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INTROD UCTION

Although the artificial neural network has a long rich history, modem (1980' s)
exuberance about neural networks can largely be cred ited to Hopfie ld and. in particular, to his

mi. on ii:1cial neural network (ANN) for content addressable memories (CAM's) [1]. The network
been implemented electronically [2] and optically [3-5].

Unfortunately, Hopfield's ANN CAM, in its original form, will live only in history . This
because, simply , the algorithm contains too many negative attributes:

For diffe rent asynchronous operations , the network will converge to different steady states for
the same initialization.

The network does not scale well. Doubling the number of neurons less than doubles the
network' s storage capac ity [8].

3. When operated synchronously, the network can break into steady state oscillation. [15]

4 . Without the use of time-consuming processes such as simulated annealing, [18,19] , the
network can get stuck in false minima.

5. As we will show in this paper, the Hopfield neural network is algorithmically equivalent to an
iterative matched filter which can be implemented in fewer operations per iteration.

In this paper, Hopfield's CAJ,vI AJ."fN is pedagogically developed from a geometrical
of view using classic matched filter theory concepts. Its performance is contrasted with
of iterative matched filters and, more generally, correlation based associative memories
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PRELIMINARIES

Given N binary vectors of length L, a neural net is formed according to Hopfield's
recipe. The ith neuron is assumed to be connected to the jth neuron with a transmittance of Tij .
'If the sum of the inputs to a neuron exceeds a threshold. the neuron fires. If this sum is less than
the threshold, the neuron remains off. The net is designed to stabilize at states corresponding to
'the original library vectors.

. Mathematically, the interconnection net can be described by an L x L symmetric matrix
"f whose elements are Tij . The Tij elements are specified by the binary vectors or "library
elements ." Given a portion of one of the library element vectors, the entire vector can
sometimes be regenerated by iteratively multiplying by the matrix and clipping the result to
denerate a binary vector approximation of the desired result. Furthermore, the algorithm is
hiahly tolerant of faults . Elements in Hopfie ld's net can be destroyed [3] or gross ly quantized
[5]. and the processor will still work "well."

o ; i = j

(1)

N
Lff ' " 1 2 L"ni nj; 1, J = • , ...• ; 1 :;CJ

n =1

T =T"' - N I

;:~here I is the identity matrix. Note that Tij =T* ij for i :;C j .

If we define the L x N library matrix by

Clearly, T can be found from T* by settin g the dia gon al element s to zero . Thu s,

N

Tit = L fnJnj; i,j = 1,2.. .. ' L
n= 1

Hopfield found that setting the diagonal elements of the T matrix to zero assured convergence of
the iterative algorithm to a stable state [1.6-i] . In a more recent paper, this consrraint has been
relaxed [6] . Later, we will utilize the same recipe for the diagonal elements and define an
alternate matrix, T"' . with elements

HOPFIE LD'S MODEL

... Let (~I 1 ~ n ~ N} denote a set of library elements, each length L. The i th element
of fn is fni. each fni is either 1 or -1. We form the L x L matrix T with elements
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\
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~Fig. 1: ~:~:~~i~~~~ent neural net with symmetric interconnects, Autcconnects are shown with.

';we have

T* = F FT

liHence, we refer to T'" as the outer vfoduct matrix.
.>~'

(2)

',',' The elements of both the T and the T* matrices correspond to neural interconnects as
''; illustrated in Fig. 1. Only when the sum of the inputs into a neuron exceeds 3. threshold. does the
(neuron fires (turns on). When a neuron fires, the resulting contribution to a second connected
"neuron mizht be sufficient to exceed its threshold and. as a result, the second neuron would fire,
tete. Note that this model assumes symmetric interconnects (Tij =Tji). The zero diagonal in the
'iT matrix corresponds to the use of no autointerconnects. (Autoirirerccnnects are shown with
"d ashed lines in Fig. 1.) With the autointerconnects, we have T"' . Without gives us T .

