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ABSTRACT

The design of specialized trainable neural network architec-
tures for temporal problems are described. We consider multi-
layer extensions of our previous dynamic neural net architec-
tures. Some of the key atmibutes of these architectures are
smoothing and decimation between layers. An analysis of param-
eters (weights) to estimate suggests a massive reduction in train-
ing data needed for a multi-scale topologies for networks with
large temporal input windows. The standard back-propagation
training rules are modified to allow for smoothing between layers
and preliminary simulations results for these new rules are
encouraging. For example, a binary problem with an input of
size 32 converged in 3 iteration with smoothing and never con-
verged when there was no smoothing. We feel that these new
network architectures may be appropriate for speech and sonar
pattern classification problems where long temporal context is
important.

Introduction

Many artificial neural networks (NN's) are examples of
allowing generality while sacrificing potential performance. An
important effect of this generality is poor scalability and high
implementation complexity. For example, a 2-input exclusive-OR
problem is quite easily trainable in a standard back-propagation
net [1] while an N input parity problem for this standard net
would require O (NZ) interconnections and would, most likely, be
impossible to train for large N (e.g. [2,3]). This lack of scalabil-
ity seems to indicate that for large networks, such as those

required for non-trivia' =7 wioat nomieaions. trainability may not
be possible. In this - per. we will use bota biological and
theoretical arguments to propusc nicw renral network architec-

tures which, at the expense of absolute generality, will scale
better and be much easier to implement. We will also argue that
these new architectures reduce generality in a way which is

natural and appropriate for applications in temporal pattern
recognition.

The architectures which we propose are inspired by
presumed processing in the mammalian auditory brainstem. Even
though the specifics of signal processing in this structure are
poorly understood, the neuroanatomy has been fairly well
described. These processing pathways, which begin in the
cochlea and end in the auditory cortex, involve a relatively small
number of neurons. Nevertheless, much processing, especially
feature extraction and coding, is presumed to occur in this path-
way [4]. It is especially salient that the shortest pathway from
the cochlea to the auditory cortex can involve as few a four
synapses.

Some of the applications that are considered for NN’s have
included time series recognition problems such as speech or
SONAR and two dimensional image recognition problems. In all
of these cases the complexities of implementation and unrealistic
training time have thwarted attempts to apply NN’s to significant
problems. We will be demonstrating, through our examples,
how a multi-scale approach substantially ameliorates the scalabil-
ity and trainability problems of NN’s.
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Figure 1. Simplified ding auditory pathways.

In order to understand how the human system processes
sounds it is helpful to look at the structure of some of our audi-
tory pathways. Figure 1 shows a schematized picture of the
auditory brainstem. The output of the cochlea, which consis:s i
about 30,000 neurons, enters the ventral coclear nuclei at the
right and left bottom comers of the pathway. The pathway 18
organized into four separate layers or nuclei, where there are
bundles of heavily interconnected neurons within each nuclei and
relatively few interconnecting neurons between them. We find ot
very notable that so few layers (with few synapses between tacil
layer) can effectively process the varied sound stimuli we
receive. In particulur, the relatively sparse interconnections
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between layers suggests that the fully interconnected models in
use for many NN architectures are probably too general. It is
also significant that the cochlea’s frequency encoding is main-
tained in a rough fashion throughout the auditory brainstem. For
example, degeneration studies have indicated that coclea’s fre-
quency map is duplicated in at least two areas [5] of the cochlear
nucleus and numerous physiological studies have shown orderly
frequency mappings in most areas of the auditory pathways (e.g.

. see [4]). The sparse interconnections between layers and the
maintenance of the frequency map suggest an anisotropic organi-
zation of neural connections and a concomitant difference i»
learning rules. The next section will detail these ideas.

Background—The Dynamic Neuron

“Ve have had on-going research in the theoretical adaptation of
the standard sum-of-products neuron to a processing unit which
incorporates, in a natural fashion, sampled time. Our first studies
in this area have been published previously [6]. The basic idea in
this study is shown in figure 2.

Figure 2. Static and dynamic neuron.

The usual neural element has a tunction
T
z; =N, X)

where the basic operations are standard scalar multiplication and
addition. Our dynamic modification generalized these two opera-
tions to be correlation and scalar sum. Since these operations still
constitute a valid mathematical field over time sequences, all
linear operations which held for the standard sum-of-products
neuron will still hold for the dynamic neuron. The dynamic neu-
ron has a function

7(t) = Mla; (- )*, (1) 2]
where a;(-t) is an arbitrary linear smoothing function and ““**’
represents correlation. (The reversal of the time index -for g;
signifies a standard convolution of the smoothing filter.) The
function of 1 for this dynamic neuron can be a nonlinearity, such
as a sigmoid function, and the shape of the w;;(t) (‘‘impulse
responses’’) can also be arbitrary and learned.

