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ABSTRACT 

Multi-layer perceptrons and trained classification trees 
are two very different techniaues which have recentlv 
become popuiar. Given enough data and time, both methods 
are capable of performing arbitrary non-linear classification. 
These two techniques, which developed out of different 
research communities, have not been previously compared on 
real-world problems. We first consider the important 
differences between multi-layer perceptrons and classification 
trees and conclude that there is not enough theoretical basis 
for the clear-cut superiority of one technique over the other. 
For this reason, we performed a number of empirical tests on 
quite different problems in power system load forecasting and 
speaker-independent vowel identification. We compared the 
performance for classification and prediction in terms of 
accuracy outside the training set. In all cases, even with 
various sizes of training sets, the multi-layer perceptron 
performed as well as or better than the trained classification 
trees. We are confident that the univariate version of the 
trained classification trees do not perform as well as the 
multi-layer perceptron. More studies are needed, however, 
on the comparative performance of the linear combination 
version of the classification trees. 

I. INTRODUCTION 

Many real-world problems are difficult to represent by 
specific analytical relationships or rules. It has been the hope 
of many researchers that these problems could be amenable to 
training by example. Namely, the full inputloutput 
relationships could be captured via a set of examples (training 
data) and these examples could then be used to train a system 
to automatically classify or estimate unknown outputs 
associated with new inputs (test data). In this paper we study 
both regression and classification systems. A regression 
system can generate an output Y for an input X, where both 
X and Y are continuous and, perhaps, multi-dimensional. A 
classification system can generate an output class, C , for an 
input X, where X is continuous and multi-dimensional and C 
is a member of a finite alphabet. 

The use of trained systems has been studied by many 
researchers in the past (e.g. [I-41). However, there has been a 
recent surge of interest in trainable classifiers as manifest by 
artificial neural networks (ANN'S). In particular the multi- 
layer perceptron (MLP) has been shown to be able to be 
trained by example to solve the non-linearly separable 
exclusive-OR problem [S], and this architecture has been 
linked to previous neural-like processors [6, 71. Less known 

to the engineering community is the statistical technique of 
classification and regression trees (CART) which was 
developed during the years 1973 [8] through 1984 [9]. As we 
will describe in the next section, CART can also be trained to 
solve the exclusive-OR problem and, furthermore, the 
solution it provides is extremely easy to interpret. There have 
been no links made between CART and biological neural 
networks. However, the possible applications and paradigms 
used for MLP and CART are very similar. 

The authors of this paper represent diverse interests in 
problems which have the commonality of beiig very 
important and potentially well-suited for trainable classifiers. 
The load forecasting problem, which is partially a regression 
problem, uses past load trends to predict the critical needs of 
future power generation. The vowel recognition problem is 
representative of the difficulties in automatic speech 
recognition due to variability across speakers and phonetic 
context. 

In all cases large amounts of real data were used for 
training and disjoint large data sets were used for testing. We 
were very careful to ensure that the experimental conditions 
were identical for the MLP and CART. We concentrated 
only on performance as measured in error on the test set and 
did not do any formal studies of training or testing time. 
(CART was, in general, quite a bit faster). 

In all cases, even with various sizes of training sets, 
the multi-layer perceptron performed as well as or better than 
the trained classification trees. We also believe that 
integration of many of CART'S well-designed attributes into 
MLP architectures could only improve the already promising 
performance of MLP's. 

11. BACKGROUND 

A. Multi-Laver Perce~trons 

The name "artificial neural networks" has in some 
communities become almost synonymous with multi-layer 
perceptrons W P ' s )  trained by back-propagation. Our 
power studies made use of this standard algorithm and our 
vowel studies made use of a conjugate gradient version [lo] 
of back-propagation. In all cases the training data consisted 
of ordered pairs ((X,Y)] for regression, or (Q,C)) for 
classification. The input to the network is X and the output 
is, after training, hopefully very close to Y or C. The 
network consists of a number of "neuron-like" units which 
multiply neural inputs by weights, sum the products and then 
pass through an instantaneous sigmoid nonlinearity. Some of 
these units connect to elements of X. The distinctive 
feature of multi-layer perceptrons is that not all units connect 
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to elements of X, these "hidden units" connect to outputs of 
other units, thus giving a multi-layer architecture. The goal 
of training is to best estimate the multiplicative weights to 
make the network outputs as close (usually a square-error 
measure) to Y or C as possible. 

