
E E E bower Engineering

- < ,

< , - I . ,

. '

7 I

to

Po'wer ." 1

,.)

11,

/- "

Mohamed El-Sha

~I \NEERI~~~
&*&AA&.$, &IlAr.im~

eCZT47aS
"I1L721~

96 TP 112-0 ~ ~ . ' ~ ~ ! i
-7vr

IEEE

R.J. Marks II, "Artificial Neural Networks: Supervised Learning", in Artificial Neural Networks with Applications to Power Systems,
M.A. El-Sharkawi & Dagmar Niebur, Editors, IEEE, PES Tutorial, 1996 (IEEE Press)

I If3 &%,a+,, b,., ih,U, *
Application of Artificial Neural

Networks to Power Systems

Sponsored by:

Intelligent Systems Applications Working Group

Computer and Analytical Methods Subcommittee

Power System Engineering Committee

Edited by

M. A. El-Sharkawi

and

Dagmar Niebur

Chapter 3
Artificial Neural Networks: Supervised ?vfodels

3.0. INTRODUCTION

Supervised learning attempts to determine the relation-
ship between a set of input or stimulus data and corre-
sponding output data. The learning is supervised because
when the student system offers a response to a given in-
put, a teacher, or supervisor, is able t o present the true
output. By comparing the system response to the true
output, the student is better able to properly respond to
the input when subsequently pre~ented .~

Although there exists a number of paradigms for su-
pervised learning, neural networks have been shown to
be quite adept a t learning the relationship among input-
output data.

3.1. THE LAYERED PERCEPTRON

The most commonly used artificial neural network is the
layered percepiron shown in Figure 3.1. The solid dots
at the middle (hidden) and top layers are neurons. The
linkage between neurons are interconnects. The biological
counterpart of the interconnect is the synapse. Artificial
neural networks have been claimed to emulate their bio-
logical counterpart. Any resemblar~ce is, at best, crude.

Each neuron has a state which is a scalar number. The
state of a neuron is determined by the interconnects to
and states of the neurons that feed it. This is illustrated in
Figure 3.2. Here, the state, s j , of a neuron is determined
by the states, {sk(l 5 k 5 of all of the neurons
below it where Kc is the number of neurons in layer !.
(In Figure 3.2, = 5). The weight of interconnect
between neurons s k and neuron sj is wjk. The sum of the
weighted input neurons is

Note this is simply a matrix-vector multiplication. This
sum is made the argument of a function a(.). A conunonly
used nonlinearity is the sigmoid

'For unsupervised learning, there is no teacher. The learning
system in this case dusters the input data into various categories.

output

t t t

input

Figure 3.1 A layered perceptron neural network with one
hidden layer.

As is illustrated in Figure 3.3, the sigmoid monotonically
maps the interval -bo < x < co into the interval 0 <
u(x) < 1. Other squashing Junclioirs, such as a hyperbolic
tangent, may be used. As will be shown, one advantage
of the sigmoid in Equation 3.2 is

3.2. LAYERED PERCEPTRON NEURAL
NETWORI< TRAINING

The layered perccptron's job, using training data, is to
learn the relationship between a stimulus and a response.
The training data is in two pieces - the input and output.
Let there be IY components in the training set. The input
vectors arc

{ell < n < iV)

and the output, or farget vectors are

Figure3.2The state of the j th neuron in layer -! is denoted
by sj(E). It is determined by the states of the neurons in
the layer below, (sk(t - 1)11 5 k _< Klel), where I\'~-I,
the number of neurons in layer (t- I), is five in this figure.
The states of the neurons in layer (t - 1) are weighted by
the interconnect weights, wjk, and the results added to
give the number sumj. This number is passed through a
nonlinearity, a(.), to give the desired neural state.

Figure3.3The sigmoid, u(x) = [l+exp(-x)]-l, 'squashes
the range over all of x into the interval (0,l).

The input is associated with a response of &, & with r2,
etc. It. is convenient to interpret the layered perceptron
to be successfully trained when an input of Tn produces
states equal to i;, a t the output layer2.

