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Pointer Adaptation and Pruning of Min—Max Fuzzy
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Abstract—A new technique for adaptation of fuzzy membership mation about the environment and an adequate mathematical
functions in a fuzzy inference system is proposed. Theointer model of the system under control have been available. This
technique relies upon the isolation of the specific membership remarkable success in the analysisméchanisticsystems;

functions that contributed to the final decision, followed by the . t d by diff diff tial it |
updating of these functions’ parameters using steepest descent.|-€- SySlemS governed Dy difierence, difierential, or integra

The error measure used is thus backpropagated from output €quations, has perhaps partly contributed to the belief that such
to input, through the min and max operators used during the analysis techniques can be applied equally well to complex
inference stage. This occurs because the operations of min andhuman-centered systems. In his now classic paper on the
max are continuous differentiable functions and, therefore, can foundations of fuzzy systems and decision processes [1],

be placed in a chain of partial derivatives for steepest descent . . - . . . .
backpropagation adaptation. Interestingly, the partials of min Zadeh takes issue with this point of view in his statement

and max act as “pointers” with the result that only the function Of the principle of incompatibility stating that:
that gave rise to the min or max is adapted; the others are not. To As the complexity of a system increases, our ability to
illustrate, let a = max[5y, o, -, An]. Thenda/9j, =1 when make precise and yet significant statements about its

O, is the maximum and is otherwise zero. We apply this property . L . .
to the fine tuning of membership functions of fuzzy min—-max behavior diminishes until a threshold is reached beyond

decision processes and illustrate with an estimation example. The ~ Which precision and significance (or relevance) become
adaptation process can reveal the need for reducing the number of ~ almost mutually exclusive characteristics.

membership functions. Under the assumption that the inference ¢ ,hsequently, over the years a number of alternative control
surface is in some sense smooth, the process of adaptation can

reveal overdetermination of the fuzzy system in two ways. First, schemes, for instance techniques emp_loymg neural networks or
if two membership functions come sufficiently close to each other, fuzzy sets, have been proposed and implemented [2], [3]. We
they can be fused into a single membership function. Second, if provide a brief discussion of relevant topics of fuzzy systems

a membership function becomes too narrow, it can be deleted. gnd control here to motivate our approach.

In both cases, the number of fuzzyr—THen rules is reduced. In

certain cases, the overall performance of the fuzzy system can be

improved by this adaptive pruning. A. Fuzzy Sets

Index Terms—Adaptive estimation, adaptive systems, fuzzy A fuzzy subsetd of a universal sefX is characterized by
control, fuzzy sets, fuzzy systems, intelligent systems, knowledge-a membership functiom 4(x) which assigns a real number
based systems. in the closed interval [0, 1] to every element &F [4]. This

numbery 4 () represents the grade of membership of element
|. INTRODUCTION x in set A, with larger values of it denoting higher degrees

of set membership.

M ODERN decision theory has been very successful ingqr example, we can define a possible membership function

coping with problems where the system and its Strugs, the fuzzy set of real numbers near zero in the following
ture have been well defined; notably in cases where good mfway:
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The Fuzzifier: The fuzzifier in Fig. 1 maps the input onto
Fuzzy the continuous interval [0, 1] and has the following parameters:
Rule base 1) the number of membership functions;
& Inference 2) the shape of the membership functions (e.g., triangle,
Engine Control Gaussian, etc3;
- = Forecasting 3) the central tendency (e.g., center of mass) and dispersion
Estimation (e.g., standard deviation, bandwidth, or range) of the
Error membership function.

The Inference EngineThe inference engine is the system
]lfig- 1. Block die}gram of a general fuzzygnfir%n%e Sﬁlstef;- Thz errOfdvalﬂéecisionmaker" and determines how the system interprets the
rom a given periormance measure can be Te ack and used to adap . ) .

or one of the following: a) Membership function shapes and cardinality; }TﬂZy |InngtI.CS. Its parameters are. those of the .aggre:"gatlon
and d)Aanp/or aggregation operators; c) the rule base; e) the defuzzificatiéiperators which provide interpretation of connectivasi
technique. and ‘OR.” An example of a parameterized union operator is

the Yager union [17]:

