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Howard's minimum-negativity-constraint extrapolation algorithm is shown to be a special case of signal recovery by 
means of alternating convex set projections. Previously derived results in this richly developed field of analysis 
[Appl. Opt. 25,1670 (1986); J. Opt. Soc. Am. 71,819 (1981)l are applied immediately to establish strong convergence 
for the extrapolation algorithm. 

IN"rRODUCTION inner loop of the algorithm. When the iteration in the inner 

Howard1*2 proposed an iterative algorithm for extrapolating 
an interferogram when a portion of the interferogram is 
known. The algorithm is similar in flavor to the Papoulis- 
Gerchberg alg0rithm.~-5 The only difference between the 
two is the constraint cast in the spectral domain: the Pa- 
poulis-Gerchberg algorithm uses the band-limitness con- 
straint, whereas the Howard algorithm uses the nonnegati- 
vity constraint. Howard's algorithm was applied to experi- 
mental data and performed quite well. 

In analog form, Howard's algorithm can be described as 
follows. Let u(x) = u*(-x) (where * denotes complex conju- 
gation) denote an interferogram, and let uT(x) = U(X) over 
the interval (-T, 7') and uT(x) = 0 elsewhere. Given that 
UT(X) is known, we desire to restore ~ ( x ) .  Let U(f) be the 
Fourier spectrum of u(x). Howard's algorithm in analog 
form is then as follows: 

Step 1. Set N = 0 and uN(x) = uT(x). 
Step 2. Generate UNff). 
Step 3. Set the positive values of UN(f) to zero. 
Step 4. Subtract the inverse Fourier transform of this 

from UN(X). 
Step 5. Set this signal to zero on the interval (-T, 2') and 

add UT(X). 

Step 6. This signal is u ~ + ~ ( x ) .  Set N = N + 1. Go to 
step 2 and repeat. 

In discrete form, the functions U(f) and u(x) are discrete 
sequences, and the Fourier transform is replaced by the 
discrete Fotfrier transform (DFT). In Howard's algorithm, 
the DFT coefficients uN(k)'s are solved iteratively. In par- 
ticular, they are formulated as an unknown vector in a ma- 
trix equation, which is then solved iteratively. In Appendix 
A, we show that the iterative matrix equation is an iterative 
form of the inverse DFT (IDFT) and that, in the absence of 
computational round-off noise, convergence is in one itera- 
tion. The iterative IDFT is incorporated into step 4 as an 

loop converges, the execution continues on the outer loop. 
One can, however, show analytically that in the absence of 
computational inexactness the inner loop converges in one 
i t e ra t i~n .~  

Note that, algorithmically, we can replace steps 3 and 4 
with the following steps: 

Steps 3' and 4'. Set the negative values of UN(~) to zero, 
and inverse transform. 

In terms of implementation, however, the original procedure 
is generally more efficient in terms of the required number of 
operations. 

Note that the algorithm is iterative imposes two con- 
straints. 

(a) The periodogram is equal to  uT(x) on the interval 
(-T, T). 

(b) The nonnegativity constraint on the spectrum U(n 
(steps 3' and 4'). 

We show in this paper that the algorithm is a specific case of 
signal recovery by means of alternating convex set projec- 
tions. If there is a set of functions that is consistent with 
both constraints, the algorithm converges to a result in this 
set. Otherwise convergence is to a function that satisfies 
constraints (a) and (b) in the minimum-mean-square sense. 
Equivalently, the steady-state solution after step 4 is a func- 
tion that satisfies constraint (b) exactly and constraint (a) in 
the minimum-mean-square sense. 

PROJECTION ONTO CONVEX SETS 
The restoration algorithm described in the preceding section 
is a special case of alternating projections onto convex sets 
(POCS). In a signal space, a set of functions C is said to be 
convex if a u ~  + (1 - a)u2 E C Vul, u2 e C, and 0 5 a 5 1. 

The projection of any function u(x) in the signal space 
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onto a (closed) convex set results in that unique u(x) func- 
tion in C closest to v(x) in the mean-square sense: 

Ilu(x) - v(x)ll = inf Ilw(x) - u(x)ll. 
W(X)EC 

If ~ ( x )  E C, then the projection operator is the identity 
operator. POCS can thus be viewed as a minimum-mean- 
square algorithm in which the constraints are convex. 

Consider the case of M closed convex sets C1, Cz, . . . , CM. 
Let Pi be the projection operator corresponding to the con- 
vex set Ci. The POCS algorithm can then be written in a 
composite form: 

where the subscript N is the index of the iteration. The 
composite projection operator alternatively projects onto 
the M sets. Let C, be the intersection of the M convex sets: 

M 

where C, is also convex. If C, # pl, then the sequence (ui(x)l 
converg'es to an element in C.. Otherwise the sequence 
oscillates in a limit cycle among the convex sets? If there 
are two nonintersecting sets, oscillation is between the 
points in each set closest to the other set.8 Convergence can 
be accelerated by the use of relaxation?-l1 

When the space in which the convex sets are subsummed 
is discrete and of finite dimension, convergence is strong 
(i.e., in the mean-square ~ense).~JO 

Howard's algorithm consists of two convex constraints: 

(a) Ci is the set of all functions equal to uT(x) on the 
interval (-T, T). C1 is a linear variety (a subspace from the 
origin). The corresponding projection operator for C1 is 

UT(X) XE(-T,T).  
p l v x  = { (  otherwise 

(b) C2 is the set of all functions whose Fourier spectra are 
nonnegative. The corresponding projection operator for C:! 
is 

where Fdenotes Fourier transformation, V(w) is the Fourier 
spectrum of u(x), and p is the unit step. Clearly, the extrap- 
olation algorithm under consideration is simply an iterative 
repetition of these projections. Howard's algorithm can be 
written as a composition of the two projection operations: 

If CI n C2 # pl, then alternating projections between them 
converge strongly in the mean-square sense to a point of 
intersection. 
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