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INTRODUCTION

Although the artificial neural network has a long rich history, modem (1980°s)

exuberance about neural networks can largely be credited to Hopfield and, in partcular, to his
artificial neural network (ANN) for content addressable memories (CAM’s) [1]. The network

LI

L

_ has been implemented electronically (2] and optically 3-3].

Unfortunately, Hopfield’s ANN CAM, in its original form, will live only in history. This

is because, simply, the algorithm contains t0o many negative atributes:

L.

For different asynchronous operations, the network will converge to different steady states for
the same ininalization.

The network does not scale well. Doubling the number of neurons less than doubles the
network’s storage capacity [8].

When operated synchronously, the network can break into steady state oscillation. [13]

Without the use of time-consuming processes such as simulated annealing, [18,19], the
network can get stuck in false minima.

As we will show in this paper, the Hopfield neural network is algorithmically equivalent to an
iteradve matched filter which can be implemented in fewer operations per iteradon.

In this paper, Hopfield’s CAM ANN is pedagogically developed from a geometrical

point of view using classic matched filter theory concepts. Its performance is contrasted with

those of iteratdve matched filters and, more generally, correladon based associative memories
[16]. '
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pRELIMINARIES

Given N binary vectors of length L, a neural net is formed according to Hopfield's
recipe. The ith neuron is assumed to be connected to the jth neuron with a transmittance of Tj;.
If the sum of the inputs to 2 neuron exceeds a threshold, the neuron fires. If this sum is less than

the threshold, the neuron remains off. The net is designed to stabilize at states corresponding to
the original library vectors.

Mathematically, the interconnection net can be described by an L x L symmetric martrix
T whose elements are Tjj. The T elements are specified by the binary vectors or "library
elements.” Given a portion of ore of the library element vectors, the entire vector can
sometimes be regenerated by iteratively multiplying by the matrix and clipping the result to
generate 2 binary vector approximation of the desired result. Furthermore, the algorithm is

highly tolerant of faults. Elements in Hopfield’s net can be destroyed [3] or grossly quantized
[5], and the processor will still work "well."

HOPFIELD’S MODEL

- Lt (F | 1 £ n £ N} denote a set of librarv elements, each length L. The ith element
of fn is fp;. Each fn is either 1 or -1. We form the L x L marrix T with elements

N
Ty=1 Z fufajij=1,2,...,Lii=j
n=

0 yi=j

Hopfield found that setting the diagonal elements of the T martrix to zero assured convergence of
the iterative algorithm to a stable state {1,6-7]. In a more recent paper, this constrzint has been

relaxed [6]. Later, we will utilize the same recipe for the diagonal elements and define an
alternate matrix, T™, with elements

Ty =
n

n otz

faifoj;i,j=1,2, ....L
1

Clearly, T can be found from T* by setting the diagonal elements to zero. Thus,

T=T"-NI (1)

where I is the identity matrix. Note that Tjj=T™ jj fori=j.
If we define the L x N library matrix by
F=(f1 f ... fy]



Fig. I: A seven element neural net with symmerric intarconnects. Autcconnects are shown with.
dashed lines.

we have

T* = FFT (2)

Hence, we refer to T™ as the outer product marrix.

The elements of both the T and the T* matrices correspond to neural interconnects as
illustrated in Fig. 1. Only when the sum of the inputs into a neuron exceeds a threshold, does the
neuron fires (tums on). When a neuron fires, the resulting contribution to a second connected
neuron might be sufficient to exceed its threshold and, as a result, the second neuron would fire,
etc. Note that this model assumes symmetric interconnects (Tjj = Tji). The zero diagonal in the
T marrix corresponds to the use of no autointerconnects. (Autointerconnects are shown with
dashed lines in Fig. 1.) With the autointerconnects, we have T™. Without gives us T.