To pedagogically illustrate, suppose we wish to train the
neural network to distinguish between books and maga-
zines. The Tn vectors would contain digital information
on features that distinguish magazines from books. The

2Proper training . in many cases, requires that this relationship
not be learned exactly. II so, the neural network can be memorie-
in9 rather than learning. This point will be discussed later

first element of Tn could, for example, be a one if the
cover of the book/magazine =as hard cardboard and zero
if was made of.flexible paper. This feature is. of course,
insufficient to classify books from magazines. since many
boob (eg. paperback books) do not have hard covers.
From the observation that books usually have more pages,
a second feature might be the number of pages in the
bookJmagazine. The third feature might indicate whether
staples or glue is used to bind the magazine/book, etc.
We indicate books by logic one and magazines by a zero.
Thus, if TI were the features of a book, then TI = t l = 1,
(i . c the output in this example is scalar). If Tz were also
the features of a book, then t2 = 1. An output of t s = 0 is
appropriate if the input vector z3 has features correspond-
ing to a magazine, etc.

The neural network can be trained by repeatedly ex-
posing the network to the training data. In one popularly
used method, the input zl, corresponding to a book, is im-
posed on the input. A value of one is desired a t the output.
The output, however, will be other than one. The weights
of the neural network are adjusted so that the next time
the neural network sees &, it will have an output which
is a bit closed to one. The input & is placed on the in-
put and an output of one is again imposed. The weights
are then adjusted slightly to appropriately respond to &.
The process is repeated using the magazine data vector T3
with an output of zero. By the time we reach the last vec- -
tor, i,v, the first adjustment corresponding to ;l has been
largely 'forgotten' by the neural network. Therefore, the
process is repeated until the weights of the neural network
stabilize. If the neural network is trained properly, it will
properly categorize a feature vector it has not seen before
as a book or a magazine.

Although this description is oversimplified, it captures
the essence of training a layered perceptron neural net-
work. The training is referred to as supervised because, in
each instance, the proper categorization of the input vec-
tor is specified. Thus, the neural network has a teacher or
supervisor to tell it what cach of the input training vectors
is.

The example of distinguishing between books and mag-
azines is a classification problem. Artificial neural net-
works can also be trained to provide continuous value re-
gression type responses, such as forecasting. Suppose, for
example, one wished to forecast 4:00 PhI average speed
of traffic near downtown Seattle on Interstate 5 a t 3:00
PILI. For feature data, we would choose data available to
us at 3:00 PhI, such as the day of the week, the current
average speed, the number of cars per second and whether
or not there was a sporting event, such as a JIariners or
Seahawks game, a t the Kingdome. Historical data would
be used to train the net. In such cases, the averase car
speed at 4:00 PA1 is known and is the used as the output

of the neural network in training. If successfully trained,
the neural network, when presented with the feature data
a t 3:00 PM w.ould accurately forecast the average traffic
average traffic speed.

3.2.1. ERROR BACKPROPAGATION
The most popular method of training a layered percep-
tron neural network is through a procedure called error
backpropagation or BP. We will illustrate BP using the
multilayer perceptron pictured in Figure 3.4. The neural
net has L layers of neurons. The input is not counted as a
layer since the nodes do no computation. The state of the
neurons in the t t h layer is denoted by the vector S(t) the
jth component of which is sj(t). The interconnect from
the Eth neuron in the (t - 1)st layer to the jth neuron in
the t th layer is wjk(t). The sum of the inputs into the j th
neuron in the t t h layer is

kelayer (f - I)

The corresponding state of the j th neuron in the t t h layer
is

sj (t) = u (sumj (t))
where o is a nonlinearity such as the sigmoid in Equation
3.2. The output of the neural network is equal to the
states of the output neurons

For a given set of weights, the input-output relation-
ship of the neural network can be expressed simply by the
function Z(3. For a given training data set, a successfully
trained neural network should roughly satisfy the relation

In other words, the response of the neural network to Tn
should be roughly equal to Tn-,. The corresponding error is

where the (mean square) norm of a vector is defined by

and the superscript T denotes transposition. Dropping
the n subscript in Equation 3.5, an equivalent expression

where o, and t, are the mth components of the vectors
o', and Tn and M is the dimension of the output ~ e c t o r . ~

Figure 3.4 A layered perceptron with L layers. The 'ze-
roth' layer is the input, 7. The states of the neurons in
the t th level are in the vector s'(t). The weights of the in-
terconnects between the kth neuron in layer (t - 1). The
output corresponds to t h ~ weights in the last or Lth level.
In other words, Z= k .

