
CONFERENCE 
RECORD 

SEA TTL E, WASHlNG TON 
OCTOBER 19-21, 1992 

EDITED BY: 
Hardev Juj 

Tacoma City Light 
Technical Conference Chairman 

Alvin Todd Moser 
Seattle University 

Technical Conference Vice-Chairman 

SPONSORED BY: 

Seatde and Oregon Sections. 
Institute of Electn'cai and Electronics Engineers (IEEE) 6 

the Cascade Chapter 
Electronics Representatives Association (ERA) 

and the Efectronics Manufacturers Association a 

R. Reed and R.J. Marks II, "Genetic Algorithms and Neural Networks: An Introduction", Northcon/92 Conference Record, 
(Western Periodicals Co., Ventura, CA), Seattle WA, October 19-21, 1992, pp.293-301



Genetic Algorithms and Neural Networks: An Introduction 
Russell Reed, Robert J. Marks I1 

Dept. of Electrical Engineering, FT-10 
University of Washington, Seattle, WA, 98195 

Abstract 

The Genetic AIgori thm (GA) is a general optimization/search method that has been succusfdly 
applied to many problems -including neural network design. Unlike some other methods, it works 
well on large dimensional, nonlinear, and noisy problems. This paper reviews the basic algorithm 
and discusses its application to neural networks. 

One of the basic tasks in neural network design is to choose an appropriate architecture and weights 
in order to solve a particuIar problem. The Genetic Algorithm (GX) is a general optimization/search 
method that has been successfulIy applied to many problems -including neural network training. It is 
appropriate for neural networks since it scales well to Iarge nonlinear problems. 

As in the theory of natural evolution of species, a poputation of many candidate solutioas compete 
for resources; the most successfu1 survive and reproduce, the least successfui reproduce less ohen and 
eventually become extinct. Since successful units pass on their characteristics to the next generation at 
a higher rate than less successful units, the average fitness of the population tends to increase over many 
generations and approach an optimum. 

The principle advantage of the algorithm is that very little problem-specific information is needed. 
The algorithm itself simply operates on bit strings containing the genetic code. To apply it to a specific 
problem, all that is needed is a function to evaluate the solutions encoded in the bit strings and return 
a score indicating the quality of the solution. In particular, it doesn't need gradient information and 
so may be used on discontinuous functions and functions which are described empirically rather than 
analytically. It can also be used for temporal learning problems in which reinforcement comes at the 
end of a long sequence of actions with no intermediate target vaiues. Since it isn't a simple hill-cfirnbing 
method, it isn't particularly bothered by local maxima. It will also tolerate a certain amount of noise 
in the evaluation function. 

The algorithm has some of the fiavor of simulated annealing in that many possible solutions are 
examined and the search has an element of randomness which helps to avoid the problem of local 
maxima. It differs in that many candidate solutions are maintained rather than just one, and elements 
of the better solutions are combined to generate new candidates. Like simulated anneaiing, it is a general 
optimization/search method and not limited just to neural network problems. 

The principle disadvantage of the method is the amount of processing needed to evaluate and store 
a large population of candidate solutions and converge to an optimum. 

1 The Algorithm 

The basic operations are (1) sefection based on fitness, (2) recombination of genetic material by crossover, 
and (3) mutation. The algorithm operates on a population of many units. Eaeh unit has a bit string 
-its genetic code -that encodes its solution to the given problem. A problem-specific function decodes 
the bit string, evaluates the solution, and returns a score which is translated into a fitness score. Units 
are selected for mating in proportion to their fitness scores and pass on their characteristics to the next 
generation. Since the offspring of successful parents tend to displace less successful individuals and 
also tend to be successful in turn, the average fitness of the population tends to increase over many 
generations and approach an optimum. 

The algorithm starts with an initial population of N units with random parameters encoded in a 
binary bit string. Larger population sizes generally make the algorithm more likely to find a good 



Figure 1: SeIection. Units are selected for reproduction with probability propor- 
tional to their fitness. Units with higher fitness (corrsponding to more slots on the 
roulette wheel) are more likely to be chosen than units with lower fitness, but all 
units have some chance of being chosen. 

solution, but, of course, require more processing time. The following steps are repeated until a solution 
is found. 

