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ANY NONLINEAR OPTIMIZATION ALGORITHMS, INCLUDING THOSE

used to train various types of artificial neural networks, strive to opti-
mize some performance measure through judicious selection of one or more
parameters. For instance, in the backpropagation-trained multilayer per-
ceptron,! the performance measure is convergence speed. This speed is af-
fected by the choice of learning and momentum parameters. Similarly, in
the Adaptive Resonance Theory (ART 1) network,” the choice of a vigilance
parameter affects the number of classes into which the data are classified.
The values of these parameters can be adapted during training to improve
the performance measure(s) of the neural network. Table 1 summarizes the
performance measures and parameters associated with several neural net ar-
chitectures. The theme introduction on pp. 36-42 provides some back-
ground on these various methods.

"Training parameters are typically chosen and adapted by a “neural smith,”
using human judgment, experience, and heuristic rules. For example, a
smooth error surface in the backpropagation training of a layered perceptron
suggests use of a long step, whereas a steep surface suggests smaller steps.
Note that this description is fuzzy: the terms “smooth,” “long,” “steep,” and
“smaller” are each fuzzy linguistic variables.

Rather than choosing and optimizing these parameters manually, how-
ever, we take advantage of the fact that the linguistic variables used in human
judgment can in many cases be quantified into a rule-based fuzzy inference
engine. This fuzzy controller then replaces the neural smith. This method-
ology for choosing training parameters can be applied to other neural net-
works, including Kohonen’s self-organizing maps® and layered perceptrons
trained by other methods, such as random search.* But beyond neural nets,
this research has led us to adopt the principles of fuzzy logic in a way that can
potentially be broadly applied to a wide variety of algorithms used in adap-
tation and optimization.
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Table 1. Performance measures and parameters for different neural architectures.

Fuzzy parameter adaptation

A fuzzy controller consists of a set of fuzzy impli-
cations of the type “If 4 Then B.” Consider for
example the case of a single-input, single-output
system and suppose there are N such implications.
Each of these rules associates a fuzzy input subset
to a fuzzy output subset, represented by their
membership functions. Fuzzy set theory can be
used to “quantify” such rule-based descriptions,
and can serve as an interface between the impre-
cise descriptive nature of control and the control
actions that need to be taken.

How does this fuzzy controller work? It takes as
its input the difference between the desired and
actual performance measures of the network,
forming an error measure. In backpropagation
learning, the actual output of the network is com-
pared to the target network output, forming the
error. In ART 1, the network classifies the input
data space into various classes. The number of
classes actually created is then compared to a de-
sired number of classes, forming an error measure.

The on-line fuzzy controller uses this value and
its rules for parameter adjustment to adapt the
value of the parameters. This in turn changes the
network output and performance attribute, re-
sulting in a new error value which is fed back to
the controller. By adaptively updating the para-
meter in this way, an improved value of the per-
formance attribute results. Details of operation of
fuzzy controllers are given elsewhere.’

Fuzzy control of backpropagation

The backpropagation learning algorithm’® has
been successfully applied to the training of muld-
layer feedforward neural networks in a number of
practical problems. Although many arguably bet-
ter training methods exist, BP has the advantages
of (1) being performed totally within the neural
network structure and (2) intense popularity.
Backpropagation is a gradient-descent search in
the space of weights of the neural network, and
aims to minimize an energy function which is nor-
mally defined as the sum of squared errors. Each
“error” is the difference between desired (target)
values at the output of the network and actual val-
ues obtained during each iteration of the algo-

-niques have also been proposed.
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where w, is the vector of weight values after the
nth iteration; Aw,, is the change in these weights;
VE(w,) is the gradient of the error function E(w,,)
at the nthiteration; 17 is the learning rate (or step
size); and oris the momentum parameter.

