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Preface

The contents of this book evolved from a set of lecture notes pre-
pared for a graduate survey course on Shannon sampling and
interpolation theory. The course was taught at the Department
of Electrical Engineering at the University of Washington, Seat-
tle. The book is written for a second year graduate student who
has an established foundation in Fourier analysis and stochastic
processes.

Each of the seven Chapters in this book includes a list of
references specific to that Chapter. A sequel to this book will
contain an extensive bibliography on the subject. I have also
opted to include solutions to selected exercises in the Appendix.

The patience and support of my wife, Monika, and children,
Marilee, Joshua and Jeremiah, during the preparation of this
book, is gratefully acknowledged.

The input and assistance of numerous students in the forma-
tion of this book is also gratefully acknowledged. I am partic-
ularly indebted to Payman Arabshahi for his patient and thor-
ough proof reading efforts, J.J. Choi and D.C. Park for their
tireless efforts in the preparation of the manuscript, and Seho
Oh for his generation of a seemingly endless number of figures
and plots.
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1

Introduction

Much of that which is ordinal is modeled as analog. Most com-
putational engines, on the other hand, are digital. Transforming
from analog to digital is straightforward: we simply sample. Re-
gaining the original signal from these samples or assessing the
information lost in the sampling process are the fundamental
questions addressed by sampling and interpolation theory.

This book deals with understanding, generalizing and extend-
ing the cardinal series of Shannon sampling theory. The funda-
mental form of this series states, remarkably, that a bandlimited
signal is uniquely specified by its sufficiently close equally spaced
samples.

The cardinal series has many names, including the Whittaker-
Shannon sampling theorem [Goodman (1968)], the Whittaker—
Shannon-Kotel'nikov sampling theorem [Jerri (1977)], and the
Whittaker-Shannon-Kotel 'nikov-Kramer sampling theorem
[Jerri (1977)]. For brevity, we will use the terms sampling theo-
rem and cardinal series.

1.1 The Cardinal Series

If a signal has finite energy, the minimum sampling rate is equal
to two samples per period of the highest frequency component
of the signal. Specifically, if the highest frequency component
of the signal is B hertz, then the signal, z(t), can be recovered
from the samples by

=L 5 (g) Sz

n=—oo

The frequency B is also referred to as the signal’s bandwidth
and, if B is finite, () is said to be bandlimited [Slepian (1976)].



1. Introduction 2

1.2 History

The history of Shannon sampling theory and the cardinal series
is intriguing. A summary of key events in the development of
the cardinal series is listed in Table 1.1.

H.S. Black credits Cauchy for recognition of the mechanics of
band-limited signal sampling in 1841 and even offers the follow-
ing translation from Cauchy’s original French text:

IF A SIGNAL IS A MAGNITUDE-TIME FUNCTION,
AND IF TIME IS DIVIDED INTO EQUAL INTERVALS
SUCH THAT EACH SUBDIVISION COMPRISES AN IN-
TERVAL 1" SECONDS LONG WHERE 7' IS LESS THAN
HALF THE PERIOD OF THE HIGHEST SIGNIFICANT
FREQUENCY COMPONENT OF THE SIGNAL, AND IF
ONE INSTANTANEOUS SAMPLE IS TAKEN FROM
EACH SUBINTERVAL IN ANY MANNER; THEN A
KNOWLEDGE OF THE INSTANTANEOUS MAGNITUDE
OF EACH SAMPLE PLUS A KNOWLEDGE OF THE IN-
STANT WITHIN EACH SUBINTERVAL AT WHICH THE
SAMPLE IS TAKEN CONTAINS ALL THE INFORMA-
TION OF THE ORIGINAL SIGNAL.

In a later historical overview, Higgins (1985), however, notes
that such a quote was not included in the paper by Cauchy that
was cited by Black. Higgins, rather, credits E. Borel in 1897
for the initial recognition of the cardinal series and cites the
following passage translated from the original French:

CONSIDER

f(z) = /7r U(z) /" dx

-7

AND SUPPOSE THAT THE FUNCTION W(z) SATIS-
FIES THE CONDITIONS OF DIRICHLET. IF ONE
KNOWS THE VALUES OF THE FUNCTION, f(z), AT
THE POINTS 2z = 0,£1,+2,..., THEN THE FUNC-
TION ¥(z) IS COMPLETELY DETERMINED AND,
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CONSEQUENTLY, THE ENTIRE FUNCTION f(z) IS
KNOWN WITHOUT AMBIGUITY.

This connection of the Fourier series to the sampling theorem
was the same tool of explanation later used by Shannon in his
classic paper.

E. T. Whittaker published his highly cited paper on the sam-
pling theorem in 1915. In his work, if one function had the same
uniformly spaced samples as another, the functions were said
to be cotabular. The sampling theorem interpolation from these
samples resulted in what Whittaker called the cardinal function.
The interpolation formula was later dubbed the cardinal series
by Whittaker’s son, J. M. Whittaker. Among other things, the
senior Whittaker showed the functions, z(¢) to which the car-
dinal series applied were bandlimited and entire on the finite ¢
plane. He also noted that applicability of the cardinal series to
a function was independent of the choice of sampling phase.

The sampling theorem was reported in the Soviet literature in
a paper by Kotel'nikov in 1933. Shannon (1948 ) used the sam-
pling theorem to demonstrate that an analog bandlimited signal
was equivalent in an information sense to the series of its samples
taken at the Nyquist rate. He was aware of the work of Whit-
taker which he cited. Other noted historical generalizations and
extensions of the sampling theorem are listed chronologically in
Table 1.1.



1841

1897

1915

1928

1929

1933

1948

1959

1962

1968

e ee———————
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Cauchy’s recognition of the Nyquist rate.’

Borel’s recognition of the feasibility of regaining a bandlimited
signal from its samples.

E.T. Whittaker publishes his highly cited paper on the cardinal
series,

H. Nyquist establishes the time-bandwidth product of a signal.
J.M. Whittaker coins the term cardinal series.

A. Kotel'nikov publishes the sampling theorem in the Soviet
literature.

C.E. Shannon publishes a paper which establishes the field of
information theory. The sampling theorem is included.

H.P. Kramer generalizes the sampling theorem to functions
that are bandlimited in other than the Fourier sense.

D.P. Peterson and D, Middleton extend the sampling theorem
to higher dimensions.

A. Papoulis first publishes his generalization of the sampling
theorem. A number of previously published extensions are
shown to be special cases.

Table 1.1: Key events in the development of the cardinal series.

'Disputed. See text.
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Fundamentals of Fourier
Analysis and Stochastic
Processes

The sampling theorem is traditionally expressed in the language
of Fourier analy sis. Stochastic processes are used to analyze
the effects of uncertainty on the interpolation process and, in
certain cases, are used as signal models. This chapter contains
a brief overview of the fundamentals of Fourier analysis and
stochastic processes. The material in this chapter is prerequisite
for material in the remainder of th e book. Except for an isolated
application in Section 3.5, however, stochastic processes are not
used until Cha pter 5.

2.1 Signal Classes

There are a number of signal classes to which we will make
common reference:

(a) Periodic Signals
A signal, z(t), is periodic if there exists a T such that

x(t)=x(t—-T)

for all t. The function z(t) = constant is periodic.
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(b) Finite Energy Signals'
I N
E:/ 2 (t)]? dt < oo,
then x(t) is said to have finite energy E.

(c) Finite Area Signals'
If
A:/ 2(t)] dt < oo,

then x(t) is said to have finite area A.

(d) Bounded Signals'
If, for C' a constant,
2(t)] < C < o0,
then x(t) is said to be bounded.

(e) Bandlimited Signals
If there exists a finite (bandwidth) B such that
/ s(t)e ™ dt = 0; |u| > B,

then z(t) is said to be bandlimited in the low pass sense.

(f) Analytic Signals

If, for any finite complex number ¢, we have equality in
the Taylor series

where i
ﬂm@%:&%>x@)

!The classes of finite energy, finite area and bounded signals (when Lebesgue
measurable) are recognized respectively as L, L1 and Lo, signals [Naylor and
Sell; Luenberger].
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then z(2) is said to be analytic everywhere (in the closed
z plane).

Except for bandlimited functions being subsumed in the class
of analytic functions, membership in one of these six classes does
not necessarily dictate membership in another. For example,
log(t) on the interval (0,1) has finite area and energy and yet it
is not bounded. Other examples are given as exercises. Except
for the degenerate case of x(t) = 0, a periodic signal can have
neither finite energy nor finite area.

2.2 The Fourier Transform

A Fourier transform can reveal if a signal can be represented
uniquely in terms of its samples. In this chapter, we review the
basic properties of Fourier transforms for the purposes of estab-
lishing notation and completeness. More in depth treatments of
the topic can be found in the classic books by Bracewell and Pa-
poulis (1962) or in any one of the numerous texts on the topic
[Papoulis (1980), Liu and Liu, Oppenheim and Willsky].

The Fourier transform (or spectrum) of a signal z(t) is

o

X(u) = / w(t) e~ gy, (2.1)

— 0o

Fourier transform pairs will be denoted by
z(t) +— X(u).
The inversion formula is

x(t) = /oo X (u) ™ du.

— 00

From the transform definitions, the Fourier transform theo-
rems in Table 2.1 can be generated. Proofs are left as an exercise.
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z(t) —  X(u)
transform  z(t) ey ? z(t)e I v d
scaling z(at) — &[X (%)
shift z(t — 1) —  X(u)e i?mvr
derivative (j‘;)“ z(t) —  (727u)"X(u)
integral f z(r)dr — ,"'r_z[f.}; + 2X(0)6(u)
conjugate  z*(t) e  X*(-u)
transpose  z(—t) — X(—u)
convolution xz(t) * h(t) —  X(u)H(u)
inversion > X(u)e™dy e X(u)
duality X(t) —  z(—u)

linearity azy(t) + bza(t) e aXi(u)+ bX3(u)

correlation  z(t) » h(t) — X(u)H*(u)

Table 2.1: Fourier transform theorems. Convolution is defined
by

(1) * h(t) = /_O:O 2(r) bt — 7) dr.

Correlation is

2(t) % h(t) = /_O:Ox(f)h*(f—t)df
= z(t) * h*(—t).
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2.2.1 The Fourier Series

Periodic functions with period T can be expressed as a Fourier
series,

a(t) = > e, T (2.2)
where .
=7 / 2 (t) e~32mnt/T gy, (2.3)
T

and integration is over any single period.
If we define x7(t) to be a single period of z(¢):

ox@) s T<t<T+T
wr(t) = { 0 : otherwise

(7 is arbitrary), then (2.3) can be written

1 oo :
Cp = ? /700 ],'T(t) 6—]27rnt/T dt
1

= TXT(f)- (2.4)

The Fourier coefficients can thus be determined by sampling the
Fourier transform of any period of the periodic function.

2.2.1.1 Convergence

If on any interval the length of a period, z(¢) has finite energy,
then (2.2) is better written as

lim A|x(t) —an@WPdt=0 (2.5)

N—xo

where the partial sum is
N .
LEN(t) — Z Cn ej27r'nt/T.
n=—N

That is, convergence is in the mean square sense.
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2.2.1.2  Orthogonal Basis Functions

The Fourier series is a special case of an orthogonal basis func-
tion expansion [Luenberger; Naylor and Sell]. For a given inter-
val, I, functions z(¢) and y(t) are said to be orthogonal if

/I:E(t) y ()dt = 0

where the superscript asterisk denotes complex conjugation. -
The functions are said to be orthonormal if both z(t) and y(t)
have unit energy on the interval I.

Each element in an orthonormal basis set, {¢,(t)| —oc < n <
oo; t € I} 2, has unit energy on the interval I and is orthogonal
to every other element in the set:

[ en(®) er(t)dt = 3l — ) (2.6)

where the Kronecker delta is

wl={ g 0

Corresponding to a given class, C, of finite energy functions, a
basis set is said to be complete if, for every z(t) € C, we can
write

t(t)= > anen(t);tel (2.7)
where equality is at least in the mean square sense:
N
Jm [l = 3 aw@Pdi=0. @3

The expansion coefficients, a,,, can be found by multiplying both
sides of (2.7) by ¢, (t) and integrating over I. Using (2.6), we

find that
= / 2(8) % (1) dt.
I

Examples: In each of the following examples, C' is subsumed
in the class of finite energy (Ls) functions.

2For certain orthogonal basis sets such as the prolate spheroidal wave functions
in Chapter 7, the index n runs from 0 to co.
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e The cardinal series is an orthonormal expansion for all sig-
nals whose Fourier transforms are bandlimited with band-
width B. For I = {t| — cc <t < oo}, the basis functions

are:
(1) = 1 sin[7(2Bt —n)]
Pull) = V2B w(2Bt—n)
Note, then, that a, = ﬁx(%) As will be shown in

Section (3.3.1), the cardinal series displays uniform con-
vergence which is stronger than that in (2.8).

e The Fourier series is an orthonormal expansion for signals
over the interval I = {t|— £ <t < T}. The basis function
here are:

nlt) = —=ex (
onlt) = Zmeer (7
It follows that a, = —=X7(7).

The prolate spheroidal wave functions in section 7.2 and the
complex Walsh functions in Exercise 4.23 are also examples of
orthogonal basis sets. Such sets will later prove useful in the
understanding of interpolation from continuous samples and
Kramer’s generalization of the sampling theorem.

2.2.2 Some Elementary Functions

In this section we define a number of elementary functions. Each
is pictured in Fig. 2.1 .
Their Fourier transforms will be developed in the next section.

(a) The Rectangle Function

L Jt<s
nw=140: [1>1
1 . |t|:l
2 2
(b) The Sinc Function
sin(mt)

sinc(t) = ;
7
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Figure 2.1: Some elementary functions.
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One advantage of this notation is that, for n an integer,

sinc(n) = d[n). (2.9)

The Dirac Delta Function

Rigorously, the Dirac delta, §(¢), is a distribution and not
a function. It can be defined by its sifting property. If z(¢)
is continuous at 7 = ¢, then

o(t) = /°° 2(1)5(t — 7) dr. (2.10)

—00

Note we use parenthesis for the Dirac delta argument and
square brackets for the Kronecker delta.

The area of a Dirac delta can be found from the sifting
property by setting z(7) = 1 and ¢ = 0. Recognizing fur-
ther that 0(¢) = 0 except at the origin leads us to conclude
that for any ¢ > 0

/8 5(r)dr = 1. (2.11)

—E&

The Dirac delta can be viewed as the limit of any one of a
number of unit area functions which approach zero width
and infinite height at the origin. For example

i(t) = /}LH;OA T1( At)
or, alternately
i(t) = ,P_I,QOA sinc(At).
Using the definition in (2.11), it is easy to show that
§(t) = |a| 6(at).
Lastly, since

exp(j2mét) +— o(u — &), (2.12)
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we conclude from (2.2) that the spectrum of a periodic
signal can be written as a string of weighted Dirac deltas:

X(u) = i cn5<u—%>

n=—0oo

The Comb Function

comb(t) = i d(t —n).

n=—oo

Any periodic function can be written as

x(t) = zp(t) * % comb (%) . (2.13)
The Triangle Function
Au):(1-¢ﬂ)11<g>.
Note that
A(t) = TI(¢) * I1(¢). (2.14)

Bessel Functions

For v > —%, Bessel functions of the first kind can be
defined by the integral [Abramowitz & Stegun]
2(%)V ! 2\v— 1+
J,(2) = T+ D y /0 (1 —u")" 2cos(zu) du (2.15)

where the gamma function for positive argument is defined

as -
r'e¢) = / e T dr.
0

When & = n is a non-negative integer, I'(n + 1) = nl.
When & =n + 1,

r (n + 1) _@n= Dt Vr (2.16)

2 2n
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where, for example, 7!! = 7-5.3 - 1. Equation (2.16)
can be derived from the property I'(§ + 1) = £I°(€) and
r(}) = v
For v = 0, (2.15) becomes

Jo(2rt) = %/01 % du (2.17)
which is shown in Fig. 2.1(f).

The Jinc Function
We define [Bracewell]

J1(27Tt)
2t

jine(t) = (2.18)

Using (2.15) with v = 1 gives

1
jine(t) = 2/ V1 —u? cos(2mut) du.
0
Since
2 / V1—u?du=uVv1—u?+ arcsin(u), (2.19)

it follows that
T

e(0) =
jine(0) 5

The zero crossings of the jinc are identical to the well

tabulated t # 0 zero crossings of J;(27t).

The Signum Function

The function

-1 ; t<0
sgn(t)=< 0 ; t=0
1 t>0

is denoted by a contraction of the word sign and is pro-
nounced signum to avoid confusion with the trigonometric
Sin.

Note that the unit step function can be written

u(t) = %[sgn(t) 1] (2.20)
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2.2.3 Some Transforms of Elementary Functions

A list of Fourier transform pairs is in Table 2.2. Some can easily
be generated from the function and Fourier transform defini-
tions. We will elaborate only on three of the more challenging
entries. Others will be left as exercises.

More extensive lists of transform pairs exist elsewhere
[Bracewell]. A wealth of Fourier transform pairs can be obtained
from Laplace transform tables [Abramowitz and Stegun]. The
(unilateral) Laplace transform is defined by

Xi(s) = /()ooa:(t)e_Stdt ; §=0+ j2mu. (2.21)

If
(1) x(t) is causal [ i.e. z(t) = x(t) u(t)] and
(2) X.(s) converges for o = 0,

then the Laplace transform evaluated at ¢ = 0 is the Fourier
transform of z(t). That is,

X1 (j2mu) = X (u).

A sufficient condition for the second criterion to hold is that
x(t) have finite area:

A= / (t)] dt < .

This follows from the inequality

|/ (t)dt] < / (1) dt

which, when applied to (2.21) yields

oo

Xe(em) = | [ ate ) < [ o)t < ox.

—00
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z(t) «— X{u)
&(1) 1
() sinc(x)
A(t) sinc?(u)
sgn(t) L
u(t) Hé(w) — £
jine(t) VT=711 (%)
exp(—nt?) exp(—7u?)
Jo(2rt) e TI( %)
exp(—|t|) 2[1 + (27u)?)?
comb(t) comb()

Table 2.2: Some Fourier transform pairs.

