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Abstract 

The kernel in Cohen's generalized time- 
frequency representation (GTFR) requires is 
chosen in accordance to certain desired per- 
formance attributes. Properties of the kernel 
are typically expressed as constraints. We es- 
tablish that many commonly used constraints 
are convex in the sense that all allowable ker- 
nels satisfying a given constraint form a convex 
set. Thus, for a given set of constraints, the 
kernel can be designed by alternately project- 
ing among these sets. If there exists a non- 
empty intersection among the constraint sets, 
then the theory of projection onto convex sets 
(POCS) guarantees convergence to a point in 
the intersection. If the constraints can be par- 
titioned into two sets, each with a nonempty 
intersection, then POCS guarantees conver- 
gence to a kernel that satisfies the inconsistent 
constraints with minimum mean square error. 

1 Introduction 

The generalized time-frequency representation 
(GTFR) of a temporal signal, x(t), can be 
written as [5, 61 

where d(t; T )  is the kernel of the GTFR and 
u is the frequency variable. The choice of the 
kernel dictates the performance of the GTFR. 
Typically, constraints are placed on the ker- 
nel in order to enhance various aspects of the 
GTFR [3, 5, 6, 7, 8, 9, 201. 

In order to facilitate discussion, we define 
the following Fourier transforms on the kernel. 
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Table 1: The  kernel for Cohen's GTFR 
expressed in various Fourier transform do- 
mains. Each arrow corresponds t o  a one- 
dimensional Fourier transform. 

and 

The various forms of the kernel are summa- 
rized in Table 1.  

2 Kernel Constraints 

Using the kernels summarized in Table 1, we 
can straightforwardly state some of the corn- 
monly used constraints imposed on the GTFR 
and their corresponding interpretation as ker- 
nel constraints. 

1. Time Resolution Constraint. 

The requirement that the input on 
the interval -T < t  - ( 5 T con- 
tribute to the GTFR only on the 
same interval can be cast as a cone 
constraint. This requires that d( t ;  T )  

be identically zero outside of the 
cone shown in Fig. 1. In other 
words, 

where the rectangle function, II(t), 
is one for I t I _ <  and is zero other- 
whe. 

Figure 1: The'cone and bow tie con- 
straints. On the (t,  T )  plane shown on 
the left, the kernel 4(t; T )  is zero outside 
the cone shown if i t  is t o  obey the time 
resolution constraint. The  set of all such 
functions obeying this constraint is con- 
vex. The  dual frequency resolution con- 
straint requires @( f ;  u) to  be zero outside 
of the bow tie shown on the right. The  set 
of all functions obeying this constraint is 
also convex. 

2. Interference Suppression Con- 
straint .  
The magnitude of the interference 
a t  frequency f between two tones at 
frequencies f i  and f2 is zero when 
[I41 

With attention focused on the u 
variable of @ ( f ;  ti), this constraint 
is met if 

@ ( f  1 u)  = @(u)S( f )  (7) 

where O(u)  is an arbitrary one di- 
mensional function and S(  f )  is the 
Dirac delta. This is equivalent to 
requiring that 

J(t ,r)  = e ( T )  (8) 

A relaxed interference constraint is 
8 
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where A is an interference band- 
width interval. 

3. Frequency Resolution 
Constraint. 
The GTFR in Equation 1 can also 
be written as 

Comparing with Equation 1 imme- 
diately suggests a frequency resolu- 
tion constraint that is the dual of 
the cone constraint in Equation 5. 

where B is the frequency dual of T. 

4. Power Spectral  Density 
Marginal Constraint. 
Define the power spectral density of 
a signal x(t) by 

where the autocorrelation of the sig- 
nal is 

. . 

(13) 
A desirable property of a GTFR 
is the power spectral marginal con- 
straint 

This is clearly achieved if 

This is equivalent to requiring that 

5. Power Marginal Constraint. 

Similar to the previous power spec- 
tral density marginal, we desire 
to have an instantaneous power 
marginal. 

