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CA
CP
LV
P
Ps
P,
PI
IM
M
B
S
T
TL
n
X
d(x)

a

o(x)

o(qX)

9x projection operator onto a set A,
._&) a function in a subspace 9
L2 a Hilbert space with continuous variables
12 a Hilbert space with discrete variables
u[nl element IZ in a sequence u

constant area
constant phase
linear variety
a projection matrix
projection onto a set S
projection onto set m
pseudo-inverse
signals with identical middles
number of sets
an operator
a degradation matrix
matrix transposition (used as a superscript)
time limited
bandwidth
duration limit
a displacement function used to define linear
varieties
(a) 0 I (Y I 1 parameterizes the line connect-
ing two vectors; (b) (Y > 0 is used to define a
cone in a Hilbert space
relaxation parameter
finite real numbers used to define a subspace
coordinates on a two-dimensional plane
image and object vectors
the result of iteration IZ on the restoration of a
discrete object
the result of iteration k on restoration of an
object, o[ n]
an object that is a function of a continuous
variable
the result of iteration N on restoration of an
object of a cone
a Hilbert space
the imaginary part of
a subspace (or linear manifold) in a Hilbert
space
a projection operator
the real part of
the subspace that is the orthogonal comple-
ment of 9
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P

an identity operator
set
in set notation, read “such that”
intersection
is an element of
1, or L, norm
perpendicular
the area of a signal

I. Introduction

Alternating projections onto convex sets (POCS)* [ll is a powerful tool for
signal and image restoration and synthesis. The desirable properties of a
reconstructed signal may be defined by several convex signal sets, which
may be further defined by a convex set of constraint parameters. Itera-
tively projecting onto these convex constraint sets may result in a signal
that contains all desired properties. Convex signal sets are frequently
encountered in practice and include the sets of band-limited signals,
duration-limited signals, signals that are the same (e.g., zero) on some
given interval, bounded signals, signals of a given area, and complex signals
with a specified phase.

POCS was initially introduced by Bregman [2] and Gubin et al. [3] and
was later popularized by Youla and Webb [4] and Sezan and Stark [5].
POCS has been applied to such topics as sampling theory [6], signal
recovery [7], deconvolution and extrapolation 181, artificial neural networks
[9, 10, 11, 12, 131, tomography [l, 14, 151, and time-frequency analysis
[16,  171.  A superb overview of POCS with other applications is in the book
by Stark [l] and the monograph by Combette [X3].

II. Geometrical POCS

Although signal processing applications of POCS use sets of signals, POCS
is best visualized viewing the operations on sets of points. In this section,
POCS is introduced geometrically.

*The alternating term is implicit in the POCS paradigm, but traditionally is not included
in the acronym.
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Figure 1 The set A is convex. The set B is not. A set is convex if every line
segment with end points in the set is totally subsumed in the set.

A. COiWEX  SETS

A set, A, is convex if for every vector ii1 E A and every i& E A, it follows
that (~2~  + (1 - a)Z2 E A for all 0 5 (Y 5 1. In other words, the line
segment connecting iZ1 and iZ2 is totally subsumed in A. If any portion of
the cord connecting two points lies outside of the set, the set is not convex.
This is illustrated in Fig. 1. Examples of geometrical convex sets include
balls, boxes, lines, line segments, cones, and planes.

Closed convex sets are those that contain their boundaries. In two
dimensions, for example, the set of points

A, = 1(x,  y)lx’ + y2 < 1)

is not closed because the points on the circle x2 + y* = 1 are not in the
set. The set

A = {(x,y)lx* +Y* 5 l)

is a closed convex set. A is referred to as the closure of A,. Henceforth, all
convex sets will be considered closed.

Sttictly convex sets are those that do not contain any flat boundaries. A
ball is strictly convex whereas a box is not. Neither is a line.’

‘Rigorously, a set A is strictly convex if for any distinct Z1,  Zz E A, (Z1 + L&)/2 is an
interior point of A. A vector Z is called an i&e&r point of closed set A if Z E A and
Z G Closure[E  - A], where E is the universal set. In other words, an interior point does not
lie on the boundary of a closed convex set.
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Figure 2 The set A is convex. The projection of C onto A is the unique element
in A closest to C.

B. PROJECTING ONTO A CONFEX  SET

The projection onto a convex set is illustrated in Fig. 2. For a given v’ P A,
the projection onto A is the unique vector ii E A such that the distance
between ii and u’ is minimum. If v’ E A, then the projection onto A is 5.
In other words, the projection and the vector are the same.