19
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(a) The Signum Function

For sgn(t), the Fourier transform becomes
X(u) = —j/ sgn(t) sin(2mut)dt

where we have expanded the exponential via Euler’s for-
mula and have recognized the odd component of the in-
tegrand integrates to zero. The evenness of the remaining
integrand above can be exploited to write:

X(u) = —j2/oosin(27rut) dt
0
A4 = jS[Q/OOe’ﬂ”“t dt]

= lim jQ[2 ~(atg2mut gy
a—0
]

= lim ]\5[7
a—0 o+ j2mu

1

jmTu
where & denotes the imaginary component operation.

The Gaussian

Differentiating the expression for the Fourier transform of

the Gaussian, x(t) = exp(—t?), gives

dX (u)
du

— / (= jomt) expl—n(t2 + j2ut)] dt
= _]/ 7(2t + j2u) exp|—n (t* + j2ut)]dt — 2muX (u).

The resulting integral can be evaluated in closed form.

dX (u)
du

or

= jexp[—7(t*+j2ut)]|, —2muX (u) = —27uX (u)
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Integrating both sides gives
In[X (u)] = —7u?
from which the corresponding entry in Table 2.2 follows.

(¢) The Comb Function
Since comb(t) is periodic, it can be expressed in terms of

a Fourier series. The coefficients are ¢,, = 1 for all n. Thus

comb(t) = Y & (2.22)

n=—0oo

Using (2.12), it follows that

comb(t) +— > 6(u—n) = comb(u).
2.2.4  Other Properties

(a) The Power Theorem is

/°° o(8)y* (t) dt = /°° X (w)Y* () du.

— 00 — o0

An important special case is Parseval’s theorem :
o o
/ 2 (t)[2dt = / X (u)[2du.
—00 —Oo0
For a proof of the power theorem, we write

/ )y (t)dt = / ” [ / ” X(u)eﬂmdu} y*(t) dt.

— o0 — 00 — 00

Reversing integration order and recognizing the resulting
transform completes the proof.

(b) The Poisson Sum Formula is

o0

TS a(t—nT)= 3 X(%) (2T (9.93)

n=—oo n=—oo
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A proof follows:

> 1 t
n:z_:oox(t —nT) = xz(t) * Tcomb <f>

1 &
— LE(t) * ? Z 6j271"mf/T

n=—0o0

where we have used (2.22). Recognizing
:E(t) * 6j2771/t — X(V)ej%rut
completes the proof.

Note that, for ¢ = 0, the Poisson sum formula directly
relates the sum of the signal and spectral samples:

TS anl)= 3 X(%) (2.24)

n=-—oo n=—0oo

2.3 Stochastic Processes

In this section, we will briefly review the stochastic process and
its characterization. More in depth treatment is available in nu-
merous excellent texts [Papoulis (1984); Parzen; Thomas; Stark
and Woods].

A stochastic process can be either discrete or continuous and
can be used to model either noise or a signal.

2.3.1 First and Second Order Statistics

In many applications, the first and second order statistics of
a stochastic process suffice for a description. The mean of a
continuous time stochastic process, £(t), is

£(t) = Elg(t)]
where E denotes the expected value operator. The noise level is
the variance of the process:

var §(t) = E[¢(1) -

= EOP |

‘]

i

Iy

(?)
(t

I
~
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If a process is zero mean, then £(t) is zero and the noise level is
|€(t)|2. If a process is a signal, this is called the signal level.

Both the mean and noise (signal) level are first order statistics
since they are only concerned about the process at a single point
in time. Second order statistics are concerned about the process
at two different points in time. The autocorrelation, for example,
is

Re(t;7) = E[E(1)E (7))
Note that

Re(t; 1) = [£(1)]>. (2.25)

Similarly, the cross correlation between two processes, £(t)
and n(t), is defined as

Rey(t;7) = EIE(0)n*(7)].

2.3.2 Stationary Processes

A process that does not change its character with respect to
time is said to be stationary. A process is said to be stationary
in the wide sense if it meets two conditions. First, the mean of
the process must be a constant for all time:

£ty ==¢

Secondly, the autocorrelation is only a function of the distance
between the two points of interest:

EE()€(7)] = Re(t — 7). (2.26)

For such processes, the autocorrelation can thus be described
by a one dimensional rather than a two dimensional function.

2.3.2.1 Power Spectral Density

The power spectral density, S¢(u), of a wide sense stationary
process can be defined as the Fourier transform of the autocor-
relation.

Re(t) <— Se(u).
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The power spectral density measures the power content of the
process at each frequency component.
One can easily show that the autocorrelation is hermetian:

Re(t) = Ri(—1). (2.27)

It follows immediately that S¢(u) is real. It is also non-negative.
For a wide sense stationary discrete process, the autocorrela-
tion is
Reln—m] = E {¢[n] €'m]}.
The power spectral density for such processes is given by a
Fourier series:

Se(u) = i Re¢[n]e72™, (2.28)

For both discrete and continuous wide sense stationary pro-
cesses, the noise level can be obtained by setting the argument
of the autocorrelation to zero if the process is zero mean.

2.3.2.2 Some Stationary Noise Models

Here we list some autocorrelation functions for later use. In
general, one can choose any non-negative finite energy function
for S¢(u). If the process is zero mean, the power spectrum’s
inverse transform is a valid autocorrelation function with

EOF = [ Se(w) du. (2.29)

(a) Stationary White Noise
Stationary white noise has an autocorrelation of
Re(7) = |€]2 6(7). (2.30)

Only for white noise does the notation W not correspond
to the second moment of the process. Indeed, the noise
level for this process is infinite. White noise is so named
because its power spectral density

S(u) = |€]2 (2.31)

has the same energy level at every frequency.
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(b) Stationary Discrete White Noise
This is a discrete process with autocorrelation
Re[n] = I€]? o[n). (2.32)

Note that one does not obtain a discrete white sequence
by sampling a continuous white noise process. Here, for
example, the noise level is finite.

(¢c) Laplace Autocorrelation

For a given positive parameter A, the Laplace autocorre-

lation is L
Re(7) = €2 e L. (2.33)
It follows that
2NE2
S = 2.34
e(u) A2 + (2mu)? ( )

2.3.2.3 Linear Systems with Stationary Stochastic Inputs
Let h(t) be a deterministic signal and define

n(t) = &(t) = h(t). (2.35)
Then the cross correlation between input and output is
Rye(T) = Re(T) * h(T) (2.36)
or, in terms of the power spectral densities:
Sne(u) = Se(u) H (u).
The output’s autocorrelation is
Ry (t) = [h(t) x h(t)] * Re(t) (2.37)
or, in the frequency domain,

Sy() = |H (u)? Se(u). (2.38)
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2.4 Exercises

2.1 Evaluate [*_z(t)dt for each of the functions in Fig. 2.1
that have finite energy.

2.2 Define 6(t) as the limit of a
(a) triangle function.
(b) jinc.

(c) sinc squared.
2.3 Derive the entries in Table 2.1.

2.4 Derive the entries in Table 2.2 for

2.5 Assume g(t) has a single zero crossing at t = g, i.e. g(to) =
0. Let % =a.
(a) Simplify the expression for 6(g(t)).
(b) Evaluate §(In(¢/b)) for both ¢ and b positive.
(c) Evaluate md(sin(nt)).

2.6 Evaluate the transforms of
(a) sinc(t).
(b) z(52).
2.7 (a) Find the area of
i. sinct(t).
i, jinc?(t).
iii.  J2(2nt).
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(b) Find the integral of sinc(t)jinc(t) over all time.

[e.°]
Evaluate the series Y~ a, when a, =

n=-—oo

For large t, find a good approximation for the ex-
trema of sinc(t).

At a finite discontinuity, a Fourier series converges to the
arithmetic midpoint. To illustrate, let

y(t) = i H<t_nT)-

n=—oo T

Express y(t) as a Fourier series and evaluate y(5) using
that series. Let @ = 7/T < 1.

Evaluate the Fourier transform of

Jy(2mt) - 1

@y U7 Y

Simplify your result for » = 0 and v = 1 thus deriving two
of the entries in Table 2.2.

Gibb’s Phenomena: From Exercise 2.10, let a = % and

z(t) =2y <t— g) —1.
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Zy(t)

%N W\/\ N I

FIGURE 2.2.

The truncated Fourier series for z(t) is zy(t) which will
display overshoot, Ay, as shown in Figure 2.2. Compute
this overshoot and its exact value as N — oo.

HINT: Si(r) = 1.851937 where

sit2) = [ Fsinft)

t

2.13 (a) Derive (2.29).

(b) Derive a similar expression for a discrete stochastic
process.

2.14 Prove (2.36) and (2.37).

2.15 Show that B
|Re()] < &2

2.16 (a) Show that (2.27) is valid.

(b) Show that, as a consequence, Sg¢(u) is real.
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2.17 Show that

comb (t — 1) < comb (ﬁ) — comb <u _ 1) .
2 2 2

2.18 (a) Let x(t) = t~i. Compute both the area and energy
of z(t)

i . over the interval (0,1) and,

it . over the interval (1, 00).

(b) Use your result in (a) to show that finite area does
not imply finite energy and visa versa.

(c) The energy of a sequence of samples can be defined
as in (3.32). Let

1 & n
A=3p 2. Iv (55)1

If A < oo, can we conclude that F < oo? What about
the converse?

2.19 (a) If z(¢) has a spectrum with finite area, show that x(t)
is bounded. Let

lz(t)] < C < 0.

Express C in terms of
A :/ | X (u)]du < oc.

(b) Show that the converse of (a) is not true. That is,
there exist bounded signals whose spectra do not
have finite area.

2.20 Show that a finite energy bandlimited signal, x(¢), must
be bounded. Specifically,

lz(t)|* < 2BE.

HINT: Apply Schwarz’s inequality to the inversion for-
mula.
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2.21 (a) A finite energy signal z(¢) is bandlimited. Is its pth
derivative also a finite energy bandlimited function?

(b) Repeat part (a) substituting the word “area” for “en-
ergy’.
(c) Substitute “bounded”.

2.22 A series
o0
S o
m=0

is said to be absolutely convergent if the sum

S = Z ||
m=0

is finite. The terms in an absolutely convergent series can
be arbitrarily rearranged without affecting the sum. The
Taylor series expansion of z(t) about the (real) number 7

x(t) = fjo %x(m)(ﬂ.

Show that if z:(¢) has finite energy and is bandlimited, then
this series is absolutely convergent for all || < oc.

HINT: Show that
S(t) < V2BEe*Blt=l,

2.23 (a) Apply Schwarz’s inequality to the derivative theorem
to show that, if z(¢) is bandlimited, its M derivative
is bounded as

|x(M)(t)|2 < W

2.39
- 2M+1 ( )

(b) Show that a bandlimited function is smooth in the
sense that

w1 7) —a(f < CTBVIEE g o

- 3
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2.24 Consider the general linear integral transform

g(t) = [ F(r)h(tsT)dr

— 00

For a given ¢, assume that the kernel, h(¢; 7), as a function
of 7, has finite energy,

Ep(t) = /_Z I(t;7) |2dr.

If f(t) has finite energy, show that g(¢) is bounded.
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The Cardinal Series

A signal is bandlimited in the low pass sense if there isa B > 0
such that

X(u) = X(u)TI (%) . (3.1)

That is, the spectrum is identically zero for |u| > B. The B
parameter is referred to as the signal’s bandwidth. It then follows
that

B )
() = / X () P27y, (3.2)
-B
In most cases, the signal can be expressed by the cardinal series
)= > z (%) sinc(2Bt — n). (3.3)

The ability to thus express a continuous signal in terms of its
samples is the fundamental statement of the sampling theorem.
At other than sample locations, a more computationally effi-
cient form of (3.3) requiring evaluation of only a single trigono-
metric function is
oo n n
o) = L sinermyy 30 5 7E)

T 2Bt —n

n=—0o0

(3.4)

3.1 Interpretation

The sampling theorem reduces the normally continuum infinity
of ordered pairs required to specify a function to a countable
— although still infinite — set. Remarkably, these elements are
obtained directly by sampling.

Bandlimited functions are smooth. Any behavior deviating
from “smooth” would result in high frequency components which]j
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x(t) -

FIGURE 3.1.

Figure 3.1: Illustration of the manner by which z(t) is regained
from its samples using the cardinal series. Note that
the sinc for a given sample is zero at all other sample
locations (shown here as squares).

in turn invalidate the required property of being bandlimited.
The smoothness of the signal between samples precludes arbi-
trary variation of the signal there.

Let’s examine the cardinal series more closely. Evaluation of
(3.3) at t = m/2B and using (2.9) reduces (3.3) to an identity.
Thus, only the sample at ¢ = m/2B contributes to the inter-
polation at that point. This is illustrated in Fig. 3.1 where the
reconstruction of a signal from its samples using the cardinal
series is shown. The value of z(¢) at a point other than a sample
location [e.g. t = (m+3)/2B] is determined by all of the sample
values.
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3.2 Proofs

We now present three proofs of the conventional sampling the-
orem. The first is the one most commonly presented in texts.
The second, due to Shannon, exposes the sampling theorem as
the Fourier transform dual of the Fourier series. Finally, an elo-
quently compact form of proof due to Papoulis (1977) is pre-
sented.

3.2.1 Using Comb Functions

In this section we present the standard textbook proof of the
sampling theorem. Since it can be nicely illustrated, the proof
is quite instructive. It requires only an introductory knowledge
of Fourier analysis.

In presenting this proof, we will repeatedly refer to Fig. 3.2
where five functions and their Fourier transforms are shown. In
(a) is pictured a signal which, as is seen from its transform, is
bandlimited with bandwidth B. The sampling is performed by
multiplying the signal by the sequence of Dirac deltas shown in
(b). The result, shown in (c) is

s(t) = xz(t) 2B comb(2Bt) (3.5)
= X x(%) 5(t—%). (3.6)

Our goal is to recover x(t) from s(¢) which is specified only by
the signal’s samples.

Let’s examine what happens in the frequency domain when
we sample. Multiplication in the time domain corresponds to
convolution in the frequency domain. Since

u
2B b(2Bt b{—
comb(2Bt) +— com <2B> ,

we conclude that the transform of (3.5) is

S(u) = X (u) * comb <%) .
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x(t) X(u)
J/“ - ﬁ\

| |
FB comb (281t) comb (1/2B)
J.’/RB |(_ P -
l s(t) Stu)
. * ‘ | n WW
(d) sine (28t) T{u-2B) /28
vQUZXVQv —
. -3 ] 1
(e) x(t) X{u)
/'\ —
o - 5
FIGURE 3.2.

Figure 3.2: Illustration of Shannon’s proof of the sampling theo-
rem. Sampling is performed by multiplying lines (a)
and (b) in time to obtain line (c). The signal is re-
gained by multiplying lines (c) and (d) in frequency
to obtain line (e).
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Because convolving a function with 6 (u—a) centers that function
at a,
F(u)*6(u —a) = F(u— a),

we conclude that

S(u)=2B Y  X(u-2nB). (3.7)
n=—oo

These replications do not overlap. If X (u) was not truly ban-
dlimited or if the sampling rate were below 2B, then the spectra
would overlap. This phenomena is referred to as aliasing. Here,
the low frequency components of the signal can still be regained
although the high frequency components are irretrievably lost.
Clearly, sampling can be performed at a rate greater than 2B
without aliasing. The minimum sampling rate resulting in no
aliasing (in this case 2B) is referred to as the Nyquist rate.
Sampling above the Nyquist rate can relax interpolation for-
mula requirements (Section 4.1.1) and improve noise sensitivity
(Section 5.1.1.2). If there are Dirac deltas in the signal’s spec-
trum, sampling a bit above twice the signal’s bandwidth may
be required (Section 3.4).

Sampling is performed in Fig 3.2 by multiplying lines (a) and
(b) in time to obtain line (c). Clearly, if there is no aliasing,
multiplication of S(u) on line (c) by the low pass filter on line
(d) will result in the original spectrum, X (u). That is

1
X(u) = S(u) 5 1 (%) .
The corresponding time domain operation is convolution:
x(t) = s(t) * sinc(2Bt).
Substituting (3.6) and evaluating gives the sampling theorem in
(3.3).
3.2.2 Fourier Series Proof

Since X (u) is identically zero for |u| > B, we can replicate it to
form a periodic function in the frequency domain with period
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2B. This periodic function can be expressed as a Fourier series.
The result of the series for |u| < B is X (u). Using results in Sec.
2.2.1, we have

X(u) = n:ioo Cp €I/ B T (%) (3.8)

where the Fourier coefficients are

B .
/ X (u) eI™u/B gy,
-B

Cp, =

1
2B
1 n

Substituting into (3.8) and inverse transforming gives the sam-
pling theorem series in (3.3) which, as we see here, is the Fourier
transform dual of the Fourier series.

3.2.3 Papoulis’ Proof

A quite eloquent proof of the sampling theorem begins with the
Fourier series expansion of a periodic function with period 2B
that is equal to exp(j2mut) for |u| < B:

o
e/ = 3" sinc(2Bt — n) /2B, (3.10)
Substituting into the inversion formula in (3.2) gives
oo B ‘
z(t)= > / X (u) ™8 du sinc(2Bt — n)
-B

n=—oo

Evaluating the integral by again using (3.2) gives the cardinal
series in (3.3).

3.3 Properties

We now present some properties of the cardinal series.
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3.3.1 Convergence
Although there are exceptions, the cardinal series generally con-
verges uniformly. That is

lim |z(t) — x5 (£)| = 0 (3.11)

N—oo

where the truncated cardinal series is

N

O (%) sinc(2Bt — n). (3.12)

n=—N

The validity of (3.11) is obvious at the sample locations (t = J%)
since contributions from adjacent points are zero. Uniform con-
vergence is stronger than, say, the mean square convergence
characteristic of Fourier series expansions of functions with dis-
continuities.

