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We describe a new class of optimization method based on the theory
of alternating projections onto convex sets (POCS). The technique is
applied to the problem of intensity modulated beam optimization in
conformal radiotherapy. The results of test cases are compared with
those from a well established method of simulated annealing.

THE METHOD OF POCS
The theory of POCS is due to Bregman [1] and Gubin [2] and was
advanced by Youla [3] and Stark [4]. For biomedical applications
POCS has been applied to the problem of incomplete projection data
in computerized tomography [5].

POCS is constructed around constraint sets. A set C  is convex if
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for all 0 ≤ α ≤1 . Geometrically, as illustrated in Figure 1, this means
that the line segment connecting   

r 
x 1  and   

r 
x 2  is totally subsumed in the

set C . Therefore, the set in (a) is convex while the set shown in (b) is
not convex since there are elements in   

r 
x 1  and   
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x 2  that produce a line

segment that partially lies outside of the set.
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Figure 1. Illustration of (a) convex and (b) non-convex set.

Given two or more convex sets, successive projection of normal
vectors with respect to each set will find the intersection which
satisfies all the constraints as shown in Figure 2.

POCS assumes that the convex constraint sets intersect. If the sets
share a single intersection, there exists a unique solution which
satisfies all the constraints. If the intersection consists of many points,
the solution is determined by such factors as the initialization process.
On the other hand, if the sets do not intersect, there is no solution that
satisfies the constraints. In practice, non-intersecting constraint sets
could occur if the dose prescription is too stringent or unrealistic.

It can be shown that the constraints commonly used in
radiotherapy treatment planning are convex [6]. These constraints
include target dose uniformity, upper limit on normal tissue dose, and

non-negativity of radiation fluence. For example, consider possible
dose distributions within a critical organ which are required to remain
below 30 Gy. In this case the doses between 0 and 30 Gy comprise
the constraint set.  The set is convex if it satisfies the condition given
by equation (1). The fact that this is indeed the case is easily seen by
noting that any linear combination of doses between 0 and 30 Gy also
lies within the set. Taking a most extreme case, for instance, if two
members of the set D1 = 29.9 Gy  and D2 = 29.8 Gy , then the
necessary condition αD1 + (1− α )D2 <  30  Gy  is true for all

0 ≤ α ≤1 . Therefore, the organ dose constraint can be expressed as a
convex set. Mathematical proofs of convexity of radiotherapy
constraints are given in [6].
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Figure 2. Successive projections between two convex sets resulting
in convergence to a fixed point.

The dosimetric frame work for application of POCS in radio-
therapy assumes the form

  
r 
d k = Ak

r 
b k (2)

where   
r 
d k  is the dose vector for the k-th beam, A k  is a dose compu-

tation matrix which provides the values of fractional dose contri-
bution to a sample point from a beam element, and   

r 
b k  is an array of

pencil beam weights for the k-th beam.
For inverse dose computation   

r 
d k  is the prescribed dose distri-

bution, A k  is computed using a photon transport algorithm of choice,

and   
r 
b k  is the unknown. As a rule, POCS projections must occur

within the same domain. We have chosen the dose vector domain
because the convex constraint sets are formulated most easily in this
space.

Projection operators are formulated in such a way that the distance
between a dose vector and its projection is minimized. For instance,
the projection onto the target dose constraint is determined by finding
the minimum of
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where   
r 
z k  is the projection vector,   

r 
λ T IT  is a spatial discriminator for

the target volume, Q  is the number of beams, and   
r 
p  is the pre-

scription dose. Differentiating J with respect to   
r 
z k  and setting it to

zero, the projection operator for the target dose constraint set is
found:
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APPLICATION OF POCS IN INTENSITY
MODULATED BEAM OPTIMIZATION
The method of POCS was applied to several different test cases with
the number of beams ranging from 3 to 72. Figure 3 shows one of the
test cases consisting of a crescent shaped tumor surrounding a critical
organ. Dose contributions from pencil beams were precomputed using
TPR for an 18-MV machine.
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Figure 3. Crescent shape target and critical organ.

The following constraint sets were used:

• Target dose uniformity
• Normal tissue upper dose limit
• Non-negative beam weights
• Beam-dose relationship

POCS will converge even when some projections are used more
than others. This property can be exploited to accelerate the con-
vergence speed. For example, we achieved faster convergence by
more frequently projecting between the beam-dose constraint set and
the target uniformity set since projections between these sets are less
computationally intensive than others. The POCS iteration was
terminated when the difference between the prescribed and the
calculated dose became sufficiently small.