This is achieved when 

6. Realness Constraint. A sufficient 
condition for C(t,u) to be real is 
that the kernel be conjugately sym- 
metric. 

This is equivalent to requiring that 
6( t ,  U) is real. 

where 92 denotes the real part of 

7. T ime  Symmetry  Constraint. 

At a given point temporal point, 
past and future time are symmetri- 
cally treated if 

Note that, assuming differentiablity, 
that it follows that 
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8. Frequency Symmetry  
Constraint. 

Similarly, for frequency symmetry, 
we impose the constraint 

Again, assuming differetiability, this 
requires that 

Note that imposition of any two of 
the previous three constraints im- 
poses the third. 

9. Non-negativity Constraint. 
We may wish to require that the ker- 
nel is positive in the sense that 

d(f ,  7) = %d(-f, r)p[%d(-f, T)I 
(25) 

where p(-) is the unit step. In other 
words, the real part of $( f ,  r )  is non- 
negative. 

3 POCS 
All of the constraints in the previous section 
are convex in the sense that, if the kernels 
and 42 satisfy a particular constraint, then, 
for any cr in the interval 0 5 cr < 1, the kernel 

+ (1 - satisfies the same constraint. 
The convexity of the constraints allows use of 
the powerful synthesis procedure of projection 
onto convex sets (POCS). POCS was initially 
introduced by Youla & Webb [18] and Sezan & 
Stark [15] and has been applied to such topics 
as sampling theory [17], fuzzy set theory [4] 
and artificial neural networks [11, 121. The 
synthesis of GTFR kernels using POCS closely 
parallels the synthesis of windows proposed by 
Goldburg and Marks [lo]. A superb overview 
of POCS with other applications is in the book 
by Stark [16]. 

We now present an abbreviated introduc- 
tion t 6  POCS. 

Figure 2: The set C, on the left is convex. 
All line segments with endpoints X and Y 
within the set are totally subsumed within 
the set. The set Cb on the right is clearly 
not convex as illustrated by the counter 
example shown. 

3.1 Convex Sets 

Let C denote a set of functions. The set C 
is said to be convex if, for every X E C and 
Y E C, 

Geometrically, this is interpreted as shown in 
Figure 2. A set is convex if, for every two 
points chosen within the set, all of the points 
in the line segment connecting the two points 
are also in the set. The set on the left in 
Figure 2 is convex. Geometrical shapes cor- 
responding to convex sets include balls, line 
segments, planes, boxes and quadrants. The 
set shown on the right in Figure 2 is clearly 
not convex. 

3.2 Convex Set Projections 

The projection of an arbitrary function 2, onto 
a (compact) convex set C is the unique func- 
tion in C that is closest to Z in the mean square 
sense. This is geometrically illustrated in Fig- 
ure 3. Denote the projection operator by PcZ. 
Note that, if Z E C, then PcZ = 2. In other 
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Figure 3: As illustrated here, the projec- 
tion of a function Z onto the convex set C 
is that  unique point in  C that  is closest t o  
Z in  the  mean square sense. The  result of 
the projection is the point PcZ. 

words, if a function is already within the set, 
then the projection is an identity operation. It 
follows that PC' = PC. 

We illustrate with sample projection opera- 
tors from the convex constraints of the Cohen 
kernel in the previous section. A more exten- 
sive list of projection operators can. be found 
in Youla & Webb's paper [18] and in Stark's 
book 1161. In the examples here, we will use 
the form of the kernel in Table 1 that most 
easily explains the projection. Any of the four 
choices of domains can be accessed from any 
other by appropriate Fourier transformation. 
Inherent in the projection notation is the as- 
sumption that the kernel is in the proper do- 
main. 

1. Time & Frequency Resolution 
Projections. 
For the time resolution Constraint 
1, the signal outside of the cone on 
the (t, r )  plane is simply set to zero. 

Similarly, for frequency resolution 
constraint 3, the area outside of the 

bow tie on the (f,  u) plane is set to 
zero. 

