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Multilayer Perceptrons and trained classification trees are two 
very different techniques which have recently become popular. 
Given enough data and time, both methods are capable of per- 
forming arbitrary nonlinear classification. We first consider the 
important differences between multilayer Perceptrons and classi- 
fication trees and conclude that there is not enough theoretical 
basis for the clear-cut superiority of one technique over the other. 
For this reason, we performed a number of empirical tests on three 
real-world problems in power system load forecasting, power sys- 
tem security prediction, and speaker-independent vowel recogni- 
tion. In all cases, even for piecewise-linear trees, the multilayer Per- 
ceptron performed as well as or better than the trained 
classification trees. 

I .  INTRODUCTION 

We use and compare two types of regression and clas- 
sification systems. A regression system generates an output 
Y for an input X, where both X and Yare continuous and 
perhaps multidimensional. A classification system gener- 
ates an output class Cfor an input X, where X i s  continuous 
and multidimensional and Cis a member of a finite alpha- 
bet. 

The use of trained classification and regression systems 
has been studied by many researchers in the past (see, for 
example, [I]-[4]). However, there has been a recent surge 
of interest in trainable systems such as artificial neural net- 
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works (ANNs). In particular it has been shown that the mul- 
tilayer Perceptron (MLP) can be trained by example to solve 
the nonlinearly separableexclusive-oR problem [5], and this 
architecture has been linked to previous neural-like pro- 
cessors [6], [q. Less known to the engineering community 
i s  the statistical technique of classification and regression 
trees (CART) which was developed during the years 1973 
through 1984 [8], [9]. 

CART, like the MLP, can be trained to solve the exclusive- 
OR problem, the solution it provides i s  extremely easy to 
interpret, and both CART and MLPs are able to approximate 
arbitrary nonlinear decision boundaries. Although there 
have been no links made between CART and biological 
neural networks, the possible applications and paradigms 
used for MLP and CART are very similar. 

The authors of this paper represent diverse interests in 
problems which have the commonality of being important 
and potentially well suited for trainableclassifiers. The load 
forecasting problem, which is partially a regression prob- 
lem, uses past load trends to predict the critical needs of 
future power generation. The power security problem uses 
the classifier as an interpolator of previously known states 
of the system. The vowel recognition problem is represen- 
tative of the difficulties in automatic speech recognition 
caused by variability across speakers and phonetic context. 

In each problem area, large amounts of real data were 
used for training and disjoint data sets were used for test- 
ing. We were careful to ensure that the experimental con- 
ditions were identical for the MLP and CART. We concen- 
trated onlyon performanceas measured in error on the test 
set and did no formal studies of training or testing time. 
(CARTwas, in general, quite a bit faster in training and test- 
ing.) 

In all cases, even with various sizes of training sets, the 
multilayer Perceptron performed as well as or better than 
the trained classification trees. We also believe that inte- 
gration of many of CART'swelI-designed attributes intoMLP 
architectures could only improve the already promising 
performance of MLPs. 
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I I .  BACKGROUND 

A. Multilayer Perceptrons 

The name “artificial neural networks” has in some com- 
munities become almost synonymouswith MLPs trained by 
backpropagation. Our power studies made useof this stan- 
dard algorithm [5] and our vowel studies made useof acon- 
jugate gradient version [IO] of backpropagation. In al l  cases 
the training data consisted of ordered pairs {(X, Y ) }  for 
regression, or {(X, C)} for classification. The input to  the 
network is  Xand the output is, after training, hopefully very 
close to Y or C. 

When MLPs are used for regression, theoutput Ycan take 
on real values between 0 and 1. This normalized scale was 
used as the prediction value in the power forecasting prob- 
lem. For M L P  classifiers the output i s  formed by taking the 
(0 , l )  range of the output neurons and either thresholding 
or finding a peak. For example, in the vowel study we chose 
the maximum of the l2output  neurons to indicate thevowel 
class. 

B. Classification and Regression Trees (CART) 

CART has already proven to be useful in diverse appli- 
cations such as radar signal classification, medical diag- 
nosis, and mass spectra classification. Given a set of train- 
ing examples {(X, C)}, a binary tree i s  constructed by 
sequentially partitioning the p-dimensional input space, 
which may consist of quantitative and/or qualitative data, 
intop-dimensional polygons. The trained classification tree 
divides the domain of the data into nonoverlapping regions, 
each of which i s  assigned a class label C. For regression, the 
estimated function i s  piecewiseconstant overthese regions. 

