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ABSTRACT 
"Selective sampling" is a form of directed search that can greatly 
increase the ability of a connectionist network to generalize accu- 
rately. Based on information from previous batches of samples, a 
network may be trained on data selectively sampled from regions 
in the domain that are unknown. This is realizable in cases when 
the distribution is known, or when the cost of drawing points from 
the target distribution is negligible compared to the cost of label- 
ing them with the proper classification. The approach is justified 
by its applicability to the problem of training a network for power 
system security analysis. The benefits of selective sampling are 
studied analytically, and the results are confirmed experimentally. 

* 

1 Introduction:  andom om Sampling vs. Directed Search 

.4 great deal of attention has been applied to the problem of generalization based 
on random samples drawn from a distribution, frequently referred to as "learning 
from examples." Many na'tural learning learning systems however, do not simply 
rely on this passive learning technique, but instead make use of a t  least some form 
of directed search to actively examine the problem domain. In many problems, 
directed search is provably more polverful than passively learning from ran do mi^ 
given examples. 
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Typically, directed search consists of membership queries, where the learner asks for 
the classification of specific points in the domain. Directed search via membership 
queries may proceed simply by examining the information already given and deter- 
mining a region of uncertainty, the area in the domain where the learner believes 
nis-classification is still possible. The learner then asks for examples exclusively 
from that region. 

This paper discusses one form of directed search: selective sampling. In Section 2, 
we describe theoretical foundations of directed search and give a formal definition 
of selective sampling. In Section 3 we describe a neural network implementation 
of this technique, and we discuss the resulting improvements in generalization on a 
number of tasks in Section 4. 

2 Learning and Selective Sampling 

For some arbitrary domain learning theory defines a concept as being some subset of 
points in the domain. For example, if our domain is !R2, we might define a concept 
as being all points inside a region bounded by some particular rectangle. 

-4 concept class is simply the set of concepts in some description language. 

.A concept class of particular interest for this paper is that defined by neural network 
architectures with a single output node. Architecture refers to the number and types 
of units in a network and their connectivity. The configuration of a network specifies 
the weights on the connections and the thresholds of the units ' .  
.I single-output architecture plus configuration can be seen as a specification of 
a concept classifier in that it classifies the set of all points producing a network 
output above some threshold value. SirnilarIy, an architecture may be seen as  a 
specification of a concept class. It consists of all concepts classified by configurations 
of the network that the learning rule can produce (figure 1). 

Input -> @ - 
output 

Figure 1: X network architecture as a concept class specification 

2.1 Generalization and formal learning theory 

-An instance, or training example, is a pair (x, f(x)) consisting of a point x in 
the domain, usually drawn from some distribution P, along with its classification 

' For the purposes of this discussion, a neural network will be considered to be a' feedforward 
network of neuron-like components that compute a weighted sum of their inputs and modify 
that sum with a sipoidal transfer function. The methods described, however should be equally 
applicable to other, more general classifiers as we& 
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according to some target concept f .  A concept c is consistent with an instance 
(x, /(I)) if C(Z) = f(x), that is, if the concept produces the same classification of 
point x as the target. The error(c, f ,  P) of a concept c, with respect to a target 
concept / and a distribution P ,  is the probability that c and f will disagree on a 
random sample drawn from F. 

The generalization problem, is posed by formal learning theory as: for a given 
concept class C, an unknown target f ,  and an arbitrary error rate 6 ,  how many 
samples do we have to draw from an arbitrary distribution P in order to find a 
concept c E C such that error(c, f , P )  5 E with high confidence? This problem 
has been studied for neural networks in (Baum and Haussler. 1989) and (Haussler, 
1989). 

2.2 R(Sm), the region of uncertainty 

If we consider a concept class C and a set Sm of rn instances, the classification of 
some regions of the domain may be implicitly determined; all concepts in C that 
are consistent with all of the instances may agree in these parts. What we are 
interested in here is what we define to be the region of uncedainty: 

R ( S m )  = (x : 3cl,  c? E C, cl, cz are consistent with all s E Sm, and cl(x) # c 2 ( x ) ) .  

For an arbitrary distribution P ,  we can define a measure on the size of this region as 
o = Pr[x E A(Sm)]. In an incremental learning procedure, as we classify and train 
on more points, a will be monotonically non-increasing. A point that falls outside 
X(Sm) will leave it unchanged; a point inside will further restrict the region. Thus, 
a is the probability that a new, random point from P will reduce our uncertainty. 