A firing neuron will be assigned a value of 1. Thus, if neuron i is on, then its
.comributicn to neuron j is Tij. If a neuron is off, it is assigned a -1. This model (bipolar) is in
c ontrast to that of Hopfield where a non-firing neuron is equated to zero (binary). The
justification for this alteration will later become clear. In either model, the neural firing
.threshold will be zero. (The effects of different thresholds for each neuron has been considered
; [8].)

Consider, then, a given initialization or input vector, g, composed of ±l 'so We form the
'; iteration

-+ -+,
gM+l =slrn T gM (3)



~ ~

" \·,,·;e 0'0 = g and the vector operator, sgn, examines each element of Tg M and, if the element is
'~~itiv~, sets it to one , Otherwise, the element is set to -1. Ideally, (3) will converge to the
brarY element fm that is closest to g in the Hamming sense, Although this is commonly the
"-.. 'some initializations result in oscillations or converge to elements not in the library [4,
].

The iteration in (.~) is implicitly synchronous and thus assumes every interconnect time
lay is the same,

-9

2: A matched filter bank. If a > f allelement. m an or m;::n, then fm is chosen as the correct library

MATCHED FILTER CA.:\'l' S

In this section, we consider CAM's based on the matched filter. The end result is an
iterative matched filter based CAM that is identical to the Hopfield iteration in (3) .

An Optimal Non Iterative CAM

Consider, again , a set of N bipolar library elements of length L and an arbitrary bipolar
vector , g. To find the library element, fm, that the closest to gin the Hamming sense, we form
the matched filter bank shown in Fig. 2. The output of the nth filter is the inner product.

.... -+ -to-+

an = (g I fn) =g T fn
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Fig. 3: Augmentation of the matched filter bank in Fig. 2 into noniterative optimal CAM. The
maximum inner product, Cim, is used as a pointer to mernorv which outputs the
corresponding library element: ~. . •

One can easily show that

Cin = L -2hn
.... ....

where hn is the Hamming distance between g and fn. Thus, minimizing the Hamming distance is
equivalent to maximizing the norm. Our task then is simply to search through the filter outputs
for the maximum inner product, say, Cim. (If there is a tie for maximum, we can make no
definitive decision.)

By adding a post processor, this matched filter can be made into a content addressable
memory. The post processor consists of a linear memory which contains all of the library
elements. The address, rn, of the maximummarched filter output is the input to the memory,
causing the corresponding library element, fm, to be output (see Fig. 3). Assuming perfect
processing, this CAM is clearly optimum in the Hamming sense. Classically, the matched filter
is known for its optimality for signal detection in white Gaussian noise [9].

.A. nother Non Iterative CAM

A second (sub-optimal) non iterative CAM based on the matched filter is shown in Fig. 4.
Here, the matched filter outputs, {Cin I 1 ~ n ~ N}, are used to weight their corresponding library
elements. These weighted vectors are added to yield

.... N --r= r Cinf;} (4)
n=l

-.. ...., .......

Each element in r is clipped to give the bipolar output vector, f" . Clearly, we would like fir to be
the library element, fm, closest to gin the Hamming sense. .
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(5)

-

012 is the Kronecker delta. If the ±1 ' 5 in the libra ry elements are chosen by a 50-50 co in
and L is large, then (5) will hold to a good approximation.

-4: A suboptimal n~.ite:-ati.ve CA.M. The our~ut, f. , is the correc t answer , fm, if CLm » an,
n:;cm. Then am I m dominates In the sum ot weighted library elements.

- -Let f lTl denote a specific library element 'Ul.d l~ g be a ve ctor that is a Hammi ng distanc e
away from ~. The CAM in Fig. 4 will ou tput f" =fm if

L
k < 2N (6)

proof is given in the Appendix. The authors have recently shown that if the a 's in Fig. 4 are
through a nonlinearity Na/2 prior to wei ghting the library vectors, the output is always that

111 """ ,r,, vector closest to the input in the Hamming sense [16] .

