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Abstract:
uuleamnumumauypvenmmemeqmcuofdﬂam
optical path lengths required within an iterati on the
processor performance. mmnungcbckskzwmhvenynﬂcmt
dcgmdmgeﬂ'emoutlnnedicﬁedaccm mbuhtymdwdofme
processor. A similar problem occurs in artificial
neural networks when, for example, the time delay between two neurons
is proportional to their physical separation. We have shown that, in the
absence of temporal dispersion, certain iterative algorithms have stable
steady state solutions that are independent of clock skew [1]+. In this
paper, we analyze stability criterion for sk d and analyze the
skewobmdmmnmmﬂynsedwmdmm

Introduction:

Shamir [2] has noted that in many optical processors, the
propagation time from input to.output can vary significantly due to the
variation of optical path lengths [3]. When the processor is used
iteratively, disregarding this clock skew can lead to either unstable or
drastically different implemeatation results. A similar problem occurs in
iterative asynchronous artificial neural networks whae the

communication time delay b two is prop l to their
physulseptnuon
lysis will be d to temporally nondispersive

systems. Formhsyms.awnpuﬂimpuhesﬁmuhnumyinpm
coordinate can appear later only as a single temporal impulse at any
specified output coordinate. Thus, for each input-output coordinate pair,
there exists a single temporal delay. If this delay varies from coordinate
pair to coordinate pair, the system is skewed.

We have previously shown, that, in certain feedback algorithms,
temporally nondispersive clock skew does not affect the stability or the
swadynmcsolunonofmepmcm Whenmlmuvealgomhmusua

in the feedback path, the
rwﬂmgswady msolmmnslnwnwbemﬁecwdbyclockskew
Clock skew is shown, however, to have an effect on systems such as
Hopfield artificial neural networks (4-5] when hard nonlinearities are
used in the feedback path [1].

In this paper, we analyze sufficient conditions for stability of
skewed iteration and show that a contractive iteration is stable when the
skew is additively separable. The Stanford matrix-vector multiplier is
shown to have such skew.

Preliminaries:

In this section, we develop a general description for temporally
nondispersive clock skew in a feedback processor. Let a field of N
states, {Sa | 1 < n < N), be altered by feedback in a temporally
nondispersive skewed processor. Let O, denote the instantaneous
operator that maps the previous states into the current ath state at time ¢
We can then write:

Sa(t) = Ol (Sm(t-Twm) I SmMSN});1SnEN (1)
wbuet..is_meclockskewcwldingmmeﬁmrequimdfuthe

+ The fusion of [1] and this paper are tentatively scheduled to be
NWBSOH,DCMRJMHMLB.AM
"Nondispersive ion skew in i ive neural network and optical
feedbnckpmoesm OMEMMY. 1989)
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state S to make a contribution to the state S,. If we let £ —oo and
assume a stable steady state, then (1) becomes:

Sn(oo) = Oa[ { Sm(>2) I Sm<N)];I1<nSN @

Although not explicitly noted, this steady state may depend on the clock
skew. For example, consider the linear iteration *

Sa(t) = L Gy Swlt~"Twm) + fa(t); 1SnSN &)
m

where f, is the n-th element of £ and fu(t) — f, allows explicitly for input
rise time. Letting 1 — oo and assuming a stable result gives

Sa(>0) = L G Sml>) + fo; 1Sn<N

or, equivalently, in matrix- vector form

S(o0) =A S(0) +f
If (I - 4) is not singular, then the solution to this cquation is unique and
given by

(=) = - Alf @
Clock skew therefore does not affect the solution. The aiternating
projection neural network when interpreted either homogeneously [(6-7]
or, in layered form [8-9) from the hidden to output layer, is a special case
of this example.