.I key point is that since R(Sm) serves as an envelope for consistent concepts, it 
also bounds the potential error of any consistent hypothesis we choose. If the error 
of our current hypothesis is e, then e 5 a. Since we have no basis for changing 
our current hypothesis without a contradicting point, c is also the probability of an 
additional point reducing our error. .. 
2.3 Selective sampling is a directed search 

Consider the case when the cost of drawing a point from our distribution is small 
compared to the cost of finding the point's proper classification. Then, after training 
on n instances, if we have some inexpensive method of testing for membership in 
R(Sn), we can "filter" points drawn from our distribution, selecting, classifying and 
training on only those that show promise of improving our-representation. 

>IathematicalIy, we can approximate this filtering by defining a new distribution p' 
that is zero outside R(Sn) ,  but maintains the relative distribution of P. Since the 
next sample from P' would be guaranteed to land inside the region, it would have, 
with high confidence, the effect of a t  least l/cu samples drawn from P .  

The filtering process can be applied iteratively. Star t  out with the distribution 
P g Q n  = P .  Inductively, train on n samples chosen from pi,, t.0 obtain a new region 
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of uncertainty, R(s'~"), and define from it Pi+l , ,  = Pt i , , .  The total number of 
training points t o  calculate PIi,, is m = in. 

Selective sampling can be contrasted with random sampling in terms of efficiency. 
In random sampling, we can view training as  a single, non-selective pass where 
n = m. As the region of uncertainty shrinks, so does the probability that any given 
additional sample will help. The efficiency of the samples decreases with the error. 

By filtering out useless samples before committing resources to them, as we can do  
in selective sampling, the efficiency of the samples we do classify remains high. In 
the limit where n = 1, this regimen has the effect of querying: each sample is taken 
from a region based on the cumulative information from all previous samples, and 
each one will reduce the size of R(Sm). . 

3 Training Networks with Selective Sampling 

'4 leading concern in connectionist research is how to achieve good generalization 
with a limited number of samples. This suggests that selective sampling, properly 
implemented, should be a useful tool for training neural networks. 

3.1 A nai've neura l  network.  query ing  algori thm 

Since neural networks with real-valued outputs are generally trained to within some 
tolerance (say, less than 0.1 for a zero and greater than 0.9 for a one), one is tempted . 

to  use the part of the domain between these limits as R (Sm)  (figure 2).  

Figure  2: The region of uncertainty captured by a naive neural network - - 
The problem with applying this naive approach to neural networks is that when 
trlining, a network tends to become "overly confident" in regions that are still 
unknown. The R(Sn) chosen by this method will in general be a very small subset 
of the true region of uncertainty. 

3.2 Version-space search  and neu ra l  networks 

Slitchell (1978) describes a learning procedure based on the partial-ordering in 
generality of the concepts being learned. One maintains two sets of plausible hy- 
potheses: S and G. S contains all "most specific" concepts consistent with present 
information, and G contains all consistent "most general" concepts. The "version 
space," which is the set of a l l  plausible concepts in the class being considered, lies 
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between these two bounding sets. Directed search proceeds by examining instances 
that fall in the difference of S and G. Specifically, the search region for a version- 
space search is equal to { U s A g  : s € S,g  € G). If an instance in this region 
proves positive, then some s in S will have to generalize to accommodate the new 
information; if it proves negative, some g in G will have to be modified to exclude 
it. In either case, the version space, the space of plausible hypotheses, is reduced 
with every query. 

This search region is esac tly the R(Sm) that we are attempting to capture. Since 
s and g consist of most specific/general concepts in the class xe are  considering, 
their analogues are the most specific and most general networks consistent with the 
known data. 

This search may be roughly implemented by training two networks in parallel. One 
network, which ive will label .Vs, is trained on the known examples as well as given 
a large number 'of random "background" patterns, which it is trained to classify 
with as negative. The global minimum error for .Vs is achieved when it classities 
all positive training examples as positive and as much else as  possible as negative. 
The result is a "most specific" configuration consistent with the training examples. 

Similarly, .b is trained on the known examples and a large number of random 
background examples which it is to classify as positive. Its global minimum error is 
achieved when it classifies all negative training esaml-.s as negative and as much 
else possible as positive. 

Assumtng our networks I\Ts and .VG converge to near-giobal minima, we can now de- 
fine a region RSAg,  the symmetric dicrence of the ou:?uts of L\rs and .VG. Because 
'Vs and .Vc lie near opposite extremes of %!(Sm), we have captured a well-defined 
region of uncertainty to search (figure 3) .  