Our first application of a group of these neurons was to
speech-like transient patterns. We found that we were able to
recognize and pin-point (in time) occurences of phoneme-like
patterns. However, these experiments were intended to confirm
the theory and we would expect that this single layer structure
would not be sophisticated enough to form good approximations
to difficult class separations. Nevertheless, the demonstrated
aspects of this single layer architecture include trainability, time-
shift invariance, event-spotting (the output identifies the phoneme
and its position in time), and separate training algorithms for the
frequency and the time dimension. It is also notable that a
multi-layer version of this network, with rectangular impulse
responses and back-propagation learning, is identical to a more
recently proposed time-delay neural network [7].
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Multi-Scale Dynamic Neural Net

In order to carefully extend the single-layer dynamic neural
net to handle difficult problems, it is necessary to allow for flexi-
ble classification regions. Another very important extension is to
make use of large amounts of temporal context in the recognition
of a particular event in time. The key problem here is to make
use of a long time window without either sacrificing fine-grain
time resolution or allowing the network size to grow unreason-
ably large. The goals of flexible classification and long time
windows can be made consistent. Most importantly, we will pro-
pose a new neural net architecture which can attain these goals
without requiring an explosion of parameters to estimate.

The multi-scale dynamic neural net (MSDNN) is a multi-
layer, dynamic network which decimates (sub-samples) in time
from layer to layer. This decimation, as we will show, is the
functional foundation of making use of a large amount of con-
text. We propose a technique which uses a very regular structure
to self-organize a temporal hierarchy. The hierarchy can make
use of successive multi-variable time samples (such as spectra) at
the input layer, extracted short-term features at a low hidden
layer, extracted long-term features at a high hidden layer, and the
longest term units at the highest layer. The architecture allows
training annotation to be put at any layer and also allows test
outputs to be taken from any layer. Thus, this architecture can
allow training with a data structure that includes input, known
useful features, annotation or class labels, and temporal context
simultaneously. The data structure requires only that different
elements be appropriate for the different scales of time.

Figure 3 shows an example of a MSDNN. The MSDNN is
a two-dimensional structure which is designed to act like most
other fully connected networks in the n dimension and to
smooth, downsample, and have shift invariance in the / (sampled
time) dimension. The n dimension is shown at the top right of
the figure and the inputs can be, for example, DFT coefficients.
For the purposes of this explanation, this top right figure
represents a ‘‘side’’ view of the MSDNN. Note that the variable
! is held constant throughout this side view (to represent a single
time slice) and that all layers are fully interconnected.

The top left figure corresponds to a ““front’’ view of the net-
work. The time series shown at the top are L samples of a time
waveform. The samples could correspond to the time evolution
of a single DFT coefficient. The circles in this structure represent
the individual neurons, where the inset in the lower left shows
the neuron function in detail. The behavior of each neuron in the
! dimension is a sum-of-products followed by a non-linearity,
f (). Note that the there are only two weights and that there
labels are dependent on layer number (m), yet independent of /.
This independence of / allows shift invariance across the time
variable and our learning rule for this network is designed to
average errors across a layer to find these two weights. The
reason that only two weights are needed for each input in the /
dimension is due to: 1) the rich interconnection provided in the
n dimension and 2) the intent to reduce unnecessary complexity
by allowing more distant comparisons (e.g. between well-
separated events in time) to occur in deeper and more smoothed
layers. As will be seen in the next sub-sections the effect of this
topology is dramatic in the reduction of the number of weights
and is a necessary step in the application of a trainable architec-
ture to long (say 50-200 frames) duration inputs.
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Figure 3. The multi-scale neural network.

Another important facet . ihis architecture is that outputs
can be taken from any ‘‘hidden’’ neuron during use of this net
and target codes can be compared to these outputs to find errors
to back-propagate. The location of these outputs and target codes
is determined by the segmentation locations found in the previ-
ous stage of the recognition system.

