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Abstract- Cohen's generalized time-frequency distribution 
(GTFR) requires the choice of a two-dimensional kernel. The 
kernel directly affects many performance attributes of the 
GTFR such as time resolution, frequency resolution, realness, 
and conformity to time and frequency marginals. A number of 
different kernels may suffice for a given performance constraint 
(high-frequency resolution, for example). Interestingly, most sets 
of kernels satisfying commonly used performance constraints 
are convex. In this paper, we describe a method whereby kernels 
can be designed that satisfy two or more of these constraints. 
If there exists a nonempty intersection among the constraint 
sets, then the theory of alternating projection onto convex sets 
(POCS) guarantees convergence to a kernel that satisfies all of 
the constraints. If the constraints can be partitioned into two 
sets, each with a nonempty intersection, then POCS guarantees 
convergence to a kernel that satisfies the inconsistent constraints - 
with minimum mean-square error. We apply kernels synthesized 
using POCS to the generation of some example GTFR's, 
and compare their performance to the spectrogram, Wigner 
distribution, and cone kernel GTFR. 

T HERE are many applications for time-frequency rep- 
resentations (TFR's). The most commonly used TFR 

is the spectrogram [I]. Other approaches include wavelets 
[2] and generalized time-frequency representations (GTFR's) 
[ 5 ] .  With a spectrogram, a window is chosen in accordance 
with desired performance properties, most commonly, a time 
resolution versus frequency resolution tradeoff. Similarly, the 
GTFR requires a kernel that is chosen in accordance with 
desired performance attributes. Good time resolution, for ex- 
ample, is achieved when the two-dimensional kernel is zero 
outside a cone [9], [lo]. The requirement that a GTFR exhibits 
proper temporal and frequency marginals can also be translated 
to structural constraints on the kernel. The set of all kernels 
satisfying the frequency marginals is convex. The set of 
all cone kernels also is convex. Remarkably, most other 
commonly used GTFR performance constraints, when imposed 
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on the kernel, result in a convex set of permissible kernels. 
Finding a kernel that satisfies two or more constraints then 
is equivalent to finding a point in the intersection of the 
corresponding (convex) constraint sets. 

An open issue is whether a given kernel exists which 
satisfies, or approximately satisfies, two or more constraints 
simultaneously. This paper shows how the technique of al- 
ternating projections onto convex sets ( P O C S )  can be used 
to synthesize kernels which satisfy multiple constraints. We 
empirically prove that a kernel satisfying all commonly used 
performance attributes does not exist. A kernel designed on a 
subset of desired performance attributes is shown to perform 
superiorly to some other commonly used fixed kernel GTFR's. 

11. PRELIMINARIES 

The generalized time-frequency representation (GTFR) of 
a temporal signal z( t )  can be written as [4], [5]  

where $ ( t 7  7 )  is the kernel of the GTFR and u is the fre- 
quency variable. The specific choice of the kernel dictates the 
performance of the GTFR. Typically, constraints are placed 
on the kernel in order to enhance various characteristics of the 
GTFR [3]-[ 101. 

In order to facilitate discussion, we define the following 
Fourier transforms on the kernel: 

and 
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TABLE I 
KERNEL FOR COHEN'S GTFR EXPRESSED IN VARIOUS FOURIER TRANSFORM 
DOMAINS. EACH A RROW CORRESPONDS TO A I-D FOURIER TRANSFORM 

t f 

(a) (b) 

Fig. 1 .  A Cone and bow-tie constraints. On the (t,  T) plane shown in (a), the 
kernel d(t ,  7) is zero outside the cone shown if it is to obey the time resolution 
constraint. The set of all such functions obeying this constraint is convex. The 
dual frequency resolution constraint requires @(f, u )  to be zero outside the 
bow tie shown in (b). The set of all functions obeying this constraint is also 
convex. 

Using the kernels summarized in Table I, we can straightfor- 
wardly state some of the commonly used constraints imposed 
on the GTFR and their corresponding interpretation as kernel 
constraints. 