Figure 3 Alternating projection between two or more convex sets with nonempty
intersection results in convergence to a fixed point in the intersection. Here, sets A
(a Iine segment) and B are convex. InitiaIizing  the iteration at $‘) results in
convergence to ZCrn)  E A n B.
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Figure 4 If two convex sets, A and B, do not intersect, POCS converges to a
limit cycle, here between the points 7;A  and iiB. The point iiB E B is the point in B
closest to the set A and GA E A is the point in A closest to the set B.

............................................:::::):.):.:.:.:.:.:.:.:.:.:.~:.:.:,:.:.:,: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .:
.......................................................................................:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:,:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:..............................................................................................................................................................................................................................................:::::i::::::::::::::::::::::::::::::::::~::::~

Figure 5 If three or more convex sets do not interest, POCS convergences  to
greedy limit cycles with no known useful properties; As illustrated here, the limit
cycles can differ for different orders of set proje@on.  The limit cycle for the
projection order A, to A, to A,, shown by the dashed line, differs from that of A,
to A, to A , .
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c. POCS

There are three outcomes in the application of POCS. Each depends on
the various ways that the convex sets intersect.

1. The remarkable primary result of POCS is that, given two or more
convex sets with nonempty intersection, alternately projecting among
the sets will converge to a point included in the intersection [l, 41.
This is illustrated in Fig. 3. The actual point of convergence will
depend on the initialization unless the intersection is a single point.

2. If two convex sets do not intersect, convergence is to a limit cycle
that is a mean square solution to the problem. Specifically, the cycle
is between points in each set that are closest in the mean-square
sense to the other set [19].  This is illustrated in Fig. 4.

3. Conventional POCS breaks down in the important case where three
or more convex sets do not intersect [21].  POCS converges to greedy
limit cycles that are dependent on the ordering of the projections and
do not display any desirable optimal&y  properties. This is illustrated
in Fig. 5.

Figure 6 Here, the sets A and B intersect as do the sets C and D. Shown is one
of the possible greedy limit cycles resulting from application of POCS. The order of
projection is A to B to C to D. The (convex) intersections, A n B and C n D, are
shown shaded. Note, though, a greedy limit cycle between the convex sets A n B
and C fl D is also possible when using the projection order A to D to C to B. The
result is shown by a dashed line. In this case, the limit cycle is akin to that obtained
by application of POCS to two nonintersecting convex sets.
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Figure 7 Conventional convex sets can be enlarged (or fuzzified)  into fuzzy
convex sets. Here, the three shaded ellipses correspond to nonintersecting convex
sets. Each of the three sets is enlarged to the ellipses shown with the long dashed
lines. Enlargement can be done by mathematical morphological dilation of the
original convex sets. There is still no intersection among these larger sets, so the
sets are enlarged again. Intersection now occurs. The resulting dashed lines are
contours, or a-cuts, of fuzzy convex sets. Any group of nonintersecting convex sets
can be enlarged sufficiently in this manner so that the enlarged sets (cu-cuts) have a
finite intersection. Ideally, the minimum enlargement that produces a nonempty
intersection is used. A point in that intersection is deemed to be “near” each of the
convex sets. In this figure, the point is o cm).  This point can be obtained by applying
conventional POCS to the enlarged sets.

This greedy limit cycle can also occur when some of the convex sets
intersect and others do not. This is illustrated in Fig. 6.

Oh and Marks [22] have applied Zadeh’s ideas on fuzzy convex sets 1241
to the case where the convex sets do not intersect. The idea is to find a
point that is “near” each of the sets.* Three nonintersecting convex sets
are shown in Fig. 7. Each of the convex sets is “enlarged” sufficiently so
that the resulting convex sets intersect. + There always exists a degree of

*The term “near” is referred to as a fuzzy linguistic variable.
‘The enlargement of the set is obtained by morphological dilution with a convex dilation

kernel set. If the kernel is a circle, dilation can be geometrically viewed as the result of rolling
the circle on the boundary of the convex set. The larger the diameter of the circle, the greater
the dilation. If both A and the dilation kernel set are convex, then so is the dilation. In Fig. 7,
enlargement eventually results in the unique intersection point, oCm).  Description of the
details of this process is beyond the scope of this chapter. Details are in the papers by Oh and
Marks (22, 23).
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enlargement that results in a nonempty intersection of all of the sets.* The
smallest enlargement that results in a nonempty intersection is sought. A
point in the resulting intersection is then “near” each of the convex sets.
Conventional POCS is applied to these sets to find such a point.

