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1. INTRODUCTION

Abstract. The performance of inexact processors can be improved at the cost of
throughput by using parallel redundant computations to correct errors at the
processor's output. Error correcting codes applicable to binary data strings have
previously been suggested for application to optical processors. We demon-
strate that multilevel block codes can likewise be applied. Specific attention is
given to error correction multilevel optical matrix-vector multipliers. The per-
formance of the muitilevel block code is compared to that of multilevel error
correction codes formulated for VLS| processors and bar code readers. In
residue-coded form {in which the matrix-vector multiplication is performed
conventionally), the multileve! block code is shown overall to require fewer
resolvable levels at the output.

Subject terms. optical signal processing; error detection and correction; muftifevel
algebraic aptical processing, paraflel redundant computation, vector-matrix multiplication.

Optical Engineering 27(4}, 289-294 (April 1388).

redundant computation. Performing a discrete algebraic
operation on three different processors followed by 2 majority
voter should, for example, increase the probability of the
result being correct and, in a worst case scenario, indicate that
the answer is inconglusive. A more sophisticated and compu-
tationally efficient approach is to use coded redundancy in
such a way that processor errors can be detected and/or
corrected at the output using simple decoding techniques.!
Such error detection and correction coding techniques have
been suggested for optical associative memories by Lichowitz
and Casasent? and for composite matched filters by Marks
and Atlaset al.3-% Each of these applications, however, makes

The performance of an inaccurate algebraic optical processor
can be improved at the cost of reduced throughput by parallel
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use of those block codes applicable only to binary data strings.
Optical processors, on the other hand, can operate at signal-
to-noise ratios that allow multilevel output quantization
levels.5-7 Multilevel error detection has been suggested for
optical systolic array processors by Caulfield and Putnam.®
In this paper, we show that conventional error correction
block codes, when generalized to multilevels, can be straight-
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forwardly applied 10 increase the accuracy of multilevel opti-
cal matrix-vector multipiication processors, Additional
redundant output values are computed to check the accuracy
of the information elements.

Two generalizations of block codes to multilevel error
correction are discussed in this paper. The first, which uses
conventional integer addition and multiplication, isshownto
require fewer output guantization levels for coded elements
than are required by other error correction techniques.®- 10 The
second code uses residue sums in the matrix coding and error
decoding. The matrix multiplication, however, Is stll per-
formed conventionally. Unlike the other coding methods con-
sidered, the number of required output guantization levels for
residue coding is the same for both information and coded
elements. .

In all cases, matrix encoding is done off-line. A hybrid
system of {ree-space and integrated optics can be used in the
computation of the output syndromes. Alternatively, error
decoding and correction can be performed totally by
elecironics.

Z. AMULTILEVEL ERROR DECIMAL-BASED
CORRECTING CODE

Our first coding technique is best illustrated by example, first
as g code and then as applied 10 matrix-vector multiplication
EITOT COTrection.

Consider four integers g,. g, . and g,. Bimilar to a
Hamming block code, we form the sums

g T8 Tty
£ =& T TE . M
By = By TE T &
Let g denote the 7-tuple vector of these numbers and let d =

£ = 5, where nis & vector of randomly selected integers, With
reference to Eq. (1}, we form the check sums

d =d, +d +d, .

dy = d; +d, i . 2)

S
I

d, +d, +d,
and the syndromes

S~ dp, —d, . o m o= 2.4 (3
Three possible conclusions can be made from the syndromes:
{1y If all of the syndromes are zero, we conclude that no error
has been made. {2) If all nonzero syndromes are the same, we
conclude that a single error has been made. We use the syn-
drome te locate and correct that error. (3 if the syndromes do
not satisfy cither of the above cases, two or more errors have
been made, These errors cannot be corrected.

Example 1:

Consider the coded vector

g = [78192347. (4
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where T denotes transposition, { The check-sum elements are
underlined.) Assume that

dT =[7819434]: (5
then
s =8, 5, 8]

= —2.[1017. (6)

Thus, element (10 1), =35 in d' (e, d; = 4) should be
adjusted by —2. This is the correct result, If, on the other hand,

¢ =[5819434], {7
then
st =1—-402]. (%)

Since the nonzero syndromes are different, we conclude that
two or more mistakes were made. {There were two.)

In general, the minimum code length n, for m information
elements in a single error correction code, is the smailest
integer satisfying

211

am = :
n—+1

(9}

For our example,n =7 and m = 4.