As mentioned, the error function E is normally
defined as the sum of squared output errors,
P L
= Z 2 Thi— Y /ez ' : (2)
- L
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where t}; and y; are the target and actual outputs
of the £th output unit for the 7th training vector,
respectively. L represents the total number of out-
put units, and P the total number of training vec-
tors per epoch. This error, used to adapt the
weights of the layered perceptron, can also be
used to adapt the parameters—the step size and
momentum of the BP algorithm.

Despite the effectiveness of BE, its speed of con-
vergence can be painfully slow. It has furthermore
been shown that many feedforward neural net
training problems may not be solvable by higher-
order or more sophisticated optimization meth-
ods,’ thus increasing the need for overcoming the
speed limitations of BP.

Reasons for the slow convergence of BP have
been discussed in detail by Jacobs.” Jacobs also
presented heuristics for accelerating this conver-
gence: he suggested that each weight be given its
own learning rate, and that this learning rate be
allowed to change over time during the learning
process. He also suggested how the learning rate
should be adjusted, and incorporated these heuris-
tics into the delta-bar-delta rule. This says that if
the error gradient possesses the same sign over
several consecutive time steps, the value of 1
should be increased; and if the sign of VE alter-
nates over consecutive time steps, the value of 77
should be decreased. Other acgcelloeratmn tech-
d

There are still no general guidelines for choos-

IEEE COMPUTATIONAL SCIENCE & ENGINEERING



Table 2. In a fuzzy controller, rules are coded in the
form of a decision table. Each entry here represents
the value of the fuzzy variable A7 for given values

of error (E) and change in error (CE). NS is negative
small, ZE is near zero, and PS is positive small. For

example, if the error is low and the change in error
is high, then the incremental update to the learn-
ing rate is near zero.

ing specific (fixed) values of 77 and o that give fast
convergence. Fuzzy control of the Jearning rate 7,
although a straightforward procedure, can be re-
markably effective as a solution to this problem.'!

The central idea behind fuzzy control of BP is
the implementation of heuristics in terms of fuzzy
If-Then rules. This is done by considering the er-
ror E and the change in error CE = E, - E,;
(where 7 is the iteration number) to be variables
with values E, and CE, at iteration z. These values
can in turn be categorized as low, medium, or high.
We define a variable An, which takes on values of
An, at each iteration #, as the incremental update
to the learning rate 7. This change in the learning
rate can take on the values negative small (NS),
near zero (ZE), and positive small (PS). All of these
values are expressed in terms of membership func-
tions, as shown in Figure 1. Based on the actual
(crisp) values of E and CE, we can thus arrive at a
crisp value for An, if we can express the relation-
ship among these variables through fuzzy condi-
tional statements. During each iteration of the BP
algorithm, therefore, the value of the learning rate
7 is incremented by An, based on current values
of the error and change in error. The incremental
updates to 71 may thus be different in every
iteration.

Evaluation of rules is best jllustrated by an ex-
ample. The rules chosen for fuzzy control of BP
are shown in Table 2. Consider the following rule,
which can be read from the table:

If E is high, and CE is low, then A7 is near zero.

Having obtained (crisp) values for E and CE at the
nth iteration, we evaluate their degree of mem-
bership in the membership functions of fuzzy sets
defining their “values” (high and Jow in this case, as
shown in Figure 1). The minimum value of these
two evaluations is chosen and multiplied by the
membership function of the consequent fuzzy set
(near zero in our case), resulting in a modified
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Figure 1. Membership functions in fuzzy sets for
several variables involved in training a neural net
with backpropagation. Functions are shown for
(a) the error E; (b) the change in error CE; and

() An, the incremental update to the learning rate
parameter 7.

membership function which we choose to repre-
sent by w(x) for rule k, where x is the actual nu-
merical value of either the error or the change in
error. This is repeated for every rule in the rule
base, and the modified membership functions
H(x) are summed together to form a composite
function u(x). The centroid of u(x) is then chosen
as the deterministic incremental update to 7:

j x u(x) dx
'[ /.t(x)dx

There is also a computationally less intensive
way of evaluating the centroid. The mathematics
is trivial and we refer the interested reader else-
where® for details.