3.3.1.1 For Finite Energy Signals

We first will prove (3.11) for the case where z(¢) [and thus X (u)]
has finite energy [Gallagher and Wise]. Note that
B ,
2(t) — zx () = / [X (1) — X (u)] €27 dy (3.13)

—-B

where

zn(t) +— Xy

(u)
1 X n - U
— e 7]7rnu/BH <_> )
5 27 <23> ‘ 2B
Schwarz’s inequality can be written

: g/z |Au)|? du Kw IC(u)[2 du. (3.14)

o

‘/Z A(u) C(u) du

Application to (3.13) yields

l2(t) — ax(t)|? < 2B /Z X () — Xn(u)[?du.  (3.15)
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The right side approaches zero if Xy — X in the mean square
sense. Since the limit of Xy is the Fourier series of X (see
Sec.3.2.2) and the Fourier series displays mean square conver-
gence (see Sec. 2.2.1), the right side of (3.15) tends to zero and
our proof is complete.

3.3.1.2 For Bandlimited Functions with Finite Area Spectra

We now present an alternate proof of the cardinal series’ uniform
convergence for the case where X (u) has finite area:

/Z X ()] du < oo (3.16)

From Exercise 2.19, this constraint requires that z(t) be bo-
unded. Our proof will, for example, allow cardinal series repre-
sentation for Jy(27t) and x(t) = constant both of which, due
to infinite energy, are excluded in the conditions of the previous
proof.
We begin our proof by defining
N
en(u;t) = > sinc(2Bt — n) e™ /B, (3.17)
n=—N

From (3.10), we recognize that ex(u;t) is a truncated Fourier
series of exp(j2mut) for |u| < B. Since, for a fixed t, exp(j2mut)
is continuous for |u| < B, the Fourier series in (3.10) converges
pointwise on this interval. Define the error magnitude

en(ust) = ‘eﬂ”“t —en(u; t)‘ .
Let Ay denote the maximum (or supremum) of ey(u;t) for
|u| < B. Then we are guaranteed that
ngrclxj Ay =0. (3.18)

Next, note that the truncated cardinal series in (3.12) can be
written as

N B )
an(t) = > /B X (u) /™8 qu sinc(2Bt — n)
n=—N “
B

= / X (u) en(u;t) du.

—-B
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Using the inequality
‘/ Y (u) du‘ < [ () du (3.19)

we find that

l2(t) — an(t)] = ‘ [ Z X(u) [ — en(us )] du

< [0 X () extust)du

—-B

Since the integrand is positive,
B
2(t) = oy (@) < Ay [ X (w)|du.

From (3.16), the integral is finite. Use of (3.18) results in (3.11)
and the proof is complete.

The uniform convergence result for the cardinal series should
not be surprising. Because of limited frequency constraints, ban-
dlimited functions are inherently smooth. The sinc interpolation
function is similarly smooth. There is thus no mechanism by
which deviations such as Fourier series’ Gibb’s phenomena can
occur (see exercise 2.12).

3.3.2 Trapezoidal Integration
3.3.2.1 Of Bandlimited Functions
Clearly, if z(t) <> X (u), then

X(0) = /°° o(t) dt.

Using (3.8) with (3.9), we thus conclude the integral of a ban-
dlimited function can be written directly in terms of its samples:

/O:O z(t)dt:%niooz<%>.

Thus, as illustrated in Fig. 3.3, trapezoidal integration of ban-
dlimited signals contains no error due to the piecewise linear



3. The Cardinal Series 42

approximation of the signal [Fig. 3.3b] if sampling is at or above
the Nyquist rate. Since integration is over all of ¢, trapezoidal
integration gives the same result as piecewise constant (rectan-
gular) integration [Fig. 3.3c]

Accurate integration results from a signal’s samples can also
be obtained when sampling below the Nyquist rate. The details
are left as an exercise at the end of the chapter.

3.3.2.2 Of Linear Integral Transforms

Consider numerical evaluation of the linear integral transform:

g(t)= [ u(r)ht:7)dr (3.20)
where u(7) is the input, g(¢) is the transform and h(¢;7) is
the transform kernel. Special cases are numerous and include
correlation, convolution, and Laplace, Abel, Mellin, Hilbert and
Hankel transforms [Bracewell].

One popular approach is to evaluate (3.20) by trapezoidal
integration:

g(t) = ga(t) = A i u(nA) h(t; nA) (3.21)

n=—oo

where A is the input sampling interval. If the output is sampled,
(3.21) can be expressed simply as a matrix—vector product.

We will show that by a simple alteration of the transform
kernel, the expression in (3.21) can be made exact in the spirit of
the sampling theorem [Marks (1981)]. Certain linear operations
that can not be directly evaluated by use of (3.21) because of
singularities can be evaluated through this sampling theorem
characterization.

3.3.2.2.1. Derivation of the Low Passed Kernel

Let u(7) be bandlimited in the low pass sense with bandwidth
B. Let W > B. Then u(r) is unaffected by low-pass filtering:

u(r) =2W /o:o u(n) sinc[2W (1 — n)] dn.
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Figure 3.3: When sampling is performed at or above the Nyquist
rate, the integration of z(¢) in (a) over all ¢ gives the
same result as integrating over (b) a piecewise linear
connection of the samples (trapezoidal integration)
and (c) a piecewise constant representation of the
signal.

Substituting into (3.20) gives
9(t) = [ uln) k(t:n) dy (322)
where the low-passed kernel (LPK) is
k(t:n) = 2W /_ Z h(t; 7) sinc[2W (7 — )] dr. (3.23)
Even though the kernel in (3.22) is altered, it yields the same

result as in Eq. (3.20).
Since both the input and the LPK are bandlimited in 7, they
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can be expressed by the cardinal series:
u(n) = Y. u(nA)sinc <n - %) (3.24)

and

k(t;n) = i k(t;mA) sinc (m - %) (3.25)

where the input sampling interval must be chosen such that

1 1
A< — < —.,
—2W T 2B

Substituting Eqgs.(3.24)and (3.25) into Eq.(3.22) gives

g(t) = i i u(nA) k(t; mA) /O:O sinc (n—%) sinc(m—%)dn
= A i u(nA) k(t; nA). (3.26)

This is the desired result. Comparing it with Eq.(3.21), we
conclude that the inaccuracy that is due to trapezoidal integra-
tion can be totally eliminated if the LPK is used in lieu of the
original kernel.

3.3.2.2.2.  Example Transforms

To illustrate use of (3.26), we now present example applications
for the cases of Laplace and Hilbert transformation.

Laplace Transform
The (unilateral) Laplace transform can be written as

g(t) = / u(r) et dr.
0
Comparing with (3.20) and (3.22), we have

h(t;7) = e ()
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and ~
k(t;n) = / e Tsinc(r — ) dr
0

where p(-) denotes the unit step and we have chosen 2W = 1.

EXAMPLE:

Consider the Laplace transform of u(t) = sinc(t). We evaluate
the resulting Laplace transform integral in three ways.

e DIRECTLY.
The Laplace integral becomes

g(t) = /0 ~ sine(r) e dr. (3.27)

To evaluate this integral, consider

o
7:/0 sin(ar) o g

-
Clearly
Z—Z = /0 cos(ar) e dr
_ t
2 + a?’

Thus, using the boundary condition that a = 0 — v =0,
we conclude that v = arctan($), and the true Laplace
transform of sinc(7) is

g(t) = 1 arctan <§> :

™

e USING TRAPEZOIDAL INTEGRATION
Applying trapezoidal integration to the integral in (3.27)
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with a step size of A gives !

g(t) = gat) = %4— A Y sinc(nA) e

n=1

+ H So (3.28)
T
where S is the imaginary operator,
o 1 n
o= nz::l - zZ",
and Z = exp[—(t — jm)A]. Since

Jdo X m
7 = 27
1

1-7

we conclude, since Z =0 — o = 0, that

o=—In(l-2).

For Z = |Z|e?®8”) recall that S1InZ = arg(Z). Thus,
after some substitution, (3.28) becomes

A sin(mA)
ga(t) = Bl + - arctan lem — COS(ﬂ'A)] . (3.29)

Note that, as A — 0,

sin(mA)
et® — cos(TA)

Thus, as we would expect,

—

H-.| B

lim g (1) = g().

A plot of ga(t) for various A’s is shown in Figure 3.4 along
with g(t). Recall that for A = 1, the LPK approach, in
the spirit of the cardinal series, gives exact results.

!The % term is replaced by A for rectangular integration.
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Figure 3.4: Evaluation of the Laplace transform of sinc(¢) by
trapezoidal integration. Shown is ga (t) for A = 1,0.5
and 0.25. Use of t he low passed kernel will converge
to the desired g(t) for step sizes, A, less than or equal
to one.
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e UsSING THE LPK
For u(7) = sinc(7) and 2W = 2B = 1/A = 1, the LPK
expression in (3.26) becomes

g(t) = k(;0)
where we have used the property that sinc(n) = §[n]. Us-
ing (3.23) with n = 0 gives

g(t) = / ' h(t;7) sine(r) dr

— 00

which is the integral we wished to evaluate in the first
place. The LPK, when applied to sinc(t), therefore reduces
to an identity for Laplace transformation or, for that mat-
ter, any other linear transform.

Hilbert Transform

The Hilbert transform

9(t) =2 /OO ulr) dr (3.30)

T Joo t—T

cannot be accurately evaluated by direct trapezoidal integration
because of the singularity at 7 = ¢. Fourier-transform analy-
sis, rather, is commonly used. We will now show, however, that
through application of the LPK, an accurate matrix-vector char-
acterization of the Hilbert transform is possible. From (3.30)

—1

h(t;7) = m

If we choose W = B, the corresponding LPK is

B 00 —9 .
k) = | l_l / OD(I2TUT) 4 | e g,

-B T J—oco t—1
B ,
= —j / sgn (u) e 92— gy,
-B
= —2BsinwB(t —n) sincB(t — n). (3.31)
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A further simplification arises after we note that Hilbert trans-
formation is a shift-invariant operation. Thus, if u(7) is ban-
dlimited, so then is the output, g(¢). This being true, we need
to know ¢ only at the points where ¢ = m/2B. Substituting
(3.31) into (3.26) with A = 1/2B gives

o0

g(mA) = Y u(nA) sin [g(m - n)] sinc

n=—0oo

Noting that every other term is zero yields the final desired
result.

g(mA):_—2 Z u(nA)

n m—mn odd m

_n‘

This discrete convolution version of the Hilbert transform con-
tains no singularities and is exact for all band-limited inputs.

3.3.2.3 Parseval’s Theorem for the Cardinal Series

The energy of a signal is
E= / (1) 2 dt.

For a bandlimited signal, we substitute the cardinal series in
(3.3) and write :

f £ E () () e

n=—oo m=—oo

where
Lym = / sinc(2Bt — n) sinc(2Bt — m) dt.

Using the power theorem

Inm = (2;)2 /B eijﬂ(nfM)u/B du
—-B

1
= ﬁé[n—m].
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This gives Parseval’s theorem for the sampling theorem:

E= % S e (%) 2. (3.32)

n=—oo

The signal’s energy can thus be determined by summing the
square of the magnitude of each sample.

3.3.3 The Time-Bandwidth Product

The cardinal series requires an infinite number of samples. Since
all bandlimited functions are analytic, they cannot be identically
zero over any finite subinterval (except for the degenerate case
x(t) = zero). Thus, the number of nonzero samples taken from
almost every band-limited function is finite. The only exceptions
are signals that can be expressed as the sum of a finite number
of uniformly spaced sinc functions.

We can, however, have a “good” representation of the function
using a finite number of samples. If a signal has either finite
area or finite energy, it must asymptotically approach zero at
t = 4o0. In such cases, there is always an interval of duration T
outside of which the samples are negligibly small. If we sample
over this interval at the Nyquist rate, 2B, then a total of

S =2BT

samples are needed to characterize the signal. This quantity,
the time—bandwidth product, measures the number of degrees
of freedom of the signal. It has also been termed the Shannon
number [DiFrancia).

Choice of T is dictated by the truncation error one can toler-
ate. This topic is treated in Section 5.3.

3.4 Application to Spectra Containing
Distributions

The cardinal series is applicable in certain cases where X (u)
contains distributions such as the Dirac delta. Indeed z(t) = 1
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is bandlimited in the sense of (3.1) for all B > 0 and falls into
the category of bandlimited signals with finite area spectra. The
corresponding cardinal series is

i sinc(2Bt —n) = 1. (3.33)

n=-—oo

Similarly, cos(2w Bt — ¢) has a transform containing two Dirac

delta functions at © = +B. To insure both deltas are contained
1

in the replicated sample spectrum, the sampling rate, =, must
exceed 2B and
> t
cos(2rBt — ¢) = > cos(mrn — ¢)sinc (— - n)
n=—00 T
where
r=2BT < 1. (3.34)

If r = 1, the bandwidth interval begins and ends at delta func-
tion locations. We are confronted with the unanswerable ques-
tion of what percentage of each delta should be included in the
bandwidth interval. Requiring (3.34) to be a strict inequality
avoids this problem. Note, also, for » = 1, it is possible to have
every sample be zero. The resulting interpolation clearly would
be identically zero and therefore incorrect.

A distribution whose inverse transform does not have a valid
cardinal series is the unit doublet—the derivative of the Dirac

delta:
500 () = (%) 5(u).

From the dual of the derivative theorem,
—jomt +— 6W(u).

Thus, z(t) = t is bandlimited in the sense of (3.1). Using the
form of the cardinal series in (3.4), we ask the question:

e & (e 0/2D)
sin(27 Bt) Z (=1) m

n=—oo

?

t

3 | =
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For a fixed t # m/2B, the answer is clearly “no” since the n'*
term in the sum approaches (—1)"*! — an oscillatory and thus
divergent series. The truncated cardinal series thus does not
asymptotically approach the desired value.

An alteration of the cardinal series to make expansions of such
singularities valid has been proposed by Zemanian.

3.5 Application to Bandlimited Stochastic
Processes

A real wide sense stationary stochastic process, f(t), is said to
be band-limited if its spectral density obeys

S;(u) = S;(u) T (%) .

As a consequence, the autocorrelation is a bandlimited function.
We will use this observation to show mean square convergence
of the cardinal series for f(t). Specifically, define

ft) = i f (%) sinc(2Bt — n).

n=—oo

Then f(¢) is equal to f(t) in the mean square sense:

E[{f(t) - f®)}*] =0. (3.35)

Our proof begins by expansion of the mean square error ex-
pression:

+ > _2: Ry <n2—Bm> sinc(2Bt — n) sinc(2Bt — m)

b
™
=

=
g

nB) sinc(2Bt — n)
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In the second term, we make the variable substitution k£ = n—m:

2B

n=—oo

oo k oo
Th= Y Ry < ) > sine(2Bt — n + k) sinc(2Bt — n).

k=—oc

Application of the cardinal series yields, for arbitrary r,

> sine(2BT —n) sinc(2Bt — n) = sinc2B(t — 7). (3.37)

n=—00
Using the result of substituting 7 =t + 5% in (3.37) gives

B $ ()

k=—oc

= 72 (3.38)

To evaluate the third term, we recognize that R;(7 — t) is
bandlimited and can be written as a cardinal series:

Ry(r—1) = i Ry <T — %) sinc(2Bt — n).

n=—0o0

Evaluation at ¢ = 7 gives
T3 - —2 F

Substituting this and (3.38) into (3.36) yields (3.35) and our
proof is complete.
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Exercises

The derivation of the Poisson sum formula closely parallels
Shannon’s proof of the sampling theorem. Starting with
the Fourier dual of the Poisson sum formula, derive the
sampling theorem series.

The integral of a bandlimited signal
I= / (1) dt

can be determined from signal samples taken below the
Nyquist rate. Find I from {x(nT')|n = 0,£1,+2,...} when]
B <1/T < 2B and X (u) = X(u) [1(35)-

Show that, for any real «, if z(t) can be expressed by the
cardinal series, then

> n

=Y z <ﬁ + a> Sinc2B(t — a) — 1]

n=-—oo

Investigate application of the cardinal series to a signal
whose spectrum is an m*let:

5 (1) = (%)m 5(u).

When, if ever, is the cardinal series applicable here? As-
sume m > 1.

Let y(t) be any well behaved (not necessarily bandlimited)
function. We sample y(¢) at a rate of % and, in the spirit
of (3.5), define

5(t) =y(t) %comb <%> .

Show that

T/I/T S(u) du:/oo Y (u) du.

-1/T —o0
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Let z(t) and y(f) denote two finite energy bandlimited
functions with bandwidth B. How is the series

> +(35) v (35)

n=-—oo

related to

1 °:o o(t) y* () di?

The spectrum of a real signal is hermetian (i.e. it is equal
to the conjugate of its transpose). Thus, if we know the
spectrum for positive frequencies, we know it for negative
frequencies. Visualize setting the negative frequency com-
ponents to zero and shifting the remaining portion of the
spectrum to be centered about the origin. Clearly, we have
reduced the bandwidth by a factor of one half yet have lost
no information. Explain, however, why the sampling den-
sity of this new signal is the same as that required by the
original.

Apply the low passed kernel technique to Fourier inversion
of a bandlimited function. Let f(¢) have a bandwidth of
B and use the Fourier kernel

h(u;t) = exp(—j2mut).

Comment on the usefulness of the result.
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4

Generalizations of the
Sampling Theorem

There have been a number of significant generalizations of the
sampling theorem. Some are straightforward variations on the
fundamental cardinal series. Oversampling, for example, results
in dependent samples and allows much greater flexibility in the
choice of interpolation functions. In Chapter 5, we will see that
it can also result in better performance in the presence of sample
data noise.

Bandlimited signal restoration from samples of various filtered
versions of the signal is the topic addressed in Papoulis’ gener-
alization of the sampling theorem. Included as special cases are
recurrent nonuniform sampling and simultaneously sampling a
signal and one or more of its derivatives.

Kramer (1959) generalized the sampling theorem to signals
that were bandlimited in other than the Fourier sense. Specifi-
cally, integral kernels other than exp(j2mut) are allowed.

We also demonstrate that the cardinal series is a special case
of Lagrangian polynomial interpolation.