Since the output of the neural network is a function of
the weights of the interconnect, so is the error. Training a
neural network consists of finding the weights that appr*
priately minimize the error. Doing so amounts to a classic
search problem. There exist numerous ways to do so. The
most common technique of layered perceptron training is
using error backpropagation. The advantage of such an
approach is that all of the training operations can be per-
formed internal to the neural network architecture. Other
search techniques are applied only to the mathematics de-
scribing the operation of the layered perceptron without
regard to its architecture.

31n Figure 3.4. 1%1 = 3.

3.2.2. STEEPEST DESCEXT SEARCH direction of steepest descent is simply

Error backpropagation is a special case of steepest descent
search - also referred to as the Widrow-Hoff algorithm.
The error, El is a function of the weights of the neural
network. Envision this function as a two dimensional sur-
face with hills and valleys. The desired minimum lies a t
the bottom of the valley. The current set of neural net-
work weights do not put us at this desired point. We wish
to take a step in the direction of minimum location. A
good guess is to step in the direction where the slope is
downhill. In .the new 1ocation;the direction of downhill is
again chosen and another step taken. Eventually, the hope
is that this repeated procedure will result a t being at the
minimum. If the choice is made in each step to proceed in
the direction where this slope is maximum, the resulting
search technique is referred to as steepest descent.

To illustrate in one dimension, consider the simple
parabolic bowl ,

For a given x, "downhill" is equivalent to making a move
in the direction

dE(x) -- = -x

In other words, if x is positive and we are on the right hand
of the bowl, we wish to take a step to the left. If z is on
the left, the step should be taken to the right. Both cases
take us closer to the minimum a t x = 0. Furthermore,
the size of the step is proportional to x. If, for example,
we are far away from the minimum, a large step is taken.
The steepest descent procedure is written as

The new .value of x is replaced by its old value multiplied
by (1 - q) . The parameter 7 is referred to as the step size.
With an initialization of t o , the solution of this difference
equation after the pth step is

This clearly converges to the minimum at x = 0 for all
11 - 71 < 1. Typically, the convergence of steepest decent
cannot be analyzed in closed form as it was for this simple
problem.

3.2.2.1. THE ERROR BACh'PROPACATIO!V
A LCORITHlif
iVith reference to Figure 3.4, we will apply steepest de-
scent to adjust the weight wjk(e) . This corresponds to
the interconnect between the kth neuron in layer t - 1
and the j th neuron in layer e. As a function of wjk(l), the

where E is the. error at the output given by Equation 3.6.
Thus, if a step is taken in this direction, the new weight

where r) is the step size. Making this adjustment to all
of the weights nudges the neural network toivard a more
accurate response to the applied training data input and
target.

To evaluate the steepest descent direction in Equation
3.7, the partial fraction is expanded

For later reference, define the error derivative as

The remaining two terms in Equation 3.8 are now ana-
lyzed. If the sigmoid in Equation 3.2 is used, then, from
Equation 3.3,

Lastly, from Equation 3.1,

asumj (t) - a - -
awjk(e) awjk (e) c wjt(c)sp(e-l)

PC layer (L - 1)

where I\'(is the number of neurons in layer e. Substituting
Equations 3.9-llinto Equation 3.8 gives

a & -- - aj(e)sj(e) [I - Sj (el] Sk(e - 1)
awjk(e)

All of the state terms, sj(e), in Equation 3.12 were corn-
puted when the input was propagated to the output and
are available for updating the weight. The only term that
remains a mystery is sj(e). For the output layer of neu-
rons, this term can be computed directly. For other layers,
it is determined by error backpropagation.

For t h e o u t p u t layer, s'(L) = o'= the output vector. Jj((e) = C Ek(Ei 1) Thus, from Equations 3.9 and 3.6, kc the st layer
aE

6j(l) = -
do;

a 1
M The 6's for each neuron can therefore be evaluated from

- - - [- x (~ ~ - t ~) ~] the 6's of the neurons in the row above. The 6's for the
80. top (Lth or output) row is simply the difference between

= oj - t j (3.13) the actual and desired (target) output.

