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Similarities of Error Regularization, Sigmoid Gain
Scaling, Target Smoothing, and Training with Jitter

Russell Reed, Member, IEEE, Robert J. Marks 11, Fellow, IEEE, and Seho Oh

Abstract—The generalization performance of feedforward lay-
ered perceptrons can, in many cases, be improved either by
smoothing the target via convolution, regularizing the training
error with a smoothing constraint, decreasing the gain (i.e., siope)
of the sigmoid nonlinearities, or adding noise (i.e., jitter) to the
input training data. In certain important cases, the results of
these procedures yield highly similar results although at different
costs. Training with jitter, for example, requires significantly
more computation than sigmoid scaling.

I. INTRODUCTION

ONSIDER a layered perceptron with a single hidden
layer and input z. Let the data have a target function
t(z), and let pn(x) be a noise probability density function.
Then, under conditions detailed in this paper, the following
four training procedures yield highly similar results.
1) Convolutional Target Smoothing: Replace the target
function with the effective target

tegr(x) = . /y t(y)pn(z — y) dy

=t(z) * pn(z)

where ‘*’ denotes convolution.

2) Jittered Training Data: Train with jittered data using
pn(x) as the jitter density [27].

3) Sigmoid Scaling: Train without jitter. After training,
scale the sigmoid slopes (or, equivalently, the node
weights) [26]. The manner in which the slopes are scaled
is dictated by pn(z) (see (22)).

4) Error Regularization: Train with the regularized error
function [25]

dy 2
E+ A\ ’ o

where E is the conventional sum-of-squares error, y is
network output for the input =, and

% _(9y oy . Yy
> Oz,

o le’azz’”
is the gradient of y(x). The Lagrangian multiplier, J, is
chosen to be equal to the variance of pn(z).
The similarity of these four procedures is established analyt-
ically and illustrated by examples.
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II. TRAINING WITH JITTER

Many studies of artificial neural networks (e.g., [24], [7],
[291, [34], [31], [17], [23], [30], [20]) have noted that adding
small amounts of input noise (jitter) to the training data
often results in improved generalization and fault tolerance.
Holmstrém and Koistinen [11], [13], [14] have shown that
training with jitter is consistent, in that, under appropriate
conditions, the resulting error function approaches the true
error function as the number of training samples increases and
the degree of jitter decreases.

Consider a network trained with noisy input data, {z +
n,t(z)}, where n is noise that varies with each presentation.
During training, the network sees the target t(z) in conjunction
with the noisy input # = £ + n. The input £ may be produced
by various combinations of inputs £ and noises n while the
target depends only on z. Various targets may therefore be
associated with the same noisy input £. The network, however,
can produce only a single output for any given input. For
arbitrary noise and input sampling distributions, the effective
target for a given input Z is the expected value

/ H& — n)pz(E - n)pn(n) dn
(t(x)|Z) = == ) (1)
/ Pz (& — £) pn(€) d¢
3

In the special case where the sampling distribution is uniform
and the standard deviation of the noise is small (relative to
the extent of the input domain), the interaction between pg
and pp will have little effect in the interior of the domain. In
regions where these boundary effects can be ignored, the pg
terms cancel out, the denominator integrates to one, and this
simplifies to the approximation

(t(x —n)|z) = /nt(.’c —n)pp(n)dn

(%) * pn(Z). 2)
Thus, in this special case, the effective target when training
with jittered input data is approximately equal to the con-
volution of the original target #(z) and the noise density
pn(z).

The convolution is a smoothing operation in general. If, for
example, ¢(z) is a step function and pn(z) is Gaussian, then
the convolution produces the Gaussian cumulative distribution
which is a smooth function similar to the sigmoid. This
convolutional property resulting from jittered sampling is
studied in [12].
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A. Effective Target for Sampled Data

The convolution property holds when training data are
continuously and uniformly distributed over the entire input
space and the magnitude of the noise is small. In practice,
however, we typically only have samples {(;,t;)} of the
underlying function. In this case, the distribution of Z = z;+n
is not uniform and the optimum output function is modified.

Let the training set be {(z; ;)i = 1---M}. During
training, we randomly select one of the training pairs with
equal probability, add noise to the input, and apply it to
the network. Given that the training point is z (a randomly
selected point from the training set), the probability density of
the noisy input Z is

Plz + n = &|z = 2] = pn(E — ).

