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Abstract. Although certain iterative optical processors promise algorithmic
convergence at the speed of light, little attention is normally given to the
consequences of different path lengths required within the processor on the
processor performance. The resulting clock skew can have significant degrag.
ing effects on the predicted accuracy, stability, and speed of the processor. A
similar problem occurs in iterative asynchronous artificial neural networks
when, for example, the time delay between two neurons is proportional to thejr
physical separation. In this paper, we show that in the absence of temporg|
dispersion, certain iterative algorithms have stable steady-state solutions thy
are independent of clock skew. Examples include stable linear feedback ang
feedback using soft {slowly varying) noniinearities. Both are special cases of
using a contractive operation in the feedback path. Such processing algorithms
can have stable steady-state solutions that are independent of clock skew.
Feedback using hard nonlinearities, on the other hand, can result in either an
oscillatory or a steady-state solution that depends on the clock skew.

Subject terms: optical signal processing; neural networks; propagation skew; optical
feedback.

Optical Engineering 28(5), 5626-532 (May 1989).

1. INTRODUCTION

A number of analog!~5 and discrete®~!2 optical processors
have been proposed that use feedback. Shamir!? has noted
that in such systems, the time required for feedback can vary
significantly due to the variation of optical path lengths.! In
certain cases, disregarding this clock skew in processor analy-
sis can lead to either unstable or drastically different imple-
mentation results. A similar problem occurs in iterative
asynchronous artificial neural networks when the communi-
cation time delay between two neurons is proportional to their
physical separation.

Our analysis is restricted to temporally nondispersive sys-
tems. For such systems, a temporal impulse stimulus at any
input coordinate can appear later only as a single temporal
impulse at any specified output coordinate. Thus, for each
input/ output coordinate pair, there exists a single temporal
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delay. If this delay varies from coordinate pair to coordinate
pair, the system is skewed.

In this paper, we show that in certain feedback algorithms,
temporally nondispersive clock skew does not affect the sta-
bility or the steady-state solution of the processor. When an




Corative algorithm uses a (possibly nonlinear) contractive
ue ration in the feedback path, the resulting steady-state
oplition ijs shown to be unaffected by clock skew. Clock skew
?0 shown, however, to have an effect on systems such as
l:lopﬁeld artificial neural networks!5.16 when hard nonlineari-
ties are used in the feedback path.

;, PRELIMINARIES

In this section, we develop a general description for tempor-
Jlly nondispersive clock skew in a feedback processor and
then show specific instances in which that model can be used
1o determine whether the steady-state solution is affected by
the skew. We consider only a discrete model, although the
concepts can be applied to analog processors.

Let a field of N states, {s,|1 < n < N}, be altered by
feedback in a temporally nondispersive skewed processor. Let
9, denote the instantaneous operator that maps the previous
states into the current nzh state at time t. We can then write
o) = O[5t — 1)1 <SM<N]], 1<ns<N, 1)
where 7, is the clock skew corresponding to the time required
forthe state s | to make a contribution to the state s . If we let
t-> oeand assume a stable steady state, then Eq. (1) becomes
() = O[5l Sm<N]], I<n<N. 2
Although not explicitly noted, this steady state may depend
on the clock skew. If, however, Eq. (2) has but a single
solution for all s, (2°), then the clock skew has no effect on the
steady-state solution.

Some specific instances of such processors are now given.

3. SOLUTION OF SIMULTANEOUS LINEAR
EQUATIONS

Lets, denote a vector of states at time n, f a like-dimensioned
forcing vector, and A a square matrix. The linear difference
equation

S+ 1) = As(n) + £ 3
is known to converge to the steady-state solution

) = (1 — A) 7M1 C))
ifthe spectral radius (magnitude of the maximum eigenvalue)
of A (denoted || Al|) does not exceed one.!” The effects of
tlock skew on convergence and stability of this iteration are

Now considered.