Various set operations can be defined on fuzzy sets, just min[1, (a® _i_bw)l/w]’
as the crisp set case. For instance, it is common to denote
intersection of two fuzzy sets by the “minimum” operationvhere the inputs are membership valuesand b, and the
applied to the two corresponding memberships functfons: parameterns ranges over0, co).*
The Defuzzifier:The defuzzification stage maps fuzzy con-
C=ANB = pc(z) sequents into crisp output values. Its design requires choice
= pans(z) of the following:

= min [pa(x), pe(z)]  VreX. @ 1) the number of membership functions;
o ] 2) the shape of membership functions;

Similarly, the union of two fuzzy sets can be represented byg) the definition of fuzzy implication, i.e., how the value
the “maximum” operation. These operations are not unique. * of the consequents from the inference engine impact the
Other operators for performlng fuzzy intersection, union, and output membership functions prior to defuzzification.
complementation exist [5]. However, thein andmax Opera-  4) 3 measure of central tendency of the altered consequent
tions are special in the sense that they areothly continuous output membership functions. The center of mass is
and idempotent fuzzy set intersection and union operators, typically used, although medians and modes can also
respectively [S]. be used to arrive at the crisp output.

Itis, thus, seen that both the fuzzification and defuzzification

B. Fuzzy Inference stages require choices of cardinality, position, and shape of

Fuzzy inference is based on the concept of faezy membership functions. The defuzzification operation itself can
conditional statementF A THEN B, or, for shortA = B, be parameterized, and the inference engine requires choices to
where the antecedent and the conseque are fuzzy sets. be made among numerous fuzzy aggregation operators, which

A general fuzzy inference system consists of three paran be parameterized.
(see Fig. 1). A crisp input is fuzzified by input membership All of these parameters can be adaptively adjusted by mon-
functions and processed by a fuzzy logic interpretation of a string a certain target performance measure in a supervised
of fuzzy rules. This is followed by the defuzzification stagéearning environment. Over the years numerous techniques
resulting in a crisp output. The rule base is typically craftefdr adaptation of fuzzy membership functions, rule bases, and
by an expert; though self organizing procedures have beaggregation operators have been proposed. These techniques
suggested [6]-[15]. include the following.

There are a number of different ways to implement the « Procyk and Mamdani's self-organizing process controller
fuzzy inference engine. Among the very first such proposed [6] which considered the issue of rule generation and
techniques is that due to Mamdani [11], who describes the adaptation.
inference engine in terms of a fuzzy relation matrix and uses. Numerous methods involving the performing of steepest
the compositional rule of inference [1] to arrive at the output  descent on the centroid and dispersion parameters of
fuzzy set for a given input fuzzy set. The output fuzzy set input and output membership functions [18]-[23]. Other
is subsequently defuzzified to arrive at a crisp control action.3 _ _ _ _

Other techniques include sum-product and threshold inferenceAS @ simple example of a parameterized membership function shape,
. . . . consider the membership function
A review of these is given by Driankoet al. [16].
w(z; v) = (1 — |z])"IT % 3)
C. Adaptation in Fuzzy Inference Systems

. wherelIl(x/2) = 1 for |¢] < 1 and is zero, otherwise. Far = 1, (3)
All of the stages of the fuzzy inference system are affect@fine familiar triangle function while, for = 0, it is a rectangular (crisp)

by the choice of certain parameters. A list follows. membership function. As — oo, the functionw(z; v), by the central limit
theorem, becomes Gaussian in shape (with zero width).

2min (a, b) = a(b) if a < b(a > b) MMy — oo min [1, (¥ 4 5*)"/*] = max (a, b).
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algorithms such as random search and conjugate gradient 1
descent can be used in tuning such parameters as well.
e Pruning the number of input and output membership \
functions (see Section IV, and [14], [24]). 0 '/""","‘ \
« Adapting the shape of membership functions (see footnote %
3). -1
< Adaptation ofAND/OR aggregation operators. This could
occur when the expert designing the rule base is satis-
fied with both the cardinality and shape of membership