The usual back-propagation training equations can be 
seen in Rumelhart et al [S] or in a tutorial by Lippmann [ll]. 
A typical paradigm for training is to initialize all weights 
randomly and to then update the weight based on a repetitive 
scanning through the training set. When the error within the 
training set is considered low enough, the network is 
considered to be "trained" and ready for testing. In some 
cases training also involves thc choice of network topology, 
e.g., number of layers and hidden units. In our experiments 
we were careful to make these design choices only with our 
training data, thus avoiding positively biased results on the 
test sets. 

When MLP's are used for regression, the output 
values, Y, can take on real values between 0 and 1. This 
normalized scale was used as the prediction value in the 
power forecasing problem. For MLP classifiers the output is 
formed by taking the (0, 1) range of the output neurons and 
either thresholding or finding a peak. For example, the vowel 
study used the maximum of the 12 output neurons to 
determine the vowel class. 

B. Classification and Regression Trees (CART1 

CART has already proven to be useful in diverse 
applications such as radar signal classification, medical 
diagnosis, and mass spectra classification [9]. Given a set of 
training examples ((X,C)), a binary tree is constructed by 
sequentially partitioning the p-dimensional input space, 
which may consist of quantitative andfor qualitative data, into 
p-dimensional rectangles. The trained classification tree 
divides the domain of the data into non-overlapping regions, 
each of which is assigned a class label C. For regression, the 
estimated function is piecewise constant ova  these regions. 

When used for classification, the first step of the CART 
algorithm is to find a hyper-plane that best separates the 
training examples. In a classification problem with two 
classes, CE {A,B}, the best possible hyper-plane would be 
one with all the training examples of class A on one side and 
all examples of class B on the other. In most cases no ideal 
"split" of the data is possible. Sensible functions are used to 
measure the quality of non-ideal splits; by minimizing these 
functions over all possible splits, the best split is found. An 
example of such a function for the two class problem is: 

where p~ and p~ is the proportion of training points in the 
"left" and "right" side respectively. nL(C) and nR(C) are the 
number of data from classes C=A or C=B which are placed in 
the left or right side of the split. 

Once the first split of the data space has been made, 
the next step in CART is to consider the split training 
examples as two completely unrelated sets -- those examples 
on the left of the selected hyper-plane, and those on the right. 
CART then prodeeds as in the first step, treating each subset 
of the training examples independently. A question which 
had long plagued the use of such sequential schemes was: 
when should the splitting stop? CART implements a novel, 
and very clever approach; splits continue until every training 

example is separated from every other, then a pruning 
criterion is used to sequentially remove splits. 

C. Relative Ex~ectations of CART and MLP 

The non-linearly separable exclusive-OR problem is 
an example of a problem which both CART and the MLP can 
solve with zero error. The training data is a set of 2-input, 1 - 
output ordered pairs, (X1,X2,Y), which represent the binary 
logic behavior as: (00.0). (01,1), (10,l). and (l1,O). The left 
side of figure 1 shows a trained MLP solution to this problem 
and the right side shows the very simple trained CART 
solution. For the MLP the values along the arrows represent 
trained multiplicative weights and the values in the circles 
represent trained scalar offset values. For the CART figure, y 
and n represent yes or no answers to the trained thesholds and 
the values in the circles represent the output Y. It is 
interesting that CART did not train correctly for equal 
numbers of the four different input cases and that one extra 
example of one of the input cases was sufficient to break the 
symmetry and allow CART to train correctly. (Note the 
similarity to the well-known requirement of random and 
different initial weights for training the MLP). 

Figure 1. The left side shows an MLP solution and the right 
side shows a CART solution to the exclusive-OR problem. 

CART trains on the exclusive-OR very easily since a 
rectangle-based partition in the input space is a perfect 
solution. In general, the MLP will construct classification 
regions with smooth boundaries, whereas CART will 
construct regions with 'sharp' comers (each region being, as 
described previously, an intersection of half planes). We 
would thus expect MLP to have an advantage when 
classification boundaries tend to be smooth and CART to 
have an advantage when they are sharper. 

Other important differences between MLP and CART 
include: 

CART uses a pruning technique to adjust the size of 
the tree and avoid both underfitting and overfitting. A MLP 
avoids ovefit and underfit by using a hand selected number 
of hidden units. Both pruning and selection of the number of 
hidden units can be implemented by using data from a second 
training set (independent of the first). 



