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Chapter 3 
Artificial Neural Networks: Supervised ?vfodels 

3.0. INTRODUCTION 

Supervised learning attempts to  determine the relation- 
ship between a set of input or stimulus data and corre- 
sponding output data. The learning is supervised because 
when the student system offers a response to a given in- 
put, a teacher, or supervisor, is able t o  present the true 
output. By comparing the system response to the true 
output, the student is better able to properly respond to 
the input when subsequently pre~ented .~  

Although there exists a number of paradigms for su- 
pervised learning, neural networks have been shown to  
be quite adept a t  learning the relationship among input- 
output data. 

3.1. THE LAYERED PERCEPTRON 

The most commonly used artificial neural network is the 
layered percepiron shown in Figure 3.1. The solid dots 
at the middle (hidden) and top layers are neurons. The 
linkage between neurons are interconnects. The biological 
counterpart of the interconnect is the synapse. Artificial 
neural networks have been claimed to emulate their bio- 
logical counterpart. Any resemblar~ce is, at  best, crude. 

Each neuron has a state which is a scalar number. The 
state of a neuron is determined by the interconnects to 
and states of the neurons that feed it. This is illustrated in 
Figure 3.2. Here, the state, s j ,  of a neuron is determined 
by the states, {sk(l 5 k 5 of all of the neurons 
below it where Kc is the number of neurons in layer !. 
(In Figure 3.2, = 5). The weight of interconnect 
between neurons s k  and neuron sj is wjk. The sum of the 
weighted input neurons is 

Note this is simply a matrix-vector multiplication. This 
sum is made the argument of a function a(.). A conunonly 
used nonlinearity is the sigmoid 

'For unsupervised learning, there is no teacher. The learning 
system in this case dusters the input data into various categories. 
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Figure 3.1 A layered perceptron neural network with one 
hidden layer. 

As is illustrated in Figure 3.3, the sigmoid monotonically 
maps the interval -bo < x < co into the interval 0 < 
u(x) < 1. Other squashing Junclioirs, such as a hyperbolic 
tangent, may be used. As will be shown, one advantage 
of the sigmoid in Equation 3.2 is 

3.2. LAYERED PERCEPTRON NEURAL 
NETWORI< TRAINING 

The layered perccptron's job, using training data, is to 
learn the relationship between a stimulus and a response. 
The training data is in two pieces - the input and output. 
Let there be IY components in the training set. The input 
vectors arc 

{ell < n <  iV) 

and the output, or farget vectors are 



Figure3.2The state of the j th  neuron in layer -! is denoted 
by sj(E). It  is determined by the states of the neurons in 
the layer below, ( sk( t  - 1)11 5 k _< Klel), where I\'~-I, 
the number of neurons in layer (t- I),  is five in this figure. 
The states of the neurons in layer ( t  - 1) are weighted by 
the interconnect weights, wjk, and the results added to 
give the number sumj. This number is passed through a 
nonlinearity, a(.), to give the desired neural state. 

Figure3.3The sigmoid, u(x)  = [l+exp(-x)]-l, 'squashes 
the range over all of x into the interval (0,l). 

The input is associated with a response of &, & with r2, 
etc. It. is convenient to interpret the layered perceptron 
to be successfully trained when an input of Tn produces 
states equal to i;, a t  the output layer2. 

To pedagogically illustrate, suppose we wish to train the 
neural network to distinguish between books and maga- 
zines. The  Tn vectors would contain digital information 
on features that distinguish magazines from books. The 

2Proper training . in many cases, requires that this relationship 
not be learned exactly. II so, the neural network can be memorie- 
in9 rather than learning. This point will be discussed later 

first element of Tn could, for example, be a one if the 
cover of the book/magazine =as hard cardboard and zero 
if was made of.flexible paper. This feature is. of course, 
insufficient to classify books from magazines. since many 
boob  (eg. paperback books) do not have hard covers. 
From the observation that books usually have more pages, 
a second feature might be the number of pages in the 
bookJmagazine. The third feature might indicate whether 
staples or glue is used to bind the magazine/book, etc. 
We indicate books by logic one and magazines by a zero. 
Thus, if TI were the features of a book, then TI = t l  = 1, 
( i . c  the output in this example is scalar). If Tz were also 
the features of a book, then t2 = 1. An output of t s  = 0 is 
appropriate if the input vector z3 has features correspond- 
ing to a magazine, etc. 