An, = 3)

59



60

FUZZY PARAMETER OPTIMIZATION

Normalized sum
squared error

Figure 2. Fuzzy adaptation of the learning parame-
ter speeds up backpropagation-based neural net
learning of the three-bit parity problem. Shown
are typical speeds of error convergence for plain
BP, Jacobs’s delta-bar-delta rule, and fuzzy-
controlled BP.

Results

To test this approach we compared the conver-
gence speed of standard BP, of Jacobs’s delta-bar-
delta rule,” and of fuzzy-controlled BP, as applied to
a three-bit parity problem.!! In this simple problem,
the neural net is trained to ouput 1 if the 1’s parity is
even, and 0 otherwise. Figure 2 shows that the
fuzzy-controlled BP algorithm is much faster than
either of the other two methods for this example.

Improving the heuristics

As mentioned earlier, the central idea behind

fuzzy control of the BP-algorithm is the use of

fuzzy If-Then rules that lead to faster conver-

gence. The heuristics we used in the experiment
above are mostly those of Jacobs. They are driven
by the behavior of the error E (see Equation 2).
"To improve the heuristics we set up rules that
not only take into account the first derivative of
the error, but the second derivative as well.1? Here
the change of error CE is an approximation of the
gradient, and the change of CE (CCE) is a second-
order gradient. In addition to the learning rate,
the momentum parameter is controlled as well
(see Table 3). The momentum parameter is used to
give some momentum to each weight change so that
learning accelerates in the average downhill direc-
tion instead of fluctuating with every change in the
sign of the associated gradient. There are three rules:

+If CE is small with no sign changes in several
consecutive time steps, then the value of the
learning parameter should be increased.

¢ If sign changes occur in CE for several consecu-
tive time steps, then the value of the learning
parameter should be reduced with no regard to
the value of CCE.

¢ If CE is very small and CCE is very small, with

Table 3. The contents of this fuzzy controller
decision table represent the value of the fuzzy vari-
able Ag for a given choice of values for the change
in the error gradient (CF) and for the change in this
change (CCE). "—" denotes no adaptation. The
maximum value that « can take onis'set to 1.

no sign change for several consecutive time steps,
then the value of the learning parameter 1) as well
as the momentum gain o should be increased.

Notice that the sign change of the gradient is
identical to the sign change of CE. For example, if
E,<E,andE,>E, thenCE,=E,—E, ;>0
and CE,,; = E,,,; — E, < 0. This means there has
been a sign change enroute from the (z—1)th it-
eration to the (n+1)th iteration. Let us therefore
introduce the sign change parameter,

sc, =1—"2L(sgn(CEn71)+ Sgn(CEﬂ))‘ ®

where the hard limiter sgn(x) equals 1 if x>0 and
is —1 otherwise. The factor 1/2 is to ensure that
SC is either 0 (no sign change) or 1 (one sign
change). The cumulative sum of SC (or CSC) thus
can reflect the history of the sign changes, thatis,

CSC,=SC, +SC,( +SCpy+ -+

The bigger the CS C , the more frequently the sign
changes have occurred. We use a five-step track-
ing of the sign changes, and thus define

Ccsc, = iscm | :

m=n—4

The heuristic rules are shown in “Table 4. The fuzzy
sets defined on CE and CCE—NS, ZE, PS, NB
(negative big), and PB (positive big)—are defined by
their membership functions in Figure 3. From this
table, for instance, one can read the following rule: '

If CE is negative small, and CCE is near zero,
then A7 is positive small.

The domain for both CE and CCE is [-0.3, 0.3}.
Values outside of these limits are clamped to —0.3

and 0.3, respectively.
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Table 4. A decision table for a fuzzy controller with
improved heuristics. Table contents represent the
value of the fuzzy variable Ar for a given choice of
values for CE and CCE.