4.1 Generalized Interpolation Functions

There are a number of functions other than the sinc which can
be used to weigh a signal’s samples in such a manner as to
uniquely characterize the signal. Use of these generalized in-
terpolation functions allows greater flexibility in dealing with
sampling theorem type characterizations.
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4.1.1 Oversampling

If a bandlimited signal has bandwidth B, then it can also be
considered to have bandwidth W > B. Thus,

oo

)= > z (%) sinc(2Wt — n). (4.1)

n=—0oo

Note, however, since
x(t) = x(t) * 2B sinc(2Bt)

we can write:

x(t) = nioox (%) sinc(2Wt — n) * 2B sinc(2Bt)
= rn:i:ooz (%) sinc(2Bt — rn) (4.2)

where the sampling rate parameter is
r=B/W <1

Equation (4.2) reduces to the conventional cardinal series for
r = 1. In the next chapter, we will see that oversampling can be
used to reduce interpolation noise level.

4.1.1.1 Sample Dependency

When a bandlimited signal is oversampled, its samples become
dependent. Indeed, in this section we will show that in the ab-
sence of noise, any finite number of lost samples can be regained
from those remaining. First, using clear geometrical arguments,
we will illustrate the feasibility of lost sample recovery. Then,

an alternate expression with better convergence properties will
be derived.

4.1.1.1.1. Restoring a Single Lost Sample

Consider a bandlimited signal z(t) and its spectrum as shown
at the top of Fig.4.1. From (3.5) and (3.7) the spectrum of the
signal of samples

s(t) = x(t) 2W comb(2W1) (4.3)
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S(u) =2W i X (u —2nW). (4.4)

As is shown in Fig. 4.1, there are intervals identically equal to
zero in S(u) when we oversample.

In Fig. 4.1a, the sample of z(¢) at the origin has been set to
zero. We can view this as the subtraction of 2(0)d(¢) in Fig. 4.1c

from s(t).
5(t) = s(t) — z(0) o(¢)

Given §(t), we can regain x(0). Indeed, transforming gives
S(u) = S(u) — z(0). (4.5)
Since S(u) = 0 on the interval B < |u| < 2W — B,
S(u)=—=z(0) ; B<|ul<2W — B,

This is illustrated in Fig. 4.1d. An appropriate point to sample
in this interval is u = W. Thus:

2(0) = —S(W). (4.6)

Therefore, the lost sample at the origin can be regained from
those remaining.

Samples from oversampled signals display an interesting zero
sum property. Writing(4.3) in terms of delta functions and trans-
forming gives

> n

Su)= Y z<ﬁ> e Immu/W,

Since S(W) = 0, we conclude that

S (C1)e <%> =0 ; r<l. (4.7)

n=—oo

An alternate formula for restoring a lost sample (with better
convergence properties) results directly from inspection of (4.2).
Note that, unlike the conventional (r = 1) cardinal series, (4.2)
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(a) x(t) 3 X(u)
/TN A
/ 4 _IB A
(b) s(t) & S(u)
A —
P-4 W Bw zw
(c) x(0)é(t)
/L\ Ifﬂ)/x
/ —
s(t) .
(d) S(u)
A = A A

A S 53

FIGURE 4.1.

Figure 4.1: Geometrical illustration of restoring a single lost sam-
ple from an oversampled bandlimited signal.
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does not reduce to an identity when ¢t = n/2W. For example, at
t = 0 we have

o0

z(0)=r > = <%) sinc(rn). (4.8)

n=-—oo

There is thus a dependency among samples. Indeed, isolating
the n =0 term in (4.8) and solving for z(0) gives

H0) ==Y (%) sinc(rn) (4.9)

n#0

The sample at the origin is thus completely specified by the
remaining samples if » < 1. The convergence here is better than
in (4.7) due to the 1/n decay of the summand from the sinc term.
Equation(4.7), on the other hand, does not require knowledge
of r.

From the cardinal series, we have

z(t) = 2(0) sinc(2W't x L sinc(2Wt —n
() = (0 sinc(2Vt) + 2z (57 ) sinc(2t

Substituting (4.9) and simplifying gives an interpolation formula
not requiring knowledge of the sample at the origin:
(1) = 3 o(gpp)lsinc(2Wt = n) +
z(t) =) x(=)[sinc —n
w20 2W 1—

sinc(rn) sinc(2W't)]

(4.10)
Both sides can be low pass filtered to give an alternate expres-
sion (see Exercise 4.20). The noise sensitivity and truncation
error for this interpolation is explored in Chapter 5.

4.1.1.1.2. Restoring M Lost Samples

This single sample restoration result can be generalized to re-
storing an arbitrarily large but finite number of lost samples. Let
M denote a set of M integers corresponding to the locations of
M lost samples. From the data set {x (%) | n ¢ M} we wish

to find {z(5) | n € M}
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To do this, we write (4.2) as

) =r[3 + Y (l) sinc(2Bt —rn).  (4.11)
neM  ngmM 2W
Evaluating this expression at the M points {t = 57 | m € M}

and rearranging gives

> ow <%> {6[n—m]—r sinc[r(n—m)]} = g(%) ; meM

nemM
(4.12)
where

=r x T sinc(2Bt — rn .
o0 =r 32 2 g7 ) snc@Bi—rn) (413

can be computed from the known samples.
Equation (4.12) consists of M equations and M unknowns.

In matrix form
Hi=g
where {gm, = g(5f) | m € M}, {z, = 2 (%) | n € M} and
H =1 - S where S has elements
{Spm = Sn_m = rsinc[r(n —m)] | (n,m) € M x M}.

Clearly, we can determine the lost samples if H is not singular.
It is when r = 1.

4.1.1.1.3. Direct Interpolation From M Lost Samples

Here we address direct generation of z(t) from the samples
{x(n/2W) | n ¢ M}. Using (4.13) the solution of (4.12) can
be written as

*(aiw) = X0 o)

= r %Ax (%) ;Aapq sinc[r(p — n));
geM (4.14)
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where {a,, | (p,q) € M x M} are elements of the inverse of H.
The cardinal series can be written:

z(t)= > = (%) sinc(2Wt—n)+ Y = (%) sinc(2Wt—q).

ngM qEM

Substituting (4.14) gives

)= z (%) koo (2TV1) (4.15)

n¢gM

where the interpolation function is

kn(t) = sinc(t —n) +r % 2}4 apq sinc[r(n — p)] sinc(t — ).
e (4.16)

Alternately, we can pass (4.15) through a filter unity for |u| <
B and zero elsewhere. The result is

=3 a (%) K0 (2B1) (4.17)

n¢M

and
k") (2Bt) = k,(2Wt) % 2B sinc(2Bt).

It is straightforward to show that

ED () = rsinc(t—rn) +12 Y. > apsinc(r(n — p))sine(t —rq).
pEM qgeM
(4.18)

For M empty, (4.15) reduces to the cardinal series and (4.18)
to the oversampled restoration formula in (4.8).

In the absence of noise we can, in general, restore an arbi-
trarily large number of lost samples if » < 1. In Chapter 5, we
demonstrate that restoration becomes more and more unstable
as M increases and r approaches one. The algorithm is extended
to higher dimensions in Chapter 6.

4.1.1.2 Relaxed Interpolation Formulae

Here we show oversampled signals can tolerate rather significant
perturbations in the interpolation function. Consider (4.4). If
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x(t) has a bandwidth of W, then the replicated spectra will be
separated as is shown in Fig.4.2. Define

1 ; |ul < B
— ) w ’
K, (u) { anything convenient ; B < |u| <2W — B

(4.19)
where the subscript is for “relaxed.” Clearly, since S(u) = 0 for
B < |u] <2W — B.

Inverse transforming gives

xz(t) = S(Q*k,«(t)
LS G )

n=—0oo

where we have used (4.3). Both the cardinal series and (4.2) are
subsumed in this expression. Also, in practice, we can relax the
roll-off in the spectrum of the generalized interpolation function,
k,(t), with no error cost in restoration (in the absence of data
noise and truncation error).

4.1.2 Criteria for Generalized Interpolation Functions

Let k(t) now be an arbitrary function and define

o= Y F(5e) k2B~ n). (4.21)

n=-—oo

If f(t) has a bandwidth of B, under what condition can we
recover f(t) from g(t) ?
Transforming (4.21) gives

G) = 35 3 IGE) e ™ Kigp)
. F(u—2nB) K (57)

n=-—oo
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2W X(u)
U K ()
S(u)
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FIGURE 4.2.

Figure 4.2: Replicated spectra for an oversampled signal allows
flexibility in interpolation function choice.

where we have used the Fourier dual of the Poisson sum for-
mula. The function, G(u), is recognized as the replicated signal
spectrum weighted by K(u/2B). Define the transfer function

1 (u)
K(u)

H(u) = (4.22)

Then the signal spectrum can be regained by

).

u

F(u) = G(u) H(ﬁ

Thus, f(t) can be generated by passing g(¢) through a filter
with impulse response h(t). The cardinal series is the special
case when H(u) = II(u).

Clearly, H(u) does not exist if K (u) is identically zero over
any subinterval of |u| < 1/2. If K(u) passes through zero for
|u| < B, then restoration is still possible but is many times ill
posed. (This is discussed in detail in Chapter 5). A sufficient
condition for (well-posed) recovery is that H(u) be bounded.



4. Generalizations of the Sampling Theorem 66

4.1.2.1 Interpolation Functions

The function £(¢) in (4.21) is said to be an interpolation function
if the resulting interpolation passes through the samples. For
(4.21), this is equivalent to requiring that

k(n) = 8[n]. (4.23)

This condition assures that the resulting interpolation passes
through the sample points. Specifically, for ¢ = m/2B, (4.21)
reduces to an identity when (4.23) is valid.

Some commonly used interpolation functions follow:

(a) For k(t) = sinc(t), (4.21) becomes the cardinal series.

(b) Consider the interpolation function
k(t) = I1(¢).

The resulting interpolation is referred to as a zeroth or-
der sample and hold. An example is shown in Fig.4.3. To
restore f(t¢) from this interpolation, we pass the zero or-
der sample and hold data through a filter with frequency
response H (u/2B) where

Note that H(u) is bounded.

(¢) Piecewise linear interpolation uses the interpolation func-
tion
k(t) = A(t).
The result, as is shown in Fig.4.3., is that the sample
points are linearly connected. The signal x(¢) can be re-
gained by passing this waveform through a filter with fre-
quency response H(u/2B) where

M (u)

Hu) = sinc?(u)’

(4.24)

Again, H(u) is bounded.
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Figure 4.3: Sample data (top) with zeroth order sample and hold

(middle) and piecewise linear (bottom) interpolation.

4.1.2.2 Reconstruction from a Filtered Signal’s Samples

Here we consider reconstruction of a bandlimited signal f()

from samples of
g(t) = f(t) * h(t)
taken at the Nyquist rate. Let

(55)

2B

2B K (u) = ()

If K(u) is bounded, we can write

F(u) = 2B G(u) K (u) II(

u

2B

).

(4.25)
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Using this and

1 & (N u
G(“):ﬁ > g(ﬁ)ej /BH(E)

n=-—oo

in the inversion formula gives

£t = /B Fu)el ity

= 3 gl k- o) (4.26)

n=-—oo

where ,
B e]27rut

1
=355 |, Hw)

As we will see in Chapter 5, (4.26) is ill posed when K (u) con-
tains a pole.

du +— K(u)

4.2 Papoulis’ Generalization

There are a number of ways to generalize the manner in which
data can be extracted from a signal and still maintain sufficient
information to reconstruct the signal. Shannon, for example,
noted that one could sample at half the Nyquist rate without
information loss if, at each sample location, two sample values
were taken: one of the signal and one of the signal’s derivative.
The details were later worked out by Linden who generalized
the result to restoring from a signal sample and samples of its
first N — 1 derivatives taken every N Nyquist intervals.

Alternately, one can choose any N distinct points within N
Nyquist intervals. If signal samples are taken at these locations
every N Nyquist intervals, we address the question of restoration
from interlaced or bunched samples [Yen)].

Another problem encountered is restoration of a signal from
samples taken at half the Nyquist rate along with samples of
the signal’s Hilbert transform taken at the same rate.

Remarkably, all of these cases are subsumed in a generaliza-
tion of the sampling theorem developed by Papoulis (1977). The
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generalization concerns restoration of a signal given data sam-
pled at 1/N' the Nyquist rate from the output of N filters into
which the signal has been fed. The result is a generalization of
the reconstruction from the filtered signal’s samples presented
in Sec.4.1.2.2.

In this section, we first present a derivation of Papoulis’ Gen-
eralized Sampling Theorem. Specific attention is then given to
interpolation function evaluation. Lastly, specific applications
of the problems addressed at the beginning of this section are
given.

Let { Hy(u) | p=1,2,...,N} be a set of N given filter
frequency responses and let f(t) have bandwidth B. As is shown
in Fig.4.4, f(t) is fed into each filter. The outputs are

gp(t) = f(t) * hy(t) ; 1<p<N (4.27)
Each output is sampled at 1/N the Nyquist rate. Define
By = B/N
The signal of samples obtained from the p* filter are
sp(t) = ¢,(t) 2By comb(2Byt)

=Y GOT—nTy)  (428)

n=-—oo

where Ty = 1/2By. Our problem is to restore f(¢) from this
set of functions or, equivalently, the sample set

{gp(nTy) | L<p< N, —oo<n<oo}.

We will show that

F=3 S gTn) k(- nTy)  (4.29)

p=1ln=—o00

where

(t) = [ YK (ut) e dy (4.30)

B-2By



4. Generalizations of the Sampling Theorem 70

and the K,(u;t)’s, if they exist, are the solutions of the simul-
taneous set of equations

N
2By Y Kp(u;t) Hy(u — 2mBy) = exp(—j2mmt/Ty)
p=1

0<m<N (4.31)

over the parameter set 0 < m < N, B—-—By < u < B
and —oo < t < o0o. Note that K,(u;t) and k,(t) are not Fourier
transform pairs.

L AN g g4(t) ‘CS) s1(t)
- Hg(u) g»?(t) "'i S) Sg(t)

o] 1, (u) gp(t) ‘iS) sp(t)

t
- HN(H)' gN() S

LN ]

LN

sy(t)

FIGURE 4.4.

Figure 4.4: Generation of sample data from Papoulis’ General-
ized Samplin g Theorem. The encircled S is a sam-
pler.
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4.2.1 Derivation

From (4.27)
Gp(u) = F(u)Hy(u).

Fourier transforming (4.28) and using the Fourier dual of the
Poisson sum formula gives

Sp(u) = 2By i Gp(u —2nBy). (4.32)

n=—0oo

Clearly, each Sy(u) is periodic with period 2By. Since Gp(u)
has finite support, i.e.

Gp(u) = Gy(u)(u/2B),

we conclude (4.32) is simply an aliased replication of G,(u).
Example replications for N = 2 and 3 are shown in Fig.4.5.

—_— — —~
/// /// 5 sl
- ///|: -~ e

- -
/// et 7 — — I ¥
B 2
QB je————
FIGURE 4.5.

Figure 4.5: Illustration of first (top) and second order aliasing.
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Note that on the interval |u| < B, there are 2N — 1 portions
of shifted G,(u)’s. Equivalently, there are M = N — 1 spectra
overlapping the zeroth order spectrum on both sides of the ori-
gin. Accordingly, M is referred to as the degree of aliasing. Over
the interval

B—-2By<u<B (4.33)

(which corresponds to one period of S,(u)), there are a total of
N portions of replicated spectra. If we have N varied forms of
N order aliased data, it makes sense that our signal can be
recov ered. Indeed, on the interval in (4.33),
N—1
Sp(u) = 2By Y Gp(u—2nBy) (4.34)
n=0
N—1
= 2By Y H,(u—2nBy)F(u—2nBy) (4.35)
n=0
Here we have N equations and N unknowns. This may be made
clearer by viewing (4.35) in matrix form:

(H1(u) Hl(u—QnBN) Hl(U—Q(N—l)BN) -
Hy(u) -+ Hy(u —2nBy) -+ Hy(u —2(N —1)By)

2By (a) - Hyfu—20Ba) -+ Hylu—2(N — 1)By)

| Ho(u) - Ho(u— 20Ba) - Hy(u— 2(N — 1)By) |

[ F(u) 1 [ Si(u) ]
% F(u— :2nBN) - Sp:(u)
| Flu—20N-1)By) | | S’N:(u) _
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or, in short hand notation,
2ByHF = § (4.36)

Thus, assuming the H matrix is not singular, we can solve for
F(u) with knowledge of the set:

{F(u—2nBy) | B—2By <u<B;0<n<N}.

Indeed, each F'(u — 2nBy) over the interval B — 2By < u < B
is a displaced section of F'(u). This is illustrated in Fig.4.6 for
N = 3. The sections F(u —2nBj3) for —2B3 < u < B are shown
there for n = 0,1 and 2.

Our purpose now is to appropriately put these pieces of F'(u)
together and inverse transform. Towards this end, let the inverse
of the matrix 2ByH be Z with elements

{Z,(u;n) | B—2By <u<B;1<p<N,0<n<N}
That is
N
2Bn > Zy(u;n) H,(u —2mBy) = d[n — mj;

p=1
B—-2By<u<B, 0<n,m,< N.

The solution of (4.35) is thus

F(u—2nBy) =Y S,(u)Z,(u; n). (4.37)

p=1
Consider, then

r = | z Fv)e?™dy (4.38)

To facilitate use of (4.37), we divide the integration into N in-
tervals of width 2By:

B Bn B—-2Byn —B+2Byn
/ - / + / + o + /
—B BN72BN B*4BN —B

Nizl /B—QnBN
B—2(n+1)Bn ‘

n=0
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FIGURE 4.6.

Figure 4.6: Illustration of F(u — 2nBy) on B — 2By < u < B
for various n

Substitute into (4.38) and make the variable substitution v =

u— 2nBy.

2BN

N-1 B ‘
f&)=> / F(u — 2nBy)e?2mu=2n8x8) gy (4.39)
n=0 B—

Define

Ky(ust) = Nizl Zy(u;n) exp(—jdmnByt). (4.40)

n=0
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Then substitution of (4.37) into (4.39) gives
N B )
=3 / S (W), (u; el udy.  (4.41)
2= /B-2By
Directly transforming (4.28) yields
Sp(u) = > gp(nTy)exp(—jmnu/By).
Substituting into (4.41) produces our desired result:
N o0
f&) =2 > 9,(nTn)ky(t — nTy) (4.42)
p=1n=—o00

where

(1) = [ YK (wt)e iy, (4.43)

B—-2By

Equation (4.42) generates f(t) from the undersampled outputs
of each of the N filters.