The f irst split of the data space i s  made to  obtain the best 
global separation of the classes. The next step in CART is  
to consider the partitioned training examples as two com- 
pletely unrelated sets-those examples on the left of the 
selected hyperplane, and those on the right. CART then 
proceeds as in the first step, treating each subject of the 
training examples independently. A question that had long 
plagued the use of such sequential schemes was: when 
should the splitting stop? CART implements a novel, and 
very clever approach; splits continue until every training 
example i s  separated from every other, then a pruning cri- 
terion i s  used to sequentially remove less important splits. 

The CART system was trained using two separate com- 
puter routines. One was the CART program from California 
Statistical Software; the other was a routine we designed 
ourselves. We produced our own routine to ensure a care- 
ful and independent test of the CART concepts described 
in [9]. 

C. Relative Expectations of MLP and CART 

The nonlinearly separable exclusive-oR problem i s  an 
example of one that both M L P  and CARTcan solve with zero 
error. In Fig. l(a)-a trained M L P  solution to  this problem- 
thevalues along thearrows represent trained multiplicative 
weights and the values. In Fig. l(b)-the very simple trained 
CART solution-y and n represent yes or no answers to  the 
trained threshold and thevalues in the circles represent the 
output Y. It is interesting that CART did not train correctly 
for equal numbers of the four different input cases and that 

Fig. 1. (a) A multilayer perceptron (MLP) and (b) a classi- 
fication tree. Both were trained to perfectly solve the exclu- 
sive-OR problem. 

one extra example of one of the input cases was sufficient 
to break the symmetry and allow CART to train correctly. 
(Note the similarity to  the well-known requirement of ran- 
dom and different initial weights for the MLP.) 

CART trains on the exclusive-oR very easily since a piece- 
wise-linear partition in the input space i s  a perfect solution. 
In general, the M L P  will construct classification regions with 
smooth boundaries, whereas CART will construct regions 
with “sharp” corners (each region being, as described pre- 
viously, an intersection of half planes.) We would thus 
expect M L P  to  have an advantage when classification 
boundaries tend to  be smooth and CART to have an advan- 
tage when they are sharper. 

Other important differences between M L P  and CART 
include: 

1) For an M L P  the number of hidden units can be selected 
to  avoid overfitting or underfitting the data. CART f i ts  the 
complexity by using an automatic pruning technique to 
adjust the size of the tree. The selection of the number of 
hidden units or the tree size was implemented in our exper- 
iments by using data from a second training set (indepen- 
dent of the first). 

2) An M L P  becomes a classifier through an ad hoc appli- 
cation of thresholds or peak-picking to  the output value(s). 
Great care has gone into the CART splitting rules while the 
usual M L P  approach i s  rather arbitrary. 

3) A trained M L P  represents an approximate solution to 
an optimization problem. The solution may depend on ini- 
tial choice of weights and on the optimization technique 
used. For complex MLPs  many of the units are indepen- 
dently and simultaneously adjusting their weights to best 
minimize output error. 

4) M L P  is a distributed topology where a single point in 
the input space can have an effect across all units or anal- 
ogously, one weight, acting alone, will have minimal effect 
on theoutputs. CART isverydifferent in that each splitvalue 
can be mapped onto one segment in the input space. The 
behavior of CART makes it much more useful for data inter- 
pretation. A trained tree may be useful for understanding 
the structure of the data. The usefulness of MLPs for data 
interpretation is much less clear. 

The above points, when taken in combination, do not 
make a clear case for either M L P  or CART to be superior for 
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the best performanceas atrained classifier. We thus believe 
that the empirical studies of the next sections, with their 
consistent performance trends, will indicate which of the 
comparative aspects are the most significant. 

1 1 1 .  LOAD FORECASTING 

A, The Problem 

The ability to predlct electric power system loads from 
an hour to several days in the future can help a utility oper- 
ator to efficiently schedule and utilize power generation. 
This ability to  forecast loads can also provide information 
that can be used to strategically trade energy with other 
generating systems. In order for these forecasts to be useful 
to an operator, they must be accurate and computationally 
efficient. 

B. Methods 

Hourlytemperature and load data for the SeattleRacoma 
area were provided for us by the Puget Sound Power and 
Light Company. Forecasting for weekdays is a more critical 
problem for the power industry than for weekends and we 
selected the hourly data for all Tuesdays through Fridays 
in the interval of November 1,1988 through January 31,1989. 
These data consisted of 1368 hourly measurements from a 
total of 57 days. 

These data were presented to  both the MLP and the CART 
systems as a 6-dimensional input with a single, real-valued 
output. The MLP required that all values be normalized to 
the range (0 , l ) .  These same normalized values were used 
with the CART technique. Our training and testing process 
consisted of training the classifiers on 523 days of the data 
andtestingonthe4daysleftoverattheendof Januaryl989. 
Our training set consisted of 1272 hourly measurements 
and our test set contained 96 different hourly readings. 