31. Convergence

With reference to Eq. (1), if performed on a skewed processor,
Eq. (3) would be implemented as*

90 = Ja s -7 )+, 1SnsN, ()

Where f isthenth elemént offand f, (t) = £ allowsexplicitly

.\x_
All summations (Z) in this paper are from | to N.

for input rise time. Letting t —> o¢ and assuming a stable
result gives

$,() = X a s (@) +f,, 1<n<N, 6)
m

or equivalently, in matrix-vector form,

s(®) = As() +1 . @)

If (I — A)is not singular, then the solution to this equation is
unique and is given by Eq. (4). Clock skew therefore does not
affect the solution. The alternating projection neural network
when interpreted either homogeneously!8.19 or in layered
form20.2! from the hidden to output layer is a special case of
this example.

3.2. Stability

The above analysis is conditioned on the stability of the
skewed iterations. By letting n — oo, for example, we might
predict that the iteration x(n) =2x(n — 1) + 1 would converge
to x(°) = —1. The difference equation, however, is clearly
unstable and x(o0) =190 if x(0) —1. From the viewpoint of
z-transform analysis, the pole of this difference equation lies
outside the unit circle.

A sufficient condition for stability of skewed iteration is
given by the following:

Lemma 1—Let A = (a;) denote a square matrix of complex
numbers. Define A(s) =[a; exp(—s7;)], where s = 0 + jo.
If ||A(s)|l <1 for Re(s) = 0, then Eq. (5) converges to
Eq. (4).

A proof is given in Sec. 9.1. Note that as a special case, we

conclude that aniteration without skew converges if ||A] < 1
since

IA@®I = lexp(=sn)| Al = (Al <1,

where 7, = 7 for all (n,m). Two important results built on

this lemma follow:

Lemma 2—let B=(|a;|). If [|B|| < 1,then Eq. (5)converges
stably to Eq. (4) for any 7 = 0.

Therefore, varying the phase terms in the matrix does not

affect the convergence stability if the zero phase iteration is

stable.

Lemma 3—If 7; =y, + v; and [|A[[ < 1, then Eq. (5) con-
verges stably to Eq. (4) for any u; =0 and v; = 0.

Proofs of lemmas 2 and 3 are in Secs. 9.2 and 9.3, respectively.

The last lemma will be applied to optical feedback systems

later in the paper.

4. CONTRACTIVE OPERATORS

In this section, we explore a more general criterion for which
clock skew does not affect steady-state results. We may write
Eq. (2) in vector form as

() = Is(>) . @®

If the vector operator 9 is a contractive operator, then
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Fig. 1. Geometrical illustration of a contractive operator. After the
contractive operation, the signals are closer together {solid dots)
than originally (hollow dots.)

flox —oyll < «lix—yll , 9)

where the norm for a vector a is defined by
lall? = aTa

and 0 <r<1.If0<r =<1, then ¥ is said to be nonexpansive.
The reason for the terminology is evident from the geometry
in Fig. 1. Operating on two signals, xand y, by the operator 9
results in two signals closer together (contractive) or at least
not as far apart (nonexpansive).

4.1. Convergence

If 9 is contractive, then Eq. (8) has a unique solution!7-19.22
and there is no contribution of clock skew to the steady-state
result. When 9 is nonexpansive, Eq. (8) can have a number of
solutions.

Example 1: The linear iteration discussed in the previous
section is a special case of a contractive mapping since, from

Eq. (6),

Os(0) = As(?) + 1 .

The operator is contractive if

ltax + 1 — Ay + DIl = lAx—pll =rllx—yll .