Evaluation. Evaluate each unit and assign it a non-negative wore (higher= better). Normalize by 
dividing by the sum of ail scores to obtain fitness scores fi in the range 0-1. If any unit satisfies 
the goal criteria, discard the other units and stop. 

Reproduction. On N trials, select an individual with probability fi and copy it to the mating popula- 
tion. Units can be selected with probability fi in the following way. Assign to each unit a segment 
of the interval 0-1 proportional to its fitness. If, for example, there are three units with normalized 
fitness scores f l  = 0.1, fi = 0.7, and f3 = 0.3, then assign fi  the interval 0-0.1, f2 the interval 
0.1-0.7, and f2 the interval 0.7-1.0. Then choose a random number between 0 and 1; if it fdIs in 
the i th interval, then select unit i. Fig. 1 iilustrates this by analogy to a roulette wheel where each 
unit has a number of slots proportional to its fitness. 

Because of the element of chance, the number of times a unit reproduces will not be exactly 
proportional t o  its fitness, but, on average, if unit i has twice the fitness of unit j, then it will 
usually have about twice the offspring. Units with very low fitness ratings will rarely reproduce 
and face extinction. 

Crossover. Divide the mating population into pairs and mix their genetic codes by crossing the bit 
strings a t  one or two random points. Fig. 1 illustrates the operation. If units A and B have 
parameter strings 1101001 1100 1 and 01 1011100101, for example , then they would. produce 
offspring 01 1100111001 and 11001 1100 101 if the crossing point is after position 3. The probability 
that crossover will occur is set by p,; for p, < 1, there is some chance that  the parents simply 
survive in the next generation unaltered by crossover. This helps to preserve good solutions since, 
if a particular solution is good, some copies of it are likely to survive unchanged. Typical M ~ U ~ S  

are p, = 0.6 to 0.9. 

Mutation. For each unit in the new set, flip each bit with some small probability; e.g. p,,, _< 0.001. The  
number of mutations should be small; otherwise the algorithm deteriorates into random search. 
Its main purpose is t o  maintain diversity in the population. In general, p, should be chosen so  
that  mutations occur in only a very small percentage of the population -in only one or two units 
for moderately sized populations. 



Before crossover 

After crossover (at position 3) 

A 

Figure 2: Crossover. Crossover mixes genetic codes inherited from two parents 
by crossing the bit strings at one or two random points. The bit strings encode 
characteristics of the parents so the ofspring receives traits of both parents, but is 
not identical to either. The crossing point is random, so the mix of characteristics 
transferred varies with each mating. 

1 .I Variations 

Many variations of the algorithm have been proposed. In the basic algorithm, all units reproduce and 
large portions of the parameter strings are exchanged during reproduction so it is possible for good 
solutions to be lost. One remedy is to allow only the most successful fraction of the population to mate, 
with their offspring replacing the less successful part of the population. Since the offspring do not replace 
their parents. this helps to preserve good solutions. 

Other variations extend the natural evolution analogy by incorporating features such as paired chro- 
mosomes (diploidy), dominance, inversion, niche specialization, etc. Some versions are Lamarkian, 
allowing adaptations made in the lifetime of a parent to be passed on to the offspring. Some vary the 
number of units that reproduce at each cycle. Some allow the population size to flucuate and some 
maintain several subpopulations with only limited mixing. Goldberg [12] reviews many of these cases. 

1.2 Schemata 

The core idea of the algorithm is that if a string contains a combination of bits, say 011 ** * *01***, that 
are strongly correlated with good solutions, the string is likely to be reproduced in the next generation. 
A particular template of l's, 0's and *'s (don't cares) in the bit string, e.g., 011 + * * *01* **, is called a 
schema. 

