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ABSTRACT:
We investigate acceleration of the iterative
implementation of the two-dimensional (2-D) infinite

impulse response (IIR) filter proposed by Dudgeon [1-3].
The conventional procedure results in a sequence of
estimations that converge linearly to the desired filter output.
Following the recently proposed accelerated convergence
algorithm developed for linearly distorted signal
reconstruction problems [4], we use a product expansion of
the denominator of the transfer function of a IIR filter to
derive a class of iterative algorithms that have a pth order
rate of convergence. Specifically, k iterations of the
proposed pth order algorithm are equal to the pK iterations of
the linear-algorithm. Therefore, the number of iterations
required to obtain a given approximation is reduced from pk
to k. We analyze the error due to the spatial truncation in the
implementation and conclude that the truncation error does
not affect the computation of the desired result in the region
of interest provided that the boundary values outside the area
of interest are known. Finally, we present two examples to
compare the difference in the convergence rates for the
linear and the accelerated algorithms.

L Introduction

The iterative implementation of a two-dimensional
(2-D) IIR filter has been proposed by Dudgeon and his
colleagues [1-3]. They have shown that a stable 2-D
rational frequency response can be implemented by an
iterative computation involving only finite-extent impulse
response (FIR) filtering operations. This iterative
implementation can be realized with digital processors which
can convolve a 2-D signal with a filter kemnel of limited
extent very effectively. Furthermore, because the
computation involves only an FIR filtering operation each
iteration, the implementation can be used to approximate a
rational frequency response which is not recursively
computable, without the necessity of 2-D spectral
factorization.

Even though this iterative impiementation has been
successfully applied, its convergence rate is relatively slow
since the conventional procedure results in a sequence of
estimations that converges linearly to the desired filter
output. In this paper, we investigate the convergence
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acceleration for this iterative implementation following the
recently proposed accelerated convergence algorithm
developed for linearly distorted signal reconstruction
problems [4]. In section II, we review the iterative
implementation of a 2-D IIR filter. In section III, we derive
a class of iterative algorithm that have a pth order rate of
convergence. We show that k iterations of the proposed pth
order algorithm are equivalent to pk iterations of the linear
algorithm. In section IV, we consider the computational
efficiency based on the number of arithmetic operations and
show that the accelerated algorithms use less multiplications
and additions. In section V, we analyze the emror due to
spatial truncation in a practical implementation and conclude
that this error does not_effect the computation of the desired
result in the region of interest provided that the boundary
values outside the area of interest are known. Finally, in
section V, we present two examples to compare the
difference in the convergence rates of the linear and the
proposed algorithm. One example is implementation of a 2-
D low pass filter and the other is application of known
boundary values to obtain the correct solution in a spatially
truncated situation.

II. Dudgeon’s IR Filter Algorithm
A 2-D rational frequency response can be written as
H(w;,07) = A(;,002)/B(w,0) (¢Y)]

where A(w,,w,) and B(®,,e,) are trigonometric polynomials
given by a 2-D discrete Fourier transformation (DFT) of
arrays a(n,m) and b(n,m), respectively, Both a(n,m) and
b(n,m)are assumed to be of finite extent.

We can define:

Clay,tn) = 1 - B(w;,007) @

Therefore,
3)
If we denote x(n,m) and y(n,m) as the filter’s input signal

and output signal, respectively, and their DFT’s are X(w;,t;)
and Y(w;,0;), then, from (3), we have

H(w;,00) = A(@y,02) /[1-C(04,02)]
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Y (@1,002) = Adr1,02)X(01,02)/[1-Cl01,02)]- @)

1f | Clwy,m2) | < 1, the Y(co,,007) can be written as

Y(@1,0) = Al o)X(@ -U)z)n?: EChoe). ()
If we denote

Yik(wy,0) = Aoy ,on)X(mx,an)I;};lg“(mhmz) (6)

as the kth approximation of Y(wan), we obtain the
following iteration formula:

Yo 1(01,002) = A(01,02)X (01,007) +C(001,0) Yi(@y,02) (72)

with
Yo, ;) =0. (7b)
This algorithm has been extended to implement an
arbitrary stable rational filter [2,3). Because of space
limitations, the extension will not be included in this paper.
If we define e (my,05,) as the error after k iterations
of (7) as

le(@nwp | = | (0,0 - Yoo ®)
Then, from (4) and (6),
legtnom | = | Yo | | e % ®
and the normalized error is
E1,02) = |e (oo /] Yoo
= | Clorwp) | (10)

Since | C(w,,w) | < 1, we see that the {£) is a
sequence that converges linearly to zero. As a result, we
refer to (7) as the linear or first-order iteration algorithm.

III. Derivation of the Accelerated Algorithm

In this section, we derive a general class of iterative
algorithms for the implementation of IR filters. We use a
product expansion of the denominator to obtain (1) the
quadratic convergence algorithm and (2) the generalized pth
order convergence algorithm. In this paper, we only discuss
the accelerated algorithm for (7). This acceleration method,
however, can be modified to accommodate the extended
iterative algorithm for an arbitrary stable filter.