- This is clearly true if the spectral radius of A does not exceed
one.
Example 2: We can nonlinearly generalize Eq. (5) to

s,() = 0, [2 AmSe(t = Tam) T gn(t)] +h(t), 1SnsN,

(109)

where f (t) = f and g,(t) = g, are forcing functions.
Assuming stability, the steady-state solution in vector form is

s(¢) = nlAs(*) +g]th, an

where 7 is a pointwise nonlinear vector operator; i.e., if w =
nz, then the nth element of w is equal to 1, (z,), where 7, isa
given function. In the parlance of neural networks, n, could be
referred to as a sigmoid operator.23.2¢ Using Eq. (9), the cor-
responding operator is contractive if

In(Ax + ) — g(Ay + Ol <cllx—yll . (12
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Fig. 2. Example of a soft nonlinearity. Any interval on the z axis ™aps
to a smaller interval.

We show that the operator is contractive if the spectral radiys
of A does not exceed one and 7 contains soft nonlinearities,
That is,

dn,(2)
dz

<1, 1=n<N

for all z. As illustrated in Fig. 2, this constraint has the
property that

(X — myl <lx—yl .

As a result,
In(Ax + g) — n(Ay + g)ll < ll(Ax+g) —(Ay + o) .

Using the results of the previous example, the operator cor-
responding to Eq. (11) is therefore contractive and clock skew
has no effect on the final resuit.

This unique convergence constraint can be generalized to
the requirement that for all z,

dn,(2)

Al | —

<!, I<n<sN. (13

4.2. Stability

The following lemma establishes a sufficient condition for
stability of the skewed operation in Eq (10).

Lemma 4—For a given matrix A and time delays {r,_}, if Eq.

(5) converges for every f, (t) and 7 is nonexpansive, then
Eq. (10) is stable. :

A proof is given in Sec. 9.4.

5. HARD NONLINEARITIES

Clock skew can be a factor when implementing an iterative
algorithm with hard nonlinearities. Consider the following
example of Hopfield’s content addressable memory neural
network.l5,23,25—27

Example 1: From the three library vectors

v, = [0010 0101 O110]T ,
v, = [1011 000t 0001]7 ,
vy = [1101 0110 1000]T ,




s+ + 00+ o000+ + 0O+ 0+ 00+ 00 0 +
'°++ooo+ooo+ OO0+ + 000+ 000+
'°++ooo+ooo+ + 0O+ 0000+ 00 0 +
'°++ooo+ooo+ OO0+ + 000+ 000+
'°*+ooo+ooo+ + 0+ 0000+ 00 0 %+
':++000+000+ o0+ + 0 0 0 + 0 0 0 +
‘°*+ooo+ooo+ + 0o+ 00 0 O + 0 O 0 +
'o++ooo+ooo+ 00+ + 000+ 00 0+
:o++ooo+ooo+ + 04 0000+ 00 0 +

(a} (b}
Lo+ O+t + 0+ 000+ 0 .
oo++000+0+++ h\"\c ()
g0+t 0+ 00+ 0+ 4 4 sl \{:-o-——e—»o--o—»e---o--_
g0+ 0+ 00+ 0+ + + B -
g0+ 0+ 00 + 0+ + + E | (@
so+ 0+t 00+ 0+ + & -10+ ';»ow_e__o_o__e_—
g0+ 0+ 0 O+ 0+ + + © W
°o+o+oo+o+++ .15 .
o+ 0+ 00 + 0+ + + 0 5 10

(c) {d)

fig. 3. Examples of stability and convergence in Hopfield's model.
leration time in (a), (b), and (c) are in rows top to bottom (+ denotes
1). The first row is the result of the first iteration. We see that s{0)
{2) converges to v, without skew, (b} oscillates with skew, and (c)
converges to a vector with a different skew that is not in the library.
(¢) Energy transitions with iteration for each case.