1.3 The Effect of Crossover 

Crossover is responsible for most of the adaptive power of the algorithm. Random crossover during 
mating mixes bit strings from both parents and and produces offspring that have characteristics of both 
parents, but which are not identical to either. Hopefully the offspring will inherit useful bit combinations 
from both parents and be better than either. 

The defining length of a schema is distance between its most separated defining bits. The distance 
between the leading 0 and the final 1 of 01 1 * * *01 + **, for example, is 8 bits. If a schema has a 
long defining length (if it contains significant bits on both ends of the string, for example), it is likely to 
be broken durirtg crossover. Thus, schemata with short defining lengths are more likely to survive than 



longer ones. This tends to make the algorithm favor low order, less complex, solutions over high order 
ones -usually a desirable feature for a learning algorithm. 

1.4 The Effect of Mutation 

Mutation plays a rather small part in the algorithm. If the mutation rate is too large, the algorithm 
tends to degenerate into an inefficient random search. When all the units are very slrnilar, however, as 
in the final stages of convergence, crmsover creates few new solutions and mutation becomes important. 

Since ali defining bits of a schema must survive mutation for the schema to survive, schemata with 
fewer defining bits are more likely to survive than those with many defining bits. This also favors robust 
solutions. In a physical system, for example, small amounts of noise or parameter variation would be 
less likely to disturb a low order schema. 

The combination of fitness selection, crossover, and mutation favors schemata with above average 
fitness, short defining length, and low order. 

1.5 Fitness Scaling 

Since the grading function can be arbitrarily chosen, it is useful to scale the raw scores to obtain the 
fitness scores. If all units receive scores in the range from 1000 to 1005, for example, the best solutions 
would have very little advantage over the worst units and the search will be essentially random. This 
might occur in late stages of the algorithm when many units are clustered around a good solution. 
Likewise, in the early stages, most of the units might have low scores; if some unit makes a significant 
(but not decisive) improvement and gets a much higher score, it would dominate the next generation, 
resulting in a premature loss of genetic diversity. This effect is especially important when populations 
are small. 

An appropriate scaling can help avoid these proble&. A linear transformation is ohen used to map 
the raw scores f to fitness values f' 

f ' = a f  + b .  

In choosing a and b ,  it is desirable that favg -- fLVg so that one expects each average unit to produce 
one offspring. The number of offspring for the best unit is controlled by ensuring f;, = C~.irf~vg, 
where Cmurr is the desired number of offspring for the b a t  unit. For small populations (n = 50 to loo), 
values of CmUct = 1.2 to 2 are suggested [12]. If this scaling results in negative scores, set them to 0. 

Other methods of fitness scaling are discussed in [12]. 

2 4 6 8 10 12 14 16 

X 

Figure 3: The function considered in the example. 



2 Example 
Fig. 3 illustrates the function 

J(z) = 64 - (z - 7)2. 

for 0 + < 16. Let the population consist of'four units A, B, C, and D with solutions z encoded in 
4-bit strings. 

The  units are initialized to random values for the first generation. 

After random selection weighted by fitness the population is A, B, D, D. Unit C with fitness 0 has 
died and unit D, with the highest fitness, is selected twice. 

Generation 1 

A mates to D and B mates to D ,  both with crossover after the 3rd bit 

unit 
A 
B 
C 
D 

Mutation flips the 3rd bit in a. 

The resulting population after one generation is 

z 

(1) 
(9) 
(15) 
(6) 

T h e  average ;core has gone from 37.75 to 57.75. 

0 0 0 1 
1 0 0 1 
1 1 1 1  
0 1 1 0 

Generation 2 
unit 

a 
b 
c 
d 

J 

28 
60 
0 

63 

fi 
0.1854 
0.3973 
0 

0.4742 

z '  

(2) 
(8) 
(7) 
(7) 

J 
39 
63 
64 
64 

0 0 1 0 
1 0 0 0 
0 1 1 1  
0 1 1 1  

fi 
0.1696 
0.2739 
0.2782 
0.2782 



Application t o  Neural Network Design 

The Genetic Algorithm is not specific to neural networks; it is a general optimization/search method 
that can be applied to neural networks in a number of ways -from simply determining a few weights in a 
predetermined network to choosing the entire architecture: the number of layers and nodes, connections, 
weight values and node functions. Since it doesn't need gradient information, it can be used on networks 
with binary units and/or quantized weights. 