A firing neuron will be assigned a value of 1. Thus, if neuron i is on, then its
contribution to neuron j is Tjj. If a neuron is off, it is assigned a -1. This model (bipolar) is in
conwrast to that of Hopfield where a non-firing neuron is equated to zero (binary). The
justification for this alteration will later become clear. In either model, the neural firing

Ehreshold will be zero. (The effects of different thresholds for each neuron has been considered
81.)

. Consider, then, a given initalization or input vector, E composed of £1’s. We form the
lteration

s -

gM+1 =320 T gum 3)



- ' -
~ where go = g and the vector operator, sgn, examines each element of Tgy and, if the element is
 positive, Seis it 1o one. Otherwise, the element is set to -1. Ideally, (3) will converge to the
|ibrary clempq:_?m that is closest to g in the Hamming sense. Although this is commonly the
cacs. some initializatons result in oscillations or converge to elements not in the library (4,

}11.15].

The iteration in (3) 1s implicitly synchronous and thus assumes every interconnect time
_ delay is the same.

"

Fig. 2: A marched filter b
. r bank. If ag > : )
ol iy y m > &q for all m=n, then £ is chosen as the correct library

MATCHED FILTER CAM’S

‘ In this section, we consider CAM’s based on the matched filter. The end result is an
terative matched filter based CAM that is identical to the Hopfield iteration in (3).

An Optimal Non Iterative CAM

Consider, again, a set of N bipolar library elements of length L and an arbitrary bipolar
vector, g. To find the library element, fm, that the closest to g in the Hamming sense, we form
the marched filter bank shown in Fig. 2. The output of the nth filter is the inner product.

an=(glfy=g T
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Fig. 3: Augmentation of the marched filter bank in Fig. 2 into noniterative optimal CAM. The

maximum inner preduct, Om,_is used as a pointer 0 memory which outputs the
corresponding hbmrv element: Im.

One can easily show that

Up = L -2hp
— —
where hq is the Hamming distance between g and fn. Thus, minimizing the Hamming distance is
equivalent to maximizing the norm. Our task then is simply to search through the tilter outputs

for the maximum inner product, say, am. (If there is a tie for maximum, we can make no
definitive decision.)

By adding a post processor, this matched filter can be made into a content addressable
memory. The post processor consists of a linear memory which contains all of the library
elements. The address, m, of the maximum matched filter output is the input to the memory,
causing the corresponding library element, £y, to be output (see Fig. 3). Assuming perfect
processing, this CAM is clearly optimum in the Hamming sense. Classically, the matched filter
is known for its optimality for signal detection in white Gaussian noise [9].

Another Non Iterative CAM

A second (sub-optimal) non iterative CAM based on the matched filter is shown in Fig. 4.

Here, the matched filter outputs, {0ty | | € n € N}, are used to weight their corresponding library
elements. These weighted vectors are added to yield

-

N -
r= 3 oafy (4)

desd

n=1

Each element in T is clipped to give the bipolar output vector, f"‘ Clearly, we would like t to be
the library element, fm, closest to g in the Hamming sense.
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Fig. 4: A suboptimal noyiterative CAM. The output. f=, is the correct answer, i, if Um >> U,
n=m. Then om i, dominates in the sum of weighted library elements.

The ratonale behind this CAM is as follows. If g is sufficienty close to ?m and
sufficiently far from the other library elements, then am >> @y, (n # m), and the Gmfm term in 4)
will dominate. Hence, clipping will result in T*=fr which is our desired result.

The following is a specific example of how this processor will vield the correct answer:
Let the library elements be orthogonal:

where Oy is the Kronecker delta. If the £1's in the library elements are chosen by a 50-30 coin
flip and%_ is large, then (5) will hold to a good approximation.

=¥ . . id . . -
Let fr denote a specific library element and let g be a vector that is a Hamming distance
k away from t,. The CAM in Fig. 4 will output t™ = fr if

L

A proof is given in the Appendix. The authors have recently shown that if the «’s in Fig. 4 are
run through a nonlinearity N2 prior 10 weighting the librarv vectors, the output is alwavs that
library vector closest to the input in the Hamming sense [16].
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Fig. 5: An iteratve martched filter (IMF) CAM. Its performance is equivalent to that of a
Hopfield neural net with nonzero intercoanects.