For weights no t connected t o t h e ou tpu t , the
value of the 6j's can be computed from the 6j's in the
layer above them. The value of 6j(L - 1) can be evaluated
given the values of the Jj(L), the values of 6j(L - 2) can
then be evaluated with knowledge of the 6j(L - 1)'s etc.
The procedure is then to compute the values at the out-
put and work backwards towards the input or, in other
words, to backpropagate the error from the output to the
input. Doing so allows computation of all of the 6j(t)'s in
the neural network and thereby allow each weight in the
neural networks to be updated in accordance to steepest
descent given by Equation 3.7.

In order to see how the error is backpropagated, expand
Equation 3.9 into a partial fraction expansion

- - C aE

ke the (L+I)S~ layer
ask([+ 1)

A summary of the steps for error backpropagation train-
ing of a layered perceptron is below. In practice, there are
additional items that must be taken into account in the
training. These are listed in the next section. Incorpora-
tion of bias and in the architecture and momentum in the
training are of particular importance.

1. Set n = 1.

2. The states of t h e neurons are determined by
a feedforward operat ion o n t h e input . For an - -
input of i = in, evaluate the states, sj(t), of all
of the neurons in each layer of the neural network
according to the formula

ask(! + 1) dsumk(-! + 1) where

dsumk(e + 1) asj(!)
(3.14)

The recursion is initiated using sj(0) = ij. The
As before, each of these terms can be evaluated individu- states of the the final layer are the output (i.e. o'=
ally. First, from Equation 3.9,

Z'j (L).
8 E Ezample: At the top of Figure 3.5, the state of the

= bk(e+ 1). (3.15)
ask(! + 1) second neuron in the second layer, s2(2), is deter-

mined by the states of the neurons in layer one,
Assuming the sigmoid nonlinearity of Equation 3.2, the specifically s l (l) , s?(l) and sg(1). The value is com-
second term can be written, using Equation 3.9, as puted using Equation 3.18.

3. Backpropagate t h e e r ro r between the actual and
ask(e + = s~(! + 1) [l - SI(! + l)] . (3.16) desired neural network outputs to assign 6j(e)'s to

asumk(e + 1)
each neuron in each layer. The formula is

Lastly

i O j - ti e = L

sumk(! + 1) dsumk(C + 1) 6, (1) = x::;' 6k(e + 1)sk (e + 1) - -
as j (4

[1-sk(e+1)]wjk(e) ; 1 s t ~ L - 1
asj(e)

d (3.20) - - - wjk(e+ 1jsk(l) where t j is the jth component of the target vector
as (e

j) t c the tth layer r= Fn, the output vector is o' = and Kc is the
number of neurons in the eth layer.

= wjk(e) (3.17)
Example: In the center of Figure3.5, the error

UsiIlg Equations 3.1.517, Equation 14 can be writterl as derivative of the third neuron in layer one, J3(1),

is evaluated as a function of the error derivatives
above it, specifically 61(2) and 6?(2). Equation 3.19
is used for this.

4. U p d a t e weights using s teepes t descent. From
the previous two steps, each neuron is now assigned
a state, sjk(e) and a error derivative, 6jk(e). The
weights are updated using

where

Ezampte: Weight ~ ~ ~ (1) is updated in the bottom
figure in Figure3.5 using the state ind error deriva-
tive of the top neuron (~ ~ (2) and J3(2)) and the state
of the lower neuron (~ ~ (0) = il). The interconnect
joins these two neurons.

5. If n < N, repeat - the procedure - from step 2 for the f
training pair in+1 and tn+l. -

6. The neural network has been subjected to a cycle of Figure 3.5 An example of training a layered perceptron

training data, or an epoch. If the error, using error backpropagation. (Top) In the feedforward
step. the states of all neurons are determined directly from

1
IM the layer of neurons below them. (Middle) The error be-

E = - C (O , - ~ ,) ~
2 tween the actual and target values is backpropagated to

m = l assign each neuron an error derivative denoted by 6. The
is sufficiently small, stop. Otherwise, go to step 1 error derivatives are determined directly from the error
and go through another epoch. derivatives of the neurons in the layer above. (Bottom)

Each neuron now has a state and as error derivative. The
weight connecting two neurons is updated using steepest

3.3. NEURAL SMITHING descent. Only the states and error derivatives of the con-
necting neurons are needed to do this.

There are numerous variations in training a layered per-
ceptron neural network.