III. Convex Sets of Signals

The geometrical view introduced in the previous section allows powerful
interpretation of POCS applied in a signal space, Z? For our notation, we
will use continuous functions, although the concepts can be easily ex-
tended to functions in discrete time.”

A. THE SIGNAL SPACE

An image, u(x), is the 2 if**

IMx)ll < a,

where the norm of U(X)  is

Ilu(x>ll  = {/” lu(x)12 fix.
-cc

*Proof: Enlarge each set to fill the whole space.
‘More properly, a Hilbert or L, space (20).
“That is, from an L, to an 1, space. One advantage of discrete time is the guaranteed

strong convergence of POCS. Denote the nth element of a sequence u by z&r] and let @[n]
be the kth POCS iteration. Let o[n] be the point of convergence and u[n] is any point
(including the origin) in I,, then

lim I]u[n] - &+[n]]l*  = I]u[n] - o[n]]]’
k+m

for all u[n].  The square of the I, norm of a sequence u[n] is

llu[n1112  =  2 lu[n112.
a= --m

In continuous time, only weak convergence can generally be assured [4]. Specifically,

for all u(x) is L,. Strong convergence assures weak convergence.
**Signals in a Hilbert space are also required to be Lebesgue measurable, although this

will not be of concern in our treatment.
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The energy of u(x) is

E = llu(x)l12. (1)
The signal space thus consists of all finite energy signals. Geometrically,
x’ = u(x) can be visualized as a point in the signal space a distance of
Ilu(x from the origin, u(x) = 0. Similarly, the (mean square) distance
between two points U(X)  and v(x) is simply Ilu(x>  - u(x>ll.

Two objects, W(X)  and z(x), are said to be orthogonal if

/m W(X)z*(x> dx = 0, (2)
--m

where the superscript asterisk denotes complex conjugation.
Some examples of signal sets follow.

1. Convex Sets

Analogous to the definition given for sets of vectors, a set of signals, A, is
convex if, for 0 I (Y I 1, the signal

au,(x) + (1 - a>u,(x> EA (3)

when z+(x),  U,(X) E A.

2. Subspaces

Subspaces (also called linear manifolds) can be visualized as hyperplanes
in the signal space. A set of signals, 9, is a subspace  if

PUi(X) + yu,(x)  E9 (4)

when U&K), u,(x) ~9, and p, y are any finite real numbers. Comparing
Eq. (4) with Eq. (3) reveals that, in the same sense that lines and planes
are geometrically convex, so are subspaces convex in signal space. The
origin, u(x) = 0, is an element of all subspaces.*

3. Linear Varieties

A linear variety [20] is any hyperplane in the signal space. It need not go
through the origin. All subspaces are linear varieties. A linear variety, 9,
can always be defined as

_Y= {U(X) = U,(X) + d(x)lu,(x)  E9,

*If u(x) E_P,  then, with U,(X) = u(x)  = -u,(x) and P = Y = 1, we have, from Eq. (41,

that 0 = u(x) - u(x) EP.
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Figure 8 The subspace, 9, is shown here as a line. The function d(x), assumed
not to lie in the subspace, 9, is a displacement vector. The tail of the vector, d(x),
is at the origin [u(x) = 01. The set of all points in 9 added to d(x) forms the
linear variety, 9’.

where 9 is a subspace  and d(x) G9 is a displacement vector. The
formation of a linear variety from a subspace  is illustrated in Fig. 8.

4. Cones

A cone with its vertex at the origin is a convex set. If u(x) E cone, then
au(x) E cone for all (Y > 0. Orthants* and line segments drawn from the
origin to infinity in any direction are examples of cones.

B. SOME COMMONLY USED CONVEX SETS OF SIGNALS

A number of commonly used signal classes are convex. In this section,
examples of these sets and their projection operators are given. Projection
operators will be denoted by a 9. The notation

U(X)  = 9’,U(X)

is read “u(x) is the projection of U(X)  onto the convex set Ax.” Note, if

u(x)  E A,, then 9xu(x)  = u(x). Also, projection operators are idempo-
tent in that

In other words, once one projects onto a convex set, an additional
projection onto the same convex set results in no change. Most projections

*In two dimensions, an orthant is a quadrant; in three, an octant.
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are intuitively straightforward. In many instances, the projection is ob-
tained simply by forcing the signal to conform with the constraint in the
most obvious way.