1) Time Resolution Constraint: As is illustrated in 
Fig. l(a), the requirement that the input x( t )  on the interval 
-T 5 t  - < 5 T only contribute to the GTFR at time t - < 
is achieved when the kernel is zero outside a cone [5], [9]. 
In other words, 

where the rectangle function II(t) is one for It1 5 and is 
zero otherwise. 

2 )  Interference Suppression Constraint: The magnitude of 
the interference at frequency f between two tones at frequen- 
cies f l  and f 2  is zero when 

This equation results by using the signal x( t )  = 
exp (j27r f l t )  + exp (j27r f2t) in (1). This constraint is 
met if 

where O(u) is an arbitrary one-dimensional function and S( f )  
is the Dirac delta impulse. This constraint, also discussed by 
Loughlin et al. [ l l ] ,  is equivalent to requiring that 

A relaxed interference constraint is 

where A, with units of frequency, can be thought of as an 
interference bandwidth. If A = 0, there is no interference. 

3) Frequency Resolution Constraint: The GTFR in (1) can 
also be written as 

Comparing with (1) immediately suggests a frequency res- 
olution constraint that is the dual of the cone constraint in 
(2): 

where the bandwidth B is the frequency dual of T. 
For finite B and T, the constraints in (2) and (7) cannot 

be satisfied simultaneously. We are therefore motivated to 
formulate the following relaxed version of (7). The kernel is 
constrained to satisfy the bound 

where a ( f ,  u )  is a given positive function such as 

and p and y are given constants. The bandwidth B can 
here be interpreted as the 3 dB point from the maximum 
(B = In 2 / P  ). Note, also, that the interference constraint in 
(5) can be imposed by the bound in (8), possibly in a relaxed 
form. Positive functions other than the exponentials in (9) can 
also be used. We found this bound to give good results. 

4) Frequency Marginal Constraint [3]: Define the power 
spectral density of a signal x( t )  by 

where the autocorrelation of the signal is 

A desirable property of a GTFR is the frequency marginal 
constraint 

w 

P(u)  = C(t ,  u )  dt. 

This is clearly achieved if 

and is equivalent to requiring that 
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5 )  Time Marginal Constraint [3]: Similar to the previous 
frequency marginal, we desire to have an instantaneous power 
marginal: 

This is achieved when 

(b( f .0)  = 1. (1 3) L' 
Fig. 2. Set Cn on the left is convex. All line segments with endpoints S 

6 )  Realness Constraint: A sufficient condition for C(t, u) and I.' within the set are totally subsumed within the set. The set C b  on the 

to be real is that the kernel be conjugately symmetric: right is clearly not convex, as illustrated by the counterexample shown. 

IV. POCS 

This is equivalent to requiring that 6 ( t ,  u) be real: All of the constraints in the previous section are convex 
in the sense that, if the kernels and $z satisfy any one R6(t. u) = &(t ,  u )  (I5) given constraint, then for any o in the interval 0 < a < 1, 

where R denotes the real part of. the kernel a& + (1 - a)+:! satisfies the same constraint. For 
7) Time Symmetry Constraint: At a given point temporal example, if 41 and $2 obey the cone constraint, then so does 

point, past and future time are treated symmetrically if + ( 1  - a)$'. If dl and 4' obey the frequency marginal 
constraint, then so does + ( 1  - a)(bp, etc. The convexity 

4 ( f 1 7 )  = 4 * ( f ,  -7). (16) of the constraints allows the use of the powerful synthesis 

Note that, assuming differentiability, it follows that 

This and (13) constitute the instantaneous frequency constraint 
P I .  

8 )  Frequency Symmetry Constraint: Similarly, for fre- 
quency symmetry, we impose the constraint 

Again, assuming differentiability, this requires that 

Note that imposition of any two of the previous three con- 
straints imposes the third. Equations (18) and (12) constitute 
the group delay constraint [3]. 

9 )  Nonnegativity Constraint: We may wish to require that 

where 14.) is the unit step. In other words, the real part of 
$(t.  T )  is nonnegative. 

