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ABSTRACT 

We consider a class of neural networks whose 
performance can be analyzed and geometrically 
visualized in a signal space environment. 
Alternating projection neural networks (APNN's) 
perform by alternately projecting between two or 
more constraint sets. Criteria for desired and 
unique convergence are easily established. The 
network can be taught from a training set by 
viewing each library vector only once. The network 
can be configured as either a content addressable 
memory (homogeneous form) or classifier (layered 
form). The number of patterns that can be stored 
in the network is on the order of the number of 
input and hidden neurons. If the output neurons can 
take on only one of two states, then the trained 
layered APNN can be easily configured to converge 
in one iteration. More generally, convergence is at 
an exponential rate. Convergence can be improved by 
the use of sigmoid type nonlinearities, network 
relaxation and/or increasing the number of neurons 
in the hidden layer. The manner in which the 
network generalizes can be directly evaluated. 

1. INTRODUCTION 

The current flurry of interest in artificial 
neural networks is motivated by recent promising 
research results and is predicated upon the high 
performance of actual biological neural networks. 
Artificial neural networks, which represent a 
departure from conventional computing techniques, 
have the properties of fault tolerance, resiliance 
to processing inexactness, a regularized structure 
and asynchronous operation. 

In this paper, we depart from the performance 
analysis techniques normally applied to neural 
networks. Instead, a signal space approach is used 
to gain new insights via ease of analysis and 
geometrical interpretation. Building on a 
foundation laid elsewhere [I-31, we demonstrate 
that alternating projecting neural network's 
(APNNvs) formulated from such a viewpoint can be 
configured in layered form as a classifier or 
homogeneously as a content addressable memory. 

The neurons in the homogeneous APNN can be 
clamped to a preassigned value and provide the 
network stimulus or can float in accordance to the 
stimulus of other neurons. The status of a neuron 
as clamped or floating may change from application 

to application. The APNN in this form acts as a 
content addressable memory. After being trained 
with a number of library vectors, the APNN can 
generally reconstruct any one library vector by 
clamping a subset of the neurons to the values 

equal to the elements of that vector. The states of 
the remaining floating neurons will then converge 
to the unknown vector elements. 

The input neurons of the layered APNN provide 
the network's stimulus. Use of neurons in the 
hidden layer increases storage capacity, 
convergence rate and classification diversity. The 
states of the output layer provide the 
classification index. 

APNNSs have the following attributes: 

(a) As their name suggests, APNN's perform by 
alternatingly projecting between two or 
more constraint sets. Criteria can be 
established for proper iterative 
convergence. This is in contrast, for 
example, to the more conventional technique 
of formulation of an energy metric for the 
neural networks, establishing a lower 
energy bound and showing that the energy 
reduces each iteration [4-71 . Such 
procedures generally do not address the 
accuracy of the final solution. In order to 
assure that such networks arrive at the 
desired globally minimum energy, 
computationaly lengthly procedures such as 
simulated annealing [a-  101 are used. For 
synchronous networks, steady state 
oscillation can occur between two states of 
the same energy [Ill. The accuracy of the 
steady state solution of APNN's, on the 
other hand, can be straightforwardly 
assured for both synchronous and 
asynchronous networks. 

(b) Many homogeneous neural networks [4,12-141 
do not scale well, i.e. the storage 
capacity less than doubles when the number 
of neurons is doubled [15,16]. We show 
that, in layered form, the number of stored 
patterns in an APNN is roughly equal to the 
number of input and hidden neurons. 

(c) The speed of backward error propagation 
learning [17,18] can be painfully slow. 
Layered APNNVs, on the other hand, can be 
trained on only one pass through the data. 
If the network memory does not saturate, 
new data can easily be learned without 
repeating previous data. Neither is the 
effectiveness of recall of previous data 
diminished. We show that in certain 
important applications, the APNN will 
recall in one iteration. Generally, the 
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Figure 1. The two-dimensional shaded region form a + convex set, C. For an arbitrarq vector g, the 
projection onto the convex set, Fg, is that point + 
in C closest to g. 

cost of this performance is more hidden 
neurons. Hence, we are trading 
computational time for architectual real 
estate. 

(d) The manner in which the layered APNN 
generalizes to data for which it was not 
trained can be found analytically in a 
straightforward fashion. 

The outline of this paper is as follows. After 
a brief review of convex set projection theory and 
establishment of the dynamics of the APNN, we 
present proofs of convergence for both synchronous, 
sequential and dispersionless asynchronous 
operation. Sufficient criteria for proper 
convergence are established. The convergence 
dynamics of the APNN are explored and illustrated 
geometrically. Effects of noncompliance with 
required convergence criteria and learning are also 
geometrically interpreted. 

Wise use of nonlinearities is shown to improve 
the network's performance. Sigmoid type neural 
nonlinearities improve convergence properties. 
Establishing a hidden layer of neurons whose states 
are determined by a nonlinear function of the input 
neural states is shown to increase the network's 
storage capacity and increase the network's 
convergence rate. The manner in which the networks 
responds to data outside of the training set is 
also addressed. 

2 .  AN OVERVIEW OF POCS 

The technique of projection onto convex sets 
(POCS) [19,201 has traditionally been applied to 
signal restoration. In this section, we give a 
brief overview of POCS. M~re in depth treatment is 
in the book by Stark [201. 

A set of vec+tors,+C, is said to be convex if, 
for all vectors x and y in %, 

Geometrically, this is interpreted as requiring the + + 
line segment cohecting x and y be totally subsumed 
in C. The convex sets in this paper are assumed to 
be closed (i.e. they include their boundaries). 
Examples include subspaces (planes), boxes, balls 
and linear varieties (translated subspaces). 

As illustrated in Figure 1, the projection of 

Figure 2. Illustration of POCS (projection ant,:, 

convex sets) . Alternating projections between the 
(convex) line segment, %,, and the shaded convex 
set, C,, asymtotically approaches a point common to 
their intersection. 

