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order. Neuronal analogues in such networks usually employ sig- 
moidal activation functions, which in some respects may be partic- 
ularly suitable: they possess limited ranges, as do probability 
functions, and when class distributions have monotonic overlap- 
ping tails, posterior probability for a class c will i n  fact be sig- 
moidal over paths of increasing D, and decreasing D,. in the input 
space. However, in a real problem, hypersurfaces of level proba- 
bility in X may possess curvature, while for “neural” elements 
which pass an inner product of weights and inputs to their sigmoid 
activation functions, hypersurfaces of level output are hyperplanes 
in  the input space. Formation of nonplane decision boundaries re- 
quires multilayer networks of such elements, or elements whose 
net inputs to their activation functions are higher order functions 
of their individual inputs. Home and Hush [ I ]  have shown that a 
“neuron” with a logistic activation function and with a net input 
composed of a quadratic form as well as linear and constant terms 
is capable of learning (by minimization of sum-square error) exact 
representation of posterior probability in a two-class problem, in 
which both class probability densities are Gaussian. Interestingly, 
in the case where the covariance matrices for the two classes are 
identical, the hypersurface of equal probability becomes a hyper- 
plane, and the common “neuron” with linear and constant input 
terms and a logistic activation function is capable of exact repre- 
sentation of posterior probability of one or the other of the classes. 

Even if a network or other model is capable, for a particular 
choice of its parameters, of good approximation to posterior prob- 
abilities in  some classification problem, there is no guarantee that 
other, poorer local minima in the weighted sum of squares of the 
deviations Sf;. do not exist. Such minima may prove to be obstacles 
to practical application of learning techniques such as gradient de- 
scent (e.g., error back-propagation [lo]), just as may be the case 
with deterministic problems. 

A number of authors have suggested alternative objective func- 
tions for training based upon information-theory and statistical 
considerations [ 5 ] ,  [6 ] ,  [12], [13], which may offer particular ad- 
vantages over square-error, and which are generally compatible 
with back-propagation. The efficacy of such functions, the pres- 
ence and avoidance of local suboptimal minima, and the overall 
performance of neural network models in  learning to approximate 
posterior probabilities are promising subjects for further investi- 
gation. 
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Dispersive Propagation Skew Effects in Iterative 
Neural Networks 

Seho Oh and Robert J .  Marks I1 

Abstract-During communication between neurons in a continuous- 
time analog neural network, propagation skew typically varies from 
neuron pair to neuron pair. For no dispersion, we have previously 
demonstrated that the steady-state performance of an iterative neural 
network is not affected if the combination of the neural network’s 
weights and neural nonlinearity is contractive. In this letter, this result 
is extended to the case of dispersive skew. We show that, under nearly 
the same conditions, the same steady-state result will occur in the neural 
network in the presence of dispersive skew. 

In high-speed iterative neural processors, the propagation delay 
between neurons and the response time of neurons to stimuli can 
be strong factors affecting the performance of the neural network. 
This is true in high-speed analog electronic neural networks, where 
the transmission line characteristics of interconnects must be con- 
sidered, and in optical neural networks, where the interconnects 
are affected by the physics of the optics [ 11. In this letter, we show 
that dispersive propagation skew between neurons in an iterative 
neural processor does not affect the steady-state solution when the 
neural network’s weights and nonlinearities meet certain contrac- 
tive criteria. 

Consider analog neuron i communicating its state to neuron j 
through weight a , .  In the case of nondispersive skew, the delay 
time between these neurons, possibly proportional to their optical 
or physical separation, is r,,. If the interconnect displays dispersive 
skew, on the other hand, the received signal at neuron j will be 
temporally spread, rather than localized. 

We have established conditions for the convergence of iterative 
neural networks in the presence nondispersive skew for the case of 
linear operations and have generalized the result to include sig- 
moidal nonlinearities [ 2 ] .  In practice, however, most processors 
have dispersive characteristics. In this letter, we deal with the skew 
effects for the same operation as before in the presence of disper- 
sive skew. We demonstrate that dispersive skew, under the same 
conditions as in [ 2 ] ,  does not affect the steady-state solution of the 
neural network if the dispersion function has unit area and the causal 
forcing functions satisfying a continuity criterion at the origin. 