An lterative Martched Filter

-

- -

Even if £ in Fig. 4 is not the correct library element, it may be closer to fi than to g.

Thus, another iteration could be in order. Generalizing, we obtain the iterative matched filter

(IMF) CAM in Fig. 3. Initializing with g5 = ¢, the Mth iterate, gy, is matched with each library
element to form the vector of inner products:

am=FT gu @)

As before, the library elements are weighted by these inner products to obtain the updated
iterate:

- -

gm+1=sgn F aym 3

. o . 5, = 3
From the previous section, if the library elements are orthogonal, and gy is less than L/2ZN away
(in the Hamming sense) from a library element, then the iteration will converge in the next cycle.
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Iterative Matched
Hopfleld Matched Filter with
Filter Table Lookug
Fault Ezxeellent None in None in
Tolerance Design Desien
Type of Iterative Iterative Noniterative
Algorithm
Operations L 4L NL®
per [teration
Flaal Good Same as Can be
Result Hoofield Optimum
Clocking Synchronous or | Synchromous | Synchronous
Asynchronous
Required L VL WL
Memory

*plus memory access

Table |: Performance Comparison Among Three CAM's

outer product marix. A total of NL elements in the library matrix, F, are mapped into a total of
L2 numbers in the T™ matrix. Recalling that we require L>>N reveals the outer product matrix
as highly redundant. In contrast, the iterative martched filter and noniterative CAM’s have no
fault tolerance in their design, but could possibly be redundantly augmented.

In the absence of processing errors, the IMF and Hopfield CAM’s are algorithmically
identical. Thus, their convergence properties will be the same tor identical inputs.

When comparing operations per iteration, one must take care. Every multiply in the three
CAM’s has a muluplicand of =1. The multiplications thus are less important than the additons.
We therefore chose a performance criteria of additions (or subtractions) per iteration in Table 1.

Lastly, we consider the required CAM memory. The Hopfield net requires memory on
the order of L.2/2, equal to the number of interconnects. The IMF, on the other hand, requires

storage only of the NL bits of the library martrix plus, depending on implementation, the same
number of bits for the inner product stage.

SIGNAL SPACE INTERPRETATION

In the absence of processor errors, the Hopfield and IMF CAM'’s perform identically. In
this section, we offer a signal space interpretation of the unified algorithm from an IMF

viewpoint. Signal space interpretations can allow significant intuitive insight into algorithm
performance.

> . o - . e . . oy - . 34 = ’
Consider, again, Fig. 5. Our initial input vector gg = g, can be considered as a pointin an
L dimensional Hilbert space. In general, the vector
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Fig. 7: Signal space interpretation of the IMF CAM. For orthogonal library elements, the
ireration first corresponds to projection onto

the subspace and then onto a hypercube
vertex.
" N =
™M= Y Onfa
n=1

must lie in the N dimensional subspace spanned by ~"~ N library elements. Indeed, if the library
elements are orthogonal, then ry{ is the projection oi [ onto that subspace.

Ed pu—y -

To form the next iterate, we threshold each element of ry to obtain gm+1. Geometrically,
an L vector of £1's can be considered as a vertex of an L dimensional hypercube. Thresholding
each element of Ty results in the vertex, gM«+1, t}xat 18 clo‘sc:st to M in the mean square senslc.
Thus, for orthogonal library elements, the algorithm, as it lterates, corresponds to altetrhnat:h y
projecting onto a subspace and then to a vertex of the hypercube. This behavior suggests that ai
IMF CAM is algorithmically close to alternating convex set projections techniques for sign

recovery and synthesis [10-13]. The problems differ only in the nonconvexity of the hypercube
vertice set.