//'u“ a0
778 SN
, /,’I SRR

functions, as well as the setting up of rules (see [25]). @)
A bibliography of these techniques is available [25]. In the 1
next section, we provide the necessary mathematical back- M M
ground for understanding the pointer adaptation process, which 05
is considered in Section Ill. We describe the adaptation process
and demonstrate via a number of examples. Section IV ex- 0 @ @
pands the discussion by taking a closer look at one of the
artifacts of adaptation (or initialization of the rulebase), which 05
is a possible overdetermination of the fuzzy system. Tech-
nigues to overcome this problem in the context of adaptive y ﬁ @
inference are provided and verified by examples. -1 0.5 0 0.5 1
(b)
Il. PRELIMINARIES Fig. 2. A fuzzy estimation problem. (a) 3-D plot and (b) contour plot, of the

) _ signal to be estimated{x1, x2) = sin(7x1) cos(mx2) over the domain
Fuzzy membership functions chosen for a control or détz:, z2)|z1 € [-1, 1], 22 € [-1, 1]}.

cision process may require adaptation for purposes of fine
tuning or adjustment to stationarity changes in the input da‘éﬁjntmuous and can be differentiated as
Use of neural networks to perform this adaptation has been

proposed by Leet al.[18]. Other techniques proposed can be 8 H U(Bn = fBe)

found in [20]-[23]. Our method more closely parallels that B in

proposed by Nomura, Hayashi, and Wakami [22]. In their 1 if B, is maX|mum

work, membership functions are parameterized and steepest —{0; otherwise ©)

descent is performed with respect to each parameter using
an error criterion, in order to obtain the set of parametefis result is also intuitively satisfying. Only one of tlik,
minimizing the error. To straightforwardly differentiate thdet us say a certaif,,, in (4) is the maximum. Differentiation
error function with respect to each parameter, they usadth respect to this number then (when= 3,,), should result
products for the fuzzy intersection operation. The outpin a 1, and differentiation with respect to any other number
error backpropagated this way, was used to adjust the fuztyuld be zero.

membership functions. In a similar way, let
Here, we show that the more conventionally used minimum .
operation for fuzzy intersection and maximum operation for § = min[yi, 2, -, ]
fuzzy union can be similarly backpropagated. Unlike the
method of Nomurat al, which updates all fuzzy membership = Z T H Ulve = x)- 6)

function parameters in each stage, the pointer method proposed =L

herein results only in the adjustment of the fuzzy membershihe min function is also continuous and

functions that gave rise to the control action or decision output. 96
P I v(ve =)
n
A. Differentiation of min and max Operations t#En _ o
Differentiation of themin or max operations results in b it n 'S minimum @)
- o o 0; otherwise
a “pointer” that specifies the source of the minimum or
maximum. To illustrate, let Indeed, any order statistic operation (e.g., the third largest
number or, for¥V odd, the median) can likewise be differen-
o = max [B1, P2, -+, Bn] tiated. In each case, the partial derivative points to index of
N the order statistic.
= B [T U =50 (4)

=1
T Said Il. Fuzzy MIN—MAX ESTIMATION

whereU(-), a unit step function, is 1 for positive arguments To illustrate adjustment of fuzzy membership functions
and is zero otherwise. Note that tleax operator in (4) is by steepest descent, consider the fuzzy estimation problem
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TABLE | A. Feedforward Procedure
DEecISION TABLE FOR Fuzzy ESTIMATION. TABLE CONTENTS ESTIMATION. . . .
TABLE CONTENTS REPRESENT THEESTIMATED FUZZY V/ALUE OF THE For purposes of analysis, let the membership functions for
OuTPUT f FOR A GIVEN CHOICE OF VALUES FOR '] AND 2. RULES the variabler; be denoted by, i =1, 2, --., N, those for
WITH A CONSEQUENT OFPOSITIVE MEDIUM (PM) ARE HIGHLIGHTED the variablez, by Nj j =12 -, M, and those for the
21 - b b b )
z1 | NH | NM | NS [ NZ [ PZ | PS | PM | PH output variablef by p, k =1,2, ..+, K.
T2 For a given output membership functigs, the rules, as
NH PM| PS | NS | NM | NM ) NS | PS | PM  ghown in Table I, are of the form:
NM PH [PM| NM [ ng [ na | nv [ PM| PH
NS PH [PM | NM | NH | NH | NM | PM | PH If o1 is 1 andas is ! OR
NZ PM| PS | N5 | NM | NM | NS | PS | PM T1IS py andzz IS pip
PZ NM | NS | PS | PM | PM| PS [ NS | WM If z;is pé andaxy is ' OR -
PS NH [ NM | PM | PH | PH | PM| NM | NH ok
Then---  fis pj3.
PM NH | NM | PM | PH | PH [ PM| NM | NH
PH wM | s | ps [ PM| PM]| PS | NS | NM ,
Let us define a sef;, as follows:
1 N ,, — .
osh SN Sk ={l, m|p; and i are antecedents of a
PZ \V PS YV PM :PH ' ; k
o6l \\ L] rule with consequents }. 9)
0-4_ T . .
0al | The operations to arrive at the output are as follows.
ok i 1) Perform a pairwise fuzzy intersection (e.g., minimum or
-1 08 1 outer product) on each of the membership valuesof
anda_:Q in u{_anq/fg‘ for every rule with consequent;,
. forming activation valueg:
AN Cho = min [k (aa), ()], (10)
0.6}~ : S m l, mESy
04+ .
02l i 2) Collect activation values for like output membership
0 functions and perform a fuzzy union (e.g., maximum).