--t 
an arbitrary vector, g, onto a convex set results + 
in the unique vector in % closest to g in the mean 
square sense. Consider, then, I convex sets with 
common (convex) intersection % : 

As is illustrated in Figure 2, the fundamental 
result of POCS is that repeated sequential 
projection onto these sets asymtotically approaches 
a point in C. 

The design of the APNN is based on POCS. The 
network iterates between convex sets the single 
point intersection of which is a desired steady 
state solution. 

3. THE ALTERNATING PROJECTION NEURAL NETWORK 

In this section, we established the notation 
for the APNN. Nonlinear modificiations to the 
network made to impose certain performance 
attributes are considered later. 

Consider a set of N continuous level linearly 
independent library vectors (or patterns) of length 
L > N: ( 2, I OSnlN ) . We form the library matrix 

and the neural network interconnect matrix 

where the superscript T denotes transposition. The 
interconnect value between neurons p and k is t,, . 
Since T is symmetric, t,, = tkP. We divide the L 
neurons into two sets: one in which the states are 
known and the remainder in which the states are 
unknown. This partion may change from application 
to application. Let s, (M) be the state of the kth 
neuron at time M. If the kth neuron falls into the 
known category, its state is clamped to the known 
value (i .e. s, (M) = 1, where 2 . is some library 
vector). We first consider the case where the 
remaining floating neurons are equal to the sum of 
the inputs into the node. That is, s, (M) = i, , 
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where fl 

If all neurons change state simultaneously (i .e . 
s, = s, (M-I)), then the net is said to operate 
synchronously. If only one neuron changes state at 
a time, the network is operating asynchronously. 

Let P be the number of clamped neurons. We will 
prove that the neural states converge strongly to 
the extrapolated library vector if the first P rows 
of P (denoted 5) form a matrix of full column 
rank. That is, no column of 5 can be expressed as 
a linear combination of those remaining. By strong 
convergence1, we mean 

M - + W  

where 11 2 !I2 = 2~2. Proof of this proposition is in 
Section 3. Both linear and nonlinear alteration 
techniques to improve the network's convergence 
rate are in section 4. 

Lastly, note that subsumed in the criterion 
that 5 be full rank is the condition that the 
number of library vectors not exceed the number of 
known neural states (P2 N). Techniques to bypass 
this restriction by using hidden neurons are 
discussed in section 6. 

Figure 3. Illustration of homogeneous APNN results. 
Four library vectors of length L=23 were 
stochastically generated. The values of the vector 
2, are shown in (a). The states of the final 15 
values of 2,. The states of the first ten floating 
neurons are shown in (b), (c) and (d) after M=2,5 
and 20 synchronous iterations. The first ten 
elements of 2, have been cl.larly -reconstructed in 
(d) . 

Example 

A total of N-4 library vectors of length L-25 
were produced by a unyorm random number generator. 
A plot of the vector 3, is shown in Figure 3a. The Thus, the first elements of are clamped to tP 
interconnect matrix in (1) was formed. The last The remaining nodes ,,float,, . 
P=15 elements of 2, were used as the clamped values 
of the APNN. shown in Figures 3b-d are the states 
of the floating neurons for +M= 2,5 and 20 
synchronous iterations. Clearly, s(20) = and the 
remainder of the library vector has been 
resurrected. 

Partition Notation 

In the homogeneous form of the APNN, the 
partition of clamped and floating neurons can 
change from application to application. For a given 
application, however, we can assume without loss of 
generality, that neurons 1 through P are clamped 
and the remaining neurons are floating. We adopt 
the vector partitioning notation 

-+ L =a 1 
where 5 is the P-tuple of the first P elements of + 
i and iQ is a vector of the remaining Q =  L-P. We 
can thus write, for example 

Using this partition notation, we can define 
the neural clamping operator by: 

The convergence proofs to be referenced later 
prove strong convergence in an infinite 
dimensional Hilbert space. In a discrete finite 
dimensional space, however, hot$ stron and weak 

[19,20] convergence imply that s (M)--+ as M -+ -. 

Partition notation for the interconnect matrix 
will also prove useful. Define 

where T is a P by P and T a Q by Q matrix. The 
-2 

subscripts are motivated $y quadrant location. 
Since T is symmetric (T= T ) ,  so are T and T 

-2 -4' 
Furthermore T = T ~  

-1 -3' 

4. STEADY STATE CONVERGENCE PROOFS 

In this section, we prove convergence of the 
APNNs for both synchronous and sequential 
operation. If stability is assumed, convergence 
occurs when the time delay between each neuron pair 
is fixed yet varies from pair to pair. Each proof 
requires that 5 be full rank. The behaviour of the 
network when & is not full rank is also addressed. 

Synchronous Operation 

For synchronous operation, the network 
iteration in (2) can be written as 

The known (or clamped) neural states are then 
imposed to generate the updated state vector 
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Figure 4. The linear variety, q, and the subspace T 
intersect at the library vector, t.  By alternatly 
projecting between the subspace and linear variety, 
the neural network is seen to converge to a point 
common to both. 

Thus, the iterative state equation can be written 
as 

As is illustrated in Figure 4, this operation 
can easily be visualized in an L dimensional signal 
space. The 2 matrix orthogonally projects any 
vector onto a N dimensional subspace, T, formed by 
the closure of the library vectors [211. (Kohonen 
[22] has suggested a single projection onto T as an 
associative memory algorithm) . The clamping 
operator, 9, orthogonally projects onto the, Q 
dimensional linear variety, q, formed by the set of 
all L tuplets with their first P elements equal to 
T .  According to POCS, alternating orthogonal 
projections between these two convex sets strongly 
converge to a point common to both. (When the 1=2 
convex sets are linear varieties as they are here, 
the algorithm is equivalent to Von Neumann's 
alternating projection theorem [23,241 . ) Clearly, 
the library vector 2 is common to both T and q. The 
requirement that 5 has full column rank assures 
that 2 is the only point of intersection [I] and 
our proof is complete. Note that the network will 
properly converge for any initialization of the 
floating neuron states. 