Momen tum. Error backpropagation as described
many times does not work. Weights can be adjusted
in such a helter skelter manner that no convergence
occurs. A technique to alleviate this adds momen-
tum to the weight update. Momentum requires the
weight to change in a direction akin to its previous
change.

To incorporate momentum, an additional parame-
ter must be added to the weight increment in Equa-
tion 3.21. Redefine Awjk(e) as Aws(e) where the
new parameter m indexes the number of epochs, or
passes through the training data. To include m e
mentum, Equation 3.21 is rewritten as

Bias. One of the inputs is set to one to provide
a bias to the neural network. In other words, set
il = 1 for all inputs. Doing so allows greater diver-
sity in the ability of the neural network to learn. To
illustrate, consider the case where tanh(.) is used
in lieu of the sigmoid in Equation 3.2. (Indeed,
tanh(i) = 2(a(x) - I).) Since tanh(0) = 0, an in-
put identically equal to zero will result in an output
identically equal to zero. There exists no freedom to
make any other assignment. Addition of a bias term
on the input removes this restriction. Bias nodes are
sometimes added to hidden layers also.

Shuffling. The ordering of the data can have an

Awz(i) = qbj(t)sj(e) [I - sj(e)] st(! - 1) unwanted effect on th-e training of the neural net-
work. Some neural smiths randomize the ordering

-ahwjk(!)"'-' of the training data for each epoch.

where a, the momentum, parameterizes the weight B a t c h Training. This process is used more com-
of the previous weight increment on the current one. monly than shuffling. An entire epoch is presented

to the neural network prior to updating the weights.
With reference to Equation 3 5 , the total error for
an epoch is

where N is the cardinality of the training data
input-output pairs. This errsr, rather than the er-
ror from a single input-output training data pair, is
used to update the weights of the neural network.

Cross Validation. There is a difference between
learning and memorization. With memorization,
data previously encountered can be properly cat-
egorized. Data not previously seen may or may not
be properly categorized. If memorization is desired,
a table look-up might be preferable to a neural net-
work.

If a neural network's architecture is improperly cho-
sen by, for example, choosing too many hidden neu-
rons, then the neural network may memorize. Tech-
niques, such as hidden neuron pruning can be used
to remedy this.

How do we determine whether a neural network is
properly trained? The neural network will properly
respond to data which it has not seen before. Sub-
jecting the neural network to such data is referred
to as cross validation.

Hidden Layer Choice. A single hidden layer is
sufficient to make any input-oupu t mapping. A sin-
gle hidden layer, though, may not be best. Layered
perceptrons with a very large number of hidden lay-
ers tend to train poorly.

Pruning. A layered perceptron with too many hid-
den neurons will tend to memorize the training data.
Too few hidden neurons may not allow sufficient
flexibility to generalize. One method to determine
the proper number of hidden neurons to begin with
a large number of neurons and prune hidden neu-
rons until desired performance is obtained. One
method prunes as long as the cross validation er-
ror decreases.

Sparse D a t a a n d Training with J i t te r . When
the training data is sparse or to improve generaliza-
tion, the input data can be corrupted with noise.
The idea is that each point claims more volume in
the training space.

Al te rna te Training Techniques Training a neu-
ral network is a classic optimization problem. tl
search is made over weight space in order to mini-

mize the overall error for a given training data set.
Error backpropagation has the advantage that all of
the training can be done within the neural network
architecture. If this is not a concern, then any of
a number of optimization techniques can be used.
Some of the techniques that have been suggested
are listed below.

1. Conjugate gradient descent.

2. Random optimization.

3. Genetic algorithms.

The Curse of Dimensionality. The number of
inputs to a layered perceptron should be as few a s
possible. This is a guideline not only for neural net-
works, but for any classification procedure.