In the definition of some sets and projections, the Fourier transform of
a signal is used. It is defined by

U(w) = /_:, U(XWjWX  dx.

The inverse Fourier transform is

1. Band-Limited Signal

The set of band-limited signals with bandwidth R is

A BJ_  = MxW(w>  = 0 f o r  IwI > a}. (5)

The set, ABL, is a subspace  because /~u,(x> + yu,(x)  is band limited
when both u,(x) and u,(x) are band limited. To project an arbitrary signal,
U(X),  onto ABL, the Fourier transform, V(o),  is first evaluated:

u(x) =9$&x)

1
/o=-

2rr -n
V( w)ejWx  dw. (6)

In other words, u(x) is obtained by passing U(X)  through a low-pass filter.

2. Duration Limited

The convex set of duration-limited signals is, for a given X > 0,

A y-L  = b4(xMx>  = 0 f o r  1x1  > X1. (7)

Because the weighted sum of any two duration-limited signals is duration
limited, the set A,, is recognized as a subspace. To project an arbitrary
U(X)  onto this set, the portion of U(X)  for 1x1 > X is simply set to zero.

4x1 =90,&)

i

u(x), I-4 I x,=
0, 1x1 > x. (8)
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3. Real Transform Positivity

The set of signals with real and positive Fourier transform is

A pas = b(xN5m(w)  2 01, (9)

with ~3’ denotes “the real part of.” The set A,,, is a cone. To project onto
this set, the Fourier transform of U(X)  is first evaluated. The projection
follows as

4x1 =~~o,v(x)

2: /I jYV(  w)[POS  L&W w)]ejwx do.=-
m

(10)

where POS performs a positive value operation and 9 denotes the
“imaginary part of.” In other words, the Fourier transform is made to be
real and positive and is then inverse transformed to find the projection
onto A,,,.

4. Constant Area

Over a given interval, 2~2, the set of signals with given area, p, is

aA (-* = u(x)1
i 1 u(x) dx = p .

--a i

This is a linear variety. The subspace  that is displaced to form A,, is that
corresponding to p = 0. For 1x1 I a, a displacement vector is d(x) =
p/(2a).

5. Bounded Energy

The set of signals with bounded energy, for a given bound 7, is

A JjE = Mx>lE I VI,

where E is defined in Eq. (1). The set A,, is a ball. The projection follows
as

u(x) = Y&(X)

f v(x), lldx>l12  I 77,
= &4x>

i Il~(X>ll  ’
ll~wl12  > 7.
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6. Constant Phase

The convex set of signals whose Fourier transform has a specific phase,
q(w), is

A (yp = Iu(x>le(o>  = cp(w)l,

where arg U(o) = e(w).*

7. Bounded Signals

For a given real signal, a(x), the set of bounded signals

A BS = {u(x>l9u(x>  I a(x))

is convex. If a(x) = constant, then A,, is a box. As in other cases, the
choice of projection is obvious. The signal is set to WU(X)  = a(x) if S’U(X>
is too large. Otherwise, the signal remains as is.

u(x) =9$&w

i

u(x); 9Pv(x>  I a(x)
= a(x) + p%(x); 9v(x) > a(x).

8. Signals With Identical Middles

Let u(x) be a given signal on the interval 1x1 I X. Define

A I&$ = b4(xMx> = u(x) for 1x1 5 X; anything for 1x1 > X1.

(11)

This set is a linear variety. The parallel subspace  corresponds to u(x) = 0
and the displacement vector is d(x) = u(x). To project onto AIM, one
merely inserts the desired signal, u(x), into the appropriate interval.

u(x) =9’,,v(x)

i
a(x), 1x1 5x9

= v(x), 1x1 > x.

*In other words, the transform can be written in polar form as U(o)  = A(w)e@(“‘).
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IV. Examples

A number of commonly used reconstruction and synthesis algorithms are
special cases of POCS. In this section, we look at some specific examples.

A. VON NEUMANN’S ALTERNATING PROJECTION THEOREM

When all of the convex sets are linear varieties, POCS is equivalent to Von
Neumann’s alternating projection theorem (2.5).

