these problems has a straightfornard solution. To 
detect the outpur, we simply place a highly transmitting 
pellicle in the feedback path and focus the reflected portion 
onto a detector m a y  (not shown). This contributes more to 
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the problem concerning losses in the feedback path. 
The magnitude o f  the elements o f  T are generally 

quite small when N < d .  For examgle, i f  the library matrix 
consists o f  only plus and minus ones and the librahy vectors 
are orthogonal, then the maximum value of  the magnitude 
of  the elements in T is NIL. W e  would expect such 
ofihogonal library vectors in the statistical sense i f  all 
elements o f  F were chosen by a 50-50 coin Rip). When 
each element o f  T is small, feedback losses can be 
compensated by scaling the intensity cransminance up to its 
maximum passive value of  unity. Note then that the 
storage capacity o f  the network is then in part a function of  
the ability to minimize feedback losses. 

Figure I :  An architecture for pedorming a layered A P W  
neural network. In practice, the architecture requires 
augmentation as in [11] to allow for the requked bipolar 
operations. The states o f  the hidden layers x e  nonlinex 
functions of  the clamped layers and are generated 
electronically. 

HOMOGENEOUS IMPLEMENTATION 

W e n  every neuron in the network can either be 
clamped or floating, the A P m  is said to be homogeneous. 
In this form, the network stimulus can be provided by 
different neurons from application to application. 

An architecture for a homogeneous APNN is shown 
in Figure 2. Clamped neural states are provided by the 
point source may.  The five darkened dots on the array 
conespond to the five clamped neural states in this 
example. These provide the input vector intensities for the 
portion o f  Ihe Stanford matrix-vector multiplier 
corresponding to the upper spalial light modulator (SLM). 
The light is collected at the output and, as before, is fed 
back through a fiber optics bundle to the input. The light 
from the fiber output is fed through the lower portion of  the 
Stanford matrix-vector multiplier whose SLIM 
transmittance compensates for feedback loss. The 
processor output is detected as before. 

Note that there should be no input from fibers 
corresponding to clamped neurons. This can be 
accomplished with either a opric-optic or elecao-optic 
toggle that turns o f f  the fibers corresponding to the 
locations o f  the clamped neurons. Such switches can 
operate in the gigaherrz range with small attenuation E131. 

The interconnect matrix equation in ( I )  for most 
cases is computationally unacceptable. In the spirit of 
learning, the interconnect matrix can be conshucled one 
vector at a time using a Gram-Schmidt procedurei7-81. I f ,  
for example, we wish to include a new library vector f in an 

esiaMishd APNN with an interconnect m a ~ x  'I', the 
revised i~lte~onnect mabx is 

where e = ( B - T )$ A mining vector can be forgotten by 
sub~acting rather than adding. 

Consider, then, haining the homogeneous AIPNN in 
Figure 2. A new eaining vectorf is input on the source 
may.  Since the fibers are turned o f f ,  the vector T'will  be 
read by the oclput detector (not shown). The ouput is 
subbactd electronically from the input to give the vector e. 
The SLM is then updaad in accordance to (2). 

I f  Ihe new library vector f is a line= combinabon o f  
the previous iiibra~y vectors, then e will contain all zeros. 
Due to the computational inexactness o f  analog 
computations in such a case, e will be close to but not 
exacay equd to the zero vector. This motivates us to 
compxe the energy eTe to a small cheshold pkor to decide 
whether or not (2)  should be applied. 

The layered A P W  in Figure 1 can be similarly 
trained. As with the case above, the input to the system 
from the fibers is suppressed. The vector f is input on the 
source may. The output is read by the detector may 
s h o w  and the detector m a y  used to read the oucput in the 
recall mode (not shown). Updating the SLM transmittance 
is done as before, The energy of  the e m r  corresponding to 
the output neurons only, however, should be used to 
detenmine whether or not to use (2). 

Note that for both the layered and homogeneous 
case, a significant poflion of  the SLM is used only in the 
learning process. 

filter bundle 

Figure 2: An xchitecture for performing a homogeneous 
APNN, 
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