This multilevel extension of a Hamming code can be
straightforwardly applied to correcting errors in matrix-
vector multiplication. Consider the matrix-vector multi-
plication

Ab = ¢ | {1

where, foran (n,m)=(7,4)code, A, b, and care 4 Xp, pXI,
and 4 X 1 matrices, respectively, and p is the dimension of the
vector b. We partition matrix A into rows

a,
a;

To aliow for error correction, the matrix s augmented to a
7Xp matrix A, The nth row of A is
fals1 <n<7. (12)

1

With reference to Eqs. (1), the new rows are computed via the
Hamming recipe:

8, = a, ta, +a,,

a8 = a, + & +a; . (13}
8, = a, T & + & .

The augmenied matrix-vector multiplication is

Al = ¢, . (14}
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Owing to compuiational or other error, assume we receive

4. = ety (15)

where the n, is & vector of noise integers. Then d, can be
analyzed for errors using the multilevel Hamming coding
procedure,

Example 2.
Assume that 8 =01 ! 2]7 and

(16)

el == o e}
s B DS —

0
2
i
i

— D D

It follows that

(7

e

[§
D L D —
— D €D e e g B
Ll o I - e N RS )
— O S o ) o —

If this matrix were coded on an intensity transmittance, the
resulting gray levels would not be exactly proportional to the
elements of A.. We simulate this inexactness by adding zero
mean Gaussian noise with a standard deviation of 4 to each
element of A . Motivated by the nonnegativity of intensity
transmittances, negative elements are set to zero. One of our
simulations yielded

3.095 1.800 2961 0.921
1.130 4.125 2.125 0.849
0.000 1.004 0.125 0.230
A, + nowse = | 2919 2.975 3886 0983 | . (18}
2.174 (.14% 1.768 0.000
0.160 2,006 1.160 ¢.000
1.099 1.076 1.004 0.773

The result of the matrix multiplication is
d = R {(A, + noise)b}

[7829234]7 . (19)

where the “%. operator rounds to the nearest integer. Using the
decoding procedure, this vector corrects to g in Eq. (4). We
have thus corrected an error due to processor inexactness.

3. OTHER MULTILEVYEL ERROR CORRECTING
CODES

For purposes of comparison to the multilevel Hamming code,
we quickly review the multilevel error correction codes of Jou
and Abraham?® (JA) and Redinbo and Hemmanni® (RH).
Both are designed for single error correction in a multilevel
matrix vector of length m. We augment the vector with two
additional numbers corresponding to the inner product ot the
VECtoTs,

B =t 1T (20

and

B, = [a, a2 .8, . 2n

JA uses @, = 2% ! and RH uses o = k. If, for example,
fx[l234}3.< {22)

then the corresponding codes are

hy, = [1234:1049]" {23)
and
hy, = [1234:1030]" . (24)

More generally,

h=1h h, ... hhy., hyol . {23)
where
mﬂ
heri = Z bix‘ (26)
k=1
and
i}
hper = 2 ohy (27)

k=t
Assume we receive

d=1[dd, ...

Ay iyt degal’ (28)

which differs from hin one information element. We find the
magnitude of the error from the syndrome

s =dy.; — E dg . (29)
k=1

The second syndrome points to the location of the error.
Specifically,

m

2, oqdy

k=t

S = dyyy —

m
= 2 oy —dy (30)
k=1
Since h, = d, at all except the error location,
$, = ' § {31)

Lo

where L is the error location.

Example 3:

For a JA code, suppose we receive
d, = [1214:1049]" . (32)

The error is

CPTICAL ENGINEERING / April 1988 / Voi. 27 No. 4 / 291



OH, PARK, MARKS, ATLAS

K
|

=10~ (1 +2+1+4)
= 2. (33)
The second syndrome is
s, = 49— (1 +2.2 422 +4.2%)
=8 . (34)

Since o, = 27!, we conclude that the L = third element
should be adjusted by 2. Comparing Eq. (32) with the properly
coded sequence in Eq. (23) confirms our result.

Codes of the form discussed in this section can be straight-
forwardly extended to correcting errors in matrix-vector mul-
tiplies. Matrix rows rather than vector elements are added.

Example 4:

The JA coding of matrix A in Eq. (16) results in

(35

Decoding of the vector d, — Aj, b is performed as in Ex. 3.

4. CODE COMPARISON

A limited dynamic range and a finite signal-to-noise ratio will
limit the number of resolvable fevels (NR L) at the output ofan
optical processor. For the three codes considered thus far, the
NRL for the coded portion of the matrix exceeds that of the
information portion. The NRL of the output check-sum ele-
ments, as a consequence, is much higher than that for infor-
mation elements.

Consider an (n, m) code. (For JA and RH, n = m + 2.)
Suppose matrix A has p columns and r rows and that each
element of A can take on only L, values, If the input b can
take on L, resolvable values, then the total number of levels
required for the elements of ¢ = Ab is

L = plL,L, . (30)

The required NRL in the output check-sum elements, how-
ever, is substantiaily larger. For the multilevel Hamming
{MH)} check-sum elements, the required NRL is

L
Ly ~ 05 a7

For the JA and RH codes, the required NRL are

m
Ly, = plal, 3 o =~27L (38)
k=t

and
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Loy =~ m’ 5 (39)
Of the three NRL, L,y is the smaliest.