Converqence Solution 

For a given partition with P clamped neurons, 
(3) can be written in partitioned form as 

The states of the P clamped neurons are not 
affected by their input sum. Thus, there is no 
contribution to the iteration by T and x2. We can 

-1 

Figure 5. Illustration of the case where the 
subspace T and linear variety, q, intersect along 
the linear variety V .  In such underdetermined 
cases, the APNN will iteratively converge to that 
point on V closest to the initiavzation. e.g. as 
shown, + for an initialization of s (01, convergence 
is to s (d . 

We show in Appendix A that if 3 is full rank, then 
the spectral radius (magnitude of the maximum 
eigenvalue) of T4 is strictly less than one. It 
follows that the steady state solution of (5) is: 

where, since 5 is full rank, we have made use of 
our previous observation that 

That is, the steady state solution is the 
extrapolation of the library vector 

Equation (6) could be used in lieu of the APNN 
if the status of each neuron as clamped or floating 
remained the same from application to application. 
If the partition changes, however, so does 2 and 
T,. Even if the partition remains static, (6) is 
not amenable to learning sequentially presented 
library vectors. We show in Section 6 that the 
interconnect matrix in (1) is. 

Sequential Operation 

An asynchronous neural network can be defined 
as one in which two or more neurons do not change 
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s t a t e  a t  t h e  same t ime [ I l l .  Subsumed i n  t h i s  
concept i s  s e q u e n t i a l  opera t ion  wherein n e u r a l  
s t a t e s  a r e  updated p e r i o d i c a l l y  i n  an indexed 
order .  That is, neuron 1 is  allowed t o  change. Then 
neuron 2 is  updated, e t c .  A f t e r  every ( f l o a t i n g )  
neuron i s  allowed t o  change, t h e  procedure is  
i t e r a t i v e l y  repea ted .  

The convergence proof f o r  s e q u e n t i a l  opera t ion  
is based on (6)  and (7)  which can be  w r i t t e n  a s  

.$ 
where 5 = (L  - T 1 ,  b = T j? and 3 = zQ (-) . Then, t h e  -4 -3 
s e q u e n t i a l  opera t ion  

x, (M+I) = - C a,, x, (M+I) + (1 - ai  ) x i  ( M )  
k E l  = 

- C a,, x, (M) + b , (9) 
k = i + l  

+ -f 
converges t o  t h e  d e s i r e d  vec tor ,  x(-)=y, i f  t h e  
s p e c t r a l  r a d i u s  of T is  l e s s  than  one ( i . e .  & i s  

-4 
f u l l  r a n k ) .  The proof, s i m i l a r  t o  t h a t  f o r  t h e  
Gauss-Seidel a lgori thm [25], i s  given i n  Appendix B. 

Temporally Nondispersive Clock Skew 

I f  we assume t h a t  t h e  APNN reaches a s t a b l e  
s o l u t i o n ,  then we can e s t a b l i s h  a convergence 
c r i t e r i o n  i n  which both synchronous and s e q u e n t i a l  
opera t ion  a r e  subsumed. Let r,, denote t h e  time 
de lay  between f l o a t i n g  neurons k and p and l e t  'f,, 
denote t h e  t ime de lay  betwen t h e  pth clamped neuron 
and t h e  kth f l o a t i n g  neuron. Then, us ing  our  
p a r t i t i o n  convention, t h e  i t e r a t i o n  i n  (2 )  becomes 

f o r  P < k < L, and p( 1 denotes  t h e  u n i t  s t e p  and we 
have used b r a c k e t s  t o  denote continuous r a t h e r  than  
d i s c r e t e  t ime.  Such a r e l a t i o n s h i p  a r i s e s ,  f o r  
example, when t h e  t ime de lay  among neurons i s  
p r o p o r t i o n a l  t o  t h e i r  phys ica l  separa t ion .  L e t t i n g  
t -+ - and assumicg a s t a b l e  s o l u t i o n  g i v e s  

o r ,  i n  ,matr ix-vector  form 

Since  2 is not  s i n g u l a r  i f  F+ i s  of f u l l  column 
rank (Theorem 1 i n  appendix A ) ,  we conclude t h a t  
t h e  s o l u t i o n  t o  t h i s  equat ion is  unique and, from 

-M ( 6 ) ,  i s  given by s (-1 = 2: . 

Resul t s  of Noncompliance with Conversion C r i t e r i a  -- 
(a )  The Underdetermined Case: 

I f  i s  not of f u l l  column rank, t h e  
i n t e r s e c t i o n  of t h e  l i n e a r  v a r i e t i e s  q and T 
r e s u l t s  i n  a l i n e a r  v a r i e t y ,  Y ,  of p o s i t i v e  
dimension. (Visual ize,  f o r  example, two planes 
i n t e r s e c t i n g  i n  t h r e e  s p a c e ) .  The n e u r a l  network, 
i n  t h i s  case, w i l l  converge t o  t h a t  po in t  i n  Y 
c l o s e s t  t o  t h 2  i n i t i a l  s t a t e  vec tor ,  s ( 0 )  [261. 
Equivalent ly,  s(-) is  t h e  or thogonal  p r o j e c t i o n  of 
z ( O )  onto  Y. This  r e s u l t  i s  geomet r ica l ly  
i l l u s t r a t e d  i n  F igure  5.  