4.2.2 Interpolation Function Computation

In order to find the k,’s required for interpolation in (4.42), for
a given set of frequency responses, we need not invert the H
matrix in (4.36). Rather, we will show that one need only solve
N simultaneous equations.

To derive this set of equations, we rewrite (4.40) as

K=ZE (4.44)
where the vector K has elements
K,(u;t) ; B=2By<u<B, 1<p<N
and E has elements
exp(—jdmnByt) ; —co <t<oo, 0<n<N.
Multiplying both sides of (4.44) by 2ByH = Z ! gives

9ByHK = E
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or, equivalently

N
2By > Kp(u;t)Hy(u — 2mBy) = exp(—jdmmByt)  (4.45)
p=1
where 0 < m < N, B— 2By < u < B and t is arbitrary. The
K, (u;t)’s can be determined from this set of equations and the
corresponding interpolation functions from (4.43).

4.2.3 Ezample Applications
4.2.3.1 Recurrent Nonuniform Sampling

As is shown in Fig.4.7, let {a, | p = 1,2,..., N} denote N
distinct locations in N Nyquist intervals. A signal is sampled at
these points every N Nyquist intervals. We thus have knowledge
of the data
{f(ozp—i-ﬂﬂ 1<p<N, —oo<m< oo}
2BN

Such sampling is also referred to as bunched or interlaced sam-
pling.

The generalized sampling theorem is applicable here if we
choose for filters:

H,(u) = exp(j2rayu); 1 <p < N. (4.46)

The corresponding equations in (4.45) can be solved in closed
form, using Cramer’s rule and the Vandermonde determinant
[Hamming](See Exercise 4.9). On the interval (0,7y), the re-
sulting interpolation functions are:

sin[2r By (t — )]
sin[27 By (ay, — )]

ky(t) =sinc[2By(t — o)) ] . (4.47)

qQ7p
Note that k,(t) is a true interpolation function in the sense that

kp(an) = d[p — n].
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Figure 4.7: Illustration of N** order recurrent nonuniform sam-
pling. In each N Nyquist intervals, samples are taken
at these same relative locations.

4.2.3.2 Interlaced Signal-Derivative Sampling

Consider the N = 2 case where
H,(u) = /%™ (4.48)
Hy(u) = (527u)™. (4.49)

The output of filter #1 is f(t + ) and that of #2 is the M
derivative of f(t). The resulting sampling geometry is shown
in Fig. 4.8 We will derive the spectra of the two corresponding
interpolation functions.

The output of the two filters is sampled at a rate of 2By = B.
From (4.35), the desired signal spectrum, F'(u), satisfies the set
of equations

|860] =2 Gome Gomm s | [ Fo-m

0<u< B.

The determinant of the H matrix here is

Au) = —(j2m)M e?mou[yM e=72mB _ (y — B)M], (4.50)
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Solving the two simultaneous equations results in

_ {527 (u — B)}M S, (u) — e/?m=B) G, (u)

F(u) BA(W) ;0<u<B
and
; M _ gj2mau
Fu— B) = ~U2m)7 5w = eTS(w) o g

BA(u)

Shifting the second term to the interval (—B, 0) and recognizing
that both S;(u) and Sy(u) are periodic with period B gives:

F(u) = Ki(u)S1(u) + Ka(u) Sz (u),

where the spectra of the interpolation functions are

G2mM [ w-—BM _u 1. (u+BM _u 1
Kilw) =% [— A N aur Bty
(4.51)
and
K ej?ﬂ'au e—j?ﬂ'aBH U 1 €j27raB - U 1
() = —5 lA(u) B3 au+m Bt
(452)

We will use these results in Chapter 5 to show that interpolation
here becomes unstable (ill-posed) when

(a) M is even and a = 0, or

(b) M is odd and a = 5

2B-

Otherwise, interpolation can be tolerant of data noise.
Reconstruction from the M = 1,a = 0 data was first ad-

dressed by Shannon and derived by Linden. Inverse transforming

(4.51) and (4.52) for this case gives the interpolation functions

k1 (t) = sinc?(Bt) (4.53)

and
ko(t) = t sinc?(Bt) (4.54)
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Figure 4.8: Interlaced signal — derivative sampling. The hollow
dots represent samples of the M*" derivative and the
solid dots are signal samples.
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Figure 4.9: The functions for interpolating a signal from its sam-
ples and samples of its derivatives each taken si-
multaneously at half the Nyquist rate. The function
k1(t/B), (shown with the solid line), is used for the
samples and ky(t/B), (broken line), for the derivative
samples.
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These are pictured in Fig. 4.9. It follows that

PRG0N S R AT (4.55)

s W= | (Bt —n)?  B(Bt—n)

4.2.3.3 Higher Order Derivative Sampling

Consider sampling a signal and its first N — 1 derivatives ev-
ery N Nyquist intervals [Linden & Abramson]. We can show
that, as N — oo, the interpolation functions for the restoration
approach those used in a Taylor series expansion.

The filters required for our problem are

H,(u) = (j2mu)? ' ;1 <p < N. (4.56)

The solution for the interpolation function for the N = 1 case
is clearly
ki(t) = sinc(2Bt) ; N =1.

For N = 2, the interpolation functions are given by (4.53) and
(4.54) which we rewrite here as

2Bt
kl (t) = SinC2 ( T)

2B
ka(t) = t sian(Tt)

In Exercise 4.23, we show that, for N = 3

2B
by (£) = sinc3(Tt)
2Bt
ko(t) = tsinc?’(T) (4.57)
1 2B
o(r) = 5F sinc3(Tt).

From this pattern, we deduce that, in general,

ky(t) = N 1<p< N
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Substituting into (4.42) gives the interpolation series

t—ﬂ)

( B p—1 :
Z Z —).f( )(ﬁ)smc

p=1ln=—00

Since

) ) 2Bt
]\}51(1)0 sinc (T —n) = d[n],
we conclude that
1 - ! =1
. N — AT
Jim - f(2) pEI: TEEANY

which is recognized as the Taylor series expansion of f(¢) about
t=0.

4.2.3.4 Effects of Oversampling

Suppose f(t) has bandwidth B and is sampled at a rate of
2W > 2B. Redefine Ty = N/2W. Then the transform of (4.42)
becomes

F(u)=> K, Z gp(nTy)e 2 INT](

p=1 n=-—00

QW)

Multiplying both sides by II(u/2B) leaves the result unaltered:

(4.58)

N
= > Ky(u) Z gp(nTy)e PPN (),
—1 2B

n=—0o0

In the time domain, this is equivalent to using the interpolation
function set {k,(¢)} in place of {k,(t)} where

k(1) = [ l; K, (u)e?2m dy
= k,(t) * 2B sinc(2Bt). (4.59)

Inverse transforming (4.58) then gives us the oversampled ver-
sion of (4.42):

:i i 9p(nTy)ky(t = nTy). (4.60)

p=1n=—
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As we shall demonstrate in Chapter 5, oversampling can reduce
interpolation noise level due to noisy data. Thus, with all other
factors equal, (4.60) should be used in lieu of (4.42) for interpo-
lating oversampled signals.

4.3 Derivative Interpolation

Interpolation formulae for generating the derivative of a ban-
dlimited signal can be obtained by direct differentiation of the
cardinal series [Marks and Hall]. The result is

() = (S

= (2B)P > 7(55)d(2Bt —n)  (4.61)

n=—oo

where

(1) = ()7 sincf)

is the derivative kernel. From the derivative theorem of Fourier
analysis, we can equivalently write
1/2

dy(t) = / (j2mu)Pel* ™ du

—-1/2

(=1)Pp!
7Ttp+1

[sin(7t) cospa(mt) — cos(nt) sin%(wt)]

(4.62)

where the incomplete sine and cosine are defined, respectively,
as

B [a] (_1)712211
08, (2) = nz::o T (4.63)
and .
sing(z) = - "2 (4.64)

(2n+1)!

The notation [a] denotes “the greatest integer less than or equal
to a”. To allow for p = 0 in (4.62), we set sin_q/5(t) = 0. Then

n=0
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do(t) = sinc(t). In the evaluation of (4.62), we used the identity
[Gradshteyn and Ryzhik]

/xn PRED P (_1)n R Z (_l)k X : ey

4.3.1 Properties of the Derivative Kernel

This section will be devoted to exploring properties of the deriva-J}
tive kernel. For large ¢ and even p, the cos,/;(7t) term in (4.62)
dominates. For odd p, sing,_1)/2(7t) dominates. This observation
leads to the following asymptotic relation for d,(t) for large ¢:

: [ (=1)P27P sinc(2) : p even
Jim (1) —{ (—1)-D/217 cos(rt) /(nt) : p odd.

Convolution of (2B)P*1d,(2Bt) with any bandlimited z(t)
yields #(P)(t). To show this, we write

@B [ a(r)dy 2Bt - 7)]dr

—00

= (17 [" () <di>psinc[2B(t _)dr

—00 T
B .
:/ X (u)(j2ru)? /¥ dy
-B
= zP)(¢) (4.65)

where, in the second step, we have used the power theorem
of Fourier analysis. This result is a generalization of that of
Gallagher and Wise who noted that the first derivative of a
bandlimited signal can be achieved by a convolution with an
appropriately scaled first—order spherical Bessel function j; (¢) =
—d/dt sinc(t/ 7).

Using d,(t) as the signal in (4.65) gives the recurrence relation

oo

dysot) = / d,(7)dy (t — 7)dr. (4.66)

— 00

Thus, higher order kernels can be generated by convolution of
lower ordered kernels.
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A second obvious recurrence relation is

d

dysalt) = (5 d,2).

Using this expression with ¢ = 1 and the relations

pr cosp(t) = —sin, (1)
L ina(t) = cosa(t)
o sin,, = cos,

gives, via (4.62), a third recurrence formula:

d
adp(t) = dpi1(?)

{ *(PJrl)dp(t) 4 (—1p/27P C()s(ﬂ't); even p

t t

wdp(t) — ED 2 gin(xt): odd p.

(4.67)

t

Alternate derivative interpolation can be achieved by recog-
nizing that if z(¢) is bandlimited, so is ) (¢). Therefore

o0

()= Y x@)(%) sinc(2Bt — m).

m=—0Q

Thus, the signal derivative is uniquely specified by its sample
values which , from (4.61) can be computed by the discrete
convolution

m > n

a:(p)(ﬁ) = (2B)? _z_: x(p)(ﬁ) d,(m —n) (4.68)

where, from (4.62)*

(—=1)P255[p —even] 3 m=0.

(it . 0
dp(m):{ mapr - Sigy (Tm) 5 om
p+1

Note that the discrete derivative kernel is independent of the
signal bandwidth. Plots of |d,(m)| are shown in Figs. 4.10 and
4.11.
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1 I 1 ¢

FIGURE 4.10.

Figure 4.10: Plots of |d,(m)| for even p. Points are connected for



4. Generalizations of the Sampling Theorem 86

0%t
Nm

10 20

| L L |

FIGURE 4.11.

Figure 4.11: Plots of |d,(m)| for odd p.



4. Generalizations of the Sampling Theorem 87

Using (4.64), the asymptotic behavior for d,(m) for large m
is found to be

d(m) —> (—1)7”’”_%1107rp_2/7rz2 ; even p
P Stk . odd p.

A recurrence relation for the discrete derivative kernel follows
from the use of d,(n) as the signal in (4.68)

dyealm) = 3 dy(n)dy(m — ).

n=-—oo

This is the discrete equivalent of (4.66).
A second recurrence relation immediately follows from (4.67)
for m # 0:

dosm) = 4 oy (m) + COTEE L even p
g %dp(m) ; odd p.

The discrete derivative kernel is square summable. Since d,(m)J
is simply the m™ Fourier coefficient of (j27u)™ for | u | < 1/2,
we have

> ldm) P = [ Jdy ()t
- 1/2
= [ 12 Pdu
—1/2
P

2p+1°

The sensitivity of derivative interpolation to additive sample
noise is examined in Chapter 5. There, we show that the inter-
polation noise level increases significantly with p.

'To derive the m = 0 case, it is easiest to use the integral in (4.66) with
t=m=0.
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4.4 A Relation Between the Taylor and
Cardinal Series

The discrete derivative kernel can be utilized to couple a ban-
dlimited signal’s Taylor series and sampling theorem expansion.
If z(t) is bandlimited, it is analytic everywhere. Thus, its Taylor

oo t J— _) ( m >
2B ’

converges for all . Substltutlng (4.68) gives

< (2Bt —m)P & n
o) = 3 ZE S () dy(m— ),
=0 p! S 2Bl
Since the series is absolutely convergent (see Exercise 2.22), we
can interchange the summation order:

> n < (2Bt — m)?d,(m — n)

x(t) =Y x(@) >

|
n=—oo p:(] p

(4.69)

The sum over p is recognized as the Taylor series expansion
of sin¢(2Bt — n) about ¢ = m/2B. Thus (4.69) reduces to the
cardinal series.

4.5 Sampling Trigonometric Polynomials

A trigonometric polynomial is a bandlimited periodic function
with a finite number of nonzero Fourier coefficients. A low pass
trigonometric polynomial with period T can be written as

N
z(t) = Y cpetmUT (4.70)
m=—N

This function is uniquely determined by 2N + 1 coefficients. We
therefore would expect that 2/N+1 samples taken within a single
period would suffice to uniquely specify x(¢). We will show that,

al t
z(t) = 3 2(qTy) k(7 — a) (4.71)

q=1 p
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where T, = T//P is the sampling interval, P (assumed odd) is
the number of samples per period and the interpolation function

® __sin(nt)/P

k(t) = .

Q sin(nt/P)

We require that P > 2N + 1. Plots of k(t) for various P are
shown in Fig.4.9.

(4.72)

Proof : The cardinal series for z(¢) can be written as
z(t)= > z(pT,) smc(T - D) (4.73)

p=—00 p
where the sampling interval is
T,=—; P=2M+1>2N +1. (4.74)
We have assumed, for simplicity, that the odd number of samples

taken in each period are the same. We can partition the sum in
(4.73) as

00 2P P 0
Yo=Y+ D+
p=—o0 p=14+P p=1 p=1-P

oo (1-n)P

= 2 X
n=—o00 p=1—-nP
e} P

= > >
n=-—00 q=1

where ¢ = p + nP. Using this, and recognizing that z[(¢ —
nP)T,] = x(qT},) reduces (4.73) to

z(t) = Zx(qu) ig(t)

g=1
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FIGURE 4.12.

Plots of the interpolation functions for trigonomet-
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where the interpolation function is

W= 3 sinc[t;:T —aq (4.75)

n=—oo

Using the Poisson sum formula

= | |
W) = 5 3 H(%) o J2man /P gj2mnt/T

n=—0oo

1 M e
_ Z e ]27rn(P T)
2M+1 =,
and the geometric series
m;MZ - S1/2 _ 5=1/2

gives, after application of Euler’s formula

sl — /P
" Sl (= )/ P

and our proof is complete.

4.6 Sampling Theory for Bandpass Functions

A signal z(t) is said to be bandpass with center frequency fo
and bandwidth B if

X(u)=0; 0<|ul< fr, fu<|u|<oo

where the upper and lower frequencies are f; = fy — B/2 and
fu = fo + B/2 respectively. An example spectrum is shown
in Fig. 4.13. The signal is assumed to be real so that X (u) is
Hermetian.

We will discuss two techniques to characterize a bandpass
function by its samples. The first requires preprocessing prior
to sampling. The second uses samples taken directly from xz(t)
at a rate of 2B. A hybrid approach is left as an exercise.
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FIGURE 4.13.

Figure 4.13: Plots of the interpolation functions for trigonomet-
ric polynomials. The number of samples taken per
period is P.

4.6.1 Heterodyned Sampling

A bandpass signal can be heterodyned down to baseband by us-
ing the standard (coherent) upper sideband amplitude demod-
ulation technique illustrated in Fig. 4.14. The bandpass signal
is first multiplied by a cosinusoid to obtain A

y(t) = z(t) cos(2m frt)

or, in the frequency domain
1
V() = X(u)*5 [6(u—fo) +d(ut fu)]

1 1
The result is illustrated in Fig. 4.15. The signal y(¢) is then
low pass filtered to yield the baseband signal z(¢), which can be
sampled by conventional means. If sampling is performed at the
Nyquist rate, then the baseband samples are

n

A5p) = 2B /_ °:O (t) cos(2r f1) sinc(2Bt — n)dt.
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Postprocessing is also required to regenerate x(t) from sam-
ples of z(t) . We partition Z(u) as

Z(u) =U(u) + L(u)

where
and

Then, clearly

sX(u) = Llu+ fr)+U(u— f1)
= Z(u+ fo)p(—u— fr) + Z(u— fr) p(u — f1).

(a) X(t) %y(t) PR z(t) z(55)

cos(2nfyt)

(b) samples I

Z(;Tg) 2 cos(@nft)

x(t)

H

Z(t)

s Sil’l(gﬂth)

FIGURE 4.14.

Figure 4.14: (a) Heterodyning a bandpass signal to baseband in
order to apply conventional sampling. The encircled
S is a sampler. (b) Restoration of the bandpass sig-
nal from the baseband signal’s samples.
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The inverse transform of the first term is the conjugate of the

inverse transform of the second. Thus

%x(t) — 2R w(t)

w(t) = {=(0) exp(—i2 1)} * {[55(1)

ot

and R is the real operator. Simplifying gives

x(t) =2 2(t) cos(2m frt) + 2 zy () sin(27 f1.1)

where the Hilbert transform of z(t) is

_ =1 e z(r)dr

i1

t) = .
ZH( ) T Jeoo tT—T
X(u)
P N
rd N
5 4R
A A
’fL fL
/ P i " e
/ T\Y( W N
21
ol ™
B
FIGURE 4.15.

Figure 4.15: Illustration of heterodyning down to baseband.

T ) exp(—j2rfut)},
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le— B —> B f.=2B

FIGURE 4.16.

Figure 4.16: When f; is an integer multiple of B, the spectral
replications corresponding to a sampling rate of 2B
do not overlap the original spectrum. Note, in this
example, we had to artificially increase B to meet
the integer multiplication criterion.