The training points are selected from the training set with
equal probabilities Plz = z;] = 1/M so the probability
density of the input to the network, Z, is

Plz| =Plz+n =13
M
= ZP[z+n=.'E|z = zx| Plz = ]
k=1
= an(z Zk). ©)
k=1

Given that a particular noisy input Z is observed, the prob-
ability that it is generated by training data z; plus noise is
found by Bayes’ rule

Plz + n = &|z = 2| Plz = 4]
Plz +n = i
__mnE-2)(1/M)
M
(1/M)_pn(E - z;)
j=1
_ pa(ZE- zk)

an (& - =;)

Let P(k|Z) denote this probability.
The expected value of the training target, given the noisy
training input #, is then

Pz=gi|lz+n=1%]=

C))

th i|E)
1?1137 Zz

Z an(n: ::k)

This describes the expected value of the training target given
that the input is a noisy version of one of the training samples.
As the number of samples approaches oo, the distribution of
the samples approaches pg and (5) becomes a good approx-
imation to (1).

(tirain(Z — 0)|Z) =

&)
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Let y(Z) be the network output for the input Z. The expected
value of the error while training, given this input, is

£= Zt—y ))2P(il%). ©®

i=1
Abbreviate P(i|%) with P; and y(%) with y. After expanding
the square

= (Z tfP,-) - 23!(2 ti-Pz') +_y2 Z P;
=(xr) - (Ten) + | (Sen)
- (Y ur)+v* Y H]
(54r)

-(sin) - (Sun)'+
t--f(g) o2

In other words, under gradient descent, the system acts as if
the target function is X, ¢; P;, the expected value of the target
in (5), given the conditions stated for F;. Likewise, from (7)
the effective error function is

(5

in the sense that 8E.g /w = € /w. In contrast to conventional
training with discrete data, the effective target function for
jittered data is defined for all z and not just at the given training
points. The following example illustrates the point.

Example 1: Fig. 1(a) is the Voronoi map of a set of points
in two dimensions, the basis for a nearest neighbor classifier.
Fig. 1(b) is expression (5), and Fig. 1(c) is convolution of
the sampled target function with a Gaussian function. It can
be seen that the convolution property smooths the decision
surface and removes small features. Note that the zero contours
in Fig. 1(b)—(c) coincide.

and

Y]

2

®

III. RELATIONSHIP OF ERROR
REGULARIZATION AND TRAINING WITH JITTER

Regularization is another method used to improve general-
ization. Regularization often assumes that the target function is
smooth and that small changes in the input do not cause large
changes in the output. Poggio and Girosi [25], for example,
suggest the cost function

D (i — )+ NPyl ©)
where “P is usually a differential operator” and A balances
the trade-off between smoothing and minimizing the error.

Jittering the inputs while keeping the target fixed embodies
this smoothness assumption and results in a similar cost
function. That is, we add small amounts of noise to the input
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Voronoi Tesselation
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Fig. 1. A 14-point nearest neighbor classification problem. (a) The Voronoi
map for the 14 points. (b) The expected value for the classification of x
calculated in (5) for a Gaussian noise distribution (¢ = 0.1). (c) The
convolution of the training set with the same Gaussian noise. The zero
contours of (b) and (c) coincide.

531

data, assume that the target function does not change much,
and minimize

£ = {{it(z) - y(= +n))*)}
= {t(2) - 2t(=){y(z + n)) + {y(z +n)*)}

(10
an

where {u} indicates the expected value of u over the training
patterns and (u) indicates the expected value of u over
the noise n. For small ||n||, the network output can be
approximated by

1
n+ -nTHn

3 12)

(z+n)~y(@) + (2 '
Y ~yY oz
where the superscript T denotes the vector transpose and H
is the Hessian matrix with element h;; = 8%y/(0z;0z;). For
surfaces with small curvature, we can assume H is approx-
imately zero; the complete calculation is given in Appendix
A.

Substitution into (11) and dropping the independent variable
for brevity gives

2 9y g
2 — 2ty — 2t o (n)

() e (2) o (2)

13

£~

Assume zero-mean uncorrelated noise with equal variances,
(n) = 0 and (nnT) = o2I. Then

T
£~ {t"’ -2y +y° + 02@—2) <g%)} (14)
2
w{(t—y>2}+a2{ } (15)

The term {(¢t — y)?} = E is the conventional unregularized
error function and the term {||(0y/0z||?} is the squared
magnitude of the gradient of y(x) averaged over the training
points.