F igure  6. Two n o n i n t e r s e c t i n g  l i n e s  a r e  shown i n  
t h r e e  space.  t h e  subspace T i s  i n  t h e  (s,, s,) plane 
and t h e  l i n e a r  v a r i e t y  v a r i e t y ,  q ,  i s  on t h e  
(s1,s3) p lane .  A l t e r n a t i n g  orthogonal  p r o j e c t i o n s  
between t h e  two l i n e s  i t e r a t i v e l y  converge t o  a 
l i m i t  c y c l e  between t h e  t_wo p o j n t s  on each l i n e  
c l o s e s t  t o  t h e  o t h e r ,  i . e .  u and s(-). 

(b)  Improper clamping 

Consider t h e  c a s e  where t h e  P clamped neurons 
a r e  no t  t h e  f i r s t  P elements of  any l i b r a r y  vec tor .  
The networks w i l l  respond i n  one of two ways: 

(a )  I f  t h e  i n i t i a l i z a t i o n  i s  a l i n e a r  combination 
of  t h e  columns of 5 ,  then  zQ:(oo) w i l l  be  t h e  
same l i n e a r  combination of  t h e  columns o f  5. 

(b)  Otherwise, t h e  l i n e a r  v a r i e t y  q formed by t h e  
i n i t i a l i z a t i o n  does not  i n t e r s e c t  t h e  subspace 
T. A s  i l l u s t r a t e d  i n  Figure 6, t h e  networks 
w i l l  converge t o  t h a t  po in t  on t h e  l i n e a r  
v a r i e t y  c l o s e s t  t o  t h e  subspace. 

When T and q do i n t e r s e c t ,  t h e  sum of t h e  
i n p u t s  f o r  t h e  clamped neurons approabhes t h e  
clamped va lues .  This  is  not t h e  c a s e  f o r  non- 
i n t e r s e c t i o n .  ( I n  Figure 6, f o r  example, us ing  t h e  
input  sums a s  t h e  s t a t e s *  f o r  t h e  clamped nodes 

.$ 
r e s u l t s  i n  u r a t h e r  than s(-)) .  A l a r g e  d e v i a t i o n  
between t h e  clamped va lues  and t h e  input  sum i n  
s t e a d y  s t a t e  a t  t h e  clamped neurons t h u s  impl ies  
improper clamped va lues .  

4. CONVERGENCE DYNAMICS 

I n  t h i s  s e c t i o n ,  we explore  d i f f e r e n t  
convergence dynamics of t h e  synchronous APNN when 
Ep is  of f u l l  column rank. I f  t h e  l i b r a r y  mat r ix  
d i s p l a y s  c e r t a i n  o r thogona l i ty  c h a r a c t e r i s t i c s ,  o r  
i f  t h e r e  i s  a s i n g l e  output  ( f l o a t i n g )  neuron, 
convergence can be  achieved i n  a s i n g l e  i t e r a t i o n .  
More g e n e r a l l y ,  convergence i s  a t  an exponent ia l  
r a t e .  Two techniques a r e  p resen ted  t o  improve 
convergence. The f i r s t  is  s tandard  r e l a x a t i o n .  The 
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second imposes a nonlinear convex constraint at Since ggT= L, it follows from the difference 
each neuron. equation in (5) that 

One Step Convergence - 
As can be visualized geometrically from Figure 

4, if the linear variety and subspace are 
orthogonal, then the APNN will converge uniformly 
in one iteration. We show in Appendix C, however, 
that such one step convergence cannot occur when 
the values of the floating neurons in steady state 
are other than zero. 

There remain, however, at least two important 
cases, where the APNN converges other than 
uniformly in one iteration. Both require that the 
output be bipolar (+I). Convergence is in one step 
in the sense that 

where the vector operation takes the sign of 
each element of the vector on which it operates. 

CASE 1: 
If there is a single output neuron, then, from 

( 5 ) ,  (6) and ( 7 )  

Since the eigenvalue of the (scalar) matrix, T = -4 
tLL lies between zero and one (see Appendix A) we 
conclude that 1 - tL,>O. Thus, if ,!' is restricted 
to fl, (10) follows immediately. 

A technique to extend this result to an 
arbitrary number of output neurons in a layered 
network is discussed in section 8. 

CASE 2 : 
For certain library matrices, the APNN can also 

display one step convergence. We show in Appendix 
D, for example, that in the unlikely event that the 
columns of F are orthogonal and the columns of 3 
are also orthogonal, then one synchronous iteration 
results in floating states proportional to the 
steady state values. Specifically, for the 
floating neurons, 

Exponential Convergence 

;'~(M+I) - pTx, pgT3(~) + gTz3 7 
-3 -3 

= 4 X(M) + 9 
where 

The solution to this difference equation is 

In appendix A, we show that the spectral radius of 
T is less than one. Thus h: --t 0 as M --+ -. Our 
-4 
steady state result is thus 

Equation (12) can therefore be written as 

The equivalent of a "time constant" in this 
exponential convergence is l/en (l/ l kk 1 ) . The speed 
of convergence is thus dictated by the spectral 
radius of x4. As we will show later, adding neurons 
in a hidden layer in an APNN can significiantly 
reduce this spectral radius and thus improve the 
convergence rate. 

Relaxation 

Both the projection and clamping operations can 
be relaxed to alter the network's convergence 
without affecting its steady state 1191. For the 
interconnects, we choose an appropriate value of 
the relaxation parameter 8 in the interval (0,2) 
and redefine the interconnect matrix as 

or equivalently, 

; n = m  

n m ; n+m 

To see the effect of such relaxation on 
convergence, we need simply examine the resulting 
eigenvalues. If T4 has eigenvalues {h, 1, then r: 

More generally, the convergence rate of the has eigenvalues 
APNN is exoonential and is a function of the 

-3 
eigenstructure of T Let {p, I 1 S r l Q ) denote the 

-4 '  
eigenvectors of r4 and {h,} the corresponding 

k: - 1 + 8(h, -1) 
eigenvalues. Define A wise choice of 8 reduces the spectral radius of 

+ -3 -3 T' with respect to that of zq and thus decreases 
P = [ p11p21 ... lP*l - -4 

the time constant of the network's convergence. We 

and the diagonal matrix I& such that 

diag A, = A2 - + l T  

Then we can writ% 

24 = rr 4 4  gT 
Define 

-3 
x(M) = E~:(M) 

show in Appendix E that, for synchronous operation, 
a "good" stationary choice for 8 is 

where tr denotes the matrix trace. Varying 
relaxation with each iteration is also a 
possibility [291. Interconnect weights, however, 
would need to be updated each iteration. 