weform in accordance with Hopfield’s recipe the interconnec-
tion matrix

A= (BBT — NI,

where N=3, V=[v,:v,:v;],B=2V —1, and 1is a matrix of
ones. We form the iteration S{n + 1) = n[ AS(n)], where, for
I<n<N, n,(®)is the unit step function [, (x) = 1 if x =0and
is0 otherwise]. If we initialize with S(0) =[1011 0001 1010]T
and iterate synchronously, the solution of the operation con-
verges to v,. However, if this operation has a skew of three
tlocks delays for 7, ;and 7, (; and two clocks delays for those
remaining, then the iteration oscillates. The iteration con-
verges to [0010 1001 0111]7 in the case that the skew is three
docks delays for 7,3, 7, 11, 749, and 74 |, and two clocks
delays for those remaining. These three examples are respec-
tively illustrated in Figs. 3(a) through 3(c). The energy of the
neural network at the nrh iteration is defined as

T
ty = - SRS

Aplot of the energy for these three examples is in Fig. 3(d).

6. SKEW IN OPTICAL PROCESSORS

The major source of skew in optical processors is the time
delay resulting from the differing optical lengths (OL)28
between input and output. For nondispersive clock skew, the
time delay from the input point (£, ) to the output point (x, y)
¢an be written as

oL
ey £m) =~

______ N R I | | N B
" T
[ =
““““““ (i et | i i Bty |
[ (B
[ Voo
(b}

LY | O U I
VAT [
=TT i [
F==--- I L

[ [
/ / [
{c)

Fig. 4. (a) Diagram of amatrix-vector multiplier; (b} side view; (c) top
view.

where c is the speed of light in free space. In this section, we
show some examples of optical processor operations that are
not affected by skew.

Example 1: A commonly used processor for performing
matrix-vector multiplication is shown in Fig. 4(a). The top
view of this processor, shown in Fig. 4(c), resembles a point
source collimator. Since we are interested in only a single
point at the output, there is no clock skew due to OL differ-
ences from this perspective. The side view of the processor,
shown in Fig. 4(b), isequivalent to that in Fig. 4(c) except that
the input and output are reversed. Since there is no skew from
this view, the composite processor has no clock skew due to
OL differences. The total OL from (0, n) at the input plane to
(x,0) at the output plane is given by

OL, = OL, +2d +OL, = 2f + 24, +2d ,

where OL, is the OL from (0, n) to (x, n), OL, isfrom (x, n) to
(x,0), and OL, = OL, ={ + A, with A; denoting the OL
through the center of the lens. This equation states that OL, is
constant for all (x, ) pairs.

Example 2: Figure 5(a) illustrates the Stanford matrix-
vector multiplier?® that is more light efficient than the one in
Fig. 4(a). Since the performance is similar to that in Fig. 4(b),
there is no skew apparent in the side view in Fig. 5(b). From the
perspective of the top view in Fig. 5(c), however, the apparent
point source input is incident on the detector as a cylindrical
wave. Under a Fresnel approximation, the skew is therefore
quadratic. The total OL for this processor is given by

N

X

—f_ ]

2
OL, =Sf+a+-— =K+

where A denotes the sum of the OLs through the center of the
lenses and K is a constant. The time delay for this processor is
thus
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Qo=
>
<X

Fig. 5. (a) lllustration of the Stanford matrix-vector multiplier;
(b) side view; (c) top view.

(b)

o

(c)

OL, K x?
S S

Therefore, this processor is temporally skewed, but the skew is
separable. By lemmas 3 and 4, if Eq. (13) is true, any iterative
processors that employ this Stanford matrix-vector multiplier
using a pointwisely soft nonlinearity in the feedback path that
satisfies Eq. (13) will converge independent of this skc?w. An
example of such a processor is the alternating projection
neural network (APNN), which uses linear feedback.!!.12

7. FINAL REMARKS

The primary source of clock skew in optical system is differing
optical lengths. We have investigated the effects of clock skew
on the performance of iterative processors and have shown
that clock skew does not affect the convergence and stability
of the solution when the feedback is contractive. We also have
shown some examples of optical systems that have no skew or
are not affected by skew when used iteratively.
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9. APPENDIXES
9.1. Proof of lemma 1
We take the Laplace transform of Eq. (5)

5,(5) = 3, 8ymSm ($)exP(~S7om) +1,(s) ,
m

or equivalently, in matrix form,
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s(s) = A(s)s(s) + £(s) .
Since [|A(s)|} < 1, det[1 ~ A(s)] # 0, and s(s) becomeg
s(s) = [1— A(s)) " 'f(s) .