Several techniquesof input andoutput pairingweretried; 
after some investigation we found that a good choice of 
data organization for our trainable classifier was 

where kwas the hobr(l-24)of thedayand L,and ?signified 
the load and temperature at the i t h  and j t h  hour, respec- 
tively. The input thus consists of the hour, two previous 
load and temperature readings, and the current tempera- 
ture. The actual current temperature was used during train- 
ing and the predicted temperature was used during testing, 
thus representing the actual technique of relying upon 
weather reports. The output part i s  the predicted load Lk. 

The MLP we used in these experiments had 6 inputs (plus 
thetrained constant bias term), 10 units in one hidden layer, 
and one output. This topology was chosen by making use 
of data outside the training and test sets. 

C. Results 

We used an I1 norm for the calculation of error rates and 
found that both techniques worked quite well. The average 
error rate was 1.39% for the MLP and 2.86% for CART. 
Although this difference (given the number of testing 
points) i s  not statistically significant, it i s  worth noting that 
the trained MLP offers performance at least as good as the 
current techniques used by the Puget Sound Power and 

Light Company and i s  currently being verified for appli- 
cation to future load prediction. 

Figure 2 shows a detail of the comparative forecasting 
performance for three days. The daily periodicity in hourly 
loads was followed quite well by both techniques, and the 
MLP performed somewhat better than CART around the 
peaks in load. 

' - AcNalLoad ' 
3600 I 

0.5 1 1.5 2 2.5 

Day 

-_"" 
3 

Fig. 2. A comparison of the performance of an MLP and 
CART (with linear combinations) in predicting three days of 
hourly power loads in megawatts. 

IV. POWER SYSTEM SECURITY 

The assessment of security in a power system is an ongo- 
ing problem forthe efficient and reliablegeneration of elec- 
tric power. Static security addresses whether, after a dis- 
turbance such as a line break or other rapid load change, 
the system will reach asteady-stateoperating condition that 
does not violate any operating constraint and cause a 
"brownout" or "blackout." 

The most efficient generation of power i s  achieved when 
the power system is operating near its insecurity boundary. 
In fact, the ideal case for efficiencywould be the full knowl- 
edge of the absolute boundaries of the secure regions. The 
complexityof the power systems makes this full knowledge 
impossible. Load flow algorithms, which are based on iter- 
ative solutions of nonlinearly constrained equations, are 
conventionally used to slowly and accurately determine 
points of security or insecurity. In real systems the trajec- 
tories through the regions are not predictable in fine detail. 
Also, these changes can happen too fast to compute new 
results from the accurate load-flow equations. 

We thus propose to  use the sparsely known solutions of 
the load flow equations as a training set. The test set con- 
sists of points of unknown security. The error of the test set 
can then be computed by comparing the result of the 
trained classifier to load flow equation solutions. 

Our technique for converting this problem to a problem 
for a trainable classifier involves defining a training set {(X, 
C)} where X is composed of real power, reactive power, and 
apparent power at another bus. This three-dimensional 
input vector is paired with the corresponding security sta- 
tus (C = 1 for secure and C = 0 for insecure). Since the sys- 
tem was small, we were able to generate a large number of 
data points for training and testing. In fact, well over 20 000 
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total data points were available for the (disjoint) training 
and test sets. 

5 -  

4 -  

3 -  

A. Results 

We observed that for any choice of training data set size, 
the error rate for the MLP was always lower than the rate 
for the CARTclassifier. This performance difference i s  illus- 
trated in Fig. 3. For 10 000 points of training data, the MLP 

. . . CART without linear combinations 

_-- CART with linear combinations 

MLP - 
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Fig. 3. The error rate in security prediction for the hlLP and 
two versions of CART. 

had an error rate of 0.78% and CART (using linear combi- 
nations) had an error rate of 1.46%. Although both of these 
results are impressive, the difference was statistically sig- 
nificant (p > 0.99). 

In order to gain insight into the reasons for differences 
in importance, we looked at classifier decisions for two- 
dimensional slices of the input space. While the CART 
boundary sometimes was-a better match, certain patho- 
logical difficulties made CART more error-prone than the 
MLP. Our other studies also showed that there were worse 
interpolation characteristics for CART, especiallyfor sparse 
data. Apparently, starting with nonlinear combinations of 
inputs, which i s  what the M L P  does, reduced error better 
than the piecewise linear fit of CART. 

V. SPEAKER-INDEPENDENT VOWEL CLASSIFICATION 

Speaker-independent classification of vowels excised 
from continuous speech i s  a most difficult task because of 
the many sources of variability that influence the physical 
realization of a given vowel. These sources of variability 
include the length of the speaker's vocal tract, phonetic 
context in which thevowel occurs, speech rate,and syllable 
stress. 