£ is an approximation to the regularized error function in
(9). Like (9), it introduces a term that encourages smooth
solutions [33], [4]. Comparison of (15) and (9) shows that
o2 plays a role similar to A in the regularization equation,
balancing smoothness and error minimization. They differ
in that training with jitter minimizes the gradient term at
the training points whereas regularization usually seeks to
minimize it for all z.

Equation (15) shows that, when it can do so without increas-
ing the conventional error, the system minimizes sensitivity to
input noise by driving the gradient of the transfer function
to zero at the training points. A similar result is derived in
[19] and, by analogy with the ridge estimate method of linear
regression, in [18]. A system which explicitly calculates and
backpropagates similar terms in a multilayer perceptron is
described in [6]. A more general approach using the Hessian
information is described in [2]-[4].

%
oz




532

Example 2: Fig. 2(a) shows the decision boundary formed
by an intentionally overtrained 2/50/10/1 feedforward network.
With 671 weights, but only 31 training points, the network is
very underconstrained and chooses a very nonlinear boundary.

Training with jittered data discourages sharp changes in
the response near the training points and so discourages the
network from forming overly complex boundaries. Fig. 2(b)
shows the same network trained for the same amount of time
from the same initial conditions with Gaussian input noise
(o = 0.1). Despite very long training times, the network shows
no effects of overtraining. For reference, Fig. 2(c) shows the
expression in (5).

IV. RELATIONSHIP BETWEEN TRAINING
WITH JITTER AND SIGMOID SCALING

A drawback of training with jitter is that it usually requires
the use of a small learning rate and many sample presentations
to average over the noise. In this section, we demonstrate
that, in certain cases, the expected response of a network
driven by a jittered input can be approximated by simply
adjusting the sigmoid slopes. This is, of course, generally
much faster than averaging over the noise. This result provides
justification for gain scaling as a heuristic for improving
generalization. Application of this technique to a single-
hidden-layer perceptron with a linear output is considered.

A. Linear Output Networks
Consider the function

y(@) = Y vehi(z) (16)
k

where

hi(z) = g(wiz — 6%) (17)
and g(-) is the node nonlinearity. This describes a single-
hidden-layer network with a linear output.

With jitter (and the approximations stated for (2)), the
expected output for a fixed input z is

(y(z + n)) ~y(z) *x pn(z)
~ Z vehi(z) * pp(z)
k

~ Z vi[hi(2) * pr(z)) (18)
k

i.e., a linear sum of convolutions of the hidden unit responses
with the noise density. The symbol « denotes correlation,
a(zx) % b(z) = [¥2 a(r)b(r — z)dr, and should not be
confused with the * convolution operator although correlation
and convolution can be interchanged here since we assume
that pp(z) is symmetric.

In most neural network applications, the nonlinearity is the
sigmoid g(z) = 1/(1+ e™*). If, instead, we use the Gaussian
cumulative distribution function (GCDF), which has a very
similar shape (see Fig. 3), then the shape of the nonlinearity
will be invariant to convolution with a Gaussian input noise
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Fig. 2. (a) An intentionally overtrained 2/50/10/1 feed-forward network
chooses an overly complex boundary and can be expected to generalize poorly.
(b) The same network trained with Gaussian (¢ = 0.1) input noise forms a
much smoother boundary and better generalization can be expected. (c) The
expression in (5) for the expected value of the target function at an arbitrary
point z.
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Sigmoid (solid), Gaussian CDF (dashed), sigma=4/root(2pi)
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Fig. 3. The conventional sigmoid 1/(1+4 ¢~ ") and the Gaussian cumulative
distribution (GCDF) function have very similar shapes and give similar results
when used as the node nonlinearities. The GCDF is useful in this analysis
because it is shape invariant when convolved with a spherical Gaussian noise
density.

density. That is, if we assume that the noise is zero-mean
Gaussian and spherically distributed in N dimensions

(@) =~ exp (L
oV (2m)N/2 20%

(where ||z||? = £Tx) and the ¢ nonlinearity is the Gaussian
cumulative distribution function

o= e (35):
= ———exp | =5 | d7
g —oo 02V 2T P 20%
then the convolution in (18) can be replaced by a simple
scaling operation

19)

(20)

hi(z) * pr(z) = g(ar(wi T — Oi)) 2n

where ay is a scaling constant defined below. A derivation is
given in Appendix B.