Considering the nonskewed and nondispersive iteration of neural 
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states {x, ( t )  ( 1  I i 5 N ] 

( 1 )  

1 xi(?) = 71 [i, aijxj ( t  - 7) + 6 (r) + gi (r), 

i = l , 2 ; . .  , N  

where T is the common time delay for communication between neu- 
ron pairs, aij is the weight between neurons i and j ,  7, is a memo- 
ryless nonlinearity (e.g., a sigmoid), andJ ( t )  and g, ( ? )  are forcing 
functions. We assume J ( t )  -+ J (03 )  = Constant and gi ( t )  -+ 

gi (03 )  = Constant for all i. Neural networks to which this model 
IS applicable include those of Hopfield and the alternating projec- 
tion neural network [3]-[7]. 

For nondispersive skew, the delay T in this expression in simply 
replaced by T , ~ ,  which is the time delay between neurons i and j .  
The feedback operation with dispersive skew can be written as 

where h, ( t )  is the temporal dispersion spread from neuron i to j .  

special case of the linear operation: 
We first discuss the asymptotic stability and convergence for the 

N I  

x i ( t )  = aq S hi,(? - t ) x j ( t  - 70) dt  + f i ( t ) .  (3 )  
J = I  0 

Assuming stability, the steady-state solution of the corresponding 
linear version of (1) is [2] 

? ( w )  = [ I  - A ] - ’ 7  (4)  

where? ( t )  = t x l ( t ) , x z ( t ) ,  . . . 3 X N ( t ) l T ? 7  = t f , ( c l . ) , f 2 c a ) ,  
. ’ ’ , fN (a)] ‘, and A = (a iJ) .  

Let HIJ(s), F, ( s ) ,  and Gi (s)  denote the (unilateral) Laplace 
transform of hij ( t ) . J  ( t ) ,  and g, ( t )  respectively. We assume that 
F, (s) is analytic for Re (s ) 2 0 except s = 0 and 

lim ( s F , ( s ) (  = 0 and lim (sC,(s)j = 0, 
l s l - m  l r l - m  

i = l , 2 ; . . , N  ( 5 )  

when Re ( s )  2 0. From the initial value theorem of Laplace trans- 
forms, this condition requires that the forcing functions be contin- 
uous at the origin. In addition, we require that Hi, (s)  be analytic 
in Re (s) 2 0. The following lemma establishes basic conditions 
for convergence of the linear iteration in the presence of dispersive 
skew. 

Lernmal: L e t A ( s )  = ( ~ , ~ H , ( s ) e - “ ’ ~ ) .  If ( ) A ( s ) l (  < 1 forRe 
(s) 2 0 and Hij (0 )  = 1 for all i, j then (3) is stable and conver- 
gences to the result in (4). 

Note that the criterion that Hi,( 0 )  = 1 is identical to requiring that 
h,J ( I )  have unit area. A proof of Lemma 1 is given in the Appen- 
dix. Lemma 1 provides the foundation for the two following im- 
portant special lemmas. 

Lemma2: L e t B = ( I n , ( ) . I f I ( B ( I  < I , ( H , ~ ( s ) (  I 1fo ra I I  
Re ( s )  2 0 and H,, (0 )  = 1, then (3) is stable and converges to 
the result in (4). 

Lemma 3: Assume that the nondispersive version of (3) con- 
verges to the result in (4). Let the dispersion be separable in  the 
sense that H , ( s )  = H ; ” ( s )  * H j ” ( s ) .  Let H,J (0 )  = 1 .  If 
( H l ” ( s ) l  I 1 a n d ( H : 2 ’ ( s ) I  5 l f o r a l l R e ( s )  2 O , t h e n ( 3 ) i s  
stable and converges to the result in (4). 