- -The rationale behind this CAM is as follows. If g is sufficiently close to fm and
i Sllfficie:ntly far from the other library elements, then am » (Xn, (n :;: m), and the (Xmfm term in 4)

dominate. Hence, clipping will result in1*=fm which is our desired result,

The followin g is a specific exampl e of how this processor will yield the correct answer:
the library elements be orthogonal:



-

-

9 ~4+ 1

Fig. 5: An iterative matched filter (L.\1F) CAM . Its performance is equivalent to that of a
Hopfield neural net with nonzero interconnects .

An Iterative Matched Filte r

. - -Even if f" in Fig. 4 is not the correct library element. it may be close r to fm than to g.
Thus. another iteration could be in order. Generalizing, we obtain the iterative matched filter
(IM F) CAM in Fig . 5. Initializing with ~ = g, the Mth iterate, gM, is matched with each library
element to form the vec tor of inner products:

(7)

As before, the library elements are weighted by these inne r products to obtain the updated
itera te:

- -gM+l = sgn F a.M (8)

-From the previous section. if the library elements are orthogonal. and gM is less than L/2N away
(in the Hamming sense) from a library element, then the iteration will converge in the next cycle.

o.,n .
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Oocki.ag Synchronous or Synchronous Synchronous
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' plus memory access

Table l : Performance Comparison Among Three CA~rs

,-

~; outer product matrix. . A total of NL elements in the library matrix, F, are mapped into a total of
.·i L2 numbers in the T" matrix. Recalling that we require L»N reveals the outer product matrix

as highly redundant. In con trast , the iterative matched filte r and noniterarive CAM's have no
•..•fault tolerance in their des ign, but could possibly be redundantly augmented.

In the absence of processing errors, the llvlF and Hopfield CAM's are algorithmically
. identical. Thus , their convergence properties will be the same for identical inputs.

When comparing opera tions per iteration. one must take care. Every multiply in the three
C AM 's has a multiplicand of x l , The mul tiplications thus are less important than the additions.
We therefore chose a performance cri teria of addi tions (or subtractions) per iteration in Table 1.

. Lastly, we consider the required CA~l memory. The Hopfi eld net requires memo ry on
the order of L2/2 . equal to the number of interconnects. The EvlF, on the Other hand, requires
storage only of the NL bits of the library matrix plus , dependin g on implementation, the same
nu mber of bits for the inner product stage.

~ ~ IGNAL SPACE L.'lTERPRETATION

In the absence of processor errors, the Hop field and IMF CAM' s perfo rm ide ntically. In
this section, we offer a signal space interpretation of the unified algorithm from an IMF

·y iewpoint. Signal space interpretations can allow significant intuitive insight into algorithm
'performance.

c· Consider, again, Fig. 5. Our ini tial input vector go = g, can be considered as a point in an
L dimensional Hilbert space . In gene ral . the vector
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Fig. 7:. Sign~l space interpretation of the IMF CAM. For orthoconal librarv elements the
iteranon first corresponds to projection Onto the subspace and then orno a hyper~ube
vertex.

N -+

I1.1 = I. an fn
n= l

must lie in the N dimensional jubspace spanned by .:~ N library elements . Indeed. if the library
elements are orthogonal, then r~I is the projection or ,:,,( onto that subspace .

~ ~

To form the next iterate, we threshold each dement of rM to obtain gM+l . Geometrically,
an L vector of ±1's can be considered as a vertex of an L dimensional hypercube . Thresholding
each element of-rM results in the vertex, gM+l, that is closest to ~1 in the mean square sense.
Thus , for orthogonal library elements, the algorithm, as it iterates, corresponds to alternately
projecting Onto a subspace and then to a vertex of the hypercube. This behavior suggests that the
IMF CAM is alzorithmicallv close to alternating convex set projections techniques for signal
recovery and synthesis [10-131. The problems differ only in the nonconvexiry of the hypercube
venice set.