-1 -0.8 06 04 02 0 0.2 0.4 0.6 0.3 1

() w = | max (kD). (11)
Fig. 3. Initial membership functions for: (&) , x2 and (b)f(x1, x2). Here, PESk
NH = negative high, NM= negative medium, N& negative small, NZ= -~
negative zero, PZ positive zero,: - -. 3) These values are defuzzified to generate the output

estimated valuef(z1, x2), by finding the centroid of

illustrated in Fig. 2. We wish to generate an estimgte; , x2) the composite membership functign

of a target functiort(x;, x2) using a set of fuzzyF --- THEN
rules. Here we have

K
t(z1, x2) = sin(mxy) cos(wz2). (8) = Z wy i (12)
The rule table (Table I) is generated by partitioning the klgl
domain Oft(azl, 372), {(371, $2)|$1 € [—1, 1], To € [—1, 1]} ZwkaAk
into 64 (8 x 8) regions and assigning a fuzzy membership = 13
function to each region in accordance to the valuegof, ) floy, @) =" (13)
in that region. For instance, #{x;, x2) takes on values close Zkak
to 1 in certain regions, then the membership function used k=1

for those regions of the domain will be “positive high” (PH).
Initial membership functions fof are thus formed in this way. where
The values ofr; and z, are fuzzified in a similar manner.
The initial membership functions chosen are Gaussian and are Ay = / (@) da, (14)
shown in Fig. 3 forzy, z2 and f(x1, z2).
To illustrate, consider the fuzzif= --- THENrules with a /xu’g(x)da:
positive medium (PM) consequent. These are highlighted in o =
Table I. Reading from left to right from the top of the table, / E(x) da
they are:lF z, is NH ANDz, is NH OR IF z; is PH AND Hsl®
22 iSNH OR IF z; is NM ANDz3 is NM  OR
IF z; is PZANDz, is PHTHEN f(xy, 22) is PM. A andgy, are, respectively, the area and centroid of the
Similar rules exist for the other five categories fof consequent membership functigd.

(15)
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Backpropagation AdjustmentExpert heuristics are typi- 1t —
cally used to specify the membership functions for the inpug gl /\ /

PM; PH

(z1, z2) and output f). These functions can be adapted or | Nn\:"NM“"’ NS
fine tuned using supervised learning. The steps to adapt the \
input membership functions are as follows. A

We first form the error function by taking the squared®?[ / \\ , ]
difference between the estimated outpiytand the desired  9; 0 oe o =

06 08 1
target valuet:

E=3(f-1)7 e

Assume now that we wish to update parameters of a Gaus$?
ian membership function that appears either in the antecedet
or the consequent of a rule. Denote these parameters;py 04}
and the corresponding membership function gy In our  g,L~

8 I Y

N i N \ s
" ; . \ .
\ I . A o
y ¥ v ! G
kN 4 : \ ‘
: y e : S, ; .
K S g . g
g AN by S

example, forl = 1, 2, the index; = 1, 2,---, 8 and for ol : d NG e s
| = 3’ the indexi — 1’ 2’ cee 6; q= 1’ 2’ and -1 0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
) b
/ﬁ(a:) = exp {w} a7 v
2(mi[2])? ! N ’
y PH/’;’,, g