Any of the operators projecting onto convex 
sets can be relaxed without affecting steady state 
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Figure 7 .  A saturation nonlinearity. The state of 
the kth neuron, sk, is determined by the sum of the 
inputs to that neuron, ik. 

convergence [19-201. These include the q operator 
and, as discussed in the section to follow, the 
operator that projects onto a box. Choice of 
stationary relaxation parameters without numerical 
and/or empirical study of each specific case, 
however, generally remains more of an art than a 
science. 

Neural Saturation as a Convex Constraint 

An alternate technique for improving the 
convergence rate is by imposing additional convex 
constraints in the iteration process. Consider, for 
example, placing a dynamic range constraint on each 
floating node: 

a, : i k < %  

S, = i, 1 Pk : a, 5 ik 5 Pk 
: ik 2 Pk 

That is, each node operates linearly between the 
lower and upper threshold. If the input sum 
exceeds the upper threshold, $,, the neural state 
become p, . A similar substitution for the lower 
threshold 4, is made when appropriate. The 
resulting nonlinearity shown in Figure 7 is similar 
in form to sigmoid nonlinearities used in other 
neural networks [I81 . 

Neural thresholds can either be predetermined 
or programmed. If, for example, the library vectors 
correspond to pixel grey levels, predetermined 

threshold values can be placed at zero and one. 
Alternately, the neural thresholds can be 
programmed during learning. If the kth element of 
a new vector lies between 4 and pk, then no change 
is required. If this is not the case, either and 
$, are equated to the new value. After training is 
completed, we have 

ell, = min $, (k) 
lSn<N 

and 
$, = max C, (k) 

lSnSN 
Upper and lower thresholding of the elements of 

a vector at preset values can be viewed as the 

Figure 8. A geometrical illustration of the effect 
of nonlinear neural saturation shown in Figure 4 .  
In addition to alternately projecting between the 
subspace, T, and the linear variety, 11, projection 
is also onto a (convex) box the dimensions of which 
are determined by the neural saturation parameters. 
Proper convergence will occur if convergence is 
assured without the box (i.e. 5 is full rank) and 
the box contains the library element to be 
restored. 

projection of the vector onto a box the sizes of 
which are specified by the threshold values. As 
illustrated in Figure 8, the convergence of the net 
can be improved by this procedure. Convergence 
follows immediately from POCS for I=3 convex sets. 

6 .  TRAINING 

The equation for the interconnect matrix in (1) 
is unacceptable because of the required prior 
computation of the inverse of a matrix, which, due 
to the library matrix structure, may be singular or 
ill-conditioned. Furthermore, we .desire a 
technique whereby training data can be 
incrementally learned in a neural network structure 
one library vector at a time. Such a procedure for 
teaching the neural networks new library vectors is 
developed in this section. 

Assume we have an interconnect matrix, T, and 
wish to update the interconnects corresponding to a 
new library vector, 2.  Xs illustrated in Figure 9, 
T 2 projects 2 onto T and - 

-t 
is orthogonal to T. The E vector can easily be 
computed by one synchronous iteration of the net 
after imposing states equal to 2 on the neurons. 

We wish to extend the dimysion of She subspace 
T by one in the direction of E .  Since ~/l l2l l  is the 
unit vector orthogonal to T, the updated 
interconnect matrix 

-3 -3T 
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Hidden Layers 

Figure 9. A geometrical illustration of learning in 
an APNN. The subspace, T, shown as a line on the 
(5% ,s2) plane, is to be augmented to include the 
new library vector, 2, which a130 lies in the 
(s1,s2) plane. The error vector, El is determined 
by the old networks' interconnects. The 
interconnects are updated with this error vector in 
a Gram- Schmidt procedure. In this illustration, 
the updated networks interconnects will then 
project onto the augmented (s1,s2) planar subspace. 

now projects any L tuple onto* the new subspace 
formed by the closure of T and E or, equivalently, 

T and 2. The procedure is initiated with all 
interconnects set to zero. It is similar to that of 
Gram-Schmidt orthonormalization. 

Clearly, if ( 2  - T )it = 8, the new library 
vector is already in the subspace T and no updating 
is required. In practice, computational accuracy 
will rarely allow an exact equality here. The 
result is that the dimension of the subspace would 
be increased in a random manner dictated by 
computational or other noise. Thus, in order to 
assure the networks is learning something useful, 

.ST * 
it is thus advisable to compare E & to some 
appropriate threshold prior to updating [301. 

The networks thus far considered are 
homogeneous in the sense that any neuron can be 
clamped or floating. If the partition is such that 
the same set of neurons always provides the network 
stimulus and the remainder respond, then the 
networks can be simplified. Clamped neurons, for 
example, ignore the states of the other neurons. 
The corresponding interconnects can then be deleted 
from the neural network architecture. When the 
neurons are so partitioned, we will refer the APNN 
as layered. 

In this section, we explore various aspects of 
the layered A ~ N N  and in particular, the use of a so 
called hidden layer of neurons to increase the 
storage capacity of the network. An alternate 
architecture for a homogeneous APNN that require 
only Q neurons has been reported by Marks (11. 