The neural network can be trained by repeatedly ex- 
posing the network to the training data. In one popularly 
used method, the input zl, corresponding to a book, is im- 
posed on the input. A value of one is desired a t  the output. 
The output, however, will be other than one. The weights 
of the neural network are adjusted so that the next time 
the neural network sees &, it will have an output which 
is a bit closed to one. The input & is placed on the in- 
put and an output of one is again imposed. The weights 
are then adjusted slightly to appropriately respond to &. 
The process is repeated using the magazine data vector T3 
with an output of zero. By the time we reach the last vec- - 
tor, i,v, the first adjustment corresponding to ;l has been 
largely 'forgotten' by the neural network. Therefore, the 
process is repeated until the weights of the neural network 
stabilize. If the neural network is trained properly, it will 
properly categorize a feature vector it has not seen before 
as a book or a magazine. 

Although this description is oversimplified, it captures 
the essence of training a layered perceptron neural net- 
work. The training is referred to as supervised because, in 
each instance, the proper categorization of the input vec- 
tor is specified. Thus, the neural network has a teacher or 
supervisor to tell it what cach of the input training vectors 
is. 

The example of distinguishing between books and mag- 
azines is a classification problem. Artificial neural net- 
works can also be trained to provide continuous value re- 
gression type responses, such as forecasting. Suppose, for 
example, one wished to forecast 4:00 PhI average speed 
of traffic near downtown Seattle on Interstate 5 a t  3:00 
PILI. For feature data, we would choose data available to 
us at 3:00 PhI, such as the day of the week, the current 
average speed, the number of cars per second and whether 
or not there was a sporting event, such as a JIariners or 
Seahawks game, a t  the Kingdome. Historical data would 
be used to train the net. In such cases, the averase car 
speed at 4:00 PA1 is known and is the used as the output 



of the neural network in training. If successfully trained, 
the neural network, when presented with the feature data 
a t  3:00 PM w.ould accurately forecast the average traffic 
average traffic speed. 

3.2.1. ERROR BACKPROPAGATION 
The most popular method of training a layered percep- 
tron neural network is through a procedure called error  
backpropagation or BP. We will illustrate BP using the 
multilayer perceptron pictured in Figure 3.4. The neural 
net has L layers of neurons. The input is not counted as a 
layer since the nodes do no computation. The state of the 
neurons in the t t h  layer is denoted by the vector S(t) the 
jth component of which is sj(t). The interconnect from 
the Eth neuron in the ( t  - 1)st layer to the jth neuron in 
the t th  layer is wjk(t). The sum of the inputs into the j th  
neuron in the t t h  layer is 

kelayer (f - I )  

The corresponding state of the j th  neuron in the t t h  layer 
is 

sj (t) = u (sumj ( t))  
where o is a nonlinearity such as the sigmoid in Equation 
3.2. The output of the neural network is equal to the 
states of the output neurons 

For a given set of weights, the input-output relation- 
ship of the neural network can be expressed simply by the 
function Z(3. For a given training data set, a successfully 
trained neural network should roughly satisfy the relation 

In other words, the response of the neural network to Tn 
should be roughly equal to Tn-,. The corresponding error is 

where the (mean square) norm of a vector is defined by 

and the superscript T denotes transposition. Dropping 
the n subscript in Equation 3.5, an equivalent expression 

where o, and t, are the mth components of the vectors 
o', and Tn and M is the dimension of the output ~ e c t o r . ~  

Figure 3.4 A layered perceptron with L layers. The 'ze- 
roth' layer is the input, 7. The states of the neurons in 
the t th  level are in the vector s'(t). The weights of the in- 
terconnects between the kth neuron in layer ( t  - 1). The 
output corresponds to t h ~  weights in the last or Lth level. 
In other words, Z= k .  

Since the output of the neural network is a function of 
the weights of the interconnect, so is the error. Training a 
neural network consists of finding the weights that appr* 
priately minimize the error. Doing so amounts to a classic 
search problem. There exist numerous ways to do so. The 
most common technique of layered perceptron training is 
using error backpropagation. The advantage of such an 
approach is that all of the training operations can be per- 
formed internal to the neural network architecture. Other 
search techniques are applied only to the mathematics de- 
scribing the operation of the layered perceptron without 
regard to its architecture. 

31n Figure 3.4. 1%1 = 3. 



3.2.2. STEEPEST DESCEXT SEARCH direction of steepest descent is simply 

Error backpropagation is a special case of steepest descent 
search - also referred to as the Widrow-Hoff algorithm. 
The error, El is a function of the weights of the neural 
network. Envision this function as a two dimensional sur- 
face with hills and valleys. The desired minimum lies a t  
the bottom of the valley. The current set of neural net- 
work weights do not put us at this desired point. We wish 
to take a step in the direction of minimum location. A 
good guess is to step in the direction where the slope is 
downhill. In .the new 1ocation;the direction of downhill is 
again chosen and another step taken. Eventually, the hope 
is that this repeated procedure will result a t  being at the 
minimum. If the choice is made in each step to proceed in 
the direction where this slope is maximum, the resulting 
search technique is referred to as steepest descent. 