0.8
For instancemi[1] would represent parameter number 1 (of o4l Nﬁ__

2) of membership function number 7 (of 8) of the variable

The steepest descent update rule is AL DR
0.2+ : 5 e e T
) : OF T e N
ml[Q] =y [Q] - 8m§[q]' (18) 008 06 04 02 o0 02 04 06 08 |
C
We have, for the general case ) ] ] ) © )
Fig. 4. Final membership functions for (a), (b) z2, and (c) f(x1, z2).
i Here NH = negative high, NM= negative medium, N& negative small,
oF Z < aof awk) a/le ) (19) NZ2= negative zero, PZ positive zero, - -
om q] af Jwy, At ) Omiq]
This in turn can be written in the following way [see (10jynembership functions that are not used in the decision process
and (11)]: are not adapted. Equation (23) finally simplifies to
4 oF OF 9 z;)] 9
aE owy, ok \| o ST = B f[g’( 2l 5 ';L’ (24)
5 Z Z o aa )| amig mildl — 9f  Own  Imilq]
mil Lmes, \Oom O T here
(20)
From (5) and (7), and referring to (10) and (11), we obtain: of Ay, prAp(Ck - cp)
4 = (25)
O — Sfu - ) (21) O K ’
I prcp
Bien — sich, ] 22) - , 4
H In general p; is a function of many parameters;[q],
where §[], the Kronecker delta function, is equal to one fof = 1:2, -~ For our estimation problem, using Gaussian
zero arguments and is zero otherwise. membershlp functions, there are two parameters to adapt.
Substituting the above two equations in (20), we obtain 1hese are the meannf[1]), and the variancen(;[2]). We
OF thus have
: Iy  (w —mj1])
oms q i _NZ - { (26)
. K omy[1] : (my[2])?
OF Af (wr) k k ; ot (z —mi[1])?
= 57 T (6[wk - Clrn]é[(:lrn - u;]) N :NZ L (27)
af ; dui g;sk omi2] " (mi[2])3
Oy (23) B. Results
Imy[q]

We present here results of the application of this technique
The two Kronecker delta functions now serve to isolate thte the estimation problem discussed in Section lll. Fig. 4
membership function whose parameter is being updated. Othleistrates the input and output membership functions after
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TABLE 1l
RuLE TaBLES BEFORE (LEFT) AND AFTER (RIGHT) Fusion oF Two Fuzzy MEMBERSHIP FUNCTIONS OF THE VARIABLE @
z|N|[Z]|P | NZ|P
4 Y
N Z|P|P = N 7P
Z Z{Z]|P Z Z |P
P N|N|Z P N | Z
TABLE I
\\:‘\\\\ WHEN THE MEMBERSHIP FUNCTION FORY; = Z IN THE LEFT TABLE IN
X ‘:‘x‘\&“\“ y, TABLE Il 1S ANNIHILATED, THE RULE TABLE SHOWN HERE RESULTS
LR
NN y
N Z{P|P
P N|IN|Z
@
TABLE IV
1F 3
M M/ TARGET RULE FOR ExampLE 1
o5k | yt112]3
T
1 1121
or 8 2 3
3 112(1
051 1
TABLE V
m rf\\ RULE TABLE FOR EXAMPLE 1
(b) . y|1]2}13|4|5|6|7]|8|9]|10] 11
Fig. 5. Result of fuzzy estimation. (a) 3-D plot. (b) Contour plot, of 1 111 ]11{2]3]3{3|]2{1]1 1
the estimated signaf(w1, x2) = sin (7a1) cos(ww2) over the domain 2 1112131333132 1 1
{(x1, z2)|21 € [-1,1], 22 € [-1, 1]}. 3 1|2]23]3|af3[3[2] 2|1
4 213{(3|4|4|5|4}14(3] 3 2
. . . . . 5 313[3{4|5|5|5{4(3] 3 3
adaptation and Fig. 5 shows the (much improved) estimation 3 313lalss5 (51552313
result. 7 |3|3]3]4|5]|5|5]4]3]3]3
8 2|1 3j3|4|14{514]|4|3]| 3 2
9 1111123133271 1 1
IV. ADAPTIVE PRUNING OF FUZZY INFERENCE SYSTEMS 0 1111121313 3133121111
As we have shown, the parameters of the input and output 11 j1]212)3[3|4y3f3])2]2]1

fuzzy membership functions for fuzay—THEN inference can
be adapted using supervised learning applied to training datarf the output membership functions gu&, then the defuzzi-