Consider, for example, the circle in a square pic-
tured in Figure 3.6. In order to learn to distinguish
between points in the circle and points without, a
large number of training points are required. The
neural network would have two inputs correspond-
ing to the coordinates of each point. The single out-
put of the neural network would be trained to one
for points within the circle and zero without. How
many points are required in order to see the classi-
fication boundary is circular? One hundred points,
shown at the top of Figure 3.6. Consider, then, the
same problem estended to three dimensions illus-
trated a t the bottom of Figure 3.6. An additional
input, is, has been added. It has no effect on the
classification. The problem is to classify within or
without the cylinder. Even though the problem is
basically the same as before, the required number of
training data is much higher. In order to have the
same resolution as in the two dimensional case, one
hundred slices of one hundred samples is required.
The number of samples is therefore 100,000 rather
than 100. Generalizing, the number of samples in-
creases as SK where S is the number of samples in
one dimension and A' is the number of inputs. This
simple esample illustrates the need to reduce the
input dimensionality as much as possible without
destroying the information theoretic content.

3.4 . VARIATIONS

There esist an extensive number of variations of the lay-
ered perceptton.

RadiaI Basis Funct ion Neural Networks. In-
stead of the sigmoid, a gaussian is used as the neural
nonlinearity. The dispersion and centroid of these
gaussians are tuned in the training process.

4 Recurrent Neura l Networks. These nets have

BIBLIOGR.L\PHY

1. P. Xrabshahi, J.J. Choi, R.J. Marks I1 and T.P.
Caudell, "Fuzzy Control of Backpropagation," Proc.
First IEEE Int. Conf. Fuzzy Systems, San Diego,
CA, 1992 (IEEE Press).

2. M.H. Hassoun, Fundamentals of Artificial Neu-
r a l Networks, MIT Press, 199.5.

3. Simon Haykin, Neura l Networks: A Compre-
hensive Foundation, (Macmillan/IEEE Press,
1994.)

4. D.R. Hush and B.G. Horne, "Progress in Supervised
Neural Networksn, IEEE Signal Processing Maga-
zine, pp 8-39, January 1993.

5. R. Reed, "Pruning Algorithms - A Survef"' IEEE
Transactions on Neural lVetworks, vol. 4, #5,
pp.740-747.

6. R. Reed and R.J. Marks 11, "Genetic Algorithms
and Neural Networks: An Introduction", rVorth-
con/92 Conference Record, (Western Periodicals
Co., Ventura, CA), Seattle IVA, October 19-21,
1992, pp.293-301 - invited paper.

7. Patrick K. Simpson, Foundations of Neural
Figure3.6 Illustration of the curse of dimensionality. The Networks, in Artificial Neura l Networks:
top classification problem is characterized by 100 samples. Paradigms, Applications a n d Hardware Im-
In order to generate the same resolution in the bottom plementat ions, Sanchez-Sinencio k Lau, Editors,
three dimensional problem, 100,000 samples are required. IEEE Press, 1992.

feedback interconnects. The feedforward neural net- 8. J.M. Zurada, Intmduction

work only has the ability to provide memoryless ral Systems, West Publishing Company, St. Paul,
input-output mappings. Recurrent neural networks MN, 1992.

can make use of past events to make decisions. As in g. J. zurada, R.J. &larks 11 and C. ~ ~ b i ~ ~ ~ ~ , Corn-
any system with feedback, stability can be a prob- puta t iona l Intelligence: Imi ta t ing Life, (IEEE
lem. Chaos can be observed in such neural networks. Press, Piscataway, 1994).

Cascade Correlation. The neural network is
trained to a certain accuracy. Additional neurons
are added, if needed, to improve performance.

3.5.ADDITIONAL READING

There exist numerous quality tutorials and texts on neural
networks. The books by IIassoun, Haykin and Zurada are
especially good. Shorter tutorials on neural networks are
given by Hush k Horne and by Simpson.

The three dominant jounals in the field are The IEEE
Transactions on Neural Networks, '"ieural Computalion
and Neural Metworks.

	1.tif
	2.tif
	3.tif
	4.tif
	5.tif
	6.tif
	7.tif
	8.tif
	9.tif
	91.tif