To illustrate in one dimension, consider the simple 
parabolic bowl , 

For a given x, "downhill" is equivalent to making a move 
in the direction 

dE(x) -- = -x 

In other words, if x is positive and we are on the right hand 
of the bowl, we wish to  take a step to the left. If z is on 
the left, the step should be taken to the right. Both cases 
take us closer to the minimum a t  x = 0. Furthermore, 
the size of the step is proportional to x. If, for example, 
we are far away from the minimum, a large step is taken. 
The steepest descent procedure is written as 

The new .value of x is replaced by its old value multiplied 
by (1 - q) .  The parameter 7 is referred to as the step size. 
With an initialization of t o ,  the solution of this difference 
equation after the pth step is 

This clearly converges to the minimum at x = 0 for all 
11 - 71 < 1. Typically, the convergence of steepest decent 
cannot be analyzed in closed form as it was for this simple 
problem. 

3.2.2.1. THE ERROR BACh'PROPACATIO!V 
A LCORITHlif 
iVith reference to Figure 3.4, we will apply steepest de- 
scent to adjust the weight wjk(e) . This corresponds to 
the interconnect between the kth neuron in layer t - 1 
and the j th  neuron in layer e. As a function of wjk(l), the 

where E is the. error at the output given by Equation 3.6. 
Thus, if a step is taken in this direction, the new weight 

where r )  is the step size. Making this adjustment to all 
of the weights nudges the neural network toivard a more 
accurate response to the applied training data input and 
target. 

To evaluate the steepest descent direction in Equation 
3.7, the partial fraction is expanded 

For later reference, define the error derivative as 

The remaining two terms in Equation 3.8 are now ana- 
lyzed. If the sigmoid in Equation 3.2 is used, then, from 
Equation 3.3, 

Lastly, from Equation 3.1, 

asumj (t) - a - -  
awjk(e) awjk (e) c wjt(c)sp(e-l) 

PC layer ( L - 1 )  

where I\'( is the number of neurons in layer e. Substituting 
Equations 3.9-llinto Equation 3.8 gives 

a &  -- - aj(e)sj(e) [I - Sj (el] Sk(e - 1) 
awjk(e) 

All of the state terms, sj(e), in Equation 3.12 were corn- 
puted when the input was propagated to the output and 
are available for updating the weight. The only term that 
remains a mystery is sj(e). For the output layer of neu- 
rons, this term can be computed directly. For other layers, 
it is determined by error backpropagation. 



For t h e  o u t p u t  layer, s'(L) = o'= the output vector. Jj((e) = C Ek(Ei 1) Thus, from Equations 3.9 and 3.6, kc the  st layer 
aE 

6j(l) = - 
do; 

a 1 
M The 6's for each neuron can therefore be evaluated from 

- - - [- x ( ~ ~ - t ~ ) ~ ]  the 6's of the neurons in the row above. The 6's for the 
80. top (Lth or output) row is simply the difference between 

= oj - t j  (3.13) the actual and desired (target) output. 

For  weights no t  connected t o  t h e  ou tpu t ,  the 
value of the 6j's can be computed from the 6j's in the 
layer above them. The value of 6j(L - 1) can be evaluated 
given the values of the Jj(L), the values of 6j(L - 2) can 
then be evaluated with knowledge of the 6j(L - 1)'s etc. 
The procedure is then to compute the values at the out- 
put and work backwards towards the input or, in other 
words, to backpropagate the error from the output to the 
input. Doing so allows computation of all of the 6j(t)'s in 
the neural network and thereby allow each weight in the 
neural networks to be updated in accordance to steepest 
descent given by Equation 3.7. 

In order to see how the error is backpropagated, expand 
Equation 3.9 into a partial fraction expansion 

- - C aE 

ke the (L+I)S~ layer 
ask([ + 1) 

A summary of the steps for error backpropagation train- 
ing of a layered perceptron is below. In practice, there are 
additional items that must be taken into account in the 
training. These are listed in the next section. Incorpora- 
tion of bias and in the architecture and momentum in the 
training are of particular importance. 