3.3 Limitations of the technique 

The neural network version-space technique is not wit.hout prsblerns in general 
application to directed search. One limitation of this implementaticn of version 

I, 

Input 

output 

Figure 3: R3 h g  contains the difference between decision regions of ,Vs a n d  
well as their own regions of uncertainty. 
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space search is that a version space is bounded by a set of most general and most 
specific concepts, while an S-G network maintains only one most general and most 
specific network. As a result, RSag will contain only a subset of the true 72(Sm). 

This limitation is softened by the global minimizing tendency of the networks. As 
new examples are added and the current iVs (or iVc) is forced to a more general 
(or specific) configuration, the network will relax to another, now more specific (or 
general) configuration. The effect is that of a traversal of concepts in S and G. If 
the number of samples in esch pass is kept sufficiently small. all "most general" and 
most specific" concepts in R(Sm) may be examined without excessive sampling on 
one particclar configuration. 

There is a remaining difficulty inherent in version-space search itself: Haussler 
(1987) points out that even in some very simple cases, the size of S and G may 
grow exponentially in the number of examples. 

-4 limitation inherent to neural netivorks is the necessary assumption that the net- 
works :Vs and ArG will in fact converge to glot;al minima, and that they will do so 
in a reasonable amount of time. This is not always a valid assumption; it has been 
shown that in (Blum and Rivest., 1989) and (Judd, 1988) that the network loading 
problem is YP-complete, and that finding a global minimum may therefore take an 
exponential amount of time. 

This concern is ameliorated by the fact that if the number of samples in each pass is 
kept small, the failure of one network to converge will only result in a small number 
of samples being drawn from a less useful area, but will n ~ t  cause a large-scale 
failure of the technique. 

4 Experimental Results 

Experiments were run on three types of problems: learning a simple square-shaped 
region in a', learning a 25-bit majority function, and recognizing the secure region 
of a small power system. 

4.1 The squa re  lea rner  - _ 
-A two-input network with one hidden layer of 8 units was trained on a distribiltion 
of samples that were positive inside a square-shaped region at the center of the 
domain and negative elsewhere. This task was chosen because of its intuitive visual 
appeal (figure 4). 

The results of training an S-G network provide support for the method. As can be 
seen in the accompanying plots, the iVs plots a tight contour around the positive 
instances, while NG stretches widely around the negative ones. 

4.2 Majority function 

Simulations training on a %bit majority function were run using selective sampling 
in 2, 3,  4 and 20 passes, as well as baseline simulations using random sampling for 
Ftrror comparison. 
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Figure 4: Learning a square by selective sampling 

In all cases, there was a significant improvement of the selective sampling passes 
over the random sampling ones (figure 5). The randomly sampled passes exhibited a 
roughly logarithmic generalization curve, as expected following Blumer et a1 (1988). 

The selectively sampled passes, however, exhibited a steeper, more exponential drop 
in the generalization error, as would be expected from a directed search method. 
Furthermore, the error seemed to decrease as the sampling process was broken up 
into smaller, more frequent passes, pointing at  an increased efficiency of sampling 
as new information was incorporated earlier into the sampling process. 

(20 passes) 

0.2 

0 50 100 150 200 

Number of training samples Number of training samples 

Figure 5: Error rates for random vs. selective sampling 

4.3 Power system? security analysis 

If various load parameters of a power system are within a certain range, the system 
is secure. 0 therwise it risks thermal overload and brown-out. Previous research 
(Aggoune et al, 1989) determined that this problem was amenable to neural network 
learning, but that random sampling of the problem domain was inefficient in terms 
of samples needed. The fact that arbitrary points in the domain may be analyzed for 
stability makes the problem well-suited to learning by means of selective sampling. 

-4 baseline case was tested using 3000 data points representing power system con- 
figurations and compared with a twc-pass, selectively-sampled data set. The latter 
was trained on an initial 1500 points, then on a second 1500 derived from a S-G 
network as described in the previous section. The error for the baseline case was 
0.86% while that of the selectively sampled case was 0.56%. 
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5 Discussion 

In this paper we have presented a theory of selective sampling, described a connec- 
tionist implementation of the theory, and examined the performance of the resulting 
system in several domains. 

The implementation presented, the S-G nc twork, is notable in that, even though 
it is an imperfect imp!ernentation of the theory, it marks a sharp departure from 
the standard method of training neural networks. Here, the network itself decides 
what samples are worth considering and training oc. The results appear to give 
near-exponential improvements over standard techniques. 

The task of active learning is an important one; in the natural world much learning 
is directed at least somcwilat by the learner. lye fee! that this theory and these 
esperimenis are just init.ial forays into the promising area of s'e!f-training networks. 
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