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ABSTRACT 

The inversion of snow parameters from passive mi- 
crowave remote sensing measurements are performed with 
a neural network trained with a dense media multiple 
scattering model. In this paper, we have performed the 
inversion of three parameters: mean-grain size of ice par- 
ticles in snow, snow density, and snow temperature from 
five brightness temperatures. The five are 19 GHz verti- 
cal polarization, 19 GHz horizontal polarization, 22 GHz 
vertical polarization, 37 GHz vertical polarization, 37 
GHz horizontal polarization which are available from SSMI 
satellites. The absolute percentage errors for mean-grain 
size of ice particles and snow density are less than 10%. 
and the absolute error for snow temperature is less than 
3O K. 

Various techniques for solving inverse problems in re- 
mote sensing have been proposed in the last few decades 
[l-41. In this paper, we use the artificial neural network 
technique to invert snow parameters from passive mi- 
crowave remote sensing measurements. The basic idea is 
to use the input-output pairs generated by the scattering 
model to train the neural network [5]. Once the neural 
network is trained, it can invert parameters speedily from 
the brightness temperatures. 

An artificial neural network can be defined as a highly 
connected array of elementary processors called neurons. 
In this paper we consider the multi-layer perceptron (MLP) 
type artificial neural network [6-101. The MLP type neu- 
ral network consists of one input layer, one or more hid- 
den layers, and one output layer. Each layer employs 
several neurons and each neuron in the same layer is con- 
nected to the neurons in the adjacent layer with different 
weights. Signals pass from the input layer, through the 
hidden layers, to the output layer. Except for the input 
layer, each neuron receives a signal which is a linearly 
weighted sum of all the outputs from the neurons of the 

former layer. The neuron then produces its output sig- 
nal by passing the summed signal through the sigmoid 
function 1/(1 + e-"). 

The backpropagation learning algorithm is used for 
training the neural network. Basically this algorithm 
uses the gradient descent algorithm to get the best es- 
timates of the interconnected weights, and the weights 
are adjusted after every iteration. The iteration process 
stops when a minimum of the difference between the de- 
sired and the actual output is rearched by the gradient 
descent algorithm [9,10]. 

The scattering model that is used to train the neural 
network is the dense media radiative transfer theory [2-31. 
In a dense medium with an appreciable fractional volume * 

of scatterers (e.g. ice grains in snow), the assumption of 
independent scatterers that is used in conventional radia- 
tive transfer theory is not valid. This has been verified 
by controlled laboratory experiments and has been stud- 
ied theoretically [11,12,13]. Recently, we have developed 
the dense medium radiative transfer theory which ac- 
counts for correlated scattering and which is derived from 
field theory using the quasicrystalline approximation of 
the Bethe-Salpeter equation [11,12,13]. The dense media 
theory also includes multiple scattering effects. The rela- 
tions between the brightness temperatures and the snow 
parameters are nonlinear under the dense media multiple 
scattering model. 

We first use the dense media theory to compute the 
brightness temperatures for a half-space snow medium 
for the five channels using different combinations of input 
parameters of mean-grain size of ice particles in snow ( a ) ,  
snow density d, and snow temperature T. A Rayleigh size 
distribution is assumed [14]. About 1000 sets of input- 
output pairs are generated in this manner which are well 
distributed in ( a ) ,  d and T. These are used as training 
data for the neural network. Using the error backpropa- 
gation algorithm on these sets results in a set of weight- 
ing coefficients. We note that the multi-frequency and 
two-polarization measurements are very important for 
the convergence of the weighting coefficients. Without 
either of them, the weighting coefficients diverge. The 
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neural network then is tested by a set of synthetic test- 
ing data  which are also generated by the passive dense 
medium theory and are randomly distributed in (a), d 
and T. Figure 1 shows the absolute percentage error for 
(a) (the unit for ( a )  is in centimeters). Figure 2 shows the 
absolute percentage error for d (the unit for d is grams 
per cubic centimeter). Figure 3 shows the absolute error 
for T. (the unit for T is in degrees Kelvin). Figures 1, 2, 
3 demonstrate that increasing the number of iterations 
results in better convergence to  the true value and hence 
lowers the errors. After 10,000 iterations, the absolute 
percentage error for ( a )  and d are less than 10 %, and the 
absolute error for T is less than 3 O  K. We also note that 
the accuracy of the neural network inversion algorithm is 
dependent on the sensitivities of brightness temperatures 
to  changes of medium parameters. If a change in (a), d 
and T results in large variations in the brightness tem- 
peratures of the five channels, then the neural network 
algorithm works well. Finally we also use the neural net- 
work with the trained weighting coefficients to  invert the 
SSMI data over the Antarctica region [15]. The algorithm 
inverts 30,000 sets of &channel brightness temperatures 
of Antarctica in only 10 cpu minutes on a VAX 3500 
workstation. 
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