To make the task even more difficult, the classifiers were 
presented onlywith information from a single spectral slice. 
The spectral slice, represented by 64 DFT coefficients (0-4 
kHz), was taken from the center of the vowel, where the 
effects of coarticulation with surrounding phonemes are 
least apparent. 

The training and test sets for the experiments consisted 
of featural descriptions X paired with an associated class C 
for each vowel sample. The 12 monophthongal vowels of 
English were used for the classes, as heard in  the following 

words: beat, bit, bet, bat, roses, the, but, boot, book, bought, 
cot, bird. The vowels were excised from a wide variety of 
phonetic contexts in utterances of the TlMlT database, a 
standard acoustic phonetic corpus of continuous speech, 
displaying a wide range of American dialectical variation 
[ I l l ,  [12]. The training set consisted of 4104vowels from 320 
speakers. The test set consisted of 1644 vowels (137 occur- 
rences of each vowel) from a different set of 100 speakers. 

The MLP consisted of 64 inputs (the DFT coefficients, each 
normalized between zero and one), a single hidden layer 
of 40 units, and 12 output units (one for each vowel cate- 
gory). The networks were trained using backpropagation 
with conjugate gradient optimization [IO]. The procedure 
for training and testing a network proceeded as follows: 
The network was trained on 100 iterations through the4104 
training vectors. The trained network was then evaluated 
on the training set and a different set of 1644 test vectors 
(the test set). The network was then trained for an additional 
100 iterations and again evaluated on the training and test 
sets. This process was continued until the network had con- 
verged; convergence was observed as a consistent decrease 
or leveling off of the classification percentage on the test 
data over successive sets of iterations. 

A. Results 

In orderto better interpret thevowel classification results, 
we performed listening experiments on a subset of thevow- 
els used in these experiments. The vowels were excised 
from their sentencecontext and presented in isolation. Five 
listeners first received training in the task by classifying 900 
vowel tokens and receiving feedback about the correct 
answer on each trial. During testing, each listener classified 
600vowelsfrom the test set (50from each categ0ry)without 
feedback. The average classification performance on the 
test set was 51% correct, compared to chance performance 
of 8.3%. Details of this experiment are presented in [13]. 
When using the scaled spectral coefficients to train both 
techniques, the M L P  correctly classified 47.4% of the test 
set while CART without linear combinations performed at 
only 38.2%. 

One reason for the poor performance of CART without 
linear combinations may be that each coefficient (corre- 
sponding to energy in a narrow frequency band) contains 
little information when considered independently of the 
other coefficients. For example, reduced energy in  the 
I-kHz band may be difficult to  detect if the energy in the 
1.06-kHz band i s  increased by an appropriate amount. The 
CART classifier described in the preceding operates by 
making a series of inquiries about one frequency band at 
a time, an intuitively inappropriate approach. 

We achieved our best CART results, 46.4%, on the test set 
by making use of arbitrary hyperplanes (linear combina- 
tions). This search-based approach gave results within 1% 
of the M L P  results. 

VI. CONCLUSIONS 

In all cases the performance of the M L P  was, in terms of 
percent error, better than CART. However, the difference 
in performance between the two classifiers was only sig- 
nificant (at the p > 0.99 level) for the power security prob- 
lem. 

There are several possible reasons for the sometimes 

ATLAS et al.: COMPARISON OF TRAINED PERCEPTRONS AND CLASSIFICATION TREES 1617 



superior performance of the MLP technique, all of which 
we are currently investigating. One advantage may stem 
from the ability of MLP to easily find correlations between 
large numbers of variables. Although it i s  possible for CART 
to form arbitrary nonlinear decision boundaries, the effi- 
ciency of the recursive splitting process may be inferior to  
MLP's nonlinear fit. Another relative disadvantage of CART 
may be caused by the successive nature of node growth. 
Forexample, if the first splitthat is madefora problem turns 
out to be suboptimal given the successive splits, it becomes 
very inefficient to change the first split to  be more suitable. 

We feel that the careful statistics used in CARTcould also 
be advantageously applied to MLP. The superior perfor- 
mance of MLP is  not yet indicative of best performance and 
it may turn out that careful application of statistics may allow 
further advancements in  the MLP technique. Other input 
representations also might produce better performance for 
CART than for MLP. 

New developments have been made in trained statistical 
classifiers since the development of CART. More recent 
techniques, such as projection pursuit [141, may prove as 
good as or superior to MLP. This continued interplay 
between MLP techniques and advanced statistics i s  a key 
part of our ongoing research. 
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