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Abstract 
This paper proposes a novel approach to solve a constrained inverse problem encountered in 

the design of frequency selective surfaces (FSS's). Due to the many-to-one nonlinear functional 
relationship between an FSS and its frequency response, there is no closed form solution directly 
from the given desired frequency response to the corresponding surface. Therefore, to design an FSS 
for a given response, one has to search in the knowledge base through a trial-and-error procedure. 
This procedure can be a very laborious and tedious process. Our approach adopts an iterative 
regularized inversion technique, which starts with an inversion algorithm for multilayer perceptrons 
to generate the corresponding 2-D surface for the given desired frequency response, a constraint 
satisfaction mechanism is then used to reshape the 2-D surface to satisfy the constraints, and the 
resulting surface is used as the initial point for the next inversion algorithm. This procedure is 
mathematically similar to the projection onto convex set algorithm for constrained optimization 
problems. 

1 Frequency Selective Surface Design 

Frequency selective surfaces (FSS7s) have widespread applications over much of the electromagnetic 
spectrum [4]. In the microwave region, they are used as reflector antenna dichroic surfaces and antenna 
radomes. In the far-infrared region, they are used as polarizers, beam splitters, and mirrors for laser 
applications. Another application of the FSS in this frequency range is in infrared sensors. In the 
near-infrared and visible portions of the spectrum, they are used t o  aid in the collection of solar 
energy. FSS7s usually comprise periodically arranged identical metallic patch or aperture elements 
supported by dielectric layers. They exhibit total reflection or transmission in the neighborhood of 
the element resonance. To model an  arbitrarily-shaped patch or aperture elements, the unit cell is 
uniformly divided into an N x N array of subcells. The geometrical description of the unit-cell is given 
as follows. Subcells that correspond to  the conductor region of the unit cell are represented by 1's 
whereas subcells outside the conductor region are represented by 0's (one example is shown in Figure 
l (a) ) .  The frequency response of the FSS's are then calculated for a given incident plane wave (see 
Figure l(b)). 

There is no closed form solution directly from the given desired frequency response to  the corre- 
sponding surface. Therefore, to  design an FSS for a given response, one has to  search in the knowledge 
base to  look for the surface that  gives the closest response to the desired one. Unit-cell geometry of 
the chosen surface is then perturbed (through a trial-and-error procedure) until its response matches 
all the design criteria. The process is too laborious and human dependent. We propose an alternate 
design procedure that does not have these negative features. 
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Figure 1: (a) In an FSS, subcells that correspond to the conductor region of the unit cell are represented 
by 1's whereas subcells outside the conductor region are represented by 0's. (b) The corresponding 
frequency response of the FSS. 

2 Learning and Inversion of Multilayer Perceptrons 

Multilayer perceptrons are feed-forward neural networks which have one or more layers of hidden 
neurons between the input and output layers. When the net is trained, it is used to  generate response 
given the input test data. The converse problem of generating input vectors corresponding to a given 
output vector is referred to  as inversion (see Figure 2). The system dynamics in the retrieving phase 
of an L-layer neural net can be described by the following equations: 

where aj(l) denotes the activation value of the jth neuron a t  the lth layer and f is the nonlinear 
activation function. 

Network Learning The learning phase of a multilayer perceptron uses the back propagation learn- 
ing rule, an iterative gradient descent algorithm designed to minimize the mean squared error between 
the the desired target values and the actual output values [I]: 

where E = $ ~2~ (ti - u ~ ( L ) ) ~ .  

Inversion of  a Network The inversion of a network will generate the input {aj(0)) (or inputs) 
that can produce a desired output vector. By taking advantage of the duality between the weights 
and the activation in minimizing the mean squared error between the the desired target values and 
the actual output values, the iterative gradient descent algorithm can also be applied to obtain the 
desired input. 



Learning 

Input 
Patch 
{a j(o) 

Binary 
Elements 
=O or 1) 

~ e e d f o i w a r d  
Network 

Output 
Frequency 
Response 

{ai (L) = f(a ( 

v 
Inversion 

Figure 2: Learning and inversion of a multilayer perceptron. 

The idea is similar to  the back-propagation algorithm, where the error signals are propagated back 
to tell the weights the manner in which to  change in order to decrease the output error. The inversion 
algorithm back-propagates the. error signals down to the input layer to update the activation values 
of input units so that the output error is decreased [2]. The inversion algorithm has been successfully 
used as an excellent tool for locking the region of ambiguity in a classifier training, and tremendously 
improve the classification accuracy through an oracle based query learning technique [3]. 