The significance of this is that when equivalence (21)
holds, the expected response of the network to input noise
approximated by (18) can be computed exactly by simply
scaling the hidden unit nonlinearities appropriately; we do not
have to go through the time consuming process of estimating
the response by averaging over many noisy samples, that is

o+ ~ Y uglawlz-6) (@2
k

where the scaling constant a; depends on the magnitude of
the weight vector w;, and the noise variance

— __1_ 23)

ar =
* T VlwPoT + 1
Note that the bias 6. is not included in the weight vector and
has no role in the computation of a. It is, however, scaled
by ag.

This does not say that we can train a network without jitter
and then simply scale the sigmoids to compute exactly the
network that would result from training with jitter because it
does not account for the dynamics of training with random
noise, but it does suggest some similarities. A connection can
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be drawn as follows. If the sample size is large enough and
(unjittered) training is successful, then y(z) = t(z) + €(z),
where ¢(z) represents a (hopefully) small residual error. For
a fixed z, taking the expected value of both sides over added
input noise n gives

{y(xz +n)) = {t(z + n)) + (e(z +n)). 24

We can approximate (y(z +n)) easily by scaling the weights:
Let §j(x) denote the output of the scaled network that computes
y(z) before scaling; then, for a given input z, the scaled
network computes (assuming Gaussian input noise) §(z) =
(y(z+mn)). The term (t(x +n)) is the effective target function
when training with jittered inputs. (That is, when training
with jitter, the effective target for a network given the input
Z# = x+nis (t(Z —n)). Assuming a uniform pg, a symmetric
pn, and ignoring boundary effects, the effective target for a
network with input z is teg(z) = (t(z + n)).) Finally, if
the residual error e(z) is a high-frequency signal then it is
substantially attenuated by the low-pass filtering (smoothing)
effect of convolving with a Gaussian, {(¢(z 4+ n)) ~ 0, which
leaves

() = teg(x). 25)

Of course, if unjittered training is unsuccessful and the remain-
ing error is large, then {¢(z +n)) % 0, and the approximation
will be poor.

Example 3: Fig. 4(a)«(f) verifies this scaling property.
Fig. 4(a)~(b) shows the response of a network with two
inputs, three GCDF hidden units, and a linear output unit.
Fig. 4(c)~«(d) shows the average response using spherically
distributed Gaussian noise with o = 0.1 and averaged over
2000 noisy samples per grid point. Fig. 4(e)~(f) shows the
expected response computed by scaling the hidden units. The
RMS error (on a 64 x 64 grid) between the averaged noisy
response and the scaled expected response is 0.0145. The
scaled expected response was computed in a few seconds; the
average noisy response required approximately 20 hours on a
20 MHz 386 personal computer.

B. Relation to Weight Decay

The scaling operation is equivalent to
w

VilwlPet +1

Since the denominator is not less than one, this always reduces
the magnitude of w or leaves it unchanged. When oy = 0 (no
input noise), the weights are unchanged. When o1 — oo, w —
0. When ||w||oy is small, the scaling has little effect. When
||w||ey is large, the scaling is approximately
w

N

llwllo

(26)

w —

w 27
and the magnitude of w is reduced to approximately 1/. This
has some properties similar to weight decay [24], [35], [34],
[28], another commonly used heuristic for improving general-
ization. Weight decay can be considered to be another form of
regularization (e.g., [15]). The development of weight decay
terms as a result of training single-layer linear perceptrons
with input noise is shown in [9].
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Fig. 4. Example 3. (a) The transfer function of the original network and (b) its contour plot. (c) The average response with additive Gaussian input noise,
o = 0.1, averaged over 2000 noisy samples per grid point and (d) its contour plot.

V. EXTENSION TO GENERAL LAYERED NEURAL NETWORKS

The results relating training with jittered data and error reg-
ularization hold for any network. The analysis for gain scaling,
however, is valid only for networks with a single hidden layer
and a linear output node. More general feedforward networks
have multiple layers and nonlinear output nodes. Even though
the invariance property does not hold for these networks, these
results lend justification to the idea of gain scaling [16], [10]
and weight decay as heuristics for improving generalization.