The specific case of adaptation of min—max inference usiﬂgd output using the center of mass of the sum of weighted
steepest descent has the advantage of adapting only th ﬁﬁ‘Jut membership functions is
:

membership functions used in the fuzzy decision process fo

each training data input—output pair. > axmz.oz,

In the process of adapting, two membership functions may _ k

. . : 0= ———. (28)
drift close together. If the underlying target surface which we Z oz,
wish to estimate is smooth, then the membership functions can X

be fused into a single membership function. Alternately, if a
membership function becomes too narrow, it can be totallgf
deleted. In either case, the fuzzy decision process is prun

Although we will use min-max inference, the pruning
cedure described below can be applied to other fuzzy
mtérence methods, wherein, for example, alternate forms of

In artificial neural networks, pruning neurons from hidde e . : .
. efuzzification are used or intersections and unions other than
layers can improve the performance of the neural network [26].
min and max are employed [5], [27].

Likewise, the performance of fuzzy inference can be improve . : PR .
: . X . Herein, we will assume all linguistic variables are scaled
through the adaptation and pruning of membership funcqus. : ; ) .
. . 0'the universe of discourse on the intervall| 1]. Gaussian
The number ofF—THEN rules is also correspondingly reducedmembershi functions of the form
Assume that the center of mass;df (membership function P
i of input variabler,) is m}[1] and the dispersion (spread) of z—m\?2
114 is parameterized by} [2]. The parameter; 2] is also pro- wz) = exp |~ V20 f
portional to the area gfi. The membership functiong, (for
input z2) and % (for the output) are likewise parameterizedwill be used throughoutrg = m![1] ando = m![2]).
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(© (d)

Fig. 6. (@) Initial membership functions for Example 1. The top, middle, and bottom plots a{@(fiomyj, andy z, , respectively. (b) Initial membership
functions. (c)—(n) Evolution of the adaptation, fusion, and annihilation process.

A. Membership Function Fusion are m; and msz, then the mean of the fused membership is
. ) ) set equal to the center of mass of the sum of the membership
Fusion of two membership functions occurs when theynctions

become sufficiently close to each other. Annihilation occurs
when a membership function becomes sufficiently narrow. As Miusion =
illustrated in Fig. 10, two membership functions are fused
when the supremum of their intersection exceeds a threshalthere o; and ¢, are the spread parameters of the two
~. If the means of the membership functions prior to fusiomembership functions. Similarly, the spread of the fused

mi01 + Mao2
01+ 02
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- 08} ]

4 o6} Pt

1 0.4}

] 02k .y

1 -1 08 06 04 02 0 02 04 06 0.8 1
@) (h)

Fig. 6. (Continued.) (e)-(h) Evolution of the adaptation, fusion, and annihilation process.

function is obtained from A new linguistic variable, calledVZ labels this column. It
3 3 remains to specify the corresponding rules. When two adjacent
o7 + 05 . . .
OF ion = ———2. rules are the same prior to fusing, the answer is simple. For
o1+ 02

example, sinceX; = N and Z both haveZ as a consequent
Membership fusion has a direct impact on the fuzzy decisié@r Y; = Z, the clear choice for the fused rule table for

process. To illustrate, consider Table Il. Hefé,= negative, X; = NZ andY; = Z is the consequenk. ForY; = N,

Z = near zero, and® = positive. Assume that the membershifiowever, there are different consequents whgn= N and

functions for z corresponding toN and Z fuse. The two X; = Z. To determine the consequent f&f; = NZ and

left most columns of the rule table are combined into on&; = N (marked “?” in Table Il), we chose to query the



704 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 44, NO. 9, SEPTEMBER 1997

08

06
04
02

0
-1

08
06
04
02

Fig. 6. (Continued.) (i)—(l) Evolution of the adaptation, fusion, and annihilation process.

training data base. Specifically, training data was found whereOnce fusion occurs, the membership functions are further
(z,y) =~ (myz, my). The value of the target;, for this adapted to the training data. Additional fusion or annihilation
input pair is compared to the means of the existing outpaan follow.
membership functions. The membership function having the ) _ o
closest mean is assigned as the consequent. B. Membership Function Annihilation