CE |[NB NS ZE PS PB
NB NS NS NS NS NS
NS NS ZE PS. ZE NS
ZE ZE PS PS PS ZE
PS NS ZE PS ZE NS
PB NS NS NS NS NS
NB NS ZE PS  PB
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Figure 3. Membership functions in fuzzy sets for
the improved heuristics. Shown are functions for
CE and CCE; and An. NB is negative big, NS is nega-
tive small, ZE is near zero, PS is positive small, and
PB is positive big.

Results

We compared regular BP, Jacobs’s delta-bar-
delta rule, and fuzzy BP with the improved heuris-
tics just discussed, as applied to a detection prob-
lem: We trained a neural network to distinguish
between Laplace noise and a constant signal cor-
rupted with Laplace noise."® (In this problem, the
layered perceptron is taught to distinguish be-
tween Laplace noise n and a constant signal s cor-
rupted by Laplace noise (that s, s + n). The prob-
ability density function for Laplace noise is
(¥/2)e"'. In training, the value of noise is
changed for each weight update.)

‘Typical training curves for the three methods
are shown in Figure 4. Fuzzy BP results in dra-
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matically faster convergence, and has a signifi-
cantly smaller “tail” than regular BP. Note that
the scales of the plots differ. After just 500 itera-
tions fuzzy BP reaches an error value of .0006
whereas error values for DBD and regular BP are
.005 and .035 respectively.

Although we have not explicitly implemented
Jacobs’s heuristics by a fuzzy control system,
nonetheless the control rules can be interpreted
as being derived from the general guidelines he
proposed.” While our approach in this imple-
mentation differs from that of Jacobs’s delta-bar-
delta rule, it is only natural to assume that when-
ever Jacobs’s heuristics fail in a specific problem,
the same will happen with the fuzzy BP technique.

Also, just as BP cannot guarantee convergence
to a globally minimum solution, neither can fuzzy-

Figure 4. A typical
learning curve for
the Laplace noise
detection problem
with four input neu-
rons, one output,
one 15-unit hidden
layer, and 800 train-
ing data: (a) using
regular BP, n=0.9,
and a = 0.5; (b) us-
ing Jacobs’s DBD
rule, initial n=10.9,
and a=0.5; (c) us-
ing fuzzy BP, initial
n=20.9, and initial ¢
=0.5. Fuzzy control
of backpropagation
results in dramati-
cally accelerated
convergence. Note
that the scales of
the plots differ.
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SSSY controlled BP. This is a problem inherent to a lo-

calized optimization technique such as steepest de-
scent, of which backpropagation is a special case.
Furthermore, although a smaller number of it-
erations towards convergence is certainly desirable,
this is not the only important consideration. This
aspect of our solution should be considered jointly
with the total number of operations required for
each iteration. In this respect, however, the total
number of operations of the two techniques (plain
and fuzzy BP) are not significantly different from
each other, owing to the inherent simplicity of the
computations carried out in the fuzzy controller.

Fuzzy control of learning in ART 1
neural nets

ART 1 is a biologically inspired neural net for un-
supervised clustering. Here is a real-world appli-
cation appropriate for an ART 1 network: sheet

NB NS ZE PS  PB

1
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Figure 5. Membership functions for fuzzy sets for
several variables involved in training an ART 1 net-
work. Shown are functions for E, CE, and Ap.

metal parts for aircraft are clustered into groups
with similar geometry to allow the identification
of reusable engineering. The parts are repre-
sented as a two-dimensional pixel map, or silhou-
ette, with 1’s where there is material and 0s oth-
erwise. The pixel map is strung into a binary
vector and fed to the ART 1 network for recog-
nition. Given a fixed number of classes into which
we wish to classify the parts, the fuzzy vigilance
controller always finds the appropriate vigilance
parameter.