SeveraI things should be considered in applying the algorithm to neuraI networks. One of the more 
important is the representation -how the problem parameters are encoded in the bit string. Since 
neural networks often have many weights, the string can be long. Since crossover breaks the bit string, 
it is helpful to put related parameters close together in the bit string as much possible. 

A similar problem is that the weights tend to be c!oseiy reiated, with the values of weights in the 
find layers depending on the values of many weights in preceeding layers. This means that the useful 
schemata often have high order and are easily broken by mutation and crossover. This interdependence 
leads some [9] to eliminate the crossover operation; this is not typical however. 

The following paragraphs describe some recent appIicatbns of the algorithm to neural network design. 

LISP Representation 
Koza and Rice 1191 describe an interesting use of the algorithm to determine both the weights and 
connection archictecture of a neural net. The network architecture is encoded in a LISP expression as 
a tree structure describing the network and the crossover operation exchanges subtrees between two 
parents. 

Figure 4: Representation of a neural network as a LISP expression. 'W' represents 
a multiplication operation by an input weight and 'P' represents a summation and 
the node nonlinearity. 

Training and Evaluation 
Keesing and Stork [16] include a small amount of training in the fitness evaluation function. Although - 
one set of weights, A, could be worse that another set B, the set A might be much better than B after a - 
small amount of training because of differences in the local terrain of the error space. In this case, unit 
A is closer to the solution than B even though it's initial performance is worse. Without training, the 
algorithm learns only the fitness of the initial point in the space. With training, each unit attempts to 
find the best spot reachable from its initial position and its fitness reflects the quality of a small area 
around the initid point so the algorithm search= more of the parameter space. 

As in Darwinian evolution, the fitness of each unit is evaluated based on its performance after 
adaptation, but the original parameters are passed on during reproduction, rather than the adapted 
parameters. Since the performance of a unit (in a sense) reflects the nearness of good solutions, and 



since reproduction will tend to produce more offspring near good units, the algorithm will tend to 
converge to good solutions. 

Only a small amount of training is allowed, typically 5-10% of what would be required to train to 
completion. If all units were trained to convergence, they could converge to the same or equivaient 
solutions and all units would have the same reproductive fitness regardless of the quality of their genes. 
Keesing and Stork also found that evolution is fastest when each network undergoes a different number 
of training cycles. Over a number of generations, this effectively measures the sensitivity of the gene to 
learning and rewards units which improve quickly with a small amounts of additional learning. 

Subpopulations 
Isolation of subpopuIations is one factor that contributes to the development of new species in nature. 
Whi tley and Starkweather [27] find that using many subpopulations with limited mixing &lows aggressive 
optimization within each subpopulation while preserving diversity in the total population. This is said 
to be a more effective in preserving diversity than simply increasing the population size. One-at-a-time 
reproduction is used with fitness based on rank. The offspring don't replace their parents; they replace 
the worst units so good solutions are certain to survive. 

GA Pruning of Neural Networks 
Whitley and Bogart 1261 use the Genetic Algorithm to prune neural networks. The bit string contains a 
bit for each weight; the bit is 1 if the connection is retained and 0 if it is pruned. The result-is networks 
that are smaller, learn faster, have a low variance in training time, and may generalize better. 

GA to Select Bit String Representation 
Since crossover tends to break the string near the middle (on the average), it is useful to put related 
parameters close together rather than at opposite ends of the string, for example. It is not always obvious, 
however, which representation is best. Marti [20, 211 considers the influence of the representation on 
a recurrent neural network and uses a twcAevel G A  to optimize the representation. Populations of 
networks using different representations compete on the second level while, within each popuiation, GA 
is used to find the optimum weights for the given representation. 