A MLP becomes a classifier through an ad hoc 
application of thresholds or peak-picking to the output 
values(s). Great care has gone into the CART splitting rules 
and the usual MLP approach is rather arbitrary. 

A trained MLP represents an approximate solution to 
an optimization problem. The solution may depend on initial 
choice of weights and on the optimization technique used. 
For complex MLP's many of the units are independently and 
simultaneously adjusting their weights to best minimize 
output error. 

MLP is a distributed topology where a single point in 
the input space can have an effect across all units or 
analogously, one weight, acting alone, will have minimal 
affect on the outputs. CART is very different in that each 
split value can be mapped onto one segment in the input 
space. This behavior of CART make it much more useful for 
data interpretation. A trained tree may be useful for 
understanding the structure of the data. The usefulness of 
MLP's for data interpretation is much less clear. 

The above points, when taken in combination, do not 
make a clear case for either MLP or CART to be superior for 
the best performance as a trained classifier. We thus believe 
that the empirical studies of the next sections, with their 
consistent performance trends, will indicate which of the 
comparative aspects are the most significant. 

III. LOAD FORECASTING 

A. The Problem 

The ability to predict electric power system loads 
from an hour to several days in the future can help a utility 
operator to efficiently schedule and utilize power generation. 
This ability to forecast loads can also provide information 
which is able to be used to strategically trade energy with 
other generating systems. In order for these forecasts to be 
useful to an operator, they must be accurate and 
wmputationally efficient. 

Previous approaches to load forecasting rely upon 
either time series or regression analysis. In general, the 
regression approach assumes that the load pattern is heavily 
dependent on the weather and finds an approximate 
functional relationship between weather variables (such as 
temperature and wind speed) and the load. A future load can 
then be predicted by inserting a weather forecast into the 
previously determined functional relationship. An example 
of this approach is the work of Gupta and Yamada [12]. The 
time series approaches assumes that the load fluctuations are 
composed of many peridcites, such as daily, weekly, and 
seasonal variations. These peridcities can be considered 
stochastic and parameters to describe them can be estimated 
by, say, autoregressive moving average [13] or spectral 
expansion [14] techniques. 

We assume the nature of this problem to be a mixture 
of a true regression (based on a weather forecast) and a time 
series prediction. This assumption is the basis of our 
approach to utilize trained classifiers. More details on this 
approach and our MLP results can be found in Park et al[15]. 

B. Methods 

Hourly temperature and load data for the 
Seattlflacoma area were provided for us by the Puget Sound 
Power and Light Company. Since weekday forecasting is a 
more critical problem for the power industry than weekends, 
we selected the hourly data for all Tuesday through Eridays in 
the interval of November 1, 1988 through January 31. 1989. 
These data consisted of 1368 hourly measurements that 
consisted of the 57 days of data collected. 

Several techniques of input and output pairing were 
tried and after some investigation [15] we found that a good 
choice of data organization for our trainable classifier was 

((x ; Y)) = ((k, Lk-2, Lk-1, Tk-2, Tk-1, Tk;Lk)l 

where k was the hour(1-24) of the day and Li and Tj signify 
the load and temperature at the i-th and j-th hour respectively. 
The input thus consists of the hour, 2 past load and 
temperature readings plus the current temperature. The actual 
current temperature was used during training and the 
predicted temperature was used during test, thus 
representative of the actual technique of relying upon weather 
reports. The output part is the predicted load, Lk. 

These data were presented to both the MLP and the 
CART classifier as a 6-dimensional input with a single, real- 
valued output. the MLP required that all values be 
normalized to the range (0, 1). These same normalized values 
were used with the CART technique. Our training and testing 
process consisted of training the classifiers on 53 days of the 
data and testing on the 4 days left over at the end of January 
1989. Our training set consisted of 1272 hourly 
measurements and our test set contained 96 hourly readings. 

The MLP we used in these experiments had 6 inputs 
(plus the trained constant bias term) 10 units in one hidden 
layer and one output. This topology was chosen by making 
use of data outside the trainng and test sets. A standard error 
backpropagation rule [S] was used for training the 
interconnect weights. The CART system made use of 
programs from California Statistical Software [16] and was 
set up to design regression trees. 

C. Results 

Errors for this problem are different than they were 
from the previous classification problem. In particular the 
output of the two techniques were real numbers, and an error 
measure was needed to describe how far these predicted 
values, in testing, deviated from the true value. We chose to 
use a ll norm, namely 

1 120 ILk-~k' l  
percent error = - I: x 100% 

120 k=l Lfk 

where Lk was the predicted load and ~ k '  was the true load at 
hour k. 