10) Finite Area Constraint: A constraint that is useful in 
the iterative synthesis procedure to be described later in this 
paper is 

procedure of alternating projection onto convex sets (POCS).' 
POCS was initially introduced by Bregman [12] and Gubin 
et al. [13], and was later popularized by Youla and Webb 
[I41 and Sezan and Stark [15]. POCS has been applied to 
such topics as sampling theory [16], fuzzy set theory [17], 
and artificial neural networks [18], [19]. The synthesis of 
GTFR kernels using POCS described in this paper parallels 
the synthesis of windows proposed by Goldburg and Marks 
[20]. A superb overview of POCS with other applications is 
in the book by Stark [21]. 

We now present an abbreviated introduction to POCS. 

A. Convex Sets 

Let C denote a set of functions. The set C is said to be 
convex if, for every X E C and Y E C, 

Geometrically, this is interpreted as shown in Fig. 2. A set 
is convex if, for every two points chosen within the set, all 
of the points in the line segment connecting the two points 
are also in the set. The set on the left in Fig. 2 is convex. 
Geometrical shapes corresponding to convex sets include balls, 
line segments, planes, boxes, and quadrants. The set shown on 
the right in Fig. 2 is clearly not convex. 

B.  Convex Set Projections 

@(O,  0) = y > 0 The projection of an arbitrary function Z onto a (compact) 
(20) 

convex set C is the unique function in C that is closest to Z 
or, equivalently, in the mean-square sense. This is geometrically illustrated in 

/.I 
Fig. 3. Denote the projection operator by PC and the projection 

$(t.  7 )  dt d~ = y. by PcZ. Note that, if Z E C, then PcZ = Z. In other words, 
if a function is already within the set, then the projection is 

This constraint can prohibit the projection onto convex sets an identity operation. It follows that = PC. 
iteration from converging to the degenerate that the 'The a[rer.naring term is implicit in the POCS paradigm, but traditionally 
kernel is everywhere identically equal to zero. not included in the acronym. 
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The relaxed version of frequency resolution is 

Fig. 3. As illustrated here, the projection of a function Z onto the convex 
set C is that unique point in C that is closest to Z in the mean-square sense. 
The result of the projection is the point PcZ. 

TABLE I1 
SUMMARY OF THE CONVEX SETS AND THEIR 

PROJECT~ONS OF COHEN.S CLASS KERNEL 

Convex Set 
Number Projection 

c4 (12) @(O, T) = 1 
c5 (13) @ ( f , o )  = 1 
cs (14) [ 4 f .  r )  + d * ( - f . - r ) ] / 2  
ci (16) [@(f,  7)  + d * ( f ,  - ~ ) ] / 2  
cu (17) [ d ( f ,  7 )  + @*(-f. ~ ) 1 / 2  
C9 (19) g(t .  T) x p[$( t .  r ) ]  

Cl0 (20) @(O, 0 )  = -, 

We illustrate with sample projection operators from the 
convex constraints of the kernels in the previous section. 
A summary of convex sets and corresponding projections is 
shown in Table 11. A more extensive list of projection operators 
can be found in Youla and Webb's.paper [14] and in Stark's 
book [21]. In the examples here, we will use the form of 
the kernel in Table I that most easily explains the projection. 
Any of the four choices of domains can be accessed from 
any other by the appropriate Fourier transform. Inherent in the 
projection notation is the assumption that the kernel is in the 
proper domain. 

1 )  Time and Frequency Resolution Projections: For time 
resolution (Constraint I)), the signal outside the cone on the 
( t ,  r )  plane is simply set to zero: 

2 )  Realness and Symmetry Constraint: The realness con- 
straint 6) can be imposed by the projection operator 

or, equivalently, in the ( f ,  T )  plane, 

Similarly, for the symmetry constraints in (16) and (17), the 
respective projection operators can be written as 

and 

3) Relaxed Interference Projection: Motivated by ( 5 ) ,  the 
projection operator corresponding to the relaxed interference 
term in constraint 3) is 

Note that if A is large enough and B is small enough, 
the frequency resolution projection in (21) subsumes this 
projection. 