G A  for Selection of Feat~rres 
The algorithm does not do away with the need for good data sets. In particular, if the training set 
is small, good generalization cannot be expected simply because a network has been found that does 
well on the training set. Chang and Lippmann [TI uses the algorithm to select features for (non-neural) 
classification systems. They also use the algorithm to reduce the number of reference patterns for a 
K-nearest-neighbor classifier without significantly affecting performance. 

NN vs. GA: Incremental Change 
Wieland [28] compares gradient descent and Genetic Algorithm methods to create recurrent networks 
for pole-balancing sys terns. Both met hods are successful in finding solutions, but when small changes 
are made to the control task, such as increasing the length of the pole by a small amount, the gradient 
method adapts quickly while the Genetic Algorithm takes much longer; i.e., one dozen generations to 
adapt to a 1% change. 

NN vs. GA: Scaling 
Spears and De Jong [24] suggest that neural networks trained by gradient descent may be better (learn 
faster) for small problems while Genetic Algorithms may scale better for large ones. 

Discussion 

The Genetic Al-gorithm is general stochastic optimization/search method that has been used successfully 
in a number of ways for neural network design. Its main advantages are that it requires very little 
problem-specific information and it can escape from local maxima (minima). The dgorithm itself is 



very easy to apply and can be computed efficiently. Most of the time is usually spent in the problem- 
specific evaluation function. 

Unlike some other stochastic search techniques, it doesn't require detailed problem-specific knowledge 
in order to generate new search candidates. 

I ts  main disadvantage is the amount of processing required to evaluate and store a large number 
of different network configurations. It is worth noting, however, that the candidate solutions can be 
evaluated independently so that N parallel processors should give close to a factor of N reduction in 
computation time. 

References 

[I] D. H. Ackley. A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic Publishers, 
1987. 

[2] D. H. Ackley and M. S. Littman. Learning from natural selection in an artificial environment. In 
Proceedings of the Iniernational Joint Conference on Neural Networks, page 189, Washington, DC, 
1990. vol. I. 

[3] L. Booker. Improving search in genetic algorithms. In L. Davis, editor, Genetic Algorithms and 
Simulated Annealing, Morgan Kaufmann, 1900. 

[4] L. Booker. Using classifier systems to implement distributed representations. In Proceedings of the 
International Joint Confemnce on Neurnl Networks, page 39, Washington, DC, 1990. vol. I. 

[5] L.B. Booker, D.E. Goldberg, and J.H. Holland. Classifier systems and genetic algorithms. In J. 
Carbonell, editor, Machine Learning: Paradigms and Methods, MIT Press, 1990. 

[6] M. Caudill. Evolutionary neural networks. A I  Erpert, hlarch 1991. 

[7J E. I. Chang and R. P. Lippmann. Using genetic algorithms to improve pattern classification perfor- 
mance. In R.P. Lippmann, J.E. hloody, and D.S Touretzky, editors, Advances in Neurnl Information 
Processing (J), pages 797-803, 1991. (Denver 1990). 

[8] L. Davis. Mapping classifier systems into neural networks. In D.S. Touretzky, editor, Advances in 
Neunrl Informafaon Processing Systems ( I ) ,  pages 49-56, 1989. 

191 H. de Garis. Genetic programming: modular neural evolution for Darwin machines. In Proceedings 
of the International Joint Conference on Neurul Networks, page 194, Washington, DC, 1990. vol. I. 

[lo] N. Dodd. Optimisation of network structure using genetic techniques. In Proceedings of ihe Inier- 
national Joint Conference on Neural Networks, pages 965-970, San Diego, 1990. vol. I. 

(111 S. Dominic, R Das, D. Whitley, and C. Anderson. Genetic reinforcement learning for neural 
networks. In Proceedings of the International Joini Confennce on Neurnl Nciworks, pages 71-76, 
199 1. voi. 11, Seattle, Wa. 

[I?] D. E. Goldberg. Genetic Algorithms in Search, Optimizution, & Machine Learning. Addision- 
Wesley, Reading, MA, 1989. 