STABILITY: The above analysis is conditioned on the stability of the
skewed iterations. By letting n — <o, for example, we might predict that
the iteration x(n) = 2 x(n—1) + 1 would converge to x(=s) = 1. The
difference equation, however, is clearly unstable and x(eo) =teo if
x(0) #—1. From the viewpoint of z-transform analysis, the pole of this
difference equation lies outside of the unit circle.
A sufficient condition for stability of linear skewed iteration is

given by the following Lemma:

(Lemms 1)

Let A = (a;j) denote a square matrix of complex numbers. Define

A(s)=(agexpl-st;)) where s=c+jo. If | |A(s)| | <1 for Re(s) >

0, then (3) converges to (4).

prflsglvmmAppﬂldleNowﬂm]
that a iteration without skew conv |A|

[as)| | = fexp(-st)| |lall<llall <12

wheze T, = 1 for all (n,m).
Two important results built on this lemma follow:

(Lemma 2?
Let B= aql) If | IQI | <1, then (3) converges stably to
-(4) for any 1;20.

Therefore, varying the phase terms in the matrix does not affect the
convergence stability if the zero phase iteration is stable.

ial case, we conclude
<1, since

(Lemms 3)
Iftj=u; +vj, and | |A]| < 1, then (3) converges stably 10 (4)
Jor any 420 and v;>0.

* All summations ( Z ) in this paper are from I to N.
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Figure 1: A geometrical illustration of a contractive operator. After the
contractive operation, the signals are closer together (solid dots) than
originally (hollow dots).

Proofs of lemmas 2 and 3 are in Appendices B and C, respectively. The
last lemma will be applied to optical feedback systems later in the paper.
More generally, we can write (2) in vector form as
§(o0) = 9 (=) &)

If the vector operator § is a (possibly nonlinear) contractive operator,
then

Hax-ayllsrllx-yl ©

where the norm for a vector a4, is defined by |lall2=aTaando<r
<l. If0< r<1,then O is said to be non-expansive. The reason for the
terminology is evident from the geometry in Figure 1. Operating on two
signals, x and y, by the operator 9 results in two signals closer together
(contractive) or, at least not as far apart (non-expansive).

If 9 is contractive, then (5) has a unique solution [1,7-10,11] and
there is no contribution of clock skew to the steady state resuit. When 9§
is non-expansive, (5) can have a number of solutions.

For example (1], let

Sn(t) =Ma [ L Gup Smlt~Tam) + 8alt)] + haft); 1SRSN (D)

where fx (t) - f, and ga (1) - g, are forcing functions. Assuming
stability, the steady state solution in vector form is

S(o=) =N [A S(0) + gl + h
where 1 is a pointwise nonlinear vector operator, i.e, if w = 1z, then the
nth element of w is equal o Nx(zs) Where 1, is a given function. In the

parlance of neural networks, M, could be referred to as a sigmoid
operator [12-13]. Using (6), the corresponding operator is contractive if

Ha@ax+n-nay+nll srllxe-yll

We have shown [1] that the operator is contractive if the spectral radius
of A does not exceed one and 7 contains soft nonlinearities. That is

| dnaz)/dz 1 <1;1<nsN
forall z.

@®

STABILITY: The following lemma establishes a sufficient condition for
stability of the skewed operation in (7).
(Lemma 4)
For a given matrix A and time-delays {twm}, if (3) converges for
every fx(t) and 1y is non-expansive, then (7) is stable.

A proof is given in the Appendix D.
Hard Nonlinearities:

Clock skew can be a factor when implementing an iterative
algorithm with hard nonlinearities. Consider the following example of

Hopfield's content addressable memory neural network (4,12,14-16].
(Example 1)
From the three library vectors
vy =[0010 0101 0110)T,
vz =[ 1011 0001 0001 JT,
v3=[ 110101101000 ]T,
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Figure 2: Examples of stability and convergence in Hopfield” s model.
Iteration time in (a), (b) and (c) are in rows top to bottom. ( + denotes +1
in (a),(b) and (c)). The first row is the result of the first iteration. We see
that S(0) (a) converges to v2 without skew, (b) oscillates with skew, (c)
converges to a vector which is not in library with a different skew. (@)
Energy transitions with iteration for each case.