1. Set n = 1. 

2. The states of t h e  neurons are determined by 
a feedforward operat ion o n  t h e  input .  For an - - 
input of i = in, evaluate the states, sj(t), of all 
of the neurons in each layer of the neural network 
according to the formula 

ask(! + 1) dsumk(-! + 1) where 

dsumk(e + 1) asj(!) 
(3.14) 

The recursion is initiated using sj(0) = ij. The 
As before, each of these terms can be evaluated individu- states of the the final layer are the output (i.e. o'= 
ally. First, from Equation 3.9, 

Z'j (L). 
8 E  Ezample: At the top of Figure 3.5, the state of the 

= bk(e+ 1). (3.15) 
ask(! + 1) second neuron in the second layer, s2(2), is deter- 

mined by the states of the neurons in layer one, 
Assuming the sigmoid nonlinearity of Equation 3.2, the specifically s l ( l ) ,  s?(l) and sg(1). The value is com- 
second term can be written, using Equation 3.9, as puted using Equation 3.18. 

3. Backpropagate  t h e  e r ro r  between the actual and 
ask(e + = s~(! + 1) [l - SI(! + l)] . (3.16) desired neural network outputs to assign 6j(e)'s to 

asumk(e + 1) 
each neuron in each layer. The formula is 

Lastly 

i O j  - ti e =  L 

sumk(! + 1) dsumk(C + 1) 6, (1) = x::;' 6k(e + 1)sk (e + 1) - - 
as j  ( 4  

[1-sk(e+1)]wjk(e)  ; 1 s t ~  L - 1  
asj(e) 

d (3.20) - - - wjk(e+ 1jsk(l) where t j  is the jth component of the target vector 
as (e 

j ) t c  the tth layer r=  Fn, the output vector is o' = and Kc is the 
number of neurons in the eth layer. 

= wjk(e) (3.17) 
Example: In the center of Figure3.5, the error 

UsiIlg Equations 3.1.517, Equation 14 can be writterl as derivative of the third neuron in layer one, J3(1), 



is evaluated as a function of the error derivatives 
above it, specifically 61(2) and 6?(2). Equation 3.19 
is used for this. 

4. U p d a t e  weights using s teepes t  descent. From 
the previous two steps, each neuron is now assigned 
a state, sjk(e) and a error derivative, 6jk(e). The 
weights are updated using 

where 

Ezampte: Weight ~ ~ ~ ( 1 )  is updated in the bottom 
figure in Figure3.5 using the state ind  error deriva- 
tive of the top neuron ( ~ ~ ( 2 )  and J3(2)) and the state 
of the lower neuron ( ~ ~ ( 0 )  = il). The interconnect 
joins these two neurons. 

5. If n < N, repeat - the procedure - from step 2 for the f 
training pair in+1 and tn+l.  - 

6. The neural network has been subjected to a cycle of Figure 3.5 An example of training a layered perceptron 

training data, or an epoch. If the error, using error backpropagation. (Top) In the feedforward 
step. the states of all neurons are determined directly from 

1 
IM the layer of neurons below them. (Middle) The error be- 

E =  - C ( O , - ~ , ) ~  
2 tween the actual and target values is backpropagated to 

m = l  assign each neuron an error derivative denoted by 6. The 
is sufficiently small, stop. Otherwise, go to step 1 error derivatives are determined directly from the error 
and go through another epoch. derivatives of the neurons in the layer above. (Bottom) 

Each neuron now has a state and as error derivative. The 
weight connecting two neurons is updated using steepest 

3.3. NEURAL SMITHING descent. Only the states and error derivatives of the con- 
necting neurons are needed to do this. 

There are numerous variations in training a layered per- 
ceptron neural network. 

Momen tum.  Error backpropagation as described 
many times does not work. Weights can be adjusted 
in such a helter skelter manner that no convergence 
occurs. A technique to alleviate this adds momen- 
tum to the weight update. Momentum requires the 
weight to change in a direction akin to its previous 
change. 

To incorporate momentum, an additional parame- 
ter must be added to the weight increment in Equa- 
tion 3.21. Redefine Awjk(e) as Aws(e)  where the 
new parameter m indexes the number of epochs, or 
passes through the training data. To include m e  
mentum, Equation 3.21 is rewritten as 

Bias. One of the inputs is set to one to provide 
a bias to the neural network. In other words, set 
il = 1 for all inputs. Doing so allows greater diver- 
sity in the ability of the neural network to learn. To 
illustrate, consider the case where tanh(.) is used 
in lieu of the sigmoid in Equation 3.2. (Indeed, 
tanh(i) = 2(a(x) - I).) Since tanh(0) = 0, an in- 
put identically equal to zero will result in an output 
identically equal to zero. There exists no freedom to 
make any other assignment. Addition of a bias term 
on the input removes this restriction. Bias nodes are 
sometimes added to hidden layers also. 