4 )  Nonnegative Projection: The nonnegativity constraint 
can be inposed by the projection 

5 )  Marginal and Cone Constraint: In some cases, projec- 
tions can be best described by the intersection of two or more 
convex constraints. Combining the time resolution constraint 
and the frequency marginal constraint in (lo), we can write the 
projection on the intersection of the three sets as the convex 
set operator 

S ( t ) ;  r = 0 

~ ~ , ~ ~ , ~ ~ , 4 ( t ~  7 )  = 

otherwise 

where n denotes intersection, h ( . )  is the Dirac delta function, 
and 

Combining the time resolution and the finite area constraints, 
we have the projection 

Similarly, for frequency resolution constraint 3), the area pclnc,,4(t, 7 )  = [4 (6  7 )  + ~ ] n  
outside the bow tie on the ( f ,  u )  plane is set to zero: 

where 



OH et a / . :  KERNEL SYNTHESIS FOR GENERALIZED TIME-FREQUENCY DISTRIBUTIONS 

Fig. 6. A number of different limit cycles can exist when three or more 

Fig. 4. Alternating projection between two intersecting convex sets cA and Convex Sets do not intersect. Here, projecting from set .4 to B to C gives a 

CB iteratively approaches a fixed point Z, common to both sets. If there is different limit than projecting them in reverse 

more that one point in the intersection, the fixed point will be a function of 
the initialization of the interation that, in this example, is Zo. 

Fig. 5. Alternating projection between two nonintersecting convex sets CA 
and CB iteratively approaches a limit cycle between two points in each set. 
In this illustration, these points are ZA and ZB. Note that Z A  is the point 
in CA that is closest to CB and vice versa. The solution is thus a minimum 
mean-square error solution. Although it is not always the case, the limit cycle 
here is independent of initialization Zo. If there exists more than one possible 
limit cycle, each will have points separated by the same distance. 

C .  Alternating Projections 

There are three fundamental lemmas in the theory of POCS. 
We will state each lemma and illustrate it g e o m e t r i ~ a l l ~ . ~  

Lemma I :  Alternately projecting between two or more con- 
vex sets with a nonempty intersection will iteratively converge 
to a point common to all sets [14], [21]. 

This is illustrated in Fig. 4. Note that the point of con- 
vergence generally depends on the initialization. If, however, 
there is a single point of intersection (e.g., two lines), then 
convergence will be independent of the initialization. 

Lemma 2 :  Alternately projecting between two nonintersect- 
ing convex sets will converge to a limit cycle between points 
in each set closest to the other set [20]. 

This is illustrated in Fig. 5. This property can be used to find 
the best member in a set that is closest to another set in the 
mean-square sense. Note that, as can be visualized in the case 
of two parallel line convex sets, the limit cycle is not unique. 

This property generalizes to more than three sets in the 
following sense. Let two or more constraints have a nonempty 
intersection C,. Let two or more other constraints have a 

Fig. 7. One quadrant of the symmetric cone kernel in the ( t ,  T )  plane 
synthesized using all the POCS constraints listed in this paper. The iteration 
reached a limit cycle. Thus, all of the constraints could not be simultaneously 
met for finite T and B. 

nonempty intersection Cb. If C, and Cb do not intersect, then 
POCS will converge to a limit cycle between points convex 
sets C, and Cb, each closest to the other in the mean-square 
sense. 

Lemma 3: Alternately projecting between three or more 
nonintersecting convex sets will result in a limit cycle that 
can be dependent on both the ordering of the projections and 
the initialization [22]. 

This final lemma states, unfortunately, that POCS can 
yield results for questionable worth when three or more of 
the convex sets do not intersect. Two different limit cy- 
cles corresponding to different orderings of the projection 
are geometrically illustrated in Fig. 6 for the case of three 
nonintersecting sets. 

V. POCS KERNEL SYNTHESIS 

The use of POCS in the design of GTFR kernels is now 
evident. We choose from a menu of convex constraints that 
we desire our GTFR to obey. By alternately projecting be- 
tween the corresponding convex sets, we hope to synthesize a 
corresponding kemel. If the convex sets meet the suppositions 
of Lemma 1, a kernel meeting all constraints will be generated. 
If the constraints in Lemma 2 are met, we will be guaranteed 
that the constraints have been met in a mean-square sense. This 
may or may not be acceptable, depending on the magnitude of  o or continuous variable functions, POCS converges, at worst, weakly. 