we form in accordance to Hopfield's recipe the interconnection
matrix A

A=(BBT-NI)

where N=3, V= [v; :v2 :v3],B =2V - 1 and ] is a matrix of
ones. We form the iteration S(a+l)=n[AS(n)], where, for
1<Sn<N, ,(e)is the unit step function (Ma(x)=7ifx>0
and is 0 otherwise). If we initialize with S(0) = [ 1011 0001 1010
IT and iterate synchronously the solution of the operation
converges to v2. However, if this operation has a skew of 3
clocks delays for 143 and 1411 and 2 clocks delays for those
remaining, then the iteration oscillates. The iteration converges to
[0010 1001 0111)T in the case that the skew is 3 clocks delays for
43, T4,11, T6,9 and 6,12 and 2 clocks delays for those remaining.
These three examples are respectively illustrated in Fig.2a,b and
c.

The energy of the neural network at the nth iteration is
defined as

E(n) =-S(n)T AS(n)2
A plot of the energy for these three examples is in Fig. (2d).

Skew in Optical Processors

The major source of skew in optical processors is the time delay
resulting from the differing optical lengths (OL) {17] between input and
output. For nondispersive clock skew, the time delay from the input
point (€,1) to the output point (x,y) can be written as

T(x,y;Em) = OL/c

where ¢ is the speed of light in free space. In this section, we show
some examples of optical processor operations which are not affected by
skew.

( Example 2 )

A commonly used processor for performing matrix-vector
multiplication is shown at the top of Fig.3. The top view of this
processor, shown in Fig.(3c), resembles a point source collimator.
Since we are interested only with a single point at the output,
there is no clock skew dve to OL differences from this
perspective. The side view of the processor shown in Fig.(3b), is
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Fnzux_e 3:(2) A diagram of a matrix-vector multiplier (b) side view (c)
top view

eqmvnlemlodmmﬁgoc)emeptmmempmudouwm
reversed. Since there is no skew from this view, the composite
pncemlnsmclockshewdumOLdnﬁumces. The total OL
lf:om (0n) at the input plane 10 (x,0) at the output plane is given
Yy

OL.=OL; +2d+ 0Lz =2f+ 240+ 2d

where OL; is the OL from (0n) to (x,n) and OL, is from (x,n) to
(x.0) and OL1=OL3 = f+ Ap and AQ denotes the OL through the
center of lens. This equation states that OL, is constant for all
(xn) pairs.

(Example 3)

Fig.(4a) illustrates the Stanford matrix-vector multiplier
[18] that is more light-efficient than the one in Fig.(3a). Since the
performance is similar to that in Fig.(3b), there is no skew
apparent in the side view in Fig.(4b). From the perspective of the
top view in Fig.(4c), however, the apparent point source input is
incident on the detector as a cylindrical wave. Under a Fresnel
approximation, the skew is therefore quadratic. The total OL for
this processor is given by

OLy=5f+ A+ N2/f=K + x2/f

where A denotes sum of the OL's through the center of lenses
and X is a constant. The time delay for this processor is thus
T(x.m) = OLy/c = Kk + x2/(f ¢)

Therefore, this p is ily skewed, but the skew is separable.
BylxmmuBmd-t 1f(8)lsu'ue mymuvepmcmwhnchemploy
this Stanford matrix-vector multiplier using a pointwise soft nonlinearity
in the feedback path that satisfies (8) will ge independent of this
skew. An example of such a processor is the alternating projection
neural network (APNN) which uses linear feedback [19,20].