The POCS optimization results using 7 beams discretized to 25
beam elements are shown in Figure 4. The target dose prescription
was set to 100% while the critical organ dose was required to be less
than or equal to 40% of the prescription.  The dose volume
histograms for varying number of POCS iterations indicate that the

target dose uniformity improves rapidly with iteration reaching the
maximum at about 30 iterations.
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Figure 4. POCS optimization results presented in dose volume
histograms for target and organ volumes. Number of iterations ranges

from 1 to 60.

COMPARISON WITH SIMULATED ANNEALING
Since, in general, there are no unique solutions for the class of op-
timization problem with which we are dealing, the performance of a
given algorithm can only be evaluated in comparison to other
methods. The results of POCS optimization were compared with
those from a simulated annealing method which has been established
as a standard in radiotherapy treatment plan optimization. The fast
simulated annealing (FSA) method was used to minimize the cost
function

F = (Di − P)2
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N
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where Di  is the dose to a sample point within the target, P  is the
prescribed dose, O j  is the penalty function for the normal structure j

given by
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where U j  is the upper dose limit imposed on the normal structure.

The simulated annealing method was applied to the beam opti-
mization problem defined in Figure 3 using the same dose com-
putation matrix. The initial width of Cauchy distribution, initial
temperature, and the control parameters for the Cauchy generator and
the temperature updating were optimized through systematic tuning.
They were set to 0.16 (of the prescribed dose), 0.01, 2,000, and 4,000,
respectively. A generous number of iterations were allowed in order
to ensure convergence to a solution. The cost function values were
monitored up to 500,000 iterations. The best cost occurred at about
200,000 iterations.
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Figure 5. Comparison of POCS and FSA.

Figure 5 compares the POCS and FSA results after 60 and
200,000 iterations, respectively. Statistics on the target volume
coverage are tabulated in Table 1. The POCS algorithm produced a
higher minimum target dose (95%) than the simulated annealing
method (93%). The target dose uniformity was also higher for POCS
(σ = 1.4% vs. 2.5%). Both algorithms were able to satisfy the upper
dose limit on the critical organ. The integrated organ dose was
slightly lower for the simulated annealing which accounts for the loss
in target dose uniformity. Had a different cost function other than the
quadratic formulation been used, the performance might have
matched the POCS more closely.

Table 1. Target dose distribution
Min Max Mean σ

POCS 95% 103% 99.9% 1.4%
FSA 93% 104% 99.9% 2.5%

The relative beam weights were plotted against the pencil beam
position. Figure 6 is a comparison of beam profiles obtained by the
two method for the beam angle 1 of Figure 3. It can be seen that the
POCS method generates intensity modulation profiles which
generally correspond to the prescribed dose distribution in the
treatment geometry. This is a natural consequence of the projection
operation which essentially forces the individual beam weights to be
proportional to the associated line integrals through the dose
distribution. On the other hand, due to its random nature in adjusting
the beam weights, the simulated annealing method has the tendency
to produce an intensity modulation that fluctuates independently of
the tumor-organ shape. Less jagged fluence profiles are easier to
deliver by the multileaf collimators and therefore are more desirable.

DISCUSSION
The method of POCS is substantially different from other opti-
mization methods used in radiotherapy. Unlike most other techniques
POCS does not rely on minimization of cost function. Instead, it
seeks to find a solution which simultaneously satisfies specified
constraints. As such, there is no concept of local minima in POCS.
Feasibility of its use is determined by whether convex formulation
exists for a given problem.

We have demonstrated that it is possible to formulate the con-
straints commonly used in radiotherapy in convex sets. The number
of POCS iterations required for convergence is comparable to those

of other deterministic optimization methods, and compared to
simulated annealing orders of magnitude less.
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Figure 6. Comparison of beam profiles for the beam angle #1.

The results indicate that more uniform target dose distributions
were obtained with the POCS method as compared with the simulated
annealing technique using a quadratic objective function. Also it was
noted that the beam intensity profiles generated by the POCS method
correspond more closely to the target-organ geometry than those
produced by the simulated annealing method.

While the constraints used in the illustration were simple, more
complex constraints including dose-volume restrictions on normal
tissues can be implemented [7].
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