5. MATRIX CODING USING RESIDUE CHECK SUMS

In this section, we show that a slight modification of the MH
code results in decoding that requires the same NRL for both
information and check-sum elements. Thus, there are uniform
output detection requirements. The technique makes use of
residue coding and decoding.! The matrix-vector multiplica-
tion, however, is performed using conventional integer multi-
plication and addition. The technique is identical to the
multilevel Hamming code but uses residue sums to code the A
matrix. We illustrate in the following example.

Example 5.

Consider matrix A in Eq. (16) and assunie that the maximum
NRLis L, = 3. Instead of forming new rows as integer sums,
we add modulo 3. Equivalently, our coded modulo matrix is
the element-by-element modulo base 3 of A, in Eq. (17):

Ag = ((A))

(40)

I
—o NS —O
— P D D e o b2
D e D B0 D

—_— D - D e e

where ((g)), denotes the residue of g base k. For an input of
b={0 1 1 2]%, the output using conventional multiplication is

g = Agh

[4513234]". {41)

Note that the check-sum elements are equal to their corre-
sponding sums in modulo 3:

(4 = (1 + 2+ 4)),

I s

{5, =l +3+4), =2, (42)

{3, = (2 +3+ 4, 0.
Suppose we detected the vector
dg = 4513134 . (43)

To detect negative errors, we compute the syndromes using
the principal values (—1, 0, 1) rather than (0, 1, 2):

$, = (1 +1+4)—4pn, = —1,
5, = (1 +3+4)—3), =0, (44)
s = (! +3+4)—3) =1,

which means there is an error of —1 in the (101), = fifth
element. This is the correct resuit.
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mdjno

Error Decoding, @

and Correction

Fig. 1. An optical vector-matrix multiplier with electronic error decod-
ing and correction.

Compute Syndrome
& Correct  Error

output

Fig. 2. A second architecture for correcting errors in an optical matrix-
vector multiplier. The information portion of the processor output dis
input into a second matrix-vector multiplier to compute d'.

As example 5 illustrates, use of such residue coding allows
a uniform requirement on quantization levels within the
coded matrix and at the processor output; i.e.,

L, =L, (45)

where HR denotes the Hamming residue code.

The price that is paid using residue coding is a reduction of
the dynamic range of the errors that can be corrected. For the
MH, JA, and RH codes, a single error of any magnitude can
be corrected. If L, is odd, the HR code can correct errors only
within a range of (L, — I)/2. If, however, errors are due to
distributed inexactness as exemplified in Egs. (17) and (18},
we would expect the error magnitude to be smali when only
one output error OCcurs,

6. OPTICAL IMPLEMENTATIONS

Figure | shows a basic processor architecture for fault-toler-
ant computing using the multilevel Hamming residue code.
The processor input corresponding to b is implemented by a
linear array of p point source LEDs. The matrix multiplica-
tion is performed by the Stanford optical matrix multiplier.!!
(The astigmatic spreading and focusing optics have been
deleted from the figure for clarity of presentation.)

The levels in the A matrix are computed off-line. The
matrix-vector multiply is performed in the conventional
manner. Decoding is performed electronically.

Alternatively, as shown in Fig, 2, a second Stanford
matrix-vector multiplier can be used to assist in computing
the syndromes.? Each syndrome is a nonweighted conven-
tional sum of chosen information elements int dg. This can be
performed with a  matrix whose elements are either  or 0.
For our (7,4) Hamming code example,

00101601 :

Q={001001¢]|. (46)
000011 ¢

Then the syndrome vector is computed as

s = (d' —[d, d, dq]T))LA s 47

where d° = Qdg. The detectors for the syndrome vector
clearly require more resolvable levels than the detector array
for d. The residue operations required at the decoding stage
can also be performed optically.i2.13

7. CONCLUSIONS

We have contrasted four multilevel error correction codes
applicable to optical matrix-vector multipliers. The Jou and
Abraham,? Redinbo and Hemmann,'? and multilevel Ham-
ming codes place severe performance constraints on the detec-
tors for the output-weighted check sums. Use of residue-based
matrix encoding, however, requires the same number of out-
put resclvable levels for both information and check-sum
elements. Matrix output vector multiplication is performed
conventionally,

The multilevel Hamming codes require only the operations
of addition and multiplication in the decoding process, while
the other codes require a division operation as well.

Clearly, the Hamming code technique can be generalized
to higher order Bose-Chaudhuri-Hocquenguem {BCH) and
block codes.! Application to other operations, such as matrix-
matrix multiplication, is also evident.
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