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Abstract

Alternating projection neural networks
(APNN’s) have been shown to be effective archi-
tectures for content addressable memories when
a portion of a stored vector is known. Neural
states corresponding to the known portion of the
vector are imposed or clamped to the known val-
ues. The remaining floating neurons iteratively
converge to the extrapolation of the vector. In
this paper, this same notion is applied to binary
vectors which, when presented for the content ad-
dressable operation, are corrupted by Bernoulli
(or flip) noise. The procedure of the APNN is
utilized with all of the neurons initially in the
floating state. When the binary value of a neu-
ron is the same in two consecutive iterations, the
neuron is clamped to that value with the proba-
bility p. Otherwise, the neuron remains {loating.
The performance of the APNN using Bernoulli
clamping is contrasted quite favorably with other
associative memory artificial neural networks.

1. Introduction

The alternating projection neural network [?]-
(7] is an effective architecture for a content ad-
dressable memory. That is, a memorized train-
ing vector may be reconstructed when an arbi-
trary portion of the vector is presented to the
neural network. In this paper, we show that the
APNN can also be effectively used as an associa-
tive memory when a library vector is corrupted
by noise. The APNN is shown empirically to per-
form better than other associative memory arti-
ficial neural network [?)- [?].

2. The APNN

A brief review of the APNN is appropriate.
More detailed discussions are_avai]ab[e elsewhere

(717].

Consider a set of ¥V library vectors:

Y= {fall <n< N}

Lach library vector has a length L > V. We form
the library matrix

F=[fifi A
and the neural network’s inlerconnect matrix
T = F(FTF)-'§7

where T denotes matrix transposition. Let § € 3.
We partition § into the vector gp and g, where
Jp contains the first P elements of 7 and 7, the
remaining @ = L — P. Let T4 denote the Q x Q
matrix taken from the lower right hand corner of
T and T3 the @ x P matrix taken from Lhe lower
left hand corner of T. The iteration

S_'.»fl = T4§m =+ TGQ—\?

converges to the =xtrapolation 5., = Jp for any
initialization if the first P rows of T forin a ma-
trix of full rank. In the parlance of the APNN,
the neural states corresponding to the known por-
tion of the library matrix, Jq, are clamped to the
known values and the remainder of the neurons
float. The role of a neuron as clamped or floated
can change from application to application.

3. Bernoulli Clamping
By slightly perturbing the APNN algorithm,

we can also recall library vectors when the known
data is corrupted by noise. For this extension, we

will limit our library to vectors containing +1's.
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Hence, each member of F is either +lor —1. As
before, let § € §. We will corrupt § with flip
noise'. Specifically, with some “small” probabil-
ity 7, each element of § can be reversed. Let this
corrupted library vector be h. Then

hp = (_I)ﬁ"gﬂ

where h, is the n'* element of A and On is a
Bernoulli random variable, i.e.

Probability[g, = 1]
Probability(g, = 0] =

|
3

l—mnm

! Also called Bernoulli noijse.



We assume each [, is independent from every
other one. Typically, = is significantly below 1/2.
-Our goal is to recover § from k using a modified
APNN. Qur proposed algorithm is as follows:

1. Set M =1and @p = h. Initially, all neurons
are floating.

2. Compute
War = sign Ty

where sign is a pointwise operator which ex-
tracts the sign of each element of the vector
on which it operates. (Hence, all the ele-
ments of wyr are £1). Let the n'" element
of the vector Ty be equal to the n'® element
of wys if the neuron is floating and the n'*
element of @ if it is clamped.

3. If the n'® element of ¥y is different than
the n'® element of sy, then the correspond-
ing neuron remains floating. If they are the
same, the neuron is clamped to the value
with probability p. (Thus, on the average,
a fraction p of the neurons with the un-
changed states are clamped and the remain-
der of the neurons with unchanged states re-
main floating.) Once a neuron is clamped, it
remains clamped. We refer to this procedure
Bernoulli clamping.

4. With the current partition of floating and
clamped neurons, apply the conventional
APNN until the sign of the neural states does
not change. Let ;4 be this steady state
vectors of +1's.

5. Set M = M + 1, go to Step 2 and repeat
until convergence.

Note that Step 3 is akin to simulated anneal-
ing [6]. We have here chosen, not to vary p with
each iteration.

4. Examples

In this section, we present examples illustra-
tive of the observed properties of this associative
memory. In the examples to follow, the N = 4
letters, {I,5,D,L}, were coded as £1’sina 5x 7
array. Thus, L=35.

Example 1: The letter L corrupted by flip noise
is shown in Figure la. Figure 1b is a plot of the
Hamming distance between this corrupted library
vector and the other library vectors. Although
closest to the letter L, & is also close to both §
and D. Shown in Figure lc and 1d are the results
of M =1 and M = 4 iterations using p = 0.75.
The correct library vector is restored.
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Example 2: This example illustrates that a
choice of a large value of p is typically bad. The
corruption is identical to that in Example 1. Use
of p = 1 is shown in Figure 2 givé an incorrect
result. Use of p = 0.75 in Example 1 gave the
correct result.

Example 3: In this example, we contrast the
performance of the APNN using Bernoulli clamp-
ing with that of Hopfield’s associative memory
neural network [1]-[3]. Let

= {E,-.Fl <n< N}

denote a set of N binary (0, 1) library vectors.
Let

We form the interconnect matrix
T=(2B-1)(2B-1)T

where 1 is a matrix of 1’s. Let & € p. Let & be cor-
rupted with flip noise to form k. In synchronous
form [7], Hopfield’s model claims restoration of &
from k with the iteration

Pavsr = UTin

with initialization {; = k and where the vector
operator U takes the unit step of each element of
the vector on which it operates. o

Shown in Figure 3a is a flip noise corrupted
version of the letter L. The APNN with Bernoulli
clamping restored the object. Hopfield’s neural
network did not. Indeed, as shown in Figure 4,
the Hopfield neural network can even converge to
the improper result, in this case the library vector
corresponding to the letter S,

5. Conclusion

We have demonstrated that when augmented
with Bernoulli clamping, the APNN can be used
as an assoclative memory for recall of inputs cor-
rupted by flip noise. As was illustrated in the toy
problem of recall of four stored letters, it can sig-
nificantly outperform the Hopfield artificial neu-
ral network associative memory.
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Figure 1 Four binary letters. ISDL. are coded on 5 x 7 grid.
The letter L. corrupted by flip noise. is shown in (a). The
Hamming distance between this perturbation and each let-
ter is shown 1n (b). After four cvcles in the APNN using
Bernoulli clamping with p = 0.75. the letter is restored.

Figure 2 This is the result of the same procedure on the
same problem as that described in the caption in Figure 1
except p = 1. The steady state result is clearly incorrect.



—— 20

ER S

- D [j * 15F
U

Ln
T

U

(a) NOISY INPUT

i

(¢) APNN (d) HOPFIELD-H

Figure 3 Comparison of the performance of a Hopfield arti-
ficial neural network to an APNN with Bernoulli clamping.
The input in (a) is an L corrupted by Aip noise. The APNN
result. shown in Ic), gives the proper answer. The Hopfield
result in (d). does nat.
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Figure 4 This is the same problem as is described 1 the
caption of Figure 3, except using different noise on the in-
put. The APNN with Bernoulli clamping again succeeded
in restoring the perturbed input. The Hopfield model con-
verged to the letter S which, although in the library, is not
the proper result.
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