B. THE PAPOULIS-GERCHBERG ALGORITHM

The Papoulis-Gerchberg algorithm is a method to restore band-limited
signals when only a portion of the signal is known. It is a special case of
POCS.

Given an analytic (entire) function on the complex plane, knowledge of
the function within an arbitrarily small interval is sufficient to perform an
analytic continuation of the function to the entire complex plane. The value
of the function and all of its derivatives can be evaluated at some point
interior to the interval and extension performed using a Taylor series. In
practice, noise and measurement uncertainty prohibit evaluation of all
derivatives. If the measurement of only the first three derivatives can be
done with some degree of certainty, for example, only a cubic polynomial
could be fitted to the point.

A Taylor series expansion at a point does not use all of the known
values of the function within the interval. Slepian and Pollak [26,  271 were
the first to explore analytically the possibility of reconstructing a band-
limited signal* using all of the known portion of the signal. Using prolate
spheroidal wave function analysis, Slepian was able to show that the
restoration problem is ill-posed.

Papoulis [28-301 and later Gerchberg [31]  formulated a more straight-
forward, intuitive, and simple technique [27]  for the same problem consid-
ered by Slepian. Assume we are given a portion of a band-limited object,
o(x):

i(x) = 1 o(x), I-4 5x3
0, 1x1  > x.

*All bandlimited signals are analytic (entire) everywhere on the finite complex plane.
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We further assume we know the bandwidth, a, of o(x). The
Papoulis-Gerchberg algorithm simply alternatingly imposes the require-
ments that the signal (a) is band-limited and (b) matches the known
portion of the signal. It consists of the following steps.

1. Initiate iteration N = 0 and ocN)(x)  = i(x).
2. Pass ocN)(~> through a low-pass filter with bandwidth R.+
3. Set the result of the filtered signal to zero in the interval 1x1  IX.

4. Add the known portion of the signal, i(x), over the interval 1x1  IX.
5. The new signal, o (N+1)(t),  is no longer band limited. Therefore, set

N = N + 1 and go to step 2. Repeat the process until desired
convergence.

This is illustrated in Fig. 9. The numbers in Fig. 9 correspond to the
numbered steps above. In the absence of noise, the Papoulis-Gerchberg
algorithm has been shown to converge (32) in the sense that

l im I]o(X>  - OcN’(x)ll  = 0.
N-m

Restoration of a band-limited signal knowing only a finite portion of the
signal and the signal’s bandwidth is ill-posed. In other words, a small
bounded perturbation on i(x) cannot guarantee a bounded error on the
restoration. However, (1) additional, possibly nonlinear, constraints can be
straightforwardly added to the iteration to improve the problem’s posed-
ness; (2) numerical results are typically good “near” where the signal is
known-the restoration is known to be band limited and therefore smooth;
and (3) the problem described is one of extrapolat ion.  T h e
Papoulis-Gerchberg algorithm can also be applied to interpolation, i.e.,
finding o(x) from o(x) - i(x);  interpolation is well posed (32).

Youla [33]  was the first to recognize the Papoulis-Gerchberg algorithm
as a special case of POCS between a subspace  and a linear variety. There
are two convex sets:

1. The set of all signals equal to o(x) on the interval Ix] IX”:

A IM = {u(x)lu(x>  = i(x), IXI~X~.

‘That is, Fourier transform O(~)(X),  set the transform equal to zero for IwI  > R and

inverse transform.
‘Equivalent to the definition in Eq. 7 with middle m(x)  = i(x).
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Figure 9 Illustration of the Papoulis-Gerchberg algorithm. Because no signal
that is time limited can be band limited, the first estimate, oCN)(x)  = i(x) (N = 0),
is incorrect. It is made band limited by the process of low-pass filtering. The
bandwidth of the filter is R. The new signal no longer matches o(x) in the middle.
Thus, the signal is set to zero on the interval 1x1 I X and the known portion of the
signal is added. The result, ocNi ‘)(x),  is no longer band limited. The sharp
discontinuities at the edges prohibit it from being so. Therefore, it is made band
limited by the process of low-pass filtering. The process is repeated until the
desired accuracy is achieved.