Output membership functions can also fuse. If, for example,If the contribution of a fuzzy membership function
the outputZ fuses with N in the left-hand rule table in becomes insignificant, then it can be annihilated. To illustrate,
Table I, the resulting fused rule table will placéZs in the consider Fig. 11. The membership functigia(xz) becomes
six boxes currently occupied witl's or N's. insignificant with respect to the membership function,
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Fig. 6. (Continued.) (m)—(n) Evolution of the adaptation, fusion, and annihilation process.

p1(z), when, for allz, until AE/E ~ 1073. In cases where a membership function
could either be fused or annihilated, annihilation was given
o1pa(z) 2 Pozpa(z) -
priority.

where3 > 1 parameterizes the degree of insignificance. High 1) Convergence to a Known Solutiomn this example, the

3 corresponds to a severe criterion for annihilation. It igrget membership functions shown in Fig. 6 were used. The
sufficient for the above criterion to hold only far= m- target rule table is shown in Table IV. Using a universe of

discourse on+1, 1], the membership functions are indexed

>0
o1p(ma) 2 foapa(m2) from 1 for large negative numbers upward. The largest index

=fpos. corresponds to large positive numbers.
The process is valid when the underlying target surfaceA total of 500 training data points were randomly generated
is smooth. from these target functions.

When an input membership function is annihilated, all rules Overdetermined initialization is shown in Fig. 6(b) with
using it are deleted from the fuzzy rule base. For example,afrule table shown in Table V. Input membership functions
the membership function corresponding¥fp= Z in the left- are spaced evenly. Spacing of output membership functions
hand rule table in Table Il is annihilated, then the rule table determined from a histogram of the training data target
after annihilation would be as shown in Table III. values. The histogram is divided into intervals of equal area.

An output membership function can likewise be annihilatedhe number of intervals is chosen to be equal to the number
In such a case, one of the remaining membership functions output membership functions. The means of the output
must take its place in the rule table. The choice, again, isembership functions are places at the boundaries of these
made by a query to the training data base as was done if@tervals.
input membership function fusion. The result of the first steepest descent adaptation is shown

After annihilation, the membership parameters can be fufr Fig. 6(c). Compare this to Fig. 6(d). The two left most
ther adapted using the training data. Additional annihilatiofhembership functions foz (top plot) fuse. The third fuse.

and/or fusion might subsequently result. The third membership function far is annihilated, etc. For
the output, two membership functions are annihilated. The rule
C. Examples table becomes that shown in Table VI.

We illustrate the process of membership function fusion and The membership functions in Fig. 6(d) are further trained.
annihilation with two examples. The first is a proof of principldhe result is shown in Fig. 6(e). Compare this to Fig. 6(f),
wherein convergence is to a solution known to be optimakhere four input membership functions are annihilated. The
The second uses adaptation to fit a given target surface. Weults of Fig. 6(f) are adapted and converge to the result
used the parametefs= 2 andy = 0.9 for input membership shown in Fig. 6(g). As can be seen in Fig. 6(h), two more input
functions andy = 0.95 for the output. Iteration was performednembership functions are annihilated. Further iteration yields
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Fig. 7. (&) Initial membership functions for Example 2. (b) Final membership functions for Example 2.

TABLE VI 1 1
MoDIFIED TABLE V AFTER FIRST STEEPEST DESCENT
ADAPTATION FOLLOWED BY FUSION AND ANNIHILATION
yl1]2]3]a|5]6]7]e]9]10 03 03
T
1 112|222 ]2]1]1] 1 0 0
2 222133132122 2
3 2{2]13(3|3|3|3|2]2 2 0.5 .5
4 212133313 (3]|2]2 2
5 2122 (3|3|3j2]2]2 2
6 1121222212211 1 (b)
7 111 {21212 (2]|]2]1]1 1
8 1 1 2121222 1 1 1 Q:\\:z
TABLE VII

TABLE V AFTER FURTHER ADAPTATION, FUSION, AND ANNIHILATION
yl|1|2]3]4

ESESIRSIRE ]
=IN|N] -
N{W| Wi
N | LN
N N =

Fig. 8. Contour plots of the (a) target, (b) initialization, and (c) final result
for Example 2.