POCS applied to discrete-time signals, however, always displays strong the mean-square Note, however, that this is a problem 
convergence. of the problem rather than that of the synthesis method. In 
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Fig. 8. Waterfall and gray-level display of two linearly converging chirps 
(a) and two-tone signal with transition (b) using the POCS-designed kernel in 
Fig. 7. There is significant smoothing between the tones. 

other words, the distances between the constraint sets are too 
large to allow for any acceptable solution. 

To illustrate the potential use of POCS in kernel design, 
we present two preliminary examples. Both examples were 
computed on a 128 x 128 grid. The kernels in both examples 
are both the cone and bow-tie constraints. The value of T in 
each case corresponded to truncating the grid so that the cone 
had a peak-to-peak height of 64. Both examples resulted in a 
kernel that was positive and symmetric. 

Example I used, in addition, both marginal constraints. We 
take the alternating projection between the set C S , ~  f l C3,2 
and C1 n C4 n C5 n Cg. The resulting kernel is pictured in 
Fig. 7. It resembles a truncated Born-Jordan [4] kernel which 
has a 1/)r1 taper within the cone. Indeed, for B = oo and 
T = co, the Born-Jordan kernel satisfies all the constraints. 
Specifically, 

satisfies the cone constraint in (2). Furthermore, the marginal 
constraints in (11) and (13) are met, as are the symmetry 

Fig. 9. One quadrant of the symmetric cone kernel on the (t, 7) plane 
synthesized using all the POCS constraints listed in this paper except the 
power spectral density and instantaneous power marginals. 

Fig. 10. Waterfall and gray-level display of two linearly converging chirps 
(a) and two-tone signal (b) using the POCS-designed kernel in Fig. 9. The 
result is quite good. 

constraints of (14), (16), and (17), the realness constraint of 
(15), and the nonnegativity constraint in (19). Furthermore, 
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Fig. I I. Use of a cone-shaped kernel with uniform Hanning taper in the T Fig. 12. Spectrogram of the two-chirp and two-tone signal. 
direction on the two-chirp and two-tone signal. The 354B range is the same 
as in Fig. 10. 

a 35 and 40 dB floor-to-peak range, respectively. Compare 
this with the cone-shaped kernel result in Fig. 11 with a 

satisfies the untruncated bow-tie constraint. Historically, this uniform Hanning window taper in the T direction. The same 
POCS result first prompted the authors to investigate cone 35 dB range is used. For this example, the POCS kernel 
kernels with linear taper [61, 191. m e  iterative synthesis of seems to perform better in terms of interference suppression, 
this kernel did not converge. This empirically proves that. for To complete the similarly scaled plots of the 
the kernel dimensions used, there does not exist a kernel that spectrogram and Wigner distribution for the same signals are 
satisfies all of the constraints. Otherwise, the kernel would shown, respectively, in Figs. 12 and 13, 
have converged. Iteration was stopped on the cone projection. 
The result is shown in Fig. 7. Application of this kernel to 
two converging linear chips [8], [ lo]  resulted in the 25 dB 
waterfall and 30 dB gray level display in Fig. 8(a), and that of 
the two-tone signal with transition in Fig. 8(b). The distance 
from floor to peak is 25 dB. 

Example 2 removed the marginal constraints. We take the 
alternating projection between C3,1 n C3,2 and Cl  f' Cs  n Clo.  
We terminated iteration at the set Cl f' C9.  This resulted is the 
kernel in Fig. 9. The outcome of the POCS design, smoothed 
with a Hanning window, was applied to the same linear 
chirp and two-tone signal problem. The result of the linear 
chirp and two-tone signal is shown in Fig. 10(a) and (b) using 

VI. CONCLUSIONS 

We have presented a technique whereby kernels for use in 
Cohen's class of GTFR's can be synthesized in accordance 
with desired properties using the method of projection onto 
convex sets (POCS). This technique allows a new perspective 
on the notion of simultaneously satisfying very different (e.g., 
time and frequency resolution) constraints. Simulation results 
show resolution performance better than the spectrogram and 
bilinear interference reduction, which is much better than the 
Wigner distribution. The ultimate success of this synthesis 
methodology is dependent on the suitability of the constraints 
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