2. The set of all band-limited signals, AaL, with a bandwidth 1R or less.
This set is defined in Eq. (5).

The geometry of the Papoulis-Gerchberg algorithm in a signal space is
illustrated in Fig. 10. Shown is the subspace, Anr, consisting of all
band-limited signals with a bandwidth not exceeding R. Also shown is the
subspace  A,, = 0 consisting of all signals that are identically zero in the
interval 1x1 I X. Consider the set

A, = {U(X>lU(X) = 0, I.4 > XI.
The subspace  A I is orthogonal* to AIM-a because, for every w(x) E

*A i is said to be the orthogonal complement of AIMzO.  Note that, if 9’,, projects onto
A,, =,, then 1 -9$, projects onto A i where 1 is an identity operator.
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A I M

o(O)(x) = i(x)

Figure 10 The Papoulis-Gerchberg algorithm in signal space. The two convex
sets are (1) a (subspace) set of band-limited signals and (2) the linear variety of all
signals with i(x)  in the middle.

A,,=, and z(x) E A I , Eq. (2)  is true.+ As always, the origin [U(X) = 01 is
common to all of the subspaces.

The known portion of the signal, i(x), clearly lies on the subspace, A I .
The signal to be recovered, o(x), lies on the A,, subspace. As illustrated
in Fig. 10, the given signal, i(x), can be visualized as the projection of o(x)
onto the subspace  A I . The linear variety, A,,, in Fig. 10 is the displace-
ment of the subspace, A,,=,, by the orthogonal vector, i(x).

In the signal space setting of Fig. 10 the Papoulis-Gerchberg algorithm
can be described. The signal to be restored, o(x), lies on the intersection
of band-limited signals (ABL) and the set of signals equal to i(x) in the
middle (AIM). We know only that the signal to be reconstructed looks like
i(x) in the middle and lies somewhere in the space of band-limited signals.

Beginning with the initialization, o(‘)(x) = i(x), we perform a low-pass
filter operation. This is equivalent to projecting i(x) onto the subspace  of
band-limited signals. The next step, as illustrated in Fig. 9, is to throw away
the middle of the signal. This is the equivalent in Fig. 10 of projecting onto
the A,, =. subspace. To this signal, we vectorally add i(x) to obtain
o(l)(x). The process is repeated. The signal o(l)(x)  is projected onto the set
of band-limited signals, projected onto A,, = o, and then added to i(x) to

‘Indeed, w(x)z*(x) = 0.
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form O(~)(X),  etc. Clearly, the iteration is working its way along the set A,,
toward the desired result, o(x).

The alternating projections in the Papoulis-Gerchberg algorithm are
performed between the subspace  A,, and the linear variety A,,. Inspec-
tion of Section 1V.A reveals the Papoulis-Gerchberg algorithm as a
special case of Von Neumann’s alternating projection theorem.

C. HOWARD’S MINIMUM-NEGATMTY-CONSTRAINT ALGORITHM

Howard [34,  351 proposed a procedure for extrapolation of a interferomet-
ric signal known in a specified interval when the spectrum of the signal was
known (or desired) to be real and nonnegative. The technique was applied
to experimental inteferometric data and performs quite well.

As shown by Cheung et al. (361,  Howard’s procedure was a special case
of POCS. Iteration is between the cone of signals with non-negative
Fourier transforms defined by A,,, in Eq. (9) and the set of signals with
identical middles, A,, , as defined in Eq. (11). As with the
Papoulis-Gerchberg algorithm, the middle is equal to the known portion
of the signal.

The geometrical interpretation of Howard’s minimum-negativity-
constraint algorithm is similar to that of the Papoulis-Gerchberg algo-
rithm pictured in Fig. 10, except that the subspace  A,, is replaced by a
cone corresponding to A,,,.

D. RESTORATION OF LINEAR DEGRADATION

In this section, POCS is applied to a linear degradation of a discrete time
signal. Denote the degradation operator by the matrix S and the degrada-
tion by

i”= so’. (12)
If the degradation matrix, S, is not full rank, a popular estimate of 0’ is the
pseudo-inverse *

fsp, = [s%-&.

The projection matri.qt Ps, projects onto the column space of S.

Ps = s[sTs]-lsT (13)

*The solution, ZPI, is also referred to as the minimum norm solution.
‘As is necessary for a projection operator, the projection matrix is idempotent: Pi = Ps.
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Figure 11 Illustration of restoration of a linear degradation. The signal to be
reconstructed, 3, lies both on the linear variety A Is and on the convex set A,.

Consider the signal space illustrated in Fig. 11. The pseudo-inverse
solution of Eq. (12) lies on the subspace  A, onto which P, projects.
Denote the orthogonal complement of A, by A I s. The projection opera-
tor onto this space is simply

P I S =  1  - P,,

where 1 is an identity matrix. If the projection onto the orthogonal
complement is

we are assured that

z=f3pI +o’, .