4.6.2 Direct Bandpass Sampling

A bandpass signal can also be reconstructed by samples taken
directly from the signal. With reference to Fig. 4.10, assume
that f; is an integer multiple of B:

f. =2NB. (4.76)

This relation can always be achieved by artificially increasing
fu, resulting in an equal incremental increase in B.

The reason for requiring (4.76) is made evident in Fig. 4.13.
When the bandpass signal is sampled at a rate of 2B, the repli-
cated spectra do not overlap with X (u) (shown with solid lines).
Therefore, X (u) can be regained from the sample data with the
use of a bandpass filter. Let’s derive the specifics. Let

° n n

s) = 3 aly) ot 5r)

n=—0o0

= x(t) 2B comb(2Bt) (4.77)
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so that
S(u) = X(u)*comb(u/2B)
= 2B Z X(u—2nB).

The signal is regained with a bandpass filter:

u—+ fo

X(@:%S(u) Ik

Inverse transforming gives
x(t) = s(t) * [sinc(Bt) cos(27 fot)].

Substituting (4.77) and simplifying leaves

wt)= 3 x(%)k(QBt—n). (4.78)

n=—oo

where the interpolation function is
k() = sinc(%) cos|m (2N + 1)t/2). (4.79)

Plots of k(t) for various N are shown in Fig. 4.14.

4.7 A Summary of Sampling Theorems for Directly
Sampled Signals

A number of the sampling theorems discussed in this chapter
can be written as

2(t) = Y a(t)ka(t) (4.80)

nes
where S is a set of integers. A list of some applicable sampling
theorems are in Table 4.1. The signal z(¢) is assumed to be
(low pass or high pass) bandlimited with bandwidth B. The
sampling rate 2W exceeds the Nyquist rate. Note that, in each
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case, the function used for interpolation can itself be sampled
and interpolated as

km(t) =Y km(tn) ka(t). (4.81)

nes

Excluded from this generalization are interpolations requiring
samples of a signal’s derivative or Hilbert transform. Derivative
interpolation is likewise not included.

4.8 Lagrangian Interpolation

Lagrangian interpolation, when applied to uniformly spaced sam-}j
ples, is equivalent to cardinal series interpolation. In general, let
{tn} denote a set of sample locations for a function z(¢). The
corresponding Lagrangian interpolation from these samples is
[Ralston and Rabinowitz].

y(t) =2 x(tn)kn(t) (4.82)

where
t—t,

ty — tm

kn(t) = H
m#n
Note that this function meets the interpolation function crite-
rion
kn(tm) = d[n — ml.
In other words, y(¢) passes through all the sample points.
We now show that if {t, = nT| — co < n < oo}, then (4.82)
becomes the cardinal series. Under this assumption, the interpo-
lation function clearly takes on the same form at every sample

location. Thus
kn(t) = k(t — nT).

Analysis of the n = 0 case therefore suffices. There,

0= I (i)
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S 1 Ka(t) equation
Cardinal . n sinc (2Bt —rn) 33
Series )
Oversampling op s pr i e ¥ rsinc (2Br—m) 4.2
W
Lost sample at t=0 a%0 n rsinc (2Br—rm) + 486
2w 2
r
sinc{rn) sinc (2B7)
(1-r%)
Rccun.tnnt 1S ps<N i rsinc (2Bf—m) + 447
nonuniform g S T A
sampling L N e sin[27B,, (¢~ 1,,)]
UL Sin[27B g (1 ~tg)]
Bandpass signals | _ . e n_ % 478 &
2B sinc (Br——=) | 4.79
cos [T(2N + 1) Br ,_z_)]
Trigonometric 1€ngP L Sin[(2W: — )]/ P o
JFRoAs = Sin[@(2Wr — )/ P] e

Table 4.1: Direct sample interpolation following the formula in

(4.80).

PARAMETERS:

FOOTNOTES:

B = signal’s bandwidth W > B
r = B/W = sampling rate parameter
By = B/N
a, = sample locations in recurrent nonuniform sampling
* here, the sum is over both n and p
12W = P/T where T is the signal’s period &P is an
odd integer.
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Separating the product into its positive and negative m portions
followed by a multiplicative combination gives

M@:fib_<i%f}

m=1

Since [Abramowitz and Stegun]

SM@:zwih«gﬁq

m=

we conclude that

k(t) = sinc <%>

and our equivalence demonstration is complete.

4.9 Kramer’s Generalization

The generalization of the sampling theorem by Kramer (1959)
can best be explained by a review of the sampling theorem
derivation in Section 3.2.2. followed by a parallel generalized
derivation.

Consider the inverse Fourier transform expression of a ban-
dlimited function in (3.2). We can evaluate this expression with-
out loss of information at the points ¢ = n/2B because the
functions {exp(—jmnu/B)| — 00 < n < oo} form a complete
orthogonal basis set on the interval —B < u < B [Luenberger;
Naylor & Sell]. Therefore, as explained in Section 2.2.1.2, the in-
ner products expressed in (3.9) are sufficient for an orthogonal
series expansion for X (u) and therefore x(t).

Consider, then, the generalized integral transform?

M@:Ay@cmmm (4.83)

where C'(¢; u) is a given kernel, and I a given interval. [For the
specific case of Fourier series, C(t;u) = exp(j2nut) /v2B

2(Clearly, y(t) and Y (u) here are not Fourier transform pairs.
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and [ = {u| — B < u < B}]. Assume that over the interval
I, the functions {C(th;u) | —o0 < n < oo} form a
complete orthonormal basis set which can be used to express
Y (u). Then Y (u) can be expressed in an orthonormal expansion
using samples of y(t) as coefficients:

Y) = 3 yltn) C*(tui ).

n=-—oo

Substituting into (4.83) gives a generalization of the cardinal
series

y(t) = i y(tn) kn(t) (4.84)

n=—oo

where the n' interpolation function is

k() = /1 C* (t; w)C (t; w) du. (4.85)
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4.10 Exercises

4.1. Let z(t) have a bandwidth of B. Let r = B/W < 1.
Consider the sinc squared interpolation:

y(t; A) =D i x(nT)[Asinc{A(t — nT}]?

where D is a constant and 7' = 1/2W. Let C be such that
B<C<2W - B.

(a) find D such that
y(t:C) —y(t; B) = x(t).

(b) ?Ijzzdc E; fiiétiegpli t(%) that gives x(t¢) as an output when

42 (a) Let

1
k(2Bt) = ﬁe_atu(t).

Restore the resulting generalized interpolation in (4.21)]

using a differentiator, a low pass filter and an ampli-
fier.

(b) Same except
k(2Bt) = L e altl
2B '

Here, you are allowed an inverter, two amplifiers, two
differentiators and a low pass filter for restoration.

4.3 (a) Show that a signal’s Hilbert transform can be ob-
tained by passing the signal through a filter with fre-
quency response

H(u) = —j sgn(u).
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(b) Let f(t) be a bandlimited signal with bandwidth B
and let g(¢) be its Hilbert transform.  Find f(¢)

from{g(%) | —oo < n < oo}

A bandlimited signal, z(¢), and its Hilbert transform are
both sampled in phase at half their Nyquist rates. Gener-
ate the interpolation functions required to regain f(¢).

Generate an alternate method for restoring lost samples
by evaluating (4.11) at the points {t = 577 | n & M}.

Except for n = +1, a signal’s samples are

A=y
0 ;  otherwise.

Given r =1/2, find f(£T).

Show that the equations in section 4.1.1.1. are valid for
any r in the interval B/W < r < 1.

Except for n = 0, a signal’s samples are

2(—=1)™2 ; even n
T — 7 n+1)/2 ’
f(nT) {4(17):"2+>/  odd n

The signal is known to be oversampled, but the value of r
is uncertain. Find f(0).

The determinant of the matrix

1 o 2?2 ... )t
1 oy 22 ... !
1 oy 2% ... ay!

is called the Vandermonde determinant and is equal to

A =T open (e — ;5).
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For example, for N = 4,

A = (24— x3)(x4 — 29) (T4 — 29)
X (3 — x9) (w9 — 1)
X (g — x1).

Use this result to derive (4.47) by using (4.46) in (4.45)
with Cramer’s rule.

Let f(t) have bandwidth B. The signals f(t — «) and
f(t+ «) are sampled uniformly at a rate of B. Show that
[Papoulis (1977)):

cos(2m Ba) — cos(2m Bt)
27 B sin(2rBa)
= [+ (5 —a)
2 B(t—a)—n B(t+a)—n

f(t)

n=—oo

(a) Derive the interpolation functions in (4.53) and (4.54).}

(b) Show that the formula in (4.55) not only interpolates
the signal samples properly, but also interpolates the
derivative samples.

Why can’t we allow M = N in (4.74) 7

Show that the Fourier coefficients of a trigonometric poly-
nomial can be generated directly from the signal’s samples
by the matrix equation

c=A7

where I contains the P signal samples, ¢ contains the 2N+
1 Fourier coefficients and the ng* element of A is

(Pt—q)]/P
(Pt—q)/P]

1 .
2 SIn|7m

727wt dt

o qhsing
nq [7_‘_

1o
-3 Sin
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Let v(t) denote a real baseband signal with a maximum
frequency component of B/2. The signal

x(t) = v(t) cos(27 fot)

is bandpass. In section 4.6.1, we showed that z(¢), when
heterodyned to baseband, required a minimum sampling
rate of 2B. Show a technique whereby a down heterodyned
version of our z(t) requires a sampling rate of half that
much (fo > B).

Implicit sampling of a function z(t) is illustrated in Fig. 4.18.]

A sample is taken when x(t) crosses a predetermined level.
Assume that the levels are each separated by an interval
of A and that one of the levels is at zero. Show that not all
finite energy bandlimited signals are determined uniquely
by their implicit samples for any finite value of A.
HINT: Assume an average sampling density of 2B is nec-
essary to uniquely specify the signal and consider the func-
tion
y(t) = sinc?(t) + sinc?(t — a)

which is strictly positive when a is not an integer.

Does (4.79) satisfy the criterion for an interpolation func-
tion? If not, why?

What class of functions does Lagrangian interpolation al-
ways interpolate exactly using only N samples?

Derive a closed form expression for the interpolation func-
tion for recurrent nonuniform sampling using Lagrangian
interpolation. Is it the same as (4.47)7

Does Lagrangian interpolation result in the expression in
(4.2) for oversampled signals?

Show that for any oversampled bandlimited function that
r

z(t) = rg;ox(ﬁ)[sinc(QBt —rn) + a=n

sinc(rn) sinc(2Bt)].

(4.86)
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FIGURE 4.18.

A bandpass function with bandwidth B is directly sam-
pled at a rate 2B where B is an integer multiple of f7. The
samples are interpolated using the conventional cardinal
series. Outline the processing required to regain the orig-
inal signal. Does it make a difference whether the integer
multiple is odd or even?

For the filters in (4.56), derive the corresponding interpo-
lation functions for N = 3.

For a given B, let [ = {u| — B < u < B}. Let
C(t;u) = {sgn[cos(2mut)] + j sgn[sin(27ut)]} /V2B.

The set of functions, {C(55;u)| — 00 < n < oo}, (known
as complex Walsh functions), form a complete orthonor-
mal basis set for finite energy functions on the interval 1.
Evaluate the interpolation functions, k,(t¢), corresponding
to Kramer’s generalization of the sampling theorem for
this basis set.
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5

Sources of Error

Exact interpolation using the cardinal series assumes that (a)
the values of the samples are known exactly, (b) the sample
locations are known exactly and (c) an infinite number of terms
are used in the series. Deviation from these requirements results
in interpolation error due to (a) data noise (b) jitter and (c)
truncation respectively. The perturbation to the interpolation
from these sources of error is the subject of this chapter.

5.1 Effects of Additive Data Noise

If noise is superimposed on sample data, the corresponding in-
terpolation will be perturbed. In this section, the nature of this
perturbation is examined. The effect of data noise on continuous
sampling interpolation is treated in Chapter 7.

5.1.1 On Cardinal Series Interpolation

Suppose that the signal we sample is corrupted by real additive
zero mean wide sense stationary noise, £(¢). Then, instead of
sampling the deterministic bandlimited signal, z(¢), we would
be sampling the signal

y(t) = x(t) +£(). (5.1)
From these samples, we form the series
2(t) = Y y(3&)sinc@Wt —n) (5.2)

where the sampling rate, 2W, equals or exceeds twice the band-
width, B, of x(t). Recall the sampling rate parameter
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r= < 1.

§|Ud

In general, z(t) will equal y(¢) only at the sample point locations.
Substituting (5.1) into (5.2) reveals that
) =

2(t) = x(t) + n(t) (5.3)

where .

> &(5) sinc(2Wt — n). (5.4)
Therefore, n(t) is the stochastic process generated by the sam-
ples of £(t) alone and is independent of the signal. Note that,
since £(t) is zero mean, so is 7(t). Hence, expectating both sides
of (5.3) leads us to the desirable conclusion that

#(t) = (1)
5.1.1.1 Interpolation Noise Level

A meaningful measure of the cardinal series’ noise sensitivity is
the interpolation noise level which, since () is zero mean, is
the noise variance, 72(t). Towards this end, we will first find the
autocorrelation for 7n(¢). From (5.4)

By(t—7) = E[W)??(T)]

:ZZRé

n=—o0 m=—0o0

smc(?Wt — n)sinc(2Wr —

m)

= Z Re(55) Z sinc(2W7 — n + k)sinc(2Wt — n)5.5)

k:—oo n=—oo

where our assumption of the wide sense stationarity of n(t) will
shortly be justified and, in the second step, we have let k =
n — m. The n sum in (5.5) can be evaluated using the cardinal
series applied to z(t) = sinc[2W (7 — t) + k]. Then

Z Re (55 )sinc(2Wt — k). (5.6)

k=—00



5. Sources of Error 113

Thus, the interpolation noise autocorrelation is found from the
cardinal series interpolation using sample values from the data
noise autocorrelation.

To find the interpolation noise level, we simply evaluate (5.6)
at t = 0. The remarkable result is:

7 =& (5.7)

That is, the cardinal series interpolation results in a noise level
equal to that of the original signal before sampling [Bracewell].

5.1.1.2  Effects of Oversampling and Filtering

In many cases, one can reduce the interpolation noise level by
oversampling and filtering. If, for example, we place z(¢) in (5.3)
through a filter that is unity for | u |< B and zero otherwise,
then the output is

z(t) = z(t) = 2Bsinc(2Bt)
= () +m (1)

where the stochastic process, 7,.(t), is defined as
N (t) = n(t) * 2B sinc(2Bt).
We now will show that

<P =€ (5.8)

|

That is, filtering reduces or maintains the interpolation noise
level since power due to the high frequency components of the
noise is eliminated.

Using the appropriate form of (2.38) with h(t) = 2Bsinc(2Bt)
gives

S, (1) = Sy(u) 1(55)-

B

N

From (2.29),
n_,?:/ Sp(u)du (5.9)
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whereas

7= Y8, (w)du. (5.10)

-W
Since power spectral densities are non negative, comparison of
(5.9) and (5.10) immediately reveals that the noise level is main-
tained or reduced as was advertised in (5.8).

We now investigate this reduction more specifically for two
types of noise autocorrelations.

(a) Discrete White Noise
Here, we assume that

Re() = €20[n).
Then, from (5.6):

R, (t) = E%sinc(2Wt).

Thus

and, from (5.9)

2 — 5__2 b H(L)d
Ua aw |, Haw /U
= 72 (5.11)

The noise level is reduced by the ratio of the Nyquist to the
sampling rate.

(b) Laplace Autocorrelation
If the data noise has a Laplace autocorrelation with parameter
A as in (2.33), then the Fourier transform of (5.6) is

2 O “Alnl o rna u
Sp(u) = % Z e2w e’ /WH(W)
= £ S W cos(mnu/W) (L)

n=—oo
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where, in the second step, we have recalled that S, is real. Con-
tinuing:

S)u) = S[L423 e cos(rnu/ W) TI(,L)

oW
n=1
_2 > —n j27u
= S 4omY eI IL). (5.12)
n=1
Recall the geometric series:
d 2= (1—2)Y]2z|<1. (5.13)
n=0

Applying to (5.12) and simplifying gives the (unfiltered) inter-
polation noise power spectral density [Marks (1983)]:
sinh(53) TT(5%-)

_&
Sn(u) — oW COSh(ﬁ) — COS(TI"LL/W)'

The power spectral density for 7,(¢) is the same, but is only
nonzero over the interval | u |< B. The filtered interpolation
noise level, from (5.9), follows as

7 = Esinh(2) /0 Teosh(3)) — cos(r)]“ldy  (5.14)

where we have made the variable substitution v = 2uT and have
recognized the integrand is even. Since [Gradshteyn & Ryzhik]

d 2 vaz—=b%t 2
/ 7 = arctan| ¢ an(y/ )] ca > b’
a+ beos(y) a? — b2 a+b
equation (5.14) can be evaluated as
_ 2 h(22)t ar
2= 2 arctan[on (2W1 (%)) (5.15)
cosh(557) — 1

Since the principle value of the arctan is strictly less than 7/2,
it is clear that the filtered interpolation noise level is less than
the data noise level.
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Figure 5.1: Plots of interpolation noise variance for additive data
noise with Laplace autocorrelation with parameter .

Note that for large A, the Laplace autocorrelation approaches
the autocorrelation of discrete white noise. This follows from

lim —Smhle)
p—o< cosh(p) — 1

The corresponding limiting case of (5.15) is thus the same as
that for white noise in (5.11). Note also for 7 = 1 and 7 replacing
Ny, that (5.15) reduces to (5.7).

Plots of 72/£2 are shown in Fig. 5.1 as a function of r for
various values of A/2¥. The higher the correlation between ad-
jacent noise samples, the higher the filtered interpolation noise
level.
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5.1.2 Interpolation Noise Variance for Directly Sampled
Signals

The results of the previous section can be nicely generalized to
the sampling theorems listed in Table 4.1, all of which can be

written as
z(t) = Z x(tn ) kn(t) (5.16)

nes

where S is a set of integers. Suppose the data were corrupted by
real additive zero mean stationary noise £(t). Then z(t,) +£(t,)
would appear in the summand of (5.16) rather than just x(t,).
The result is clearly z(t) 4+ 7(t) where the interpolation noise is

n(t) =D &(ta)kn(?). (5.17)

nes

Our noisy interpolated signal is then
2(t) = x(t) + n(t). (5.18)

Since &(t) is zero mean, we have the desirable property that

2(t) = x(t).

