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Abstract.Theperformance  of inexact processor scan be improve dat thecost o
bv usigs parallel redundant computations to correct errors at the 
procesor ' s  outputt .  i;rorcorrectingcodes applicable to binary data strings have 
previously been suggested for application to optical processors. We demon- 
strate that multilevel blockcodes can likewise be applied. Specific attention is 
given to error correction multilevel optical matrix-vector multipliers. The per- 
formance of the multilevel block code is compared to that of multilevel error 
correction codes formulated for VLSl processors and bar code readers. In 
residue-coded form (in which the matrix-vector multiplication is performed 
conventionally), the multilevel block code is shown overall to require fewer 
resolvable levels at the output. 

Subject terms: optical signal processing; error detection and correction; muhilevel 
algebraic opricalprocessing;para/lelredundantcomputation: vecror-matrixmultiplication. 
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1. INTRODUCTION 
The performance of an  inaccurate algebraic optical processor 
can be improved a t  thecost of reduced throughput by parallel 
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redundant computation. Performing a discrete algebraic 
operation on three different processors followed by a majority 
voter should, for example, increase the probability of the 
result being correct and,  in a worst case scenario, indicate that 
the answer is inconclusive. A more sophisticated and compu- 
tationally efficient approach is to use coded redundancy in 
such a way that processor errors can be detected and /o r  
corrected a t  the output using simple decoding techniques.' 
Such error detection and correction coding techniques have 
been suggested for optical associative memories by Liebowitz 
and Casasentz and for composite matched filters by Marks 
and Atlas et al.3-5 Each of these applications, however, makes 
use of those blockcodes applicable only to binary data strings. 
Optical processors, on the other hand, can operate a t  signal- 
to-noise ratios that allow multilevel output quantization 
1evels.h.' Multilevel error detection has been suggested for 
optical systolic array processors by Caulfield and Putnam." 

In this paper, we show that conventional error correction 
block codes, when generalized to multilevels, can be straight- 
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iorwaidl! applied to increase the accuracy of multilevel opti- 
cal matris-vector mtlltiplication processors. Additional 
redu~idant ourput values are computed to check the accuracy 
of the information elements. 

Two genciaiizations of block codes to multilevei error 
correction are discussed in this paper. The first, which uses 
conventioi~al integer addition and multiplication. is shown to 
require fewer output quantization levels for coded elements 
than are required by other error correction techniques.9.'"The 
second code uses residue su:ns in the matrix coding and error 
decoding. The matrix multiplication, however, is still per- 
formed conventionaily. Unlike the other coding methodscon- 
sidered, tile number ofrequired output quantization levelsfor 
residue coding is the same for both information and coded - 
eieinents. 

In all cases. matrix encoding is done off-line. A hybrid 
system of irec-space and integrated optics can be used in the 
cornputatio:~ of thc output syndromes. Alternatively, error 
decoding a n d  correction caii be performed totally by 
electronics. 

2. A .MULTILEVEL ERROR DECIMAL-BASED 
CORRECTING CODE 

Our first coding technique is best iliustraied b) example, first 
as  a code and then as applied to matrix-vector multiplication 
error correction. 

Consider four integers g3. g5. &, and g,. Similar to a 
Hamming block code. vie form the sums 

L.et g denote the 7.-tuple !.ectoi of these numbers and let d = 
g i n .  where n is a \ecior of raildomiy selected integers. With 
reference to Eq. ( I ) ,  wc form the check sums 

aiid the syndromes 

Three possible coiiciusious can bc made f rom the syndromes: 
( I )  If all of ihe syndromes are rcro, we conclude that no error 
has been madr. (2) If all nonzero syndromes are the same. wc 
conclude that a single error has been made. We use the syn- 
drome to locate and correct that error. (3) If the syndromes d o  
not satisfy either o i t h e  above cases. two or  morc errors have 
been made, l l icse ei-rors cannot be correcled. 

Example I :  

Consider the coded Lector 

where T denotes transposition. (The check-sum elements are 
underlined.) Assume that 

then 

Thus. element (1 0 = 5 in d1 (i.e.. dS = 4) should be 
adjusted by -2. This is the correct result. If, on the other hand. 

then 

Slnce the non7ero syndromes are d~fferent ,  we conclude that 
two or more m~stakes were made. (There were two.) 

In general, the minimum code length n. f o r m  information 
elements in a single error correction code, is the smallest 
integer satisfying 

For our example, n = 7 and m = 4. 
This multilevel extension of a Hamming code can be 

straightforwardly applied to correcting errors in matrix- 
vector multiplication. Consider the matrix-vector multi- 
plication 

where,ioran(n,m)=(7,4)code,A,b,andcare4Xp.pXl, 
and 4 X  I matrices, respectively, and p is the dimension o f the  
vector b. We partition matrix A into rows 

1'0 allow for error correction, the matrix is augmented to a 
7 X p  matrix A+. The nth row of A+ is 

With reference to Eqs. ( I ) ,  the new rows are computed via the 
Hamming recipe: 

= il( + a,, t 8- 

The augmented matrix-vector multiplication is 
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Owing to compurational or other error, assume we receive P2  = [a, a, a> . . . a,]' (211 

J A  uses a, = 2k-' and R H  uses a, = k.  If, for example. 

f = [ 1 2 3 4 ] ' .  (22) 

then the corresponding codes are 

h,, = [ I  2 3 4 10 491' (23) 

where the n i  is a vector of noise integers. Then d+ can be 
analyzed for errors using the multilevel Hamming coding 
procedure. 