Define the linear variety

(14)

A LV = iilu'=i'+P,s~)t >

where u’ is any vector in the space.
The pseudo-inverse solution can be improved using POCS if 0’ is also

known to satisfy one or more convex constraints. In other words
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where {A,11 5 m i M} is the set of constraint sets and M is the number
of constraints. A set of corresponding projection operators can be defined:

{pm11  I m I Ml. (15)

In other words, gm projects an arbitrary signal onto A,.* Because the
desired solution, Z, is known to lie in each of the constraint sets, it follows
that

gmo’= o’, llmlM, (16)

and

o’=q&Y&i  .*.p*.JY’,o’

=Y&, (17)

where

Tg ‘,YMYM-l ... .YD,L%dD,. (18)

Correspondingly, define the (nonempty) convex set

A, =A,  nA,_, n ... nA, nA,,
where n denotes intersection. Note that Yg does not project onto A,.
As illustrated in Fig. 11, the desired signal to be reconstructed, o’, is known
to lie both in the convex set A, and the set A,,. A point in the
intersection of these sets can be found using POCS. We have the POCS
iteration

%N+i) =~L”~M%-* ‘..~az~J&)

‘~IJ~&‘V)

= T+ (I - Ps)~d.g~(N) (19)

The iteration is guaranteed to converge to a point on a solution set,

A solution = A, n ALV*

The solution will, in general, be nearer to 5 in the mean-square sense than
was the pseudo-inverse. If Asolution consists of a single point, the solution
will be unique.

The restoration in Eq. (19) is a generalization of (1) the
Papoulis-Gerchberg algorithm for 9, =,~?a~ in Eq. (6) and (2) Howard’s
algorithm for Td, =??ros  in Eq. (10).

*When A, is a subspace, the projection operator is a matrix. That is, L?‘~  = P,.
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Figure 12 A geometrical example of slowly converging POCS. The intersection of
the two linear varieties, far to the right, is the ultimate fixed point of the iteration.

V. Notes

In certain instances, POCS can converge painfully slowly. An example is
shown in Fig. 12. One technique to accelerate convergence is relaxing the
projection operation by using a relaxed projection with parameter h [4]:

9relaxed = A9 + (I - /oz.

An operator, b, is said to be contra&e if, for all w’ and 2’,

(20)

Ilaw’  - myI < Ilw’ - z’ll. (21)

In other words, operating on the two vectors places them closer together.
This is illustrated in Fig. 13. A useful property of contractive  operators (37)
is, for any initialization, the iteration

$N+i) = &?$W

converges to a unique fixed point

(221

$9 = @o”“‘.

A POCS projection is, however, not contractive.+  Projection operators,
though, are nonexpansive. The B operator is nonexpansive if

Ilaw’  - &II 4 Ilw’  - z’ll.

For nonexpansive operators, the iteration in Eq. (22) can converge to a
number of fixed points. A relaxed nonexpansive operator, as in Eq. (201,

‘If, for example, both w’ and Zare in the convex set, and B is a projection operator, then
Il@w - 841  = Ilw’ - 31 and Eq. (21) is violated.
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Figure 13 A geometrical example of slowly converging POCS. The intersection of
the two linear varieties, far to the right, is the ultimate fixed point of the iteration.

however, is contractive (19). Applications of contractive operators do not
have the elegant geometrical interpretation of POCS.

VI. Conclusions

Restoration of degraded signals can, in many cases, be posed as a special
case of alternating projection onto convex sets, or POCS. The object to be
restored is known to lie in two or more convex constraint sets. Restoration
can be achieved by projecting alternately on each of the sets. If the sets
have a nonempty intersection, then the projection will approach a fixed
point lying in the intersection of the sets. If there are two sets that do not
intersect, POCS will converge to a minimum mean-square error solution.
If there are three or more sets with empty intersection, POCS yields
results that are not generally useful. Fuzzy POCS, however, can be used to
obtain a result that is “close” to each of the constraint sets.

POCS is particularly useful in ill-posed deconvolution problems. The
problem is regularized by imposing possibly nonlinear convex constraints
on the solution set. Using the projection onto to the column space of the
convolution kernel as one of the constraints, POCS can be used, in many
cases, to craft a desired result.
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