In the Adaptive Resonance Theory model” the
number of clusters formed depends directly on
the value of the vigilance parameter p, which con-
trols the coarseness of the clusters. The higher the
value of p, the greater the number of clusters
formed to represent the input data. In applications
where the number of desired clusters is known be-
forehand, the value of p can be incrementally
changed so that complete classification into a fixed
number of clusters is achieved. We do this incre-
mental updating of the value of the vigilance pa-
rameter automatically by means of a simple ex-
ternal fuzzy controller.

Assume that the number of clusters desired N,
is known a priori. The set of all input vectors is
presented to the ART 1 network and classified ac-
cordingly into N, (actual) classes. We wish to find
a value for p that gives us Ny clusters. Since this
preliminary classification does not meet the re-
quirement that N, clusters should be formed,
some adjustment of the vigilance parameter fol-
lowed by another presentation of the input data
is necessary. For instance, if N; < N,, a decrease
in the value of p would be desired. If N; > N,, then
we would want to increase p. The question natu-
rally arises as to the magnitude of the change in p
that would make N, = N, in a single sweep after
the initial classification, or let N, approach N,
gradually after multiple sweeps.

If one chooses to change p in small increments
of Ap, then a simple fuzzy controller can be used
to arrive at an optimum value for p. The con-
troller will seek to regulate the value of the vigi-
lance parameter based on how far we are from
achieving N, classes, having started with N, clus-
ters. Its adaptation policy can be formulated as a
set of heuristic rules of the form shown in Table 5.

Following the controller’s updating of the value
of p by Ap, the ART 1 network performs a second
classification with this new value for p. If the re-
sulting number of classes is again unsatisfactory,
we repeat the process. Eventually, the number of
classes N, formed by the network will approach
and become equal to N, and we are done.

The fuzzy values shown in Table 5 that E and
CE can take on (NB, NS, ZE, PS, PB) are defined

IEEE COMPUTATIONAL SCIENCE & ENGINEERING



Table 5. A decision table for an ART 1 fuzzy
controller. Table contents represent the value of the
fuzzy variable Ap, the change in the vigilance param-
eter, for given values of error £ = N;— N, and change
in error CE.

in terms of their membership functions in Figure -
5.Here E = N;— N, and CE is the change in E.

Results

We tested the control of the number of clusters
in an ART 1 network using data from our earlier
work,'* which involved the sheet metal example
mentioned earlier. Shown in Figure 6 is the num-
ber of groups as a function of the vigilance param-
eter p, empirically determined from a set of 47
input designs. Order differences account for the
nonmonotonic behavior of the curve.

Fuzzy control of hierarchical ART

We present here results of applying the fuzzy con-
trol technique for ART 1 to a hierarchical ART
tree network.'* This network consists of a tree of
ART networks with different levels of abstraction
at each level in the tree. Lower levels in the tree
have lower p while the higher levels have higher
p. The data patterns clustered by lower networks
are treated as the training sets for the next higher
networks. Therefore the number of ART net-
works at one level equals the total number of clus-
ters produced by the immediate lower level in the
tree. Different applications may need to control
the branching ratios in such a tree structure, that
is, the number of clusters per level. The number
of clusters produced by an ART network is related
to the vigilance parameter p, and therefore it is
necessary to servo the number of clusters by con-
trolling this parameter.

For example, we consider the problem of a
four-level tree with the number of clusters per
level equal to Ny (2,4, 8, 16). The data space con-
sists of the letters of the English alphabet, and the
clusters represent groupings of similar-looking
letters. Figures 7a and 7b illustrate the different
clusterings; py is the final value of the vigilance
parameter p at each level which gave the correct
number of clusters. The difference in clustering
is due to different training data initialization.
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Fuzzy control of random optimization

Random optimization” is an alternative to BP

for training of multilayer perceptrons.'® This
technique has the same aim as BP: to minimize an
energy function defined as a sum of squared er-
rors in the space of weights of the neural network.
Random optimization does this by taking steps in
the space of weights, evaluating the energy func-
tion at those points, and adjusting the steps taken
so as to eventually converge (in probability) to the

Figure 6. Fuzzy
control of the vigi-
lance parameter p
in training an ART 1
neural net allows
the system to clas-
sify a set of 47
sheet-metal parts
into any desired
number of shape-
related classes.