3 Iterative Network Inversion and Constraints Satisfaction 

The FSS design problem can be treated as an many-to-one nonlinear mapping problem, which maps 
a 2-D surface of N x N binary subcells t o  a corresponding 1-D frequency response. In order to have 
the multilayer perceptron efficiently trained to  realize the network mapping, the input t o  the network 
should be the 2-D surface and the output of the network should be the frequency response. Note 
that we cannot interchange the role of the 110, because the non-invertible many-to-one functional 
relationship requires presentation of conflicting data to  the neural network in the training stage. 

After the network is trained, the inversion algorithm, with a random input initialization, is used 
to generate the corresponding 2-D surface for the given desired frequency response. We do not expect 
the resulting 2-D surface of the network inversion algorithm to  be satisfactory. It's accuracy, however, 
will be improved iteratively through the imposition of constraints. We massage the inversion result to 
be a grid of zeros and ones that is, in some sense, close to  the inversion result. This result will then be 
used as a new point of initialization of the inversion procedure, etc. Mathematically, this procedure is 
similar to the projection onto convex set algorithm [6, 71. We choose the following two constraints for 
the surface patch elements. 

1. The generated subcells should contain binary values. 

2. The "1" subcell should cluster together to maximize the spatial continuity (many clusters are 
allowed). 

In general, more constraints can be imposed, e.g., the constraints on the dielectric constant and 
the thickness of the surface. 
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Figure 3: The schematic diagram of an complete FSS design based on iterative inversion of neural 
networks. 

The continuous valued Hopfield model [5] with neighboring excitatory connections proves to be a 
good choice for the constraint satisfaction mechanism. There are some other alternatives considered, 
e.g. ,  the adaptive median filter. As shown in Figure 3, the complete FSS design procedure starts with 
a random guess of FSS subcells for the network inversion mechanism, and results in a surface with 
frequency response close to the desired one, while without satisfying the two imposed constraints. The 
inverted surface is then passed to  the network constraint mechanism and results in a surface with 
constraints more satisfied, while with its frequency response more deviated from the desired one. The 
surface is again used as the initial state for the network inversion mechanism. The above procedure 
iterates several times until convergence is reached, which gives rises to a constraint satisfied surface 
with desired frequency response. 

The preliminary simulation for small size FSS design is quite encouraging. A total of 75 FSS 
2-D surfaces (16 x 16) with their l-D frequency responses (of length 28) are used to  train a 2-layer 
perceptron (256 input units, 50 hidden units, and 28 outputs). After the network is trained, a desired 
target frequency response (see Figure 4 (a)) is tested to obtain the corresponding 2-D surface (see 
Figure 4(b)). After the first inversion, the network creates the unconstrained 2-D surface as shown 
in Figure 4(c). This unconstrained surface is then reshaped by an locally excited Hopfield model and 
results in a new constraint satisfied 2-D surface (see Figure 4(d)) and its associated frequency response 
(see Figure 4(e)). This new surface is used as the initial point for the next inversion, the resulting 
inverted surface gives us the desired surface as shown in Figure 4(b). Therefore, convergence occurred 
in only two iterations. 

4 Generalization and Illustration 

We can conceptually generalize the FSS design procedure to  solution of more general constrained 
inverse problems. Let Z(L) denote the response of the trained neural network to  an input of Z(0). We 
can abstract the operations in Equations 1 by Z(L) = n/n/Z(O) where NN is the neural net operator. - 
For a given response, Z(L) = A ,  define the set 

A =  (61 M6= T;). (4) 

In other words, A is the set of all inputs that yield as the net's output. The neural network inversion 
algorithm finds an element of A that is close, in some sense, to  the inversion's initialization. For two 



Figure 4: (a) A desired frequency response of an FSS. (b) Tne corresponding 2-D surface. (c) The 
first inverted unconstrained surface. (d) The constraints satisfied surface of (c). (e) The frequency 
response of the surface in (d). 



Figure 5: By iteratively inverting the net to find an element in A, followed by a projection onto the 
constraint set, C ,  we can approach the solution to the constrained inversion problem. 

inputs and one output, an example of the set A is shown in Figure 5. 
In addition, we have an input constraint set, C .  For the FSS problem, this space is the set of 

clustered ones. Once the net is inverted, we project onto that space. For the FSS problem, this was 
done by the locally connected Hopfield neural net. This projection is then used as the initialization 
for the next inversion and the process is repeated. As is shown in Figure 5, repeated inversion and 
projection can result in a solution satisfying both the inversion criterion and the constraint set. 

We note, of course, that convergence, in general, cannot be guaranteed. Convergence has also never 
been proven in general, for example, in the Gerchberg-Saxton iterative algorithm or, for that matter, 
iterative back propagation training of a layered perceptron. Nevertheless, the general procedure for 
solution of constrained inverse problem solution using inverted neural networks is one that deserves 
further investigation in general and for the FSS problem specifically. 
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