Pc3@(f, u) = @(f;  u) 

2. Realness & Symmetry Con- 
straint. 
Realness Constraint 6 can be im- 
posed by the projection operator 

or, equivalently, in the (f, T )  plane, 

Similarly, for the symmetry con- 
straints in Equations 21 and 23, the 
respective projection operators can 
be written as 

+ 4* (f 1 -4 (30) 

and 

+ C ( - f  17)l. (31) 

3. Relaxed Interference Projec- 
t ion. 
Motivated by Equation 8, the pro- 
jection operator corresponding to 
the relaxed interference term in 
Constraint 3 corresponding to Equa- 
tion 9 is 

Note that if A is large enough and 
B is small enough, the frequency 
resolution projection in Equation 27 
subsumes this projection. 
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4. Power Spectral  Den- 
si ty Marginal / Non-Negative / 
Cone Constraint. 

In some cases, projections can be 
best described on the intersection 
of two or more convex constraints. 
Combining ,the time resolution con- 
straint (I), the non-negativity con- 
straint (9) and the power spec- 
tral density constraint (4) in Equa- 
tion 12, we can write the projection 
on the intersection of the three sets 
as the convex set operator 

where n denotes intersection and 

3.3 Alternating Projections 

There are three fundamental lemmas in the 
theory of POCS. We will state each lemma and 
illustrate it geometrically. 

Lemma 1. Alternately projecting be- 
tween two or more  convex sets 
with a nonempty intersection 
will iteratively converge to a 
point  common to all sets [18,16]. 
This is illustrated in Figure 4. Note 
that the point of convergence gen- 
erally depends on the initialization. 
If, however, there is a single point 
of intersection (e.g. two lines), then 
convergence will be independent of 
the initialization. 

Lemma 2. Alternately projecting be- 
tween two nonintersecting con- 
%ex sets  will converge to a limit 

Figure 4: Alternating projection between 
two intersecting convex sets, CA and CB, 
iteratively approaches a fixed point, Z,, 
common to both sets. If there is more 
that one point in the intersection, the fixed 
point will be a function of the initialization 
of the interation which, in this example, is 
20 

cycle between points in each set  
closest to t h e  o the r  se t  [lo]. This 
is illustrated in Figure 5. This prop- 
erty can be used to find the best 
member in a set that is closest to an- 
other set in the mean square sense. 
Note that, as can be visualized in 
the case of two parallel line convex 
sets, the limit cycle is not unique. 

This property generalizes to more 
than three sets in the following 
sense. Let two or more constraints 
have a nonempty intersection, Ca.  
Let two or more other constraints 
have a nonempty intersection, Cb. 
If C, and Cb do not intersect, then 
POCS will converge to a limit cycle 
between points convex sets Ca and 
Cb each closest to the other in the 
mean square sense. 

Lemma 3. Alternately projecting be- 
tween three  o r  more  noninter- 
secting convex sets  will result 
in a limit cycle tha t  can be de- 
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Figure 5: Alternating projection between 
two nonintersecting convex sets, CA and 
CB iteratively approaches a limit cycle be- 
tween two points in each set. In this illus- 
tration, these points are ZA and ZB.  Note 
that Z A  is the point in CA that is closest to 
CB and visa versa. The solution is thus a 
minimum mean square error solution. Al- 
though not always the case, the limit cycle 
here is independent of initialization, Zo. If 
there exists more than one possible limit 
cycle, each will have points separated by 
the same distance. 

pendent on both the ordering 
of the projections and the ini- 
tialization [19]. This final lemma 
states, unfortunately, that POCS 
can yield results of questionable 
worth when three or more of the 
convex sets do not intersect. Two 
different limit cycles corresponding 
to different orderings of the projec- 
tion are geometrically illustrated in 
Figure 6 for the case of three nonin- 
tersecting sets. 

Figure 6: A number of different limit cy- 
cles can exist when three or more con- 
vex sets do not intersect. Here, project- 
ing from set A to B to C gives a different 
limit cycle than projecting them in reverse 
order. 