Figure 7. (a) Pro-
gressive classifica-
tion of the letters
of the alphabet
into different clus-
ters, using fuzzy
control of the vigi-
lance parameter in
a hierarchical ART
network. (b) Same
network but with
a different initial-
ization.
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Figure 8. Fuzzy
control of neural
net training by
random optimiza-
tion: the four-bit
parity problem.
Fuzzy bidirection-
. al random opti-

" mization (BRO)
results in better
and faster conver-
gence than regu-
- lar BRO with
different fixed
choices for the
variance. The
variance in fuzzy
BRO is adaptive;
it changes from
one iteration to
another.
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global minimum of the error surface. This means.

that the probability of the search eventually reach-
ing the global minimum is 1. In the bidirectional
random optimization technique, two points are
chosen in the vicinity of the starting point. The
location of the points is governed by the variance
of the random number generator: the higher the
value of the variance, the bigger the steps taken.
Recall from Table 1 that our desire is to control
the variance in order to achieve fast training.

One of the disadvantages of using random-search
techniques'® for optimization problems is their slow
convergence speed. In attempting to improve this,
the random-search step size (variance) can be regu-
lated via simple fuzzy rules. Similar to the gradient-
search (BP) case, once random search is successful
for several consecutive trials, one can increase the
search step size. Through fuzzy control of step size,
the search toward the global minima of the objec-
tive function can be accelerated.

-

The success of the search greatly depends on the
choice of random initialization. Figure 8 presents
simulation results for a four-bit parity problem
with a specific random-seed initializaton. This ex-
ample showed faster convergence. In the simula-
tion, we applied the bidirectional random opti-
mization algorithm,'>!¢ a specific manifestation of
random optimization, to a muldlayer perceptron.

Ovur result does not necessarily reflect a general
trend. Depending on the initialization, the results
vary and are at times unstable.

Fuzzy Kohonen networks
Tsao, Bezdek, and Pal® have combined the ideas

of fuzzy membership values for learning rates, the
parallelism of the fuzzy c-means algorithm,'” and
the structure and update rules of Kohonen net-
works into a new family of neural networks, called
fuzzy Kohonen clustering networks. KCNs are
heuristic procedures with the following propertes:

¢ Termination of clustering is not based on opti-
mizing any model of the process or its data.

¢ Final weight vectors usually depend on the in-
put sequence.

¢ Different initial conditions usually yield differ-
ent results. ‘ :

¢ Several parameters such as the learning rate and
the size of the update neighborhood must be
varied from one data set to another, as well as
during learning, to achieve the best results.

The integrated approach of Tsao et al. is based
on a new learning rate: G ,=(li,)"", where
= (g — 1)/Bmay and ly, , is the value of the
membership of vector x; (member of a set X of
feature vectors that are to be clustered) in mem-
bership function 7, for a given value of z. The
fuzzy subsets y; form a fuzzy ¢-partition of X.7
Here m is a positive constant greater than one,
and 7., is the iteration limit for fuzzy clustering.
The clustering is then performed via an update
rule as in fuzzy c-means. ; /

Furthermore, in addition to the learning rate, ..
the size of the update neighborhood in the com-
petitive layer is automatically adjusted during
learning. This results in improved convergence as
well as reduced labeling errors. The new algo-
rithm is nonsequential, unsupervised, and always
terminates in many less iterations, independent of
the sequence of feeding data. =

NEURAL NET DEVELOPERS TYPICALLY CHOOSE .
and refine their training parameters heurist-
cally. Our examples have demonstrated how these
heuristics can be emulated with fuzzy inference en-
gines. These engines are algorithmically imple-
mented to take the human out of the loop and pro-
vide for faster convergence. Other possibilities,
outside of neural nets and yet untried, are fuzzy
scheduling of annealing and genetic algorithms.