. ~ ....
An illustration of the IMF CAM is in Fig. 7. Two library vectors, f1 and f2. correspond
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to two hypercube vertices. Both vectors have their tails at the origin which is at the cube's
center. "Q1e c!2sure of these two elements is the planar ~ubspace shown. Beginning with some
element, go =g, we project Onto the subspace as show n. Next, we threshold and project to the
nearest vertex as shown which, in this case, is the desired library element, f2.

A fixed ooint is a vector that is unaltered by further iteration. Clearly, we desire that each of our
library elements be fixed points. In general, any point that is both on a hypercube vertex and the
subspace is a fixed point. Unfortunately, not only do our library elements lie on both ?-.ets. so do
their negatives. Indeed, as illustrated in Fig. 7, if an initial vector gconverges to fm, then -g
converges to -1m• The negative of a library element will normally not be a library element. One
possible remedy is to have varying (nonzero) neural thresholds which has the effect of
translating the subspace into a linear variety.

Note also , that vertices other than library elements and their negatives can lie on the
subspace. For example, if

~ ~ ~ ~ ~ ~

then f1 + f2 + f3 = [ 1 1 1 1 ]T, Thus f1 + f2 + f3 is also a vertex which lies on the subspace and,
for this library set, is an undesired fixed point.

Summary

Hopfield 's neural net CAM has been shown to be equivalent to an iterative matched filter
(IMF) CAM. ' The advantages of a Hopfield neural net are high fault tolerance and
asvnchronicirv. The hizh fault tolerance, however, is bouzht with the orice of more ooerations
per itera tion.. Both procedures can be viewed in a signal sp ace as alternate projectionsberween
the subspace spanned by the library elements and the hypercube's vertices .

..As was mentioned, the projection argument holds exactly onlv for ortho zonal eleme nts. For
L=3, no tW? verti~es are orthogonal. Hence, our illus tration in Fig. t is pedagogical but
nonethe less mstrucnve. For non-orthogonal library elements, the matrix T = F (FTF)- l FT (in

of T''') provides an orthogonal projection onto the subspac e spanned by the library elements,
T and T~I\ the corresponding neural net has.jin general, nonimeger interconnects. Note ,

uowever th,at a ~ (coO) will perform the same as 'f due to the~. For an appropriate a, aT
could contain all integers T0 a zood approximation. Other nroiection based neural networks have
been recently prop osed [14,17] .



APPENDIX A

Here, we prove (6) . Clearly

.~ -
am = g T fm = L - 2k

and

I an Is 2k ; n ;e m

..... ..... N ->

r =(L - 2k) fm + r. an fn
n= l
n;em

.. or, in terms of components

N
rj =(L -2k) fmj+ r an fnj ; I ~ j ~ L (A I )

n=I
n;em

If fmj =- 1 clipping results in rj < 0, then t'.=-1. Similarly, for fmj =1, we desire fj > °and f*j =
1. Let' s impose this latter case on (AI) . From (AI), for fmj = 1. using the worst case condition.
we obtain

rj ~ (L - 2k) - 2k (N - 1)

Thus. to insure that rj > °for fmj = 1, it is sufficient to require (5). By a similar trea tment, one
can demonstrate that this constraint assures that rj < 0 when fmj = - 1.

APPE:'-lDIX B

..... Let (Vq I 1 s q s 2L) denote the set of all distinct vectors of len ~th -JL wi th ±1 elements.
Each Vq corresponds to a vertex of an L dimensional hypercube. For an arbitrarv vector ~ we
will show that sgn gis that vertex closest to gin the mean square sense. • .::0'

For each venex, defi.ne the error:

where II h112 =hT ~ Clearly

a "71:
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Since II vq 112 =L for all q, minimizing Eq is equivalent to maximizing the inner product g r Vq.
(The same principle on which the matched filte r is founded.) We write

L- T-g Yq = r. gp Vpq
p=l

For a given gp with every Vpq = ±1, this is clearly maximum when Ypq=sgn gp and our proof is
complete.
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