Fig. 6(i). Fory (midde plot), three membership functions fus?he same as in Fig. 6(a). The output membership functions are
to two membershlp func.tlons. [§ee Fig. 60)1: The fuzzy rUIﬂot the same; all defuzzifications from these membership func-
table corresponding to Fig. 6(j) is as shown in Table VII. Thﬁons though, are. Output membership functidps;, ()} will
results in Fig. 6(j) are adapted to those shown in Fig. 6(K}ie|d the same defuzzification as the membership functions
Fusion occurs as shown in Fig. 6(I). Additional adaptatiO{lqu (z/o)} when defuzzification is performed as in (28).
results in the middle two membership functions jo(rmddle 2) Regression Fitting of a Surfacdn this examp|e, we as-
plot) shown in Fig. 6(m) to be graphically indistinguishablesume, from (8), a target surface tifr; + 2o, 21 — 12). The
They are fused in Fig. 6(n). The rule table is now exactly thaitial membership functions are shown in Fig. 7(a). A contour
target table in Table IV. The input membership functions aggot of the target is shown in Fig. 8(a). The first initialization
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T T T T T T T T TABLE VIl
0.08 | . FINAL RULE TABLE FOR EXAMPLE 2
RMSE Error y|1]2[3[4]5]6]7]8]9]10[11]12] 13
0.06 z
1 34| 4322|3443 2]2]3
2 2551433455413 [3]4
0.04 3 455|433 |4l5(5]4 3134
4 3443223443223
5 2332112332112
0.02 6 2332112382112
- . 7 3443223243223
0 L ! ! L : 1 | | 8 a|5|514|3[3[a]5[s5] 431314
Iteration Number 10 |3|4]4|3[2]2]34ala32]2]3
, 11 |[2[3[3|z2]1[1|2[s|3l2]1]1]2
Fig. 9. Convergence of the rmse for Example 2. 13 sT3 T3z l1 11213131 2 1 1 3
13 3|44 |3[2|2|3|2|43]2(2]3
1
o2l ST S - ) ) ) .
#(z) p2(z) updating of this function’s parameters using steepest descent.
o5 | | The error measure used is thus backpropagated from output
to input, through themin and max operators used during
the inference stage. This was shown to be feasible because
0 L the operations ofnin and max are continuous differentiable

functions and, therefore, can be placed in a chain of partial
Fig. 10. lllustration qf‘the criterion for fusion. When two r_ne‘mbershi_denva.tlves fo.r stegpest descent backprppaganon adaptatlon.
functions become sufficiently close so that the maximum of their |ntersect@)\A0re interestingly, it was shown the partialsiafn andmax
exceedsy, then the two membership functions are fused into a singor any other order statistic, for that matter) act as “pointers”
membership function. with the result that only the function that gave rise to thia

or max is adapted; the others are not. We applied this property
to the fine tuning of membership functions of fuzzyn—max
decision processes and illustrated with an estimation example.

Membership functions can be parameterized in ways other
than those considered here as well. In general, the shape
of the membership functions of the control action can be
used to assess the quality of the rules. A strong single
peak in the membership function signifies the presence of a
dominant control rule; two distinct strong peaks are a sign
Fig. 11. lllustration of the process of membership function annihilatior?f the existence of contradictory rules; and a very low or
When the membership functiop, (), becomes narrow with respect to anweak membership value of the maximum of the membership
adjacent membership function, it can be annihilated. function indicates that some rules are missing, and the rule

database is incomplete [28]. Thus, parameterizing the peak
is shown in Fig. 8(b). A total of ten steps of iteration followed/alue of the membership function, in addition to its mean
by fusion and annihilation were required prior to convergenc@nd variance, can provide further improvements in the fuzzy
The results are shown in Figs. 7(b) and 8(c). Convergengentrol process.
mean square error is shown in Fig. 9. Between odd and eveWe also looked at adaptive pruning of fuzzy inference
steps (e.g., 3 and 4), error is reduced by steepest desceystems as a solution to the problem of overdetermination in
Between the even and odd steps (e.g., 4 and 5) fusion dH@zy systems. This resulted in a reduced-complexity system
annihilation are applied, generally resulting in an increase With similar or better performance.
error.

The final rule table is shown in Table VIIl. The number
of rules has been reduced from 441 {p1o 169 (13). The [
cardinality of the set of consequents has been reduced from
8 to 5.

mi ma

ui(z)

0.5

O i

my ma
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