Reduction of Number of Weights

The reduction in weights to estimate can be shown for a
general and regular MSDNN. If there are N dimensions (e.g.
spectral samples) for each time frame and if the context window
is L frames long, for a M layer MSDNN with a sub-sampling
rate of / the number of weights to estimate is

W, = Nil(1Hog,L)

For a static net with M layers and m units per hidden layer and
output layer a length L N -dimensional input requires

Wg = LNm + (M-1)m?

weights to estimate. Some typical comparison numbers are
N=16, L=512 (about 1.5 seconds of 3 mSec frames), /=m=8,
and M=3. With these reasonable choices W, =512 and
Wp = 65,664! Clearly, the complexity of a static multi-layer net
for 1.5 seconds of speech (as measured in weights to estimated)
is well beyond the training algorithms which are currently avail-
able. On the other hand the MSDNN has a complexity which is
much more reasonable.

Derivation of Multi-Scale Training Rules

We hypothesize that a requirement for convergent training
is that the sub-sampling operation does not allow aliasing. The
reason that aliasing can be so damaging to training is due to its
non-monotonic property which violates the necessary conditions
for convergence in gradient descent. A standard approach would
be to have a sub-sampling filter at each neuron’s output where
this filter would be designed to attenuate the high frequencies
generated by the sigmoidal nonlinearity (n). The corner

x,, (D)

511

x\2([)

x,(0)

frequency of this filter could be set to be appreciably below half
the sampling rate of the next layer thus reducing aliased frequen-
cies to be insignificant.

We have devised an alternative approach to the reduction of
aliasing for MSDNN’s with a fan-in of 2 (as depicted in Figure
3). This approach relys upon a modification of the cost function
in the usual back-propagation training rule [1]. Our reasoning is
that if only two weights feed into any neuron, then choosing
these weights to be as close to equal as possible would constitute
a size 2 running average (in the / dimension) which is an
optimal size two smoother. Clearly, a goal of completely equal
weights in any layer (in the / dimension) in not very appropriate
for effective training. However, a ‘‘smoothing’” term in the cost
function, which can allow an adjustable bias toward weight simi-
larity, may effect much better training for the decimated layers
of our MSDNN.

The wusual cost function (to be minimized) in back-
propagation is

J =120y - dy)?

where x;, is the observed output and dy, is the desired output.
We define a new cost function

E =pE +YD
where a small D indicates weights acting as effective smoothers.
v is a smoothing gain and p is the usual learning gain. For the
output layer of a MSDNN D would be a function of the two
weights, wy,_1(0) and wy,_ (1), which multiply the inputs of the
output neuron, x,(0). A simple function for D could thus be

D = 172(wyy_1(0) — wyg_y(1)*

Note that D is minimum when wy_1(0) = wy_;(1) (perfect
smoother) and maximum (for a given magnitude) when
wyy-1(0) = — wyy (1) (1st difference).

For a the updates of the two weights to the output layer, the
weight changes become

Awy_10) = P8y 1 (1) + W1 (D1 (D? = wyy_1(0))
Awyy_1(1) = p8xy_(+1) + Py 100wy 1(0) = wyy1(1)?)
where & = (dyy — xpy )% (1 — xp¢). The back-propagation of these
weight changes to other layers follows the same application of
the chain rule as previous derivations [1] and our weights are

averaged across the sampled time dimension (/) to allow for shift
invariance as in Waibel et al [7].



Experimental Results

In order to make a preliminary assessment of the above
training rules, we simulated a 1-dimensional case of the
MSDNN. This 1-dimensional topology is as shown in the left
half of figure 3. The experiments we tried was the discrimination
of single pulse versus no pulse for various sizes of input. In all
of the experiments the training set consisted of two binary
sequences. The first sequence consisted of all zeros and the
second sequences had all but one of the values equal to zero. In
order to avoid solutions which simply used a single threshold,
we did not use constant offset neurons (as in standard back-
propagation). Input sizes of 4, 8, and 32 were tried for various
choices of smoothing gain.
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Figure 4. Number of training iterations as a function of smooth-
ing gain ().

As can be seen in figure 4, in all cases a small amount of
smoothing improved the convergence properties. It is especially
notable that for the 32 input case there was no convergence
when v = 0 and convergence in 3 iterations when y = 0.1,

Conclusions

Our preliminary results suggest that an incorporation of
smoothing between layers for a tightly constrained multi-scale
neural net architecture can be beneficial. There are two reasons
that this observation is significant: 1) the hypothesis that the
non-monotonic effect of aliasing is deleterious to training is sup-
ported, and 2) successively greater amounts of smoothing toward
the output layer will be automatically achieved by a 7y greater
than 0.

We have not yet demonstrated that a MSDNN has practical
advantage over a fully interconnected multi-layer neural net. This
demonstration, connections to past work in multi-scale signal and
image representations (e.g. [89]), and the incorporation of
higher order optimal smoothers [10] are the subject of our
current work.
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