An illustration of the IMF CAM is in Fig. 7. Two library vectors, f] and f2, correspond
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to two hypercube vertices. Both vectors have their tails at the origin which is at the cube’s
center. The closure of these two elements is the planar subspace shown. Beginning with some

element, g, = g, we project onto the subspace as shown.™ Next, we threshold and project 1o the
nearest vertex as shown which, in this case, is the desired library element, f2.

A fixed point is a vector that is unaltered by further iteration. Clearly, we desire that each of our
library elements be fixed points. In general, any point that is both on a hypercube vertex and the
subspace is a fixed point. Unfortunately, not only do our library eleme;gts lie on both sets. so do

their negadves, Indeed, as illuswrated in Fig. 7, if an initial vector g converges to f,, then §
converges to -fm. The negative of a library element will normally not be a library element. One

possible remedy is to have varying (nonzero) neural thresholds which has the effect of
translating the subspace into a linear variety.

Note also, that vertices other than library elements and their negatives can lie on the
subspace. For example, if

- == =)

- 11
(fi:f2:f3] =11 -1
11

11

)

— b p

thenfy +f2 +f3=[1111]T. Thusa +‘f; + f3 is also a vertex which lies on the subspace and,
for this library set, is an undesired fixed point.

Summary

Hopfield’s neural net CAM has been shown to be equivalent to an iterative matched filter
(IMF) CAM. 'The advantages of a Hopfield neural net are high fault tolerance and
asynchronicity. The high fault tolerance, however, is bought with the price of more operations
per iteration. Both procedures can be viewed in a signal space as alternate projections between
the subspace spanned by the library elements and the hypercube’s vertices.

*As was mentioned, the projection argument holds exactly only for orthogonal elements. For
L=3, no two vertices are orthogonal. Hence, our illustration in Fig. 7 is pedagogical but
nonetheless instructive. For non-orthogonal library elements, the matrix T = F (FTF)-1FT (in
%mu.of T provides an orthogonal projection onto the subspace spanned by the library elements.
Unlike T and T7, the corresponding neural net has,,in general, noninteger interconnects. Note,,
however, that & T (c>0) will perform the same as I due to the sgn. For an appropriate o, oT

Could contain all integers o a gnnd approximarion. Other projection based neural networks have
been recently proposed [14,17].



APPENDIX A

Here, we prove (6). Clearly

om=gTfm=L-2k

and

loag|s2k;n#m

Thus

i = N -
r-"—(L'zk)fm'i‘ 2 anfn

n=1
n#m

or, in terms of components
N
rj = (L - 2K) fmj + Zlanfnj;ISjSL (A1)
n=

n#m

If fmj = -1 clipping results in rj < 0, then f; =-1. Similarly, for fmj= 1, we desire fj> Q0 and f*; =

1. Let’s impose this lanter case on (Al). From (Al), for fmj = 1, using the worst case condition,
we obtain

rj2(L-2k)-2k(N-1)

Thus, to insure that rj > 0 for {;; = 1, it is sufficient to require (5). By a similar treatment, one

can demonswate that this ~constraint assures that 1; < O when f = -L

APPENDIX B

JLet{vgil<qsg 2L denote the set of all distinct vectors of length VL with +1 elements.
Each vq corresponds to a ve 2 g

_ riex of an L dimensional hypercube. For an arbitrary vector g, we
-, - " < 2%
will show that sgn g'is that vertex closest 1o g in the mean square sense.

For each vertex, define the error:

eq=11g-vqll2: 1sqs2k

where | b2 =h Th. Clearly

=le 2o n2.520 2
gg=llgi=+livgli=-25 - vq

avre



Since || v 12 = L for all q, minimizing €q is equivalent to maximizing the inner product g i vq.
(The same principle on which the martched filter is founded.) We write

L

Tvg= <1 gp Vpa

q

ual

p

For a given gp with every vpq = 1, this is clearly maximum when vpq = sgn gp and our proof is
complete.
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