The astute reader will note that the fuzzy infer-
ence engine is, itself, parameterized. An obvious
example is the shape (the center and width, for in-
stance) of each fuzzy membership function. The
designer of the fuzzy inference engine must thus
choose parameters that control the fuzzy system.
Could not a second system be designed to control
the parameter choice of the fuzzy inference
engine? The answer is yes, if an appropriate per-
formance measure can be assigned to the first
fuzzy inference engine.'® @

Acknowledgments
This work was supported in part by Boeing Computer Sér-

vices, the Washington Technology Center, and the Royalty
Research Fund from the University of Washington.

|EEE COMPUTATIONAL SCIENCE & ENGINEERING



Payman Arabshahi obtained his BSE in electrical engineering
from the University of Alabama in Huntsville and his MS and
PhD, both in electrical engineering, from the University of Wash-
ington. His research focuses on fuzzy systems, digital signal pro-
cessing, and digital communications. He is a visiting assistant pro-
fessor at the University of Alabama in Huntsville doing research in
fuzzy pattern recognition and digital mobile networking, in con-
junction with Neda Communications, Bellevue, Washington.
Arabshahi is a member of IEEE and the editor-in-chief of the
IEEE Neural Network Council’s home page on the World Wide
Web. He can be reached at payman@ee.washington.edu.

Jai J. Choi received his BSE and MSE in electronics engineering
from Inha University, Korea, and his MSEE and PhD in electrical
engineering from the University of Washington, where he is an af-
filiate assistant professor and graduate faculty member. In 1990 he
joined Boeing Computer Services, where he is developing neural
networks, fuzzy logic, and adaptive systems for real-time signal pro-
cessing, intelligent diagnosis, and pattern recognition. He is also as-
sociated with the Electrical Engineering and Electronic Technol-
ogy Department of Cogswell College North, Kirkland, Washington.
His current research interests include neural networks, fuzzy logic,
adaptive signal processing, machine monitoring, and pattern recog-
nition. He is an associate editor for IEEE Transactions on Neural Net-
works and a member of the IEEE Circuits and Systems Society and
Eta Kappa Nu: He can be reached at jai@atc.boeing.com.

Robert J. Marks I is professor of electrical engineering at the
University of Washington. An IEEE Fellow, Marks was named
an IEEE Distinguished Lecturer in 1992. He chaired the IEEE
Neural Networks Committee in 1989 and served as the first pres-
ident of the IEEE Neural Networks Council in 1990-91. He is
editor-in-chief of IEEE Transactions on Neural Networks and asso-
ciate editor of IEEE Transactions on Fuzzy Systems and the Fournal
on Intelligent Control, Neurocomputing and Fuzzy Logic. Marks is a
member of the Board of Governors of the IEEE Circuits and Sys-
tems Society and cofounded that society’s technical committee on
neural systems and applications. He helped organize the Interna-
tional Symposium on Circuits and Systems, the International Joint
Conference on Neural Networks, the IEEE World Congress on
Computational Intelligence, and the IEEE/IAFE Conference on
Financial Engineering, among other conferences. He owns three
US patents in the field of artificial neural networks and signal pro-
cessing. He can be reached at marks@ee.washington.edu.

Thomas P. Caudell is associate professor of electrical and com-
puter engineering at the University of New Mexico, where he re-
searches neural networks, pattern recognition, machine vision,
neuroanatomy, virtual reality and augmented reality, and optical
computing. Before moving to New Mexico, he was senior princi-
pal scientist and the principal investigator of Boeing Computer
Services’s adaptive neural systems R&D project. He received his
BS in physics and mathematics from California State Polytechnic
University, Pomona, and his MS and PhD in physics from the
University of Arizona. Caudell is a member of the IEEE Neural
Networks Council, the Association for Computing Machinery,
the International Neural Network Society, and the Optical Soci-
ety of America. He can be reached at tpc@eece.unm.edu.