Lemma 3 is a generalization of the result in [ 2 ]  for nondispersive 
skew, which states stability and accuracy of the iteration are en- 
sured if we can write the nondispersive skew as T ~ ,  = U ,  + U , .  
Proofs of Lemmas 2 and 3 are given in the Appendix. 

We can now state our main result. (The pointwise vector oper- 
ator q is comprised of the qi nonlinearity.) 

Theorem 1: For a given matrix A ,  time deJays { T , , }  and dis- 
persions { h,, ( t ) } ,  if (3) converges for every f ( t )  which satisfies 
( 5 )  and q is a nonexpansive operation, then (2 )  is stable and con- 
verges to the same steady-state solution as that obtained in the ab- 
sence of any skew. 

The vector operator q is said to be nonexpansive if ( 1  q (  2 )  - 
q ( y’ ) )I 5 I( x’ - y’ I( for all x’ and 5. For the sigmoidal operator, 
q, ( x )  = ( 1  + for example, ( d q , / d r /  I 1 and q (  * )  is 
nonexpansive. The proof of the theorem is given in the Appendix. 

In summary, we have shown that a dispersively skewed nonlin- 
ear neural iteration is stable and properly converges if the neural 
nonlinearity is nonexpansive and the corresponding dispersively 
skewed linear iteration is stable. The stability and proper conver- 
gence of the dispersively skewed linear iteration can be ensured by 
adherence to the criteria in either of the three lemmas. 

APPENDIX 

Proof of Lemma 1 

We take the Laplace transform of (3): 
N 

x , ( s )  = C U ~ ~ H ~ ( S )  exp ( - S T , ) X , ( S )  + F , ( s )  
t = I  

or, equivalently, in matrix form, 

?(s)  = A(s)?(s )  + F ( s ) .  

Since ) IA(s) l (  < 1,  det [ I  - A ( s ) ]  # 0, thevector?(s) becomes 

?(s) = [ I  - A ( s ) ] - l F ( s ) .  

From the assumption of 7 ( t ), 
lim ( s ~ , ( s ) l  = 0, i = 1, 2, . . * , N 

(.%(-cm - 
for Re (s) 2 0 and X ( s )  is analytic in Re (s) 2 0 except s = 0. 
Using [8, theorem4.131 I(?) is 0 (1). This requires that ? ( t )  be 
bounded. By applying the final value theorem of Laplace transform 
theory, we obtain 

x’(03) = lim &(s) = lim [ I  - A(s) ] - ’ [ s@(s) ]  

= [Z  - A(O)]-IT = [ I  - A ] - ’ 7  

s - 0  s-0 

which is our desired result. 

Proof of Lemma 2 

Let y’ be an N-dimensional vector and A (s) = ( aiJHij (s) exp 
[  ST^^]) and N x N matrix. Then 

(IA(s) ? ( 1 *  = Y*A*(s)A(s)  Y’ 

Q.E.D. 

= C C C y ~ a ~ ~ ~ ( s )  exp ( - S * T ~ ~ ) U ~ ~ H ~ ~ ( S )  
I J ~  

’ ~ X P  ( - - ~ ~ k j )  Y j  

I C t J  
IyiI * (akt~kt(s) \  . \ a k j H k j ( S ) \  1 I Y j I  

where the asterisks denote the complex conjugate for scalars and 
the complex conjugate transpose for matrices. Let z, = [ yi 1 ,  bk, = 
( a k i ( ,  and ? = ( z i ) .  Then 

(IA(s) y’((* 5 C zibk,bk,q = (IB?I12. 
I J  

Since 11 y’II = 11 ? I ( ,  IIA(s)l( 5 I(B(I < 1. From Lemma 1, we 
conclude that (3) converges to the desired result. Q.E.D. 

Proof of Lemma 3 

Let A ,  ( s )  = [a0 exp (  ST,^)]. From the assumption, we have 

A ( s )  = [a, exp ( - s ~ ~ ) K j ( s ) ]  

= [ai, exp ( - s ~ , , ) ~ l ” ( s ) H : ” ( s ) ] .  

- - T  ~ 

I - - - -  
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dF]. 