The gain scaling analysis uses a GCDF nonlinearity in
place of the usual sigmoid nonlinearity, but these have very
similar shapes so this is not an important difference in terms
of representation capability. (Differences might be observed
in training dynamics, however, because the GCDF has flatter

tails.) The precise form of the sigmoid is not important as long
as it is monotonic nondecreasing; the usual sigmoid is widely
used because its derivative is easily calculated.

The GCDF nonlinearity is used here because it has a
convenient shape invariance property under convolution with
a Gaussian input noise density. There may be other nonlin-
earities that, while not having this shape invariance property,
are such that their expected response can still be calculated
reasonably efficiently using a similar approach. If, for example,
g(x) * pn(z) = h(z), the function h(z) may be different in
form from g(z), but still reasonably easy to calculate. As
a specific example, if g(z) is a step function and py(z) is
uniform (both in one dimension), then A(x) is a semi-linear
ramp function: zero for z < e, equal to x for —a < z < a,
and one for z > a. The expected network response can then
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Fig. 4. (Continued) Example 3. (¢) The expected response computed by scaling and (f) its contour plot.

be computed as a linear sum of h(z) nonlinearities rather
than a linear sum of g(z) nonlinearities. Although different
nonlinearities are used in calculating the normal and expected
responses, this should, in general, still be much faster than
averaging over many presentations of noisy samples.

The scaling results can also be applied to radial basis
functions [22], [21], [25] which generally use Gaussian prob-
ability density function (PDF) hidden units and a linear output
summation. The convolution of two spherical Gaussian PDF’s
with variances o7 and ¢} produces a third Gaussian PDF with
variance 03 = o7 + 0%, so the expected response of these
networks to noise is easily calculated using similar shape
invariant scaling.

VI. DISCUSSION

Training with jitter, error regularization, gain scaling, and
weight decay are all methods that have been proposed to
improve generalization. Training with small amounts of jitter
approaches the generalization problem directly by assuming
that slightly different inputs give approximately the same
output. If the noise distribution is smooth, the network will
interpolate among training points in proportion to a smooth
function of the distance to each training point.

With jitter, the effective target function is typically a
smoothed version of the actual target. This is approximately
equivalent to a smoothing regularization with the noise
variance playing the role of the regularization parameter.
Training with jitter thus allows regularization within the
conventional layered perceptron architecture.

Although large networks generally learn rapidly, they
tend to generalize poorly because of insufficient constraints.
Training with jitter helps to prevent overfitting by providing
additional constraints. The effective target function is a
continuous function defined over the entire input space,
whereas the original target function may be defined only

at the specific training points. This constrains the network and
forces it to use any excess degrees of freedom to approximate
the smoothed target function rather than forming an arbitrarily
complex boundary that just happens to fit the original training
data (memorization). Even though the network may be large,
it models a simpler system.

The expected effect of jitter can be calculated very effi-
ciently in certain networks by a simple scaling of the sigmoid
gains. This suggests the possibility of a post-training step to
choose optimum gains based on cross-validation with a test set.
This might make it possible to improve the generalization of
large networks while retaining the advantage of fast learning.

The problem of choosing an appropriate noise variance has
not been addressed here. Holmstrém and Koistinen [111, [13],
[14] suggest several methods based on cross-validation. Con-
siderable research has been done on the problem of selecting
an appropriate ) for regularization, especially for linear models
(e.g., [8]). Because of the relationship between training with
jitter and regularization, the regularization research may be
helpful in selecting an appropriate noise level.

APPENDIX

A. Small-Perturbation Approximation

For small noise amplitudes, the network output y(z + n)
can be approximated by

1
n+-nTHn

2 (28)

wrmmy@+ (2)
z ~ =

Y n Y oz
where H is the Hessian matrix with element h;; =
8%y/(dx;0x;). Assuming an even noise distribution so that
(n*) = 0 for k odd, one can write

Ay 2}

ez{(t—y>2}+aﬁ{ 2




536

o 2, o 2
oy - t)Tr(H) + TTT(H) + 7T7‘(H )

my — 30t 2
e (o))

where my is the fourth moment {n*). Dropping all terms
higher than second order in o gives
dy 2
4} oo

and when H is assumed to be zero, this reduces to (15).
The Laplacian term, Tr(H) = V2y, omitted in (15), can be
described as an approximate measure of the difference between
the average surrounding values and the precise value of the
field at a point [5]. The third term in (30) is the first order
regularization term in (15).