In its generic form, the APNN cannot perform a 
simple two bit parity check. Indeed, failure to 
perfom this same operation was a nail in the 
coffin of the perceptron [311. Rumelhart et. al. 
[ 17,181 revived the perceptron by adding additional 
layers of neurons, thereby allowing nonlinear 
discrimination. With the addition of a hidden 
layer, the APNN likewise generalizes. 

Although neural networks will not likely be 
used for performing parity checks, their use in 
explaining the role of hidden neurons is quite 
instructive. The library matrix for a two bit. 
parity check is 

The APNN cannot be used to faithfully execute this 
operation since 

is not full column rank. Our approach is to augment 
5 with two more rows such that the resulting 
matrix is full rank. Clearly, this can't be 
accomplished by synthesizing new rows as linear 
combinations of the first two rows. The column rank 
would not increase. Most any nonlinear combination 
of the first two rows, however, will in general 
increase the matrix rank. Such a procedure is 
potentially applicable to nearly any linear 
classifier [31- 361 and, in addition to the layered 
perceptron, is used in a -classifiers [321 and 
potential function classifiers (341. Possible 
nonlinear operations include multiplication, logic 
operations and running a weighted sum of the 
clamped neural states through a memoryless 
nonlinearity such as a sigmoid. This latter 
alteration is commonly used in neural 
architectures. 

To illustrate with the parity check example, a 
new hidden neural state is set equal to the 
exponentiation of the sum of the first two rows. A 
second hidden neurons will be assigned a value 
equal to the cosine of the sum of the first two 
neural states multiplied by x / 2 .  (The choice of 
nonlinearities here is arbitrary.) The augmented 
library matrix is 

In either the training or look-up mode, the states 
of the hidden neurons are clamped indirectly as a 
result of clamping the input neurons. 

The playback architecture for this neural 
network is shown in Figure 10. The interconnect 
values for the dashed lines are unity. The 
remaining interconnects are from the projection 
matrix formed from F+. 
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Figure 1U. Illustration of a layered APNN for 
performing parity checking. When the states of the 
input layer are clamped, the hidden layer units 
are, as a result, also clamped. The transmittance 
of the dashed line interconnects, in this example, 
are all unity. The remainder are from the 
projection matrix vaues using E+ in (13) as the 
library matrix. Numerically, tS5 = -te5 = -0 -0375, 
t,, = t,, = 0.1573, tS5 =0.9446. In ten synchronous 
iterations, clamping the inputs to either (0,O) or 
(1,l) results in an output of 0.00 wheras clamping 
either to (0,l) or (1,O) results in 0.996. 

Geometrical Interpretation 

In lower dimensions, the effects of hidden 
neurons can be nicely illustrated geometrically. 
Consider the library matrix 

Clearly r, = [1/2 11. Let the neurons in the hidden 
layer be determined by the nonlineariy x2 where x 
denotes the elements in the first row of E. Then 

The corresponding geometry is shown in Figure 
11 for x the input neuron, y the output and h the 
hidden neuron. The augmented library vectors are 
shown and a portion of the generated subspace is 
shown lightly shaded. The suface of h- x2 resembles 
a cylindrical lens in three dimensions. Note that 
the linear variety corresponding to x =  1/2 
intersects the cylindrical lens and subspace only 
at 2:. Similarly, the x+= 1 plane intersects the 
lens and subspace at 2,. Thus, in both cases, 
clamping the input corresponding to the first 
element of one of the two library vectors uniquely 
determines the library vector. 

Convergence Improvement 

Figure 11. A geometrical illustration of the use of 
an x2 nonlinearity to determine tpe states of 
hidden neurons. The library vector is the only 
point in the subspace, quadr+atic surface and the 
linear variety x = 1/2. For Z,, the linear variety 
corresponding to the clamped neuron is xE1. 

will improve the convergence rate of the APNN. 
Specifically, the spectral radius of the T matrix 
is decreased as additional neurons are adJed. The 
dominant time constant controlling convergence is 
thus increased. A proof is in Appendix F. 

Capacity 

Under the assumption that nonlinearities are 
chosen such that the augmented 5 matrix is of full 
rank, the number of vectors which can be stored in 
the layered APNN is equal to the sum of the number 
of neurons in the input and hidden layers. Note, 
then, that interconnects between the input and 
output neurons are not needed if there are a 
sufficiently large number of neurons in the hidden 
layer. 

7 . GENERALIZATION 
We are assured that the APNN will converge to 

the desired result if a portion of a training 
vector is used to stimulate the network. What, 
however, will be the response if an initialization 
is used that is not in the training set or, in 
other words, how does the network generalize from 
the training set? 

To illustrate generalization, we return to the 
parity check problem. Let s, (M) denote the state of 
the output neuron at the Mth (synchronous) 
iteration. If s, and s, denote the input clamped 
value, then 

Use of additional neurons in the hidden layer 
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Figure 12. Response of the elementary parity check 
APNN using an exponential and trignometric 
nonlinearity in the hidden layer. Note that, at the 
corners, the function is equal to the XOR of the 
coordinates. 

Figure 13. The generalization of the parity check 
APNN networks formed by thresholding the function 
in Figure 12 at 3/4. Different hidden layer 
nonlinearities result in different generaliza- 
tions. 

where 

s, - exp(s, + s,) (16) 

and * 
'R s, = cos - (s, + S2) 
2 (17) 

To reach steady state, we let M tend to infinity 
and solve for s, (-a) : 

A plot of sS (-a) versus (s, , s, ) is shown in 
Figure 12. The plot clearly goes through 1 and zero 
according to the parity of the corner coordinates. 
Thresholding Figure 12 at 3/4 results in the 
generalization perspective plot shown in Figure 13. 

Note that the equapotential contours in Figure 
12 are all parallel to line s, + s, = 0. This is 
because the nonlinearities in (16) and (17) are 
both a function of s, + s2 and therefore have the 
same equapotential contours as sl + s2 = 0. Since 
t,, = t2, = -0.2471, (18) is strictly a function of 
s, + s, . The generalization is therfore dictated by 
our choice of nonlinearities. 