Shuffling. The ordering of the data can have an 

Awz( i )  = qbj(t)sj(e) [I - sj(e)] st(! - 1) unwanted effect on th-e training of the neural net- 
work. Some neural smiths randomize the ordering 

-ahwjk(!)"'-' of the training data for each epoch. 

where a, the momentum, parameterizes the weight B a t c h  Training. This process is used more com- 
of the previous weight increment on the current one. monly than shuffling. An entire epoch is presented 



to the neural network prior to updating the weights. 
With reference to Equation 3 5 ,  the total error for 
an epoch is 

where N is the cardinality of the training data 
input-output pairs. This errsr, rather than the er- 
ror from a single input-output training data pair, is 
used to update the weights of the neural network. 

Cross Validation. There is a difference between 
learning and memorization. With memorization, 
data previously encountered can be properly cat- 
egorized. Data not previously seen may or may not 
be properly categorized. If memorization is desired, 
a table look-up might be preferable to a neural net- 
work. 

If a neural network's architecture is improperly cho- 
sen by, for example, choosing too many hidden neu- 
rons, then the neural network may memorize. Tech- 
niques, such as hidden neuron pruning can be used 
to remedy this. 

How do we determine whether a neural network is 
properly trained? The neural network will properly 
respond to data which it has not seen before. Sub- 
jecting the neural network to such data is referred 
to as cross validation. 

Hidden Layer Choice. A single hidden layer is 
sufficient to make any input-oupu t mapping. A sin- 
gle hidden layer, though, may not be best. Layered 
perceptrons with a very large number of hidden lay- 
ers tend to train poorly. 

Pruning.  A layered perceptron with too many hid- 
den neurons will tend to memorize the training data. 
Too few hidden neurons may not allow sufficient 
flexibility to generalize. One method to determine 
the proper number of hidden neurons to begin with 
a large number of neurons and prune hidden neu- 
rons until desired performance is obtained. One 
method prunes as long as the cross validation er- 
ror decreases. 

Sparse D a t a  a n d  Training with J i t te r .  When 
the training data is sparse or to improve generaliza- 
tion, the input data can be corrupted with noise. 
The idea is that each point claims more volume in 
the training space. 

Al te rna te  Training Techniques Training a neu- 
ral network is a classic optimization problem. tl 
search is made over weight space in order to mini- 

mize the overall error for a given training data set. 
Error backpropagation has the advantage that all of 
the training can be done within the neural network 
architecture. If this is not a concern, then any of 
a number of optimization techniques can be used. 
Some of the techniques that have been suggested 
are listed below. 

1. Conjugate gradient descent. 

2. Random optimization. 

3. Genetic algorithms. 

The Curse  of Dimensionality. The number of 
inputs to a layered perceptron should be as few a s  
possible. This is a guideline not only for neural net- 
works, but for any classification procedure. 

Consider, for example, the circle in a square pic- 
tured in Figure 3.6. In order to  learn to distinguish 
between points in the circle and points without, a 
large number of training points are required. The 
neural network would have two inputs correspond- 
ing to  the coordinates of each point. The single out- 
put of the neural network would be trained to one 
for points within the circle and zero without. How 
many points are required in order to see the classi- 
fication boundary is circular? One hundred points, 
shown at the top of Figure 3.6. Consider, then, the 
same problem estended to  three dimensions illus- 
trated a t  the bottom of Figure 3.6. An additional 
input, is, has been added. It has no effect on the 
classification. The problem is to classify within or 
without the cylinder. Even though the problem is 
basically the same as before, the required number of 
training data is much higher. In order to have the 
same resolution as in the two dimensional case, one 
hundred slices of one hundred samples is required. 
The number of samples is therefore 100,000 rather 
than 100. Generalizing, the number of samples in- 
creases as SK where S is the number of samples in 
one dimension and A' is the number of inputs. This 
simple esample illustrates the need to reduce the 
input dimensionality as much as possible without 
destroying the information theoretic content. 

3.4 .  VARIATIONS 

There esist an extensive number of variations of the lay- 
ered perceptton. 

RadiaI Basis Funct ion Neural  Networks. In- 
stead of the sigmoid, a gaussian is used as the neural 
nonlinearity. The dispersion and centroid of these 
gaussians are tuned in the training process. 

4 Recurrent  Neura l  Networks. These nets have 
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3.5.ADDITIONAL READING 

There exist numerous quality tutorials and texts on neural 
networks. The books by IIassoun, Haykin and Zurada are 
especially good. Shorter tutorials on neural networks are 
given by Hush k Horne and by Simpson. 

The three dominant jounals in the field are The IEEE 
Transactions on Neural Networks, '"ieural Computalion 
and Neural Metworks. 
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