Training with nonjittered data simply minimizes the error
at the training points and puts no constraints on the function
at other points. In contrast, training with jitter minimizes the
error while also forcing the the approximating function to have
small derivatives and a local average that approaches the target
in the vicinity of each training point.

29

£~ {(t-9)*} +o*{(y - )Tr(H)} + 02{

B. CDF-PDF Convolution in n Dimensions

The following shows that the convolution of an n-
dimensional spherical Gaussian probability density function
(PDF) and a Gaussian cumulative distribution function (CDF)
results in another Gaussian CDF.

Let f1(z) be a spherical Gaussian PDF in n-dimensions

_ 1 —~|l=Il®
hi®) = Zxmyri P ( 207 Gn
and let F»(z) be a Gaussian CDF of the form
e [ e ()
2(Z exp T (32)
\/_
This can be written as
T 1 72
F: = _— — | d 33
@= [ e () r o

where @ = w/|jw|| and 0y = 1/||w]|.
The convolution of F; and f; is the n-dimensional integral

Fa(z) * fi(z) = / Fye)fi(@—a)da. (34
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Separate z and o into components parallel and orthogonal to

=0+
{=0Tz

Ty =0

a=ki+8
k=0vTa

T8 =0

llz — al? = (£ - k)?||b]| + 2(& — k)d" (v - B)
+ly -8l

= (e K+l - AP

where ¢ and k are scalars and v and § are n-dimensional
vectors orthogonal to . Then

T

w" o 1
Fg(a)z-/ 02\/2_1rep<2 2)d-r
k 1 —72
L ()
~|lz — olf?
Sl =)= "(2 yrz © ( | 201 )
( =y - Bl
"(21r "/2 203
1 ( (£- ) 1
alx/ﬁ 201 ay” 1(27r)(n—1)/2
_ 2
and

k

1 2 2
Fy(z)* fi(z =/f/ ———e" /%) 4y
2(z) * f1(=z) N -

. (;e—u—k?/uﬁ))
01\/2_%

1 2 2
. a—— | o Tl | A 629
* (o;*-l(zw)w-wze ‘ )
dg dk

k
1 2 2
= =T /(2"2)d
e T
Av/—w g2V 27
1 2 2
. —(-k)*/(201) | gk
€
(alv27r )

1
x —
/ﬂ o7 (em) D72

// e " 2 /(202 )dT
—o0 02 27r

1 e k)’/(zal)) dk.
( \/27r

Thus F5(x) * f1(x) reduces to a one-dimensional convolution
of a Gaussian CDF with standard deviation o, = 1/||w|| and

e~Ih=AIP /2D 4
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a Gaussian PDF with standard deviation o. It can be shown
(see Appendix C) that this is a Gaussian CDF with variance
0% = 0? + o3.

Letting Z, denote the Gaussian CDF function with standard
deviation a

Fy(z) * filz) = Zo,(£) * g(£)

w T
=4
TwllPo? + 1
T
=h| ——— . (36)
TwlPo? 1 1

Thus, the convolution of a Gaussian CDF and a Gaussian PDF
can be computed by a simple scaling of the original CDF.

C. CDF-PDF Convolution in One Dimension

The following [1] demonstrates that the convolution of
Gaussian PDF with variance 2 and a Gaussian CDF with
variance o3 results in a Gaussian CDF with variance 03 =
o? + 0. All the functions are one dimensional.

Consider two independent random variables X; and X»
with PDF’s f; and f, and CDF’s F} and F,. The random
variable Y = X; + X has the PDF f) * f5 and consequently
its CDF is Fy = fo = f1 = F. Let X; and X, be zero
mean Gaussian, X; ~ N(0,07) and Xy ~ N(0,03), then,
clearly, Y ~ N(0, 0% +02) has a Gaussian PDF with variance
02 = ¢} + o%. Since Y has the CDF f; x Fy, fi = F> is a
Gaussian CDF with zero mean and variance 03 = o? + 03.
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