Greater flexibility in classification can be 
achieved by training the nonlinearities [17-181 or 
increasing the number and diversity of hidden layer 
neurons. We give two examples of the latter 
approach in which the input and output neurons are 
not connected. That is, the hidden layer states act 
as the clamped neurons that procide the stimulus 
for the floating output neurons. We continue with 
the parity check example, except redefine our 
library matrix with -1 denoting a logic zero: 

One advantage of this redefinition is the obvious 
choice of zero as an output threshold [38]. 

Spoke Interconnects 

For the parity problem, 4 hidden neurons were 
used. Each used a nonlinearity of exp(-z). The 
input-to-hidden interconnect pairs were chosen to 
be the coordinates from a unit radius circle 
equally divided into 4 pie slices. The 
classification generalization shown in Figure 14 
was obtained by thresholding the output at zero and 
is nearly a least mean square partition. Similar 
partitions occur using more than 4 spokes. More 
classification diversity for more complex 
partitioning requires more spokes. 

Stochastic Interconnects 

The interconnects between the input and hidden 
neurons was chosen stochastically [37] from a 
distribution uniform on (-1 ). The nonlinearity 2'1 
was exp (-2) . Generalizat~ons are shown in 
Figure 15 for 10 and 50 hidden neurons. The 
generalization here also approaches a least mean 
square partition. 

9. NOTES 

(a) In the layered APNN's sigmoidal saturation 
nonlinearities can be imposed at each 
neuron as was done in the homogeneous case. 

(b) Nonlinearities can also be used to increase 
the capacity of the homogeneous APNN. 
Invision, for example, associating with 
each neuron a single hidden neuron whose 
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Figure 14. Generalization of the parity check APNN 
using 4 hidden neurons and the nonlinearity exp(-z) 
for each hidden neuron. 

Figure 15. Generalization of the parity check APNN 
using 10 (top) and 50 (bottom) hidden neurons and 
stochastic interconnects from the input to the 
hidden layer. 

state is related is some fixed nonlinear 
manner. Clamping P neurons then clamps an 
additional P hidden neurons and the 
network's capacity is essentially doubled. 

(c) If learning in a layered APNN is performed 
by the previously described Gram-Schmidt 
procedure, then the network requires 
intensive interconnection during the 
learning process since the error, E ,  at 

every node is determined by the imposed 
states of the new library vector at every 
node. During the recall or playback 
process, however, the interconnects that 
provide inputs to the input and hidden 
layers are not used since these layers are 
clamped. 

(d) When teaching a layered APNN, the error of 
only the output neurons should be used to 
determine whether the interconnects need to 
be updated. After one pass through the 
data, inputs which were not used to update 
the interconnects should be rechecked. 

(e) There clearly exists a great amount of 
freedom in the choice of the nonlinearities 
in the hidden layer. Their effect on the 
network performance is currently not well 
understood. One can envision, however, 
choosing nonlinearities to enhance some 
network attribute such as interconnect 
reduction, classification region shaping 
(generalization) or convergence 
acceleration. 

(f) There is a possibility that for a given set 
of hidden neuron nonlinearities, 
augmentation of the matrix 
coincidentally will result in a matrix of 
full column rank. Proper convergence is 
then not assured. Similarly, augmentation 
may result in a poorly conditioned matrix. 
In this case, convergence will be quite 
slow. One obvious practical solution to 
these problems is to pad the hidden layer 
with additional neurons. As we have noted, 
the convergence rate will also improve. 

(g) We have shown in section 4 that if an APNN 
has a single bipolar output neuron, then 
the network converges in one step in the 
sense of (10). visualize a layered APNN 
with a single output neuron. If there are a 
sufficiently large nwnber of neurons in the 
hidden layer, then the input layer does not 
need to be connected to the output layer. 
That is, the input layer clamps the hidden 
layer which alone acts as the output 
neuron's stimulus. Consider a second neural 
network identical to the first in the input 
and hidden layers. The hidden to output 
interconnects are chosen, however, to 
generate a different bipolar output. Since 
the top two layers and their interconnects 
are identical in both cases, the two 
networks can be combined into a third 
composite network identical in the first 
two layers, but with two output neurons. 
The interconnects from the hidden layer to 
the output neurons are identical to those 
used in the single output neurons 
architectures. Since the component networks 
converge in a single step, the composite 
network will also. The process can clearly 
be extended to an arbitrary number of 
output neurons. 

(h) Recently, optical architectures have been 
proposed for implementing the APNN [39-403. 
Iteration is performed at light speed. 
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APPENDIX A: Some Properties of_T and T 
-4  

Proof : 
Let Q denote an orthogonal matrix with the 

property that 

where I is the N by N identity matrix. We partition 8 
as : 

Q = --- --- [;I :I 
where & has dimension N by P. The matrix x4 can 
then be written as 

Let Sq = Q ~ ~ Q ~  - Then T and S are symmetric matrix 
-4 -4 

and T + S4 = L. Clearly 
-4 

Properties of the T matrix a, + a: = 1 

where hi and are the eigenvalues of T and S 
-4   he following properties of the projection respecively. B~~~~~~ T and z4 are 4p0sitive 

matrix can be straightforwardly established: -4 semidefinite matrices, 

a. T is symmetric and idempotent 
b. Eigenvalues of x are zero or one h, 2 0 and 2 0 

c. Diagonal elements of 2 lie between zero and 
one inclusive The proof follows immediately from these last two 

d. tr(') = N equations. 
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~errana 3 : rank (& ) = rank (& ) Proof: 

Proof: 
Consider the matrix g = Q F .  We write 5 as 

where & denotes the first N rows of 5 and we have 
used the identity 

Thus 

or, equivalently 

We will show that, as a consequence, is 
nonsingular. Clearly, 

det gTg = det ETQTQE * 0 

where det denotes the matrix determinant. Thus, 
from (A2) 

det sT5 - det sT& = (det %12 + 0 

and 5 is not singular. 