A. The Iterative Algorithm with Quadratic Convergence

The linear iterative algorithm in (7) corresponds to a
term-by-term  implementation of the geometric  series
expansion of 1/B(®; y):

1/B(w1,7) = 1/[1-C(ey,0,)]

= 1+C(w],02)+C2 (@1,@2)+... amn
If we separate the sum of (11) into two summation

x s, one
containing the even power terms of C(® '
odd power terms, we obtain (@n@aJand other the

1/B(ay,an) =X C(awy, n
1 205 4( 1,0%2) l‘T=)l:,3(,:5 (@y,0)

=[1+C(w,,07)] 3521" (@1,07) (12)
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The m sum is divided again into even and odd components
and the process is repeated. Repetitive application of this
procedure results in

Cod n
1/B(001,0) = IT [1+C2 (@4,02,)]
n=0
Applying this product expansion to (4), we get
had n
Y(on.00) = Al @pX(@1,02) T{1+C2 (@] (149

From (14), we would like to derive an iterative algorithm.
Let

k-1 n
Yi(wy,07) = A(wl,un)X(wl,ah)ngo[H@ (omp]  (15)

be the kth estimation. Then Yi,1(®,00,) is related to
Yi(wy,w7) by

k
Yie1(@1,07) = [1 + C2Z (01,0)] Yie(1,02)

(13)

= Y, (@y,02)+ Ti(@1,02) Yi(W1,002), (16a)
with
Yolor,07) = A(01,02)X(@1,0%), (16b)
where we have defined
Ti(wy,m0) = Czk(mhﬂ)z) a7
Note that Ty (@,,,) may be recursively updated as:
Ti(@1,2) = T2 (@1,0). (18)
Equations (16) and (18) together constitute  our
iterative algorithm with quadratc convergence.  The

algorithm is illustrated in Fig.1.

In order to study the convergence rate of the iterative
algorithm in (16), we expand the product factorization for
Y, (®1,02) in (15) and we get, fork >0,

To =C
Tienr :TE

Yi
¢ Yen
s

Fic.1 BLOCK DIAGRAM FOR THE QUADRATIC ALGORITHM

k.1
Yulo1.00) = A@ X @100 T Chane (19
Comparing (19) with (6), we observe that k iterations of (16)
are equivalent to 2k iterations of the linear algorithm .
Proceeding as we did for the linear algorithm, we can
analyze the error after k iterations. From (19):
ley(non| = | Yy(@1.00 - Yoo
k
= | Y(n,0)C2 (@ .

The normalized error follows as

(20)



Ee(@n,a) = ley(onm | / [ Y@,y
X
= | Clo,wy) %2

If lC(m;,mz)|<l, then (&} is a sequence that converges
quadratically to zero. Therefore, we refer to this algorithm
as the quadratic or second-order iterative al gorithm.

In any practical implementation, the number of
iterations is finite. We can take the normalized error as one
measurement of the output spectral error introduced by
terminating the iterative computation after k iterations. If we
specify a tolerable degree of spectral error of & > 0,

k
Elw,m) = | Clonmy) 1°2 <, (22)

then we can tell how many iterations will be needed for a
given C(wy,m,).

@1

B. An Iterative Algorithm with pth Order Convergence

Generally, we can derive a pth order iterative algorithm.
In deriving the quadratic algorithm, we separated the
geometric series expansion of 1/B(wy,m;) into even and odd
powers of C(;,ax,) as one does for a radix-2 decimation-in-
time FFT. In the same way, if we decimate the series in an
with a radix of p, we can get the following pth order
factorization:

1/B(wy,m) = T C™w,,
(wy,7) L (0y,0)
=T 1+ 2. +cP-DPY). (23)
n=0

The corresponding kth estimation Y, (w,,) is
k-1 n
Yi(@1,02) = Aoy, @,) X(w;, w,) H=(EI+CP (@, w,)
n

n n
+C® (@1,0)+. ..+ CODP (wy,0)). (eZ))
The corresponding iterative algorithm is

-1
Yy (0,02) =Y, (@),02) [1+&‘ ‘llﬂ'k(m,,mz) 1(25a)
m=

Yo (@, 0) =A@, o,)X (0, @) (25b)
Tor(@1,02) = Ty, 07) (25¢)
and
To(wy,02) = C(w,,w,).
(25d)
From the equation
k
k-1 n n -1
I1(1+CP +C2P 4. +C(p-1)p) = & cn, (26)
n=0 n=0

it is clear that k iterations of
iterations of the linear algorithm.
We can easily show the normalized error is

k
&= [Clan,mp) |
Just as we did in (22), we can use (27) to determine the

number of iterations for this pth order iteration to converge
to a given tolerable spectrum error.

(25) are equivalent to pk

@n

IV. Spatial Truncation Error Analysis

In this section, we will discuss one kind of error in
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the practical implementation due to spatial truncation
dictated by a finite capacity memory. Although we only
consider the quadratic algorithm, the analysis can be
extended to the pth order algorithm.