[13] S. A. Harp and T. Samad. Genetic optimization of self-organizing feature maps. In Proceedings of 
the International Joini Conference on Neuml Networks, pages 341-346, 1991. vol I, Seattle, Wa. 

[14] S. A. Harp, T. Samad, and A. Guha. Designing appiication-opecific neural networks using the 
genetic algorithm. In D.S. Touretzky, editor, Advances m Ncuml In fonr.ation Processing Systems 
(Z), pages 447-454, 1989. 



(151 J. H. Holland. Adaptation in Natural and Arlificial Systems. University of Michigan Press, Ann 
Arbor, MI, 1975. 

[16] R. Keesing and D. G. Stork. Evolution and learning in neural networks: The number and dis- 
tribution of learning trials affect the rate of evolution. In R.P. Lippmann, J.E. Moody, and D.S 
Touretzky, editors, Advances in Neural In formation Processing 0, pages 804-810, 1991. (Denver 
1990). 

[17] J .  R. Kaza. A genetic approach to the truck backer upper problem and the inter-twined spiral 
problem. In Proceedings of the Internaiional Joint Confennce on Neuml Networks, pages 310-318, 
1992. vol. IV, (Baltimore, Ma.). 

[18] J. R. Koza and M. A. Keane. Cart centering and broom balancing by genetically breeding popula- 
tions of control strategy programs. In Proceedings of the International Joint Confennge on Neural 
Networks, page 198, Washington, DC, 1990. vol. I. 

(191 J. R. Koza and J. P. Rice. Genetic generation of both the weights and architecture for a neural 
network. In Proceedings of ihe International Joint Confennce on Neural Network,  page 397, 1991. 
vol. 11, Seattle, Wa. 

[20] L. Marti. Genetically generated neural networks I: representational effects. In Proceedings of the 
Internaiional Joint Conjennce on Neural Networks, pages 537-542, 1992. vol. IV, (Baltimore, Ma.). 

[21] L. Marti. Genetically generated neural networks 11: searching for an optimal representation. In 
Proceedings of the International Joini Confemnce on Neuml Networks, pages 221-226, 1992. vol. 
11, (Baltimore, Ma.). 

[22] I. Rechenberg. Artificial evolution and artificial intelligence. In R. Forsyth, editor, Machine Learn- 
ing, Principles and Techniques, Chapman and Hall Computing, 1989. 

[23] D. Rogers. Predicting weather using a genetic memory: a combination of Kanerva's sparse dis- 
tributed memory with Holland's genetic algorithms. In D.S. Touretzky, editor, Advances in Neural 
Information Processing Sysiems (Z), pages 455-464, 1989. 

[24] W. M. Spears and K. A. De Jong. Using neural networks and genetic algorithms as heuristics for 
NP-compiete problems. In Proceedings of the International Joint Confennce on Neural Networks, 
page 118, Washington, DC, 1990. vol.. I. 

[25] D. Whitley. The GENITOR algorithm and selection pressure: Why rank-based allocation of repro- 
ductive trials is best. In Proceedings Third International Confennce on Genetic Algoriihms, June 
1990. Washington DC. 

[26] D. Whitley and C. Bogart. The evolution of connectivity: Pruning neural networks using genetic 
algorithms. In Proceedings of the International Joint Confennce on Neunzl Networks, page 134, 
Washington, DC, 1990. vol. I. 

[27] D. Whitley and T. Starkweather. Optimizing small neural networks using a distributed genetic 
algorithm. In Proceedings of the Internatronal Joint Confennce on Neurnl Networks, page 206, 
Washington, DC, 1990. vol. I. 

[28] A. P. Wieland. Evolving controls for unstable systems. In Connectionist Models: Pmceedings of the 
1990 Summer School, page 81, Morgan Kaufmann, 1990. 

+& 


	1.tif
	2.tif
	3.tif
	4.tif
	5.tif
	6.tif
	7.tif
	8.tif
	9.tif
	91.tif