Final Remarks

The primary source of clock skew in optical system is differing
OL’s. We have investigated the effects of clock skew on the performance
of iterative processors and have shown that clock skew does not affect
the convergence and stability of the solution when the feedback is
contractive. We also have shown some examples of optical systems
which have no skew or are not affected by skew when used iteratively.
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Figure 4: (a) [llustration of the Stanford matrix-vector multiplier (b) side
view () top view
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Appendices
Appendix A. Proof of Lemma 1

We take the Laplace transform of (3)
Sals) = X Gpm Smls) exp(-Stam) + Fuls)
m

or, equivalently, in matrix form,
S(s) = A(s) S(s) + F(s)
Since | |Afs)|| <1, detlI-A(s)]#0and S(s) becomes
S(s) = [L- A(s}]-1F(s)
By applying the final value theorem, we obtain
S(eo) = limsS(s) = lim[1-A(s)1] (sF(5)]
30 s—0

=[1-A(s))f
which is our desired result.

Appendix B. Proof of Lemma 2
Let y be an N dimensional vector and A(s)=(aexp(-st;]) an NxN
matrix. Then
Ay |2 =y A(s) A(s).v
= X3F y;*ax exp(-s* ) agexp(-sty) y;
ijk

SZZZI)H lai| lagl |l

where * denotes lhc complex conjugate for scalars and, for matrices,
denotes the 1 Let z=|y;|, by = |ay| and

} JUB Y

z=(2;). Then
[1A()y||2 < IXS2;buibyjzj = | |Bz||2
ijok
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Since || y| | = I|l|| IIAJS)HSIIBII“ Since convergence
is assured for B ion, we from that (3) converges to
(4)amiourpmofxscomple(e

Appendix C. Proof of Lemma 3
From the assumption, we have

A(s) = (ajexpl-s (ui+vj)]) = (aijexpl-sui) expl-svj] )

By letting
Dy = diag { exp(-su;).exp(-suz),....exp(-sun) }

and Dy = diag { exp(-sv;), exp(-sv2)....exp(-svN) },
A(s) becomes

A(s) =Dy A Dy
Since | |Dy| | s1and | |Dy| | S1forRe(s) 20, we have

A [ [ 12al] [14]1 [12v}]<]]4]] <2
From this and Lemma 1, we conclude that (3) converges to (4).
Appendix D. Proof of Lemma 4

We rewrite (7) as

Salt) = Tl yalt) + 8a(1)] + hy(t)
where yu(t) = Z G Sl t~Tnm).

Let y(t) denotes the vector of yx(t), we take the norm of Sa(t7)-Sx(t2).

| 1Se)-5(12)| |
S | |nlyep+galtl-nlyGo g | | + | | hle)-hit) | |
S | ¥~y || +pltyiz)

(ISt | S | 9| | +pitaz)
where

plei2) = | | glep-ge)l | + | |Kep-hier)] ],
S(t1.62) = S(t1) — S(13)

and y(t;,t2) denotes the vector of
Yn(11.02) = T By [Sl11~Cum) = Spu(12~Tam)].

®.1)

Substitute @ for S in the linear skewed iteration in (3) and take the
difference between (3) at ¢; and 2 to obtain

Q(tr.12) = x(11,82) + fit ) 12).
where

Sins2)=fit1) - fitz),

Qt1.02) = Q1) - Q1)

and x(1;,r2) denotes the vector of
Xn{11,82) = Z G (Ol t1-"tnm) = Qpult27~Tnm)]-

We will construct f{#7,2) to be colinear with x(1;,12). Let
any vector sforxqt,12) =0
finee) =

C(ty.02) x(21.82) ; otherwise

where the proportionality constant, C(t,r2), is chosen so that
| |Ate2)] | = p(ty.t2). Then, by construction,

[ 1Qeepe2) || = | |xttp2)| | + pltpra). ®2)
Because | |Q(t;.2)| | converges to 0 by the assumption, (D.1) also
converges:

11St2)| | >0 forty —> oo, t; >0,
or equivalently, since our vectors are in a finite dimensional Euclidean
space,

lim S(t) = Soo

1

and our proof is complete.