4 POCS Kernel Synthesis 

The use of POCS in the design of GTFR ker- 
nels is now evident. We choose from a menu of 
convex constraints that we desire our GTFR 
to obey. By alternately projecting between the 
corresponding convex sets, we hope to synthe- 
size a corresponding kernel. If the convex sets 
meet the suppositions of Lemma 1, a kernel 
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meeting all constraints will be generated. If 
the constraints in Lemma 2 are met, we will 
be guaranteed that the constraints have been 
met in a mean square sense. This may or may 
not be acceptable depending on the magnitude 
of the mean square error. Note, however, that 
this is a problem of the problem rather than 
that of the synthesis method. In other words, 
the distances between the constraint sets are 
too large to allow for any acceptable solution. 

To illustrate the potential use of POCS in 
kernel design, we present two preliminary ex- 
amples. Both examples were computed on a 
128 x 128 grid. The kernels in both examples 
used both the cone and bow tie constraints. 
The value of T in each case corresponded to 
truncating the grid so that the cone was a peak 
to peak height of 64. The value of 2B was 
chosen to be five intervals. Since B was cho- 
sen to be small, there was no need to specify 
a value for A for the interference suppression 
constraint. Both examples resulted in a kernel 
that was positive and symmetric. 

Example 1 used, in addition, both 
marginal constraints. The resulting kernel 
is pictured in Figure 7. It resembles a t- 
truncated Born-Jordon kernel which has a h 
taper within the cone. Indeed, for B = oo and 
T = oo, the Born-Jordon kernel satisfies all 
the constraints. Specifically, 

satisfies the cone constraint in Equation 5. 
Furthermore, the marginal constraints in 
Equations 15 and 18 are met as are the sym- 
metry constraints of Equations 19, 21 and 23, 
the realness constraint of Equation 20 and the 
nonegativity constraint in Equation 25. Fur- 
thermore, 

1 u 
@(f; u) = -II(-) 

Ifl f 
satisfigs the untruncated bow tie constraint. 

Figure 7: One quadrant of the symmetric 
cone kernel on the ( t ,  r) plane synthesized 
using all the POCS constraints listed in 
this paper. The iteration reached a limit 
cycle. Thus, all of the constraints could 
not be simultaneously met for finite T and 
B. 

Historically, this POCS result first prompted 
the authors to investigate cone kernels with 
uniform taper [3, 201. 

Application of the kernel in Figure 7 to two 
converging linear chirps [9, 131 resulted in the 
dB waterfall display in Figure 8. From floor 
to peak is 25dB. 

Example 2 removed the marginal con- 
straints in the kernel design and resulted in the 
kernel in Figure 9. The outcome of the POCS 

Figure 8: Waterfall display of two linearly 
converging chirps using the POCS de- 
signed kernel in the previous figure. There 
is significant smoothing between the tones. 
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Figure 9: One quadrant of the symmetric 
cone kernel on the ( t ,  T) plane synthesized 
using all the POCS constraints listed in 
this paper except the power spectral den- 
sity and instantaneous power marginals. 

design, smoothed with a Hanning window, was 
applied to the same linear chirp problem. The 
result is shown in Figure 10 using a 35dB floor 
to peak range. Compare this with a cone 
shaped kernel result in Figure 11 with uni- 
form Hanning window taper in the T direction. 
The same 35dB range is used. For this exam 
ple, the POCS kernel seems to perform better 
in terms of frequency resolution and interfer- 
ence suppression. To complete the compari- 
son, similarly scaled plots of the spectrogram 
and Wigner distribution for the same signal 
are shown respectively in Figure 12 and 13. 

5 Conclusions 

We have presented a technique whereby ker- 
nels for use in Cohen's class of GTFR's can be 
synthesized in accordance to desired proper- 
ties using the method of projection onto con- 
vex sets. The ultimate success of this synthesis 
methodology is dependant on the performance 
of these kernels in generating GTFR's of sig- 
nals in specific applications. 

Figure 10: Waterfall display of two lin- 
early converging chirps using the POCS 
designed kernel in the previous figure. The 
result is quite good. 

Figure 11: Use of a cone shaped kernel 
with uniform Hanning taper in the T di- 
rection on the two chirp signal. The 35dB 
range is the same as in the previous figure. 

Figure 12: Spectrogram of the two chirp 
signal. 
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Figure 13: Wigner distribution of the  two 
chirp signal. 
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