The comparative results are listed in Table 1. While 
both techniques gave quite low error rates, it is very notable 
that the MLP results were almost always better than the 
CART results and the wurst MLP result (1.78%) was close to 
the best CART result (1.68%). The ratio of the averages of 
the independent CART and MLP experiments was about 2.1. 
This difference is, for real applications, sizable and 
significant. It is also worth noting that the trained MLP 
offers performance which is at least as good as the current 
techniques used by the Puget Sound Power and Light 
Company. 

PERCENT ERROR 
MLP CART 

Test day 1 1.78% 3.33% 
Test dav 2 1.08 2.83 
~ e i t  d& 3 
Test day 4 

Average 1.39% 2.86% 

Table 1. Comparison of MLP and CART on load forecasting. 

Figure 2 depicts a comparative example of 3 days of 
data. With the exception of most of the positive and negative 
peaks, CART and MLP performed similarly well. We tended 
to see more error outliers for CART than for MLP, but our 
observations have not yet conclusively shown that peak 
deviations are the main reason for CART'S relatively poorer 
performance. 
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Figure 2. Hourly load predictions for CART and MLP. 

IV. SPEAKER-INDEPENDENT VOWEL 
CLASSIFICATION 

A. The Problem 

For our last comparative study we chose a very 
difficult task: speaker-independent classification of vowels 
excised from continuous speech. Speaker-independent vowel 
recognition is difficult because of the many sources of 
variability that influence the physical realization of a vowel. 
The spectrum of a vowel is determined in part by the length 
of the speaker's vocal tract; the same vowel produced by two 
speakers may differ by over 1000 Hz in the location of the 
resonant frequencies (formants) important for classification 
[17]. Variation is also pmvided by the context in which the 
vowel occurs. For example, the second lowest vowel formant 
of f i  in "kick and "Lil" may differ by as much as 1000 Hz 
in the two contexts. There are several other sources of 
variation, such as speech rate, syllable stress and word stress. 

To make the task even more dmcult in the present 
experiments the classifiers were presented only with 
information from a single spectral slice. The spectral slice 
was taken from the center of the vowel, where the effects of 
coarticulation with surrounding phonemes are least apparent. 

There are several interesting reasons to investigate 
vowel recognition using a single spectral slice. First, the 
most successful speech recognition systems today [18] model 
phonemes as sequences of spectra. By examining 
classification performance using a single spectra slice, we can 
gain some insight about the relative performance of these 
systems at the phonetic level. An important feature of any 
representation is how well it preserves phonetic information. 
Classification using a single spectral slice provides a good 
measure of this capability. Second, the present experiments 
address the question of how best to present information about 
the spectrum to a classifier. Should the classifier be 
presented with the complete set of spectral coefficients, or 
will some processing scheme produce better classification 
results? 

B. Methodology 

The training and test sets for the experiments 
consisted of featural descriptions, X, paired with an 
associated class, C, for each vowel sample. The 12 
monophthongal vowels of English, shown listed in Table 2, 
were used for the classes. 

Phone Example Phone Example 

/iy/ beat /aW butt 
/ih/ bit /uw/ boot 
Iehl bet /uhl book 
lael bat /a01 bought 
/id roses /ad cot 
/ax/ the /er/ bird 

Table 2. The 12 classes for the vowel problem. 



The vowels were excised from the wide variety of 
phonetic contexts in utterances of the TIMIT database, a 
standard acoustic phonetic corpus of continuous speech, 
displaying a wide range of American dialectical variation [19, 
201. The diphthongs Ioyl, lay/. ley/, /awl, and low1 were 
excluded because they are characterized by spectral change, 
and are therefore inappropriate for experiments using 
information from a single spectral slice. The training set 
consisted of 4104 vowels from 320 speakers. The test set 
consisted of 1644 vowels from a different set of 100 speakers. 

A 256-point real DFT was computed on each 
utterance, with a 10 ms Hamming window and 3 ms 
increment, yielding 128 spectral energy coefficients every 3 
ms frame of the utterance. Since the impmant information 
about vowel identity is found below 4 kHz., only the first 64 
spectral coefficients (0-4 kHz) were used. Using the hand- 
segmented phonetic transcriptions provided by the TIMIT 
database, the center frame of each vowel token was located, 
and the first 64 spectral coefficients corresponding to this 
frame were extracted. The coefficient values (in dB) were 
then normalized to lie between 0 and 1. Normalization was 
done by computing the "relative value" of each coefficient 
with respect to the maxima and minima in the 64 coefficients. 