The second order statistics of 7(¢) reveal the uncertainty of
our estimate. Using (5.17), we have

Ry(t;7) = En(t)n(r)]
= Y > Re(tn —tm)kn(t)km(r).  (5.19)

neS meS

The interpolation noise variance follows as
D) = Ry(t:1). (5.20)

If there is oversampling, the signal, once interpolated, can be
filtered to remove noise components not in the pass band. If the
signal is low pass with bandwidth B, the result is

2(t) = z(t) x 2B sinc(2Bt)
= z(t) +n,(2)
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where
0. (t) = n(t) * 2B sinc(2Bt).

Discrete White Noise: The expressions for the second order
statistics simplify significantly if the noise samples {£(¢,) | n €
S} are uncorrelated (white). Then

Re(t, — tm) = £20[n — m), (5.21)
and (5.19) reduces to a single sum:

=2 by (t)kn(7), (5.22)

nes

and the normalized interpolation noise variance (NINV) be-

comes
72()/€2 =Y kit (5.23)

nes
If the interpolated signal is filtered, the resulting NINV is:

2(8)/62 =3[k () (5.24)

nes

where, if the signal is low pass with bandwidth B,

k") (t) = kn(t) % 2B sinc(2Bt). (5.25)

The general results of this section will now be applied to some
specific cases.

5.1.2.1 Interpolation with Lost Samples

We here consider the NINV resulting from interpolation in the
presence of lost samples [Marks and Radbel]. We will demon-
strate that the NINV increases when (a) the 7 < 1 sampling rate
becomes close to that of Nyquist, (b) the number of lost sam-
ples increases and/or (c) the lost sample locations are “close.”
Analysis will be restricted to additive white noise as in (5.21).
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(a) One Lost Sample
For one lost sample at the origin, we use the corresponding
interpolation function in (4.10):

a(t) = sinc(2Wt —n) + - " sinc(rn)sinc(2Wt).  (5.26)

-T

Substituting into (5.23) gives

1)/ = > [sinc(2Wt—n) + - !

sinc(rn)sinc(2Wt))?

n#0 -r
= Y [sinc*2Wt—n) + (1 i T)2sinc2(rn)sinc2(2Wt)
+ sinc(2Wt — n)sinc(rn)sinc(2W1t) |
—r
1,
— = sinc”(2W1). (5.27)

(I—r7)
Each of the three infinite sums can be evaluated in closed form.
For the first term, we set 7 =t in the cardinal series expansion

sine2W (t —7) = > sinc(2Wr — n) sinc(2Wt — n).

n=—0o0

The cardinal series applied to

sinc(2Bt) = i sinc(rn) sinc(2Wt — n) (5.28)

n=—oo

lets us evaluate the third sum and the series in (4.2) applied to

sinc(2Bt) =r Y sinc(rn) sinc(2Bt — rn) (5.29)
(set t = 0) gives the second sum . Alternately, (5.29) is a low
passed version of (5.28). Collecting terms and simplifying leaves

sinc(2Wt) sinc(2Bt)
—r

sinc?(2Wt) (5.30)

-T
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Note that, for large ¢, the NINV approaches unity. This is con-
sistent with (5.7) since, far removed from the origin, the effect
of the lost sample is negligible.

The noise at the origin follows from (5.30) as

P0)/F = . (5.31)

The result is monotonically increasing on 0 < r < 1. Interest-
ingly, for r < 1/2, the normalized interpolation noise level in
(5.31) is less than unity which is less than the noise level of the
known sample data. Note, however, that we have yet to filter
the high-frequency components of the discrete white noise.

For the filtered case for one lost sample, the interpolation
function, from Table 4.1, is

2

k") (t) = r sinc(2Bt — rn) + 1 d sinc(rn)sinc(2Bt).

" —r
From (5.23), the corresponding NINV is:
n2/& = 1> [sinc(2Bt —rn) + 4
0 1—r

Proceeding in a manner similar to that for the unfiltered case
above, we obtain

sinc(rn)sinc(2Bt) 2.

P/ = [ = {1 - sin?(2B1)], (5.32)

For large t, the noise level goes to the no lost sample filtered
equivalent in (5.11). Note, in particular, from (5.31) that

17(0) = n*(0).
Hence, filtering the interpolation does not improve the uncer-

tainty of the restoration of the lost sample. As we would expect
from (5.7) and (5.11) respectively,

1 (£00) = &
and B
7 (£00) = &,

Plots of (5.30) and (5.32) are shown in Fig. 5.2.
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Plots of the normalized interpolation noise variance
(NINV) for the case of a single lost sample vs. t/2W
for four different values of r. The dashed line is for
the unfiltered case and the solid is the noise level
after filtering.

Figure 5.2:



5. Sources of Error

122

4 ; r ; . :
35} :
3 i 1II‘I1'.I‘II"'-|.
2.5}
2+
154
1 [ ILm"--
U”n s ’ 15 : 23
r=(X
FIGURE 5.2.

Figure 5.2: Continuation of Fig 5.2
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(b) Two Lost Samples

Let M = 2 and let the lost samples be located at the origin
and at © = k/2B for some specified positive integer k. The 2 x 2
matrix, A, discussed in Section 4.1.1.1.3, has elements

1—1r
a11 = Q22 = A
and )
r sinc(rk)
Q12 = A21 = 7A
where

A= (1-r7r)*—=r?sinc®(rk).

The corresponding interpolation functions in (4.16) and (4.18)
are substituted into (5.23) and (5.24), respectively. After straight-|]
forward yet tedious calculations, we obtain

()2 = 1—(a®+ %) +2r [an(ar + Bp) + arz(ap + B7) ]
+ 7% [ (af; + afy) (XN + 208y + 7X)
+ 2a11a19(0*y + 2a 8\ + 29) ] (5.33)

(1)) = r— r*(af+ )
+27% [ayi (a1 + Bipr) + ara(capr + Bim1) ]
+ [ (af) + afy) (G A + 201 817 + BT )

+ 2anaa(ary + 201 5iA + 1) ] (5.34)
where
a = sinc(2Wt — k), «y =sinc(2Bt — rk)
B = sinc(2Wt), (1 = sinc(2Bt)
and
p = Y sinc(rp)sinc(2Wt — p)
p#0.k

= (1 — f — asinc(rk),



P =
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> sine(rp)sinc(2Bt — rp)
p#0,k

1—r

( r

)31 — ay sinc(rk),

> sinclr(p — k)]sinc(2Wt — p)
P70,k
a; — a — (sine(rk),

; sinc[r(p — k)]sinc(2Bt — rp)
1(]1 _ T

Yoy — (B sine(rk),

> sinc®(rp)
p#0,k

S sinc?lr(p — k)
p#0,k

1

= 1 sinc(rk
. sinc*(rk),

> sine(rp)sinc[r(p — k)]
p#0,k

(% — 9) sinc(rk).

124

Numerical examples of (5.33) and (5.34) are shown in Fig. 5.3
for £k = 1 and 5 with » = 0.2. The lost sample locations here
are at the minima of the unfiltered noise level curves. A second
example for r = 0.8 and k£ = 1 is shown in Fig. 5.4. The lost
samples are at zero and unity. The filtered and unfiltered curves
are indistinguishable near those points.
At the lost sample point locations

n?(0)

= 7"2? [(a%l + a%2))\ + 2@11@12’7].

(5.35)
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Figure 5.3: NINV for two lost samples as a function of 2W+¢ when
sampling at five times the Nyquist rate (r = 0.2).
The solid curves are for £k = 1. The lost samples
are at zero and one. The broken line graphs are for
k =5 with lost samples at —2 and 3. In both cases,
the lower curve represents the filtered case and the
upper curve the unfiltered case.

For large k, the noise level at the origin approaches that for a
single lost sample. If kr is an integer, the noise levels for one
and two lost samples are equal at the lost sample locations. A
plot of (5.35) is shown in Fig. 5.5 for £ = 1,2, and 5. The single
lost sample noise level in (5.31) is nearly graphically indistin-
guishable from the k£ =5 curve.
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Figure 5.4: NINV for two lost samples as a function of 2W+¢ when
r = 0.8 and k = 1. The lost samples are at zero and
one. The solid curve is for the unfiltered case and
broken line plot for the filtered case. The two plots
are graphically indistinguishable in the region of the
lost samples.

(c) A Sequence of Lost Samples

For an even greater number of lost samples, the obtaining of
a closed form solution for the NINV using the previous meth-
ods becomes nearly intractable. Evaluation of the infinite series
numerically becomes more attractive. Alternately, a concise ma-
trix approach to the problem developed by Tseng can be used.
We will not, however, review it here.

Numerically evaluated plots of the filtered NINV for three
samples in a row are shown in Fig. 5.6 for r = 0.5 and 0.8. The
NINV at the lost sample locations is shown in Fig. 5.7 for M
lost samples in a row. The noise level increases drastically with
respect to the number of adjacent lost samples and sampling
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FIGURE 5.5.

NINYV for two lost samples at the lost sample location
as a function of the sampling rate param eter. The
noise level for a single lost sample is almost graphicall
y indistinguishable from the k£ = 5 plot.

rate parameter. Correspondingly, the condition number of the

A=[1-8]"

matrix increases greatly with larger M and 7.

5.1.2.2 Bandpass Functions

The NINV for bandpass function interpolation follows from Ta-
ble 4.1 and (5.23) as

PO/ = 3 gmﬁuﬁ—g)mﬁhdwv+1x3p—gﬂ.@3@

n=—0o0

Expanding the bandpass function

x(t) = sincB(t — 1) cos[r (2N + 1)B(t — 7)]
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FIGURE 5.6.

Figure 5.6: Filtered NINV for three lost samples at 0, +1, and
—1 as a function of 2Wt.

in the bandpass sampling theorem in (4.78) and (4.79) gives

sincB(t — 7) cos[r (2N + 1)B(t — 7)]

= > sine(Br - g) cos[T(2N + 1)(B7 — g)]

n=—oo

x sinc(Bt — g) cos[m(2N + 1)(Bt — g)].

Evaluating this expression at 7 = ¢ reduces (5.36) to

n(t) /€2 =1.

Therefore, as in the cardinal series, the NINV is the same as the
variance of the data noise.
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Figure 5.7: NINV of M lost samples in a row at the lost sample
locations. The lower dot values in each case corre-
spond to r = 0.5 and the upper x’s to r = 0.8.

5.1.3 On Papoulis’ Generalization

Papoulis’ Generalization of the sampling theorem was presented
in Sec. 4.2. Here, we will explore the effects of additive white
noise superimposed on the sample data. We will expose the ill-
posedness of a number of innocent appearing sampling theorems
[Cheung and Marks]. Interpolation is here defined to be ill-posed
if the NINV cannot be bounded. Clearly, such sampling theo-
rems should be avoided.

An example of an ill-posed sampling theorem is a special case
of signal-derivative sampling. Shannon was the first to note that
one could sample at half the Nyquist rate if at each sample lo-
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cation two samples were taken: one of the signal and one of
the signal’s derivative. Consider the seemingly innocent alter-
ation of sampling at the Nyquist rate with interlaced signal and
first derivative samples taken at each Nyquist interval. As we
will demonstrate, restoration here is ill-posed. Indeed, subject-
ing the samples to sample-wise white noise renders the restora-
tion unstable. Hence, one would wish to sample an odometer
and speedometer simultaneously, rather than sequentially, to
determine position.

Let {&(nTy) | p=1,2,--+,N;—00 < n < oo} denote a zero
mean discrete stochastic noise sequence. If g,(nTy) + &,(nTy)
is used in (4.42) instead of g,(nTy), the output is f(t) + 7(¢)
where

N 00
nt)=>_ > &nTw)ky(t — nTy). (5.37)
p=1n=—oc

We will assume that the discrete noise is stationary and white:
E[&(nTy)&(mTy) | = & 6k — p] 6[n — m]

where £ = B[] §(nTy) |?] is the data noise variance of the p'"
sampled signal. The interpolation noise level then follows as

oo

nQ—(t)Z;g > |kt —nTy)[*.

n=-—oo

Clearly, n?(t) is periodic with period Ty. Application of the
Poisson sum formula yields

1 N o o .
n2(t) = ﬁZ% > W,(2nBy) et PN (5.38)
p=1

n=—oo

where

[ l(0) P o W) = [ Ry(9)3(5 — w)as.

Note that (5.38) is simply a Fourier series with coefficients

1 X
Co =7 > EW,(2nBy). (5.39)

N p=1
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We accordingly define the average interpolation noise variance
by

Co = 252

Npl

_ 252 / (w) |? du (5.40)

Np 1
or, using Parseval’s theorem
Lse | k() (5.41)
Np 1

Thus the average interpolation noise variance is infinite if any
one of the N interpolation functions has unbounded energy.
Equivalently, if, for any p=1,2,..., N,

[ i@ = [0 R P
= o (5.42)

then the restoration is ill-posed.

5.1.3.1 Examples

1. Derivative Sampling
Consider the N =1 case corresponding to Mth-order deriva-
tive sampling
Hy(u) = (j2mu)"

We can, in principle, regain all frequency components other than
zero. Note, however, that (5.41) becomes

Cy = 7@ /B u My
‘ (2m)*MTy J-B
= oo.

The corresponding sampling theorem is thus ill-posed.
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2. Interlaced Signal-Derivative Sampling

A less obvious ill-posed sampling theorem occurs when we
nonuniformly interlace Mth order derivative samples with signal
samples. The sampling theorem for this problem was addressed
in Sec. 4.2.3.2. The spectra of the interpolation functions K;(u)
and Ks(u) have real poles when A(u) =0 or A(u+ B) =0 on
the intervals (0, B) and (—B, 0) respectively. The former occurs
when

uMe—jQﬂ'(aB-I—n) — (U - B)M,O S n<M

U= g[l — jeot{m(aB + n)/M}|.

One of these roots is real when (a) a = 0 and M is even, or
(b) @ = 75 and M is odd (corresponding to n = M/2 and n =
(M —1)/2, respectively.) In either case, the real pole generated
by A(u) is at B/2 and that generated by A(u-+ B) is at —B/2.
Clearly, application of (5.40) exposes these sampling theorems
as ill-posed. Plots of the spectra of the interpolation functions
are shown in Fig. 5.8 for M = 1 for various values of . Fig. 5.9

illustrates the same process for M = 2.

5.1.3.2 Notes

1. Sample Contributions in the Ill-Posed Sampling The-
orems

Insight into the ill-posedness of the sampling theorems can be
gained by inspection of the interpolation functions. Consider, for
example, N = 1 derivative sampling with M = 1. It follows that

B eg27rut

1
b (f) = / d
O = 5B s e ™

1
= Si(27 Bt
2n B i(2rBt)
where Si(-) is the sine integral. Since Si(£oo) = +7/2, inter-
polation at any point is affected significantly by every sample
value, no matter how distant.
A similar contribution occurs for the ill-posed cases of in-

terlaced signal-derivative sampling. We can invert (4.51) and




5. Sources of Error 133

00— . : . . ' 1 , .
: ]
F -
- -
r -
.- {Lj 4
o s 4
t < 048 3
= Dl‘. .___.‘ % o
- -
,,,,,,, 33 ]

o0

101 - ~ S —— .

#] a1 0.2 a3 {4 L 0.6 0.7 oe 3.9 l
u
101
100 '
lqr b e i i "
0 Gl 0z 0.3 04 as 06 0.7 0.8 ne ]
a

FIGURE 5.8.

Figure 5.8: Illustration of the manner in which the interpola-

tion functions in (4.51) and (4.52) approach poles
for M =1 as o — 1/2B. On top is a plot of | K;(u) |

far difForent valiitea of ~ | Kal2/) | ie chown on the
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Figure 5.9: Same as Fig. 5.8, except M = 2.
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(4.52). For M = 2 and a = 0, the results are
1
ki(t) = §[sin(7rBt)Si(7rBt) + cos(m Bt) sinc(Bt) + sinc?(Bt)]

and

1 sin(7Bt)Si(7w Bt)

2 (7B)?

Again, the occurrence of the sine integrals makes possible equal-
ly significant contributions from all sample values, no matter
how far removed from the point of interpolation. The weighted
noise levels from each sample value thus add to a random vari-
able with unbounded variance.

k2 (t) -

2. Effects of Oversampling
If we sample at a rate 2W > 2B and do not take advantage of
the oversampling, the average interpolation noise level in (5.40)

becomes
2
du
52 [ 180

where, now, Ty = N/2W. If, however, the filtered interpolation
formula in (4.60) is used, then one can easily show that the
average noise variance reduces to:

cm = Z / w) 2 du. (5.43)

Clearly
ol < ¢,

Thus, as we have seen before, oversampling can reduce interpo-
lation noise variance by allowing suppression of high frequency
noise components.

As an example, consider the ill-posed interlaced signal deriva-
tive sampling theorem. If we sample at a rate greater than twice
the Nyquist rate, the integral in (5.43) will not include the poles
at v = +W/2 and the resulting sampling theorem becomes
well- posed At exactly twice the Nyquist rate, the 1ntegrat10n
limits in (5.43) are at the pole locations. Thus i = co. We
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can, however, discard the derivative samples and use the con-
ventional (well-posed) sampling theorem to restore the signal.
Thus we are confronted with the curious task of discarding the
derivative samples to improve the interpolation noise level.