Substitute 5 for x’ in the linear dispersive skewed iteration in (3) 
and take the difference between (3) at t ,  and t2 to obtain 

Q ( t b  t-2) = Z(t1, t 2 )  + S( t l ,  t.2) 

5(tl> t 2 )  = rZ(tl) - rZ(4 
At,> t 2 )  = S ( 4 )  - S G 2 )  

where 

and 

Z ( t l ,  t 2 )  = 5 al,[ jr’ h,(tl - F ) Q l ( E  - 711) df 
1 = 1  0 

- hcj(t.2 - O Q j ( E  - 78,) d t ] .  
- 

We now construct a function f ( r,, t 2 )  to be collinear with 2 ( t l ,  
rz). Let 

any vector for i ( t l ,  t 2 )  = 0 i C(tl ,  t 2 )  ? ( t , ,  t 2 )  otherwise 
T( t , ,  t 2 )  = 

where the proportionality constant C ( t , ,  t 2 )  is chosen so that 
11 S ( t , ,  t 2 )  I (  = p(tl. t z ) .  Then, by construction, 

II6(tl? t 2 ) ( \  = I(% h)(( + P ( f l >  2 2 ) -  

Because 11 6(tl, t 2 )  11 converges to 0 by assumption, (2 )  also con- 
verges: 

or, equivalently, since our vectors are in a finite dimensional space 
(compact), 

lim x ’ ( t )  = .?(a) 
r - m  

and our proof is complete. Q.E.D. 

REFERENCES 

[I] J .  Shamir, “Fundamental speed limitation on parallel processing,’’ 
Appl. Opr., vol. 9, no. 26, p. 1567, 1987. 

[2] S.  Oh, D. C. Park, R. J. Marks 11, and L. E. Atlas, “Nondispersive 
propagation skew in iterative neural networks and optical feedback 
processors,” Opt. Engineering, vol. 28, pp. 526-532, 1989. 

[3] J. J .  Hopfield, “Neural networks and physical systems with emergent 
collective computational abilities,” in Proc. Nar. Acad. Sci. U . S . ,  vol. 

141 R. P. Limman, “An introduction to computing neural nets,” IEEE 
79, pp. 2554-2558, 1982. 

. -  - -  
ASSP Mdg., pp. 7, 1987. 

[51 J .  J. HoDfield and D. W. Tank. “Neural comuutation of decisions in - _  
optimization problem,” Biol. Cybern., vol. 52, pp. 141-152, 1985. 

[6] R. 1 .  Marks 11, “A class of continuous level associative memory neural 
nets,” Appl. Opr., vol. 26, no. 10, pp. 2005-2010, 1987. 

[7] R .  J .  Marks 11, S .  Oh, and L. E. Atlas, “Alternating projection neural 
networks,” IEEE Trans. Circuits Syst.,  vol. 36, pp. 846-857, June 
1989. 

[8] L. C. Andrews and B. K. Shivamoggi, Integral Transformsfor Engi- 
neers and Applied Marhematicians. New York: Macmillan, 1986. 

Using the Karhunen-Loe’ve Transformation in the 
Back-Propagation Training Algorithm 

H .  A. Malki and A. Moghaddamjoo 

Abstract-A new training approach based on the back-propagation 
algorithm is introduced. In the proposed approach, initially, a set of 
training vectors is obtained by applying the Karhunen-Loe’ve (K-L) 
transform on the training patterns. The training is first started in the 
direction of the major eigenvectors of the correlation matrix of the 
training patterns and then continues by gradually including the re- 
maining components, in their order of significance. With this ap- 
proach, the number of computations is significantly reduced and the 
learning rate is improved. The performance of this method is com- 
pared with the standard back-propagation algorithm in segmenting a 
synthetic noisy image. 

I. INTRODUCTION 

We confine ourselves to the back-propagation algorithm [ 11 and 
modifications which improve its slow rate of convergence. The 
back-propagation algorithm is one of the most popular training al- 
gorithms; it has been applied extensively and shown very good per- 
formance. In practice, however, the algorithm encounters two main 
difficulties: (1) its rate of convergence is very slow and (2) it does 
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