Example 2: 

Assume that b = [0 1 1 21' and 

ro o 01 and 

h,, = [I 2 3 4 ;  10 301' 

More generally. 

h = [h, h, . . .  h,:h,-, h,,,] i 

where 

It follows that 

and 
If this matrix were coded on an  intensity transmittance, the 
resulting gray levels would not he exactly proportional to the 
elements of A_. We simulate this inexactness by adding zero 
mean Gaussian noise with a srandard deviation of l /s to each 
element of A,. Motivated by the nonnegativity of intensity 
transmittances. negative elements are set to zero. One of our 
simulations yielded 

Assume we receive 

d = [d, d2 . . .  d,:dm+, d,J' . (28) 

which differs f rom h in one information element. We find the 
magnitude of the error from the syndrome 

The result of the matrix multiplication is The second syndrome points to the location of the error. 
Specifically, 

where theCK operator rounds to the nearest integer. Using the 
decoding procedure, this vector corrects to g i n  Eq. (4). We 
have thus corrected an  error due to processor inexactness. 

3. OTHER MULTILEVEL ERROR CORRECTING 
CODES 

For purposes of comparison to the multilevel Hammingcode, 
we quickly review the multilevel error correctioncodes of Jou 
and Abraham9 (JA) and Redinbo and Hernmann'" (RH).  
Both are designed for single error correction in a multilevel 
matrix vector of length m. We augment the vector with two 
additional numbers corresponding to the inner product ofthe 
vectors. 

Since h, = d, at all except the error location, 

s2 = aLsI  . 
where L is the error location. 

Example 3: 

For a J A  code, suppose we receive 

d, ,  = [I 2 14.10 491' 

and The error is 
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Fig. 1. An optical vector-matrixmultiplier withelectronicerrordecod- 
ing and correction. 

Compute Syndrome 
81 coricct Error I-' 

i 
output 

Fig. 2. A secondarchitecture for correcting errors inanoptical  matrix- 
vector multiplier, The information portion of t h e  processor output d is 
input into a second matrix-vector multiplier t o  computed'. 

As example 5 illustrates, use of such residue coding allows 
a uniform requirement on quantization levels within the 
coded matrix and at the processor output; i.e., 

L,, = L . (45) 

where HR denotes the Hamming residue code. 
The price that is paid using residuecodingisa reduction of 

the dynamic range oftheerrors that can he corrected. For the 
M H ,  JA, and RH codes, a single error of any magnitude can 
becorrected. If LA is odd, the HR codecancorrect errors only 
within a range of (LA - 1)/2. If, however, errors are due to 
distributed inexactness as exemplified in Eqs. (17) and (IS), 
we would expect the error magnitude to he small when only 
one output error occurs. 

6. OPTICAL IMPLEMENTATIONS 
Figure I shows a hasic processor architecture for fault-toler- 
ant computing using the multilevel Hamming residue code. 
The processor input corresponding to b is implemented by a 
linear array o f p  point source LEDs. The matrix multiplica- 
tion is performed by the Stanford optical matrix mu1tiplier.l' 
(The astigmatic spreading and focusing optics have been 
deleted from the figure for clarity of presentation.) 

The levels in the A, matrix are computed off-line. The 
matrix-vector multiply is performed in the conventional 
manner. Decoding is performed electronically. 

Alternatively, as shown in Fig. 2, a second Stanford 
matrix-vector multiplier can be used to assist in computing 
the syndromes.2 Each syndrome is a nonweighted conven- 
tional sum of chosen information elements in d,. This can he 
performed with a Q matrix whose elements are either 1 or 0. 
For our (7 ,4)  Hamming code example, 

Then the syndrome vector is computed as 

where d' = Qd,. The detectors for the syndrome vector 
clearly require more resolvable levels than the detector array 
ford .  The residue operations required at the decoding stage 
can also he performed optically.'2.13 

7. CONCLUSIONS 

We have contrasted four multilevel error correction codes 
:tppl~c;~hlc to ,I~IIL..I. rnatrl.\-icitor ni t~l t~pl~crs .  ihr. Jou :ind 
:\brali:tm: I<ed~nh,) and tlcmrn.inn. dnd multilc\c. Ilitm- 
ming codes place severe performance constraints on the detec- 
tors for the output-weighted check sums. Use of residue-based 
matrix encoding, however, requires the same number of out- 
put resolvable levels for both information and check-sum 
elements. Matrix output vector multiplication is performed 
conventionally. 

The multilevel Hamming codes require only the operations 
of addition and multiplication in the decoding process, while 
the other codes require a division operation as well. 

Clearly, the Hamming code technique can he generalized 
to higher order Bose-Chaudhuri-Hocquenguem (BCH) and 
block codes.' Application to other operations, suchas matrix- 
matrix multiplication, is also evident. 
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