(Xi - min) 
normalized value = 

(max - min) 

where Xi is the value of any spectral coefficient, mar is the 
value of the largest of the 64 spectral coefficients, and min is 
the value of the smallest of the 64 spectral coefficients. 

The MLP systems consisted of 64 inputs (the number 
of DFT coefficients) and 12 outputs. There was one hidden 
layer which consisted of 40 units. 

The networks were trained using backpropagation 
with conjugate gradient optimization [lo]. The procedure for 
training and testing a network proceeded as follows: The 
network was trained on 100 iterations through the 4104 
training vectors. The trained network was then evaluated on 
the training set and a different set of 1644 test vectors. This 
process was continued and the performance of the network on 
the training and test vectors was recorded after every 100 
iterations through the training set. The training was stopped 
when the network had converged; convergence was observed 
as a consistent decrease or leveling off of the classification 
percentage on the test data over successive sets of 100 
iterations. 

The CART system was trained using two separate 
computer routines. One was the CART program from 
California Statistical Software; the other was a routine we 
designed ourselves. We produced our own routine to ensure 
a careful and independent test of the CART concepts 
described in Breirnan et al[9]. 

C. Results 

When using the scaled spectral coefficients to train 
both techniques, the MLP correctly classified 47.4% of the 
test set while CART employing uni-variate splits performed 
at only 38.2%. 

One reason for the poor performance of CART with 
uni-variate splits, may be that each coefficient (corresponding 
to energy in a narrow frequency band) contains little 
information when considered independently of the other 
coefficients. For example, reduced energy in the 1 kHz band 
may be mcult to detect if the energy in the 1.06 kHz band 
was increased by an appropriate amount. The CART 
classifier described above operates by making a series of 
inquiries about one frequency band at a time, an intuitively 
inappropriate approach. 

We achieved our best CART results, 46.4% on the test 
set, by making use of arbitrary hyper-planes (linear 
combinations) instead of univariate splits. This search-based 
approach gave results which were within 1% of the MLP 
results. 

These seemingly low scores came from a task with 
chance performance of about 8.3%. Nevertheless, the high 
error rates we found are probably indicative of the extreme 
difficulty in identifying speaker-independent vowels from a 
single spectral slice. In fact, listeners presented with vowel 
sounds excised from the TIMIT data base agree on vowel 
labels only about 65% of the time [21]. There is a large 
difference between this problem, with its apparent high 
optimal error rate, and the power security problem, which had 
a 0% optimal error rate. 

V. CONCLUSIONS 

Table 3 lists a summary of comparative results for 
both problems. This table includes, where suitable, the best 
performing case for both CART and the MLP. The load 
forecasting and the vowel classification problem differed in 
more than just application area; they each have a very 
different underlying structure. The problem of vowel 
recognition gave MLP and CART results which are not 
immediately applicable. However, the impressive 
performance of the MLP technique for load forecasting at 
least equaled the techniques currently used by the Puget 
Power and Light Company. 

Note that the best CART performance on the vowels 
was very close to the MLP result. This CART result made 
use of linear combination splits. Also, other MLP vowel 
experiments which made use of more features and gave 
performance as high as 55.2% correct [22]. We are currently 
in the process of applying linear combination splits to the 
load forecasting problem and to the larger vowel feature set. 

Lowest Error Rate 
MLP CART 

Load Forecasting 1.39% 2.86% 
Vowel Recognition 52.6% 53.6% 

Table 3. Summary of best results on load forecasting and 
vowel =cognition. 



There are several possible reasons for the superior 
performance of the MLP technique, all of which we are 
currently investigating. One advantage may stem from the 
ability of MLP to easily find correlations between large 
numbers of variables. CART is best suited for f~nding 
significant properties of single features (i.e. those whose 
range is associated with a given class). Although it is 
possible for CART to form arbitraxy nonlinear decision 
boundaries, the efficiency of the recursive splitting process 
may be inferior to MLPs nonlinear fit. Another relative 
disadvantage of CART may be due to the successive nature 
of node growth. For example, if the first split that is made for 
a problem turns out, given the successive splits, to be sub- 
optimal, it becomes very inefficient to change the first split to 
be more suitable. 
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