The authors can also be reached by contacting Payman Arabshahi,
Dept. of Electrical and Computer Engineering, University of Al-
abama, Huntsville, AL 35899.

References

1. D.E. Rumelhart and J.L. McClelland, eds., Parallel Distrib-
uted Processing: Explorations in the Microstructure of Cognition.
Vol. 1: Foundations, MIT Press, Boston, 1986.

2. B. Moore, “ART]1 and Pattern Clustering,” Proc. 1988 Con-
nectionist Models Summer School, Morgan Kaufmann, San
Francisco, Calif., 1989.

3. E.C-K. Tsao, J.C. Bezdek, and N.R. Pal, “Fuzzy Kohonen
Clustering Networks,” Pattern Recognition, Vol. 27, No. 5,
1994, pp. 757-764.

4. JJ. Choi, S. Oh, and R J. Marks I, “Training Layered Percep-
trons Using Low Accuracy Computations,” Proc. Int’] Joint Conf-
Neural Networks, IEEE, Piscataway, N.J., 1991, pp. 554-559.

SPRING 1996

10.

11.

12.

. D. Driankov, H. Hellendoorn, and M. Reinfrank, An Introduction
to Fuzzy Control, Springer-Verlag, New York, 1993. )

. S. Saarinen, R. Bramley, and G. Cybenko, “Ill-Conditioning
in Neural Network Training Problems,” SIAM 7. Scientific
Computing, Vol. 14, No. 3, 1993, pp. 693-714.

. R.A. Jacobs, “Increased Rates of Convergence Through
Learning Rate Adaptation,” Neural Networks, Vol. 1, 1988,
pp- 295-307. -

. R. Battiti, “Accelerated Back-Propagation Learning: Two
Optimization Methods,” Complex Systems, Vol. 3, 1989, pp.
331-342.

. T. Fukuda et al., “Neuromorphic Control: Adaptation and

" Learning,” IEEE Trans. Industrial Electronics, Vol. 39, No. 6,

Dec. 1992, pp. 497-503.

T.P. Vogl et al., “Accelerating the Convergence of the Back-

Propagation Method,” Biological Cybernetics, Vol. 59, 1988,

pp. 257-263.

P. Arabshahi et al., “Fuzzy Control of Backpropagation,” Proc.

First IEEE Int’l Conf. Fuzzy Systems, FUZZ-IEEE 92, IEEE,

Piscataway, N.J., 1992, pp. 967-972.

J.J. Choi et al., “Fuzzy Parameter Adaptation in Neural Sys-

tems,” Proc. Int’l Joint Conf. Neural Netrworks, IEEE, Piscat-

away, N.J., 1992, pp. 232-238.

. R.J. Marks II et al., “Detection in Laplace Noise,” IEEE
Trans. Aevospace and Electronic Systems, Vol. 14, 1978, No. 6,
pp- 866-872.

. 'T.P. Caudell et al., “NIRS: Large Scale ART-1 Neural Ar-
chitectures for Engineering Design Retrieval,” Neural Net-
works, Vol. 7, No. 9, 1994, pp. 1,339-1,350.

. FJ. Solis and J.B. Wets, “Minimization by Random Search
Techniques,” Math. of Operation Research, Vol. 6, 1981, pp.
19-30.

. N. Baba, “A New Approach for Finding the Global Minimum
of Error Function of Neural Networks,” Newural Networks,
Vol. 2, 1989, pp. 367-373.

. J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function
Algorithms, Plenum, New York, 1981.

. P. Arabshahi et al., “ Pointer Adaptation and Pruning of Min-
Max Fuzzy Inference and Estimation,” to be published in
IEEE Trans. Circuits and Systems, 1996.

65