By applying the final value theorem, we obtain

|

s() = limss(s) = lim[I — A(s)] ' [sf(s)]
s—=0 s—=>0

=[-AE]'f,
which is our desired result.

9.2. Proof of lemma 2
Let y be an N dimensional vector and A(s) = [aexp(—s7.))
and N XN matrix. Then v
IA®YI? =y A" Als)y
=333 yi'a;iexp(—s'rki)akjexp(~srkj)yj
ijok
= ZEZ IYi' 'akiexP(_STki)f lakjexp(—srkj)l IYJI )
ij ok
where the asterisks denote the complex conjugate for scalars

and the complex conjugate transpose for matrices. Let 7, =
yil, b =laexp(—s7))|, and z=[z]. Then

lAGYI? = 333, 2bbyz = IIB2)|? .
ijk

Since |lyll =|lzll, |A(s)|| <||B]] < 1. Since convergence is
assured for B by assumption, we conclude that Eq. (5) con-
verges to Eq. (4) and our proof is complete.

9.3. Proof of lemma 3
From the assumption, we have

A() = {agexp[—s(y; + v)l} = [ajexp(—su)exp(—sv)] -

By letting
D, = diag[exp(—su,), exp(—suw,), ..., exp(—supy)] ,
D, = diag[exp(—sv,), exp(—svy), ..., exp(—svy)] ,

A(s) becomes

A(s) = D,AD, .

Since ||D, ]| < 1and ||D, || <1 for Re(s) =0, we have
A <l Al D <lIAll <1 .

From this and lemma 1, we conclude that Eq. (5) converges t0
Eq. (4).

9.4, Proof of lemma 4
We rewrite Eq. (10) as

Sa(t) = m[y, () +g,(V] + h (1),



where
W0 = S g S (t = o) -
m

et y(t) denote the vector of y, (t). We take the norm of
s,(t) s, (t):

jstty) = sl = llnly(t) + g, (1)) — nly(t) + 2]l

+1Ih(t) — hll
<yt -yl + (1)

or

Istt, 1 = Nyt il +pty. 1) (14
where

ot ) = llg) — gl +1inht) —hyll .

sty ty) = s(t) —s(ty)

and y(t,,t,) denotes the vector of

Bt = 2 2[5ty — 7o) — sty = 7)1

m

Substitute Q for sin the linear skewed iteration in Eq. (5) and
take the difference between Eq. (5) at t; and t, to obtain
Qlty.tp) = x(4y,t) 1t L)
where
ft.1y) = £t — f(ty) ,
Qt).ty) = Q(ty) — Q(ty)

and x(t, ,t,) denotes the vector of
xn(tptz) = 2 anm[Qm(tl - Tnm) - Qm('z - Tnm)] .
m

We construct f(t;,t,) to be colinear with x(t;,t,). Let

any vector , for x(t,,t) = 0,
f(l;,tz) =

C(t;, 1) x(t;,t;) , otherwise ,
where the proportionality constant C(t;,t,) is chosen so

that {|£(t,,t)Il = p(t;,t,). Then, by construction,
g, tll = lIxtty Il + pity,1y) -

Because || Q(t;.ty) | converges to 0 by the assumption, Eq.
(14) also converges:

Ist,,t)ll = 0, fort;, = oo t) > o0,

or equivalently, since our vectors are in a finite dimensional
Euclidean space,

NONDISPERSIVE PROPAGATION SKEW IN ITERATIVE NEURAL NETWORK AND OPTICAL FEEDBACK PROCESSORS

lims(t) = s(o) ,
t—>

and our proof is complete.
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