If the quadratic algorithm in (16) is implemented in
the spatial domain with a digital processor, we have:

Yie1(m) = yi(n,m)+hi(n,m)**y, (n,m) (28a)
Yo(n,m) = a(n,m) ** x(n,m) (28b)

where we have defined:
hy(n,m) = DFT '1[C2|20)1,0)z)] (29)

and ** means the 2-D convolution. As the iteration
continues, the dispersion of y,;(n,m) will increase and
eventually exceed the capacity of available memory.

In order to analyze this truncation error, let us define
a truncation operator T by

Tlq(n,m)] =

[ qmm);  (nm)el
0; (nm) e I (30)
where I is a region of the interest and q(n,m) is any 2-D
signal.

Imposing T onto (28a), we obtain the truncated
version of

Yk (n, m), denoted by )7(n,m),

Yo (0.m) = TIye(n,m)+hi(n,m)**3, (n,m)}] @y
We can define the truncation error as

ex(n,m) = yg(n,m) - yu(n,m); (nm)e I (32)
From (28) and (32), we get

Tlew(m,m)] = Tlew(n,m) +he(n,m)**ex(nm)]  (33)

That is, the truncation error can be computed iteratively with
incorporation of the boundary condition:

ex+1(n,m) =

5

In the region outside I, the error signal is just y(n,m) because

(n,m)+he(n,m)**er(n,m); (nm)el (34)

n,m); (nm)el

y(n,m) is zero. Thus
35

If we take the T operation to the both sides of 3D
and add the result to (33), we can prove that y(n,m) is a
solution to the iteration

y(n,m) = y(n,m) + e(n,m)

Yi+1(n,m)=
[ y,(0,m) + h(nmy**y,(n,m); (mm)el  (36a)
y?n,m); (nm)el (36b)

Therefore, even though the truncation operator will in
general introduce some error, the correct signal can still be
computed provided that the values at the boundary are
known.

TTUrUICT MIormadnon Can dpe onldinea Irom pr. vv. nennewn Jenkins.



Note that in order to perform the 2-D convolution of
(36a), the boundary area needs only to be big enough to
cover the array hy(n,m) when yi.1(n,m) is being computed
for (n,m) on the edge of the region I. From (29), it is evident
that the spatial extent of hy(n,m) will change with the
iteration index k. Furthermore, if a general pth order
algorithm is used, the extent of hy(n,m) will also change with

P-

VI. Examples

In this section, we present two examples to compare
the difference in the convergence rates for the linear and the
accelerated algorithms. The first one is to implement a 2-D
low pass filter with the transfer function:

H(w1,07)= A(@1,02)/[1-C(@1,@)] (372)
where

A(wy,07) = 0.50033+0.81561f +0.41543(212 - 1)

+0.11311(4£3-3f) -0.000037592(8£4 -82 +1); (37b)
C(w,,07) = -0.0010153£-0.83047(2£2 -1); (37¢)

with

£=0.5[- 1+cos(@®;)+cos(w,)+cos(my)cos(w,)] 37d)
The second example illustrates use of the boundary condition
to mitigate the effect of spatial truncation.

Dudgeon [1] implements the same filter of (37) using
more than 20 iterations to reach a convergent solution. We
realize this filter using only 5 iterations of quadratic
algorithm and 3 iteratons of cubic (i.e, p=3 in (25))
algorithm, respectively. In each case, we obtain results that
are graphically indistinguishable from the magnitude
response shown in Fig.2.

Note that in this example, 5 iterations of the quadratic
algorithm are equivalent to 25 = 32 iterations of the linear
one, and 3 iterations of the cubic method are the same as 33
= 27 iterations of the linear one.

For the second example, we use the quadratic
algorithm to implement the example on p. 232 of [3]:

yx(n)=0.63(n)+0.4y, ,(n-1)+0.4yi.1(n+1); (38)
which has the solution
ym) =0.51nl (39)
Now, suppose we truncate the iteration as
Ye(n)=
[%Zsa(n)m.ztik_l(n-1mé}7§.l(n+1); fnl<4 .

Fig.3 shows the y(n) obtained by iterating (40) 5 times with
the quadratic algorithm. However, we can find the correct
y(n? by using the correct boundary conditions in the region
of {n{ 24: y(n)=0.5‘n|. Fig.4 shows convergence after 5
iterations when the quadratic algorithm is used. In Ref. [3},
20 iterations are needed to obtain a similar result.

VIL Conclusions

In this paper, we have presented a class of algorithms

with accelerated convergence for an iterative
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FiG.4 GENERATING THE CORRECT SOLUTION WITH THE APPROPRIATE
BOUNDARY CONDITIONS WITH QUADRATIC ALGORITHM FOR 5
ITERATIONS

implementation of a 2-D IIR filter. Compared with the
conventional linear algorithm, the proposed pth order
algorithm can reduce the number of iterations from pktok
for a given tolerable spectrum error. A more significant
comparison, of courses, is the relative number of operations
and memory requirements for each algorithm. At this
writing, this study remains undone. The error introduced by
spatal truncaton due to limited memory space was
addressed. Also, we presented two examples to compare the
different convergence rates for different algorithms. The
examples show that the accelerated algorithms can converge
to the desired solution at higher rates.
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