From equation (Al), 5 can be written as 

Thus 

rank (gp ) = rank (&') = rank (&) 

and our proof is complete. 

Theorem 1 : v (r, ) = # (r4) = V (I - r4! . ThusI if Tp 
is full rank,,then the e~genvalues of T 

-4 
are strictly less than one. 

Proof: 
v(&&~) = N - rank(Q2aT) = N - rank(&) 

From Lemma 3, 

Since &aT + &&T = , and &aT and &aT are 
symmetric, we conclude from Lemma 1 and Lemma 2 
that : 

#m4) = rcaaT) = vcga,') = ~ ( 5 )  

and 

#(T4) = V(r,) 

Since is a symmetric matrix, 5 can be written 
as 

A - & + L + D + L ~  - 
where is a lower triangular matrix with a zero 
diagonal and D is a diagonal matrix. The sequential 
operation in (9) can then be written in matrix form 
as 

or equivalently, in state equation form: 

If the spectral radius of (I + &)-I (D + 2 )  is 
smaller than one, equation (51) will converge. 
Consider the eigenvalue equation corresponding to 

+* 
Premultiplying by v (I + &) gives 

+* T + + *  + 
v ( g + &  )v = h v  ( ~ + & ) v  (B2 1 

+* + 
Adding v (I + &)v to both sides gives 

where we havs r5cognized that, since & is real and + 
symmetric, v A v is its own conjugate transpose. 
.Furthermore, 

+* + 
where we have substituted for v &v from the 
conjugate transpose of (B2). Equating with (53) 
and rearranging gives 

From (B3) and (B4) : 

Here, A = I - T is positive definite and I - 5 = 
LT4'= T is positive semidefinite. - D -  4 - - -4 

~urthermore, the diagonal elements of C - A are 
non- negative. Thus, - g, is positive definite. 
We therefore conclude from (B5) that 

which implies I hl < 1. Equation (51) thus converges 
with the following limit value 

+ + 
y = -&y - (g + LT)'if + 2 

or 

+ 
APPENJlIX B: Prood of Sequential Convergence y = (I - -4 T ) - I  2 

If the spectral radius of T is less than one, and our proof is completed. 

then the sequential operation -?n (9) converges, to 
the desired vector 
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APPENDIX C: Proof of Nonexistence of One Step 
Uniform Convergence 

Theorem 2: There is no APNN with iteration + + +Q 
convergence to s (l)=s ( 4  if s (a# 8.  

Proof: (Note - the notation used here was 
established in Appendix A). 

case 1: 

If T4=0, then =O. If & =Or we have 

so that 

case 2 

T *a 
-4 

If convergence occurs in one step, then 

or, equivalently 

T T j? = a  
-4 -3 

ConsiGer the spectral decomposition matrices of T -4' 
(El- hiqT I 15i9t) such that 

i - 1  

and 

where t is equal to the number of distinct 
eigenvalues of P4. Then 

and 

Thus 

and 

The steady state value must then be identically 
zero. 

APPENDIX D: One Step Sign Convergence for an 
Orthogonal Library 

Here we show that if all the columns of g are 
orthogonal, the columns of 5 are orthogonal, and zP is a column vector of 5 ,  then 

Proof: 

Since the columns of F are orthgonal, gTg is a 
dia onal matrix, and the ith diagonal element is 
II?,!'. From equation (1). T3 can be written as 

If 2' is the ith column of 5 ,  then 

and our proof is complete. 

Appendix E: A "Good" Interconnect Relaxation 
Parameter 

Here we show that the relaxation parameter in 
(13) performs "well" for synchronous operation. 

Synchronous Operation 

Convergence is maximally accelerated by 
choosing the value of that minimizes the spectral 

e radius of T Equivalently, we desire to minimize 
-4' the t,  norm of the eigenvalue of sequence 

[h: ,h:, . . .,h:). Let hmin and hx denote the 
minimum and maximum eigenvalues of T4. 

The relaxation that minimizes the spectral 
radius will result in 

so that, from (12a), we must satisfy 

Thus, we would liks to choose 

Doing so, however, necessitates the computation of 

hmax and &in- 

An alternate suboptimal choice of 8 that can be 
more easily computed arises from minimizing the t2 
norm of the relaxed eigenvalue sequence. Define 

Minimizing by differentiation gives 

From which we conclude 

SPlE Vol. 960 Real-Time Signal Processing for Industrial Applications (1 988) / 231 



APPENDIX F: Adding Neurons to the Hidden Layer 
Improves the Convergence Rate 

Let 
T+ . - 

T + denote 
Tien 

the lower right Q by Q partition of 

Partition the augmented library matrix as T + = s & - l s T  
-4 

Ee The spectral radius of T + dictates the convergence 

% = [:I (F1) rate of the APNN with -4 hidden neurons. Without 
hidden neurons, convergence is dictated by the 
spectral radius of 

where 5 contains the state of the hidden layers. 
Then T4 = To g1 4T 

F T~ = rpTs  + rpTs + F ~ ~ E ~  --+ -+ Thus 

where where, in the second step, we have used (F3). 

B = sTr, + sTrp - 
Manipulation of (F2) gives 

B-l - *-I - 1  - - = g G ~ &  &-I 

The right hand side of (F4) is clearly positive 
3 semi-definite. Thus, for any vector x, 

Equality holds if the hidden neurons do no$ 
The augmented interconnect matrix corresponding to increase the rank of E p .  The spectral radius of T 
(F1) is is then clearly smaller than that of T -4 

-4' 

The proof can be straightforwardly altered to 
show that adding more neurons to an established 
hidden layer further improves convergence. 
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