5.1.4  On Derivative Interpolation

Hamming has noted that “the estimation of derivatives from
computed or tabulated values is dangerous.” This is largely due
to data uncertainty. We will show especially that, even when
the noise is bandlimited, NINV’s for high order differentiation
interpolation can be significantly high [Marks].
Recall from Section 4.3 that derivatives of bandlimited signals
can be computed via
2P () = QW) > 2(5%)d,(2Wt — n) (5.44)

n=-—oo

where the derivative kernel is
p p7 P sinc

Since z(P)(¢) is bandlimited, it is unaltered by low-pass filter-
ing. Passing (5.44) through a filter unity on | u |< B and zero
elsewhere gives

2P (t) = r(2B)? i 7 (557 )dp (2Bt — ). (5.45)

n=—0o0

If the noise samples, S(QB) are added to the signal samples in
(5.45), the result is z() (¢ () (t) where

n®)(t) = r(2B)? ZSLW (2Bt — rn).

n=-—oo

Thus
Ry, (t —7) = B (t)n®(7)]

2(2B)* Z Re(=—— 2W Z dy[2BT— m)r] d,[2Bt—rn).

m=—0o0 n=—oo



5. Sources of Error 137

Since z(t) = dy[2B(7 — t) + mr| is bandlimited , we can use
(5.45) to evaluate the n sum above. Furthermore, since

dy(t) = (=1)"dy(—1)

(5 Pdy(t) = diy 1)

and

it follows that

o0

R, (1) = (=1)Pr(2B)* >_ Rg(QW)dQ,,@BT—rm) (5.46)

m=—o00
Since 7,(t) is zero mean, the interpolation noise is wide sense
stationary. The corresponding interpolation noise variance is

77_;% = Rﬂp (0)

= (-1)"r(2B)* >_ Rg(QW)dQ,,(rm). (5.47)

A spectral density description of the process can be obtained by
first transforming (5.46)
R, (1) < Sy, (u)

(2mu)? X jrmuyw 1y U
— m™mu H —).

m=—0oo

Application of the Poisson sum formula to the m sum gives

)

where R¢(t)<>Se(u) and S¢(u) is the input noise power spectral
density.
An alternate expression for the output noise level follows as

u

Sy (u) = (27u) )% Z Se(u —2nW) H(2B

n=—oc

n_g = /_OOS,,p(u)du

— (2m)% Z / WP Se(u— 20W) du.  (5.48)
For the unfiltered case (r = 1), the integration interval in (5.48)
is over | u |< W. Since S¢(u) > 0, filtering always results in a
noise level equal to or better than the unfiltered case.
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FIGURE 5.10.

Figure 5.10: Cascaded low-pass filter and p** order differentia-
tor. The output noise level, @, is a lower bound
for p'* order derivative interpolation from the in-
put samples.

5.1.4.1 A Lower Bound on the NINV

Consider £(¢) input into the cascaded low-pass filter and p'’-
order differentiator in Fig. 5.10. Let 6,(¢) denote the output.
Recall that, in general, the output spectral density Sp(u) due
to a spectral density input S;(u) into a system with transfer
function H(u) is:

So(u) =| H(u) [* Si(u).

Thus
So(u) = (2mu)Se(w) T(55)
and 5
72 = ()% [ ¥ Se(u)du. (5.49)

Compare this to (5.48). Since S¢(u) > 0, it follows that 62 is a
lower bound for the output noise level

Equality is achieved when £(¢) has band-limited spectral den-
sity (say over the interval | u |< Q ) and the sampling rate is
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sufficiently high to avoid aliasing (i.e. 2W — Q > B). A lower
sampling rate would result in aliasing and a higher output noise
level.

For finite £2, S¢(u) — 0 as | u |— oo. We see from (5.48) that
77_3 — @ as 2W — oo. Hence, the bound can be approached
arbitrarily closely by an appropriate increase in sampling rate.
Note that we can guarantee from (5.48) that 77_2 strictly decreases
with 7 if S¢(u) strictly decreases with u > 0. This spectral den-
sity property is applicable to a Laplace autocorrelation. It is,
however, not applicable to triangular autocorrelation.

5.1.4.2 Examples

(a) Triangular Autocorrelation
Consider the triangle autocorrelation parameterized by a > 0.

Re(r) = @A(). (5.50)

Substituting into (5.47) gives the normalized error.

%:( 1)71(2B)2[dyy (0) + 2 Z d2p (rm)]  (5.51)
where
T=2Wa

and N is the greatest integer not exceeding 7T'. Plots of (5.51)
are shown in Fig. 5.11 for 2B =1 and ¢ = 0.5 and 0.1.

Of specific interest is the case where sampling is performed
such that 7" < 1. The noise samples are then white. That is,

) = ) (552

Since

L
dep(0) = /_21(]27ru)2pdu

(~1)ra
IS (5:53)
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FIGURE 5.11.

Figure 5.11: NINV for the triangle autocorrelation with 2B = 1.
The solid curve is for a = 0.1 and the dashed curve
for @ = 0.5. The curves are identical for r» > 1/2
where the noise samples are white. For ¢ = 0.1, the
noise samples are white for » > 0.1.

we have for white samples

77_;2;/? _ 7“(227TB)21"
p+1
For the conventional sampling theorem, p = 0 and the noise
level is improved by a factor of r. This result is also in (5.11).
Since 2B = 1 in Fig. 5.11, the plots there are equivalent
to (5.54) for r > a. Note that (5.54) is independent of the a
parameter - thus the merging of the a = 0.1 and 0.5 plots at
r = 0.5. For the domain shown, all of the a = 0.1 samples are
white.

(5.54)
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Note also that (a) the NINV increases dramatically with the
order of differentiation and (b) there can exist a point where-
upon a further increase of sampling rate results in an insignifi-
cant improvement in the interpolation noise level.

Since A(t)« sinc®u, from (5.49), the normalized lower bound
for the triangle autocorrelation is

B
o 2 W i 2
02/ = 2a(2m) p/o uP sinc”(au)du. (5.55)

To place this in more palatable form, we rewrite it as

02/¢* = @ /OB u* 21 — cos(2mau)]du. (5.56)

T™a

For even index

d(t) = [

— 2(2m)2(—1)1 /0 V20 cos(2mut)dv.

[SIE

(j27r1/)2qe’j2”tdl/

N[

o

For u = 2Wv, it follows from (5.56) that for p > 1

gje = "B 0) - dyya(2aB)]

The p = 0 case follows immediately from (5.55) using integration
by parts. Thus, using (5.53),

[ MR+ (CPdya(2aB)] ip >0
05/ =
%[Si(27raB) — sin(maB) sinc(aB)] ;p=0.

Lower bounds for each of the plots in Fig. 5.11 are graphically
indistinguishable from the r = 0.1 values.

(b) Laplace Autocorrelation
A second tractable solution from the Laplace correlation pa-
rameterized by A:
Re(1) = €2 A (5.57)
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FIGURE 5.12.
Figure 5.12: NINV for Laplace autocorrelation with
A=2B=1

is considered here. Rewriting (5.47) as

2
— (2n)> (B

Ty = 2W  J-B

» N Ny gdmnu/W
Yy R5(2W)e du,

n=—oo

we can show in a manner similar to that in Example b in Section
5.1.1.2, that the NINV can be written as

u?l du

(5.58)

_ A r
/8 = e W) sinn(572) [ .
/& = (27 W) T sin (QW) o cosh(z)) — cos(ru)
The well-behaved (strictly increasing) integrand in (5.58) pro-
vides for straightforward digital integration. Sample plots of
(5.58) are shown in Fig. 5.12 for 2B = 1. As with the previ-

ous example, the NINV increases significantly with p.

Two special cases of (5.58) are worthy of note.

a) The p = 0 case as plotted in Fig. 5.11 simply corresponds
to conventional sampling theorem interpolation followed
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by filtering. For this case, (5.58) becomes the integral in
(5.14) whose solution is (5.15).

b) If

A
—>1 .
Xl > (5.59)

then (5.58) approaches

77_3/5_2 = (27rW)2p/0ru2pdu
r(27B)%

5.60
2p+1 ( )

which is the same result as the discrete white noise case in
(5.53). Indeed, when (5.59) is applicable, the noise samples
are very nearly white and the plots for white samples in
Fig. 5.11 can be used as excellent approximations.

Here, as in the previous example, one must be cautioned
on comparing equally parameterized interpolation noise
levels for differing p. If we are dealing with temporal func-
tions, the units of n2/£2 are (seconds) %

For a lower bound for the Laplace autocorrelation, we trans-
form (5.57) and substitute into (5.49). The result is

——_4(27r)zf” B 2P dy
GIE =5 T (5.61)

Setting u = 27v/\ gives

= 2 e u?du
2/¢2 — Z \2p 62
6/¢ 7r)\ /0 14 u? (5.62)

where ¢ = 2rB/\. The p = 0 case follows immediately. For
p > 0, consider first the case where ¢ < 1. With 2z = —u?, the
denominator in (5.62) can be expanded via the geometric series:

dom=(1-2)""z <1 (5.63)
m=0
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The resulting integral is evaluated to give

_ 2 9 o0 €2m+2p+1
02/62 = — \P -1)ymr—
p/ﬁ Z( ) 2m+2p+1

™ m=0
Set n = m + p and recall the Taylor series

00 (_1)nz2n+1

arctan z = nz:% om 1 1 (5.64)
Thus, for e < 1,
9 ) p—1 g2n+1
02/6% = ;(—1)7’)\ Plarctan € — nz::O(—l) Sy 1].
For e > 1 we rewrite (5.62) as
_ 1— u??du
g2 /€2 — _)\21) / /
P/§ 1+ 1 _|_ ’LL2
2 7r 2”du
= ZAZP[(=1)P{Z /
™ (=1) {4 2 + 1} 1+ 1+ u2
From (5.63), it follows that
> z
- = ; > 1.
I
Again, with z = —u?, we obtain

2p—2m—1 __ 1

GRS E r S RS ME ]

—2n+1 2p—2m —1

Set n =m — p in the m sum and use (5.64). Recognizing 7 /2 —
arctan(l/e) = arctane for ¢ > 0 again yields (5.65). Placing
these results in recursive form gives

(2 arctane :p=20

_ %[5 — arctan €| p=1 (5.65)

TRUR
|

2X(2rB)?P—1 )\2

| (-1 g

ip>1



5. Sources of Error 145

where
B 2B

E =
A
Graphically, these bounds are also indistinguishable from the
corresponding smallest values on the plots in Fig. 5.12.

5.2 Jitter

Jitter occurs when samples are taken near to but not exactly at
the desired sample locations. We here consider only the case of
direct uniform sampling [Papoulis (1966)]. Instead of the sample
set x(n/2W), we have the sample set

{x(%—an)|—oo<n<oo}

where o, is the jitter offset of the n'® sample. We assume that

the jitter offsets are unknown. If they are known, then sampling
theorems for irregularly spaced samples can be used [Marvasti].

In this section, we will show that cardinal series interpolation
of jittered samples yields a biased estimate of the original signal.
Although the bias can be corrected with an inverse filter, the
resulting interpolation noise variance is increased.

5.2.1 Filtered Cardinal Series Interpolation
We know that

o0

z(t)=r > x(s5)sinc(2Bt —rn)

n=—oo

and thus may be motivated to estimate x(¢) via
y(t) =r > x(5 — on) sinc(2Bt — rn). (5.66)

The interpolation error is obtained by subtracting these two
expressions:

n(t) = y(t) —=()
= r Y & sine(2Bt —rn) (5.67)

n=—oo



5. Sources of Error 146

where
&n = 2(555 — on) — 2(55%)- (5.68)
If the jitter deviations {o,} are identically distributed ran-

dom variables, then the interpolation in (5.66), does not give an
unbiased estimate of x(t). That is

y(t) = x(t) # (1) (5.69)

where, for any function v(t), we define

u(t) = v(t) * f,(t) (5.70)
and f,(t) is the probability density function describing each
on- To show this, we first note that if x(¢) is bandlimited with

bandwidth B, then so is x(¢). Hence

o0

a(t)=r Y x(5%)sinc(2Bt —rn).

n=—0oo

The expectation of a single jittered sample is

WGy —o) = [ fan) ol - s
2(L). (5.71)

oW

Substituting this into the expected version of (5.66) substanti-
ates our claim in (5.69).

5.2.2 Unbiased Interpolation from Jittered Samples

Equation (5.69) reveals that cardinal series interpolation from
jittered samples results in a biased estimate of the original sig-
nal. Motivated by our analysis in the previous section and Sec-
tion 4.1.2.2., we propose the interpolation formula

()= 3 x(%—an)k(t—%) (5.72)
where .
k(1) s - H5) (5.73)

"W B, (u)
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and the jitter offset’s characteristic function, ®, (u), is the Fourier]
transform of its probability density function:

fo(t) <= @4 (u).

We claim that z(¢) is an unbiased estimate of z(¢):

2(t) = z(t). (5.74)
Furthermore, the interpolation noise variance is given by

varz(t) = F| {Z(t);%}Q ] B

= [x2(ﬁ) — x(ﬁ) | B2 (t - ﬁ) (5.75)

n=-—oo

when the jitter offsets are independent. As jitter becomes less
and less pronounced,

fo(t) = 6(2).

From (5.71), we thus expect to see the interpolation noise vari-
ance in (5.75) correspondingly approach zero.

Proof: Expectating (5.72) and substituting (5.71) gives

W= 3wl )kt — o).

n=—0o0

Fourier transforming and using (5.73) gives

Z(t) A anz_:oox(ﬁ)e / @U(u)
= X)) g
= X(u) (5.76)
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Inverse transforming (5.76) completes our proof of (5.74).

To show (5.75), we first compute the autocorrelation

R.(t;T) = i i 2557 — on) (55 — om)E(t — 535 k(T — %)I

n=—oom=—0oo

Since the ¢,,’s are independent

R(t7) = 30 ikl = i)k — i)

= 3 algip) Kt = gip)h(T — 5ip)
= 02Gh) — ol) Wlt = )b — Fp) + al0)a(r)

Using the relationship
var z(t) = R,(t; 1) — 2%(1)
gives our desired result.

5.2.3 In Stochastic Bandlimited Signal Interpolation

Our analysis in this section will show that the use of an inverse
filter to obtain an unbiased interpolated estimate from jittered
samples will increase the variance of the estimate. Instead of a
deterministic signal, z(¢), we will consider the analysis of the
previous section as applied to a wide sense stationary stochastic
signal, x(t), with mean X and autocorrelation R, (7).
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We will assume that jitter locations (which we will express
in vector form as &) are independent of x(¢). Thus, the joint
probability density function for & and y(¢) can be expressed as
the product of the probablility density of & with that of x(¢).
Thus, the expectation of any function w[d; x ()] can be written

Ew(d; x(1)] = Ey Ezw|d; x(t)] (5.78)

where E, and Ez denote expectation with respect to x(t) and &
respectively. Thus, if (5.72) is used to interpolate jittered sam-
ples from the stochastic process x(t), we conclude from (5.74)
that

Egz(t) = x(t).
In accordance with (5.78) we expectate both sides with respect
to x(t) and conclude that

Ez(t) = x(t). (5.79)

If v(t) is any stochastic signal with constant expectation T,
we conclude from (5.70) that

Bult) = [ o0)f(t—7)dr

Reinterpret (5.75) as
B[00 =507 = 3 1Gi) — i) TR - ).

Expectation of both sides with respect to x therefore gives

o0

var z(t) = var (x(t)) ; K (t — o)
where _
var (1) = x2 — X°

is a constant. Applying the Poisson sum formula gives

var 2(t) = 2Wvar [x(D)] 3 p(2nlV) esm

n=—oo
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where

p(u) = K (u) » K (u).

Since K(u) = 0 for | u |> B, we conclude that p(u) = 0 for
| u |> 2B. Thus
p(2nW) = p(0)[n].

Since
1 B 9
00) = Gz [, 1 2ol 177 du
we conclude that
var z(t) 1 /B H
= d du. .
var x(t) 2W J-B | o (u) [ du (5.80)

This and equation (5.79) are our desired results.

5.2.3.1 NINV of Unbiased Restoration

Using the filtered cardinal series in (5.66) on the stochastic sig-
nal x(¢) results in a now unbiased estimate

y(t) =X

where, now
var y(t)
var x(t)

Since density functions are non-negative, the characteristic func-
tion obeys the inequality

=r. (5.81)

| @, (u) [< @,(0) = 1. (5.82)

Thus, (5.80) always equals or exceeds 7. The price of an unbiased
estimate is a higher NINV. This price can be measured in the
ratio of (5.80) to (5.81):

t 1/2
o= var2(t) _ 2/ | ®,(2Bv) |2 dv > 1.
var y(t) 0
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Figure 5.13: A plot of p for Gaussian (p;), Laplace (p2) and uni-
form (p3) jitter as a function of kK = 27 Bs.

5.2.3.2 Examples

In the following specific examples of unbiased restoration from
jittered samples, s is the standard deviation of the jitter density.
We will also find useful the parameter

Kk = 27 Bs.

In all cases, we will see p increase with increasing k.

1 Gaussian Jitter

If
1 —t?

fot) = = ew(5 )

then
@, (u) = exp[—2(msu)?.
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Thus 12
p=2 / 250 gy
0

A plot is shown in Fig. 5.13 versus k.

Laplace Jitter
Let

1 V2|t
S

fo(t) = 5, expl )-

Then
2/s?
(2/5%) + (2mu)?

and we obtain the closed form solution

Dy (u) =

14 L2 g L
= K"+ —kK
p 3" T g

a plot is shown in Fig. 5.13.

Uniform Jitter

Uniform jitter is characterized by the density
1 .
fo(t) = > I(t/¢) » sinc(pu)

where ¢ = v/12s. The density function is thus zero for

/12
1t]> 2 = °
2 2

Therefore
5 /1/ 2 dv
p= .
0 sinc?( @)

A plot is shown in Fig. 5.13. Note that there is a singularity
in the integrand when a zero of the sinc lies within the
interval of integration. This occurs when

1

>
=3
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or, in other words, when the temporal locations of two
adjacent samples have a finite probability of interchang-
ing. The value of p in such cases is unbounded. Obtaining
an unbiased estimate by inverse filtering is therefore an
unstable undertaking.

5.3 Truncation Error

The cardinal series requires an infinite number of terms to ex-
actly interpolate a bandlimited signal from its samples. In prac-
tice, only a finite number of terms can be used. We will ex-
amine the resulting truncation error for both deterministic and
stochastic bandlimited signals.

5.3.1 An Error Bound

We can write the truncated cardinal seies approximation of z(t)

as
N

xn(t) = ;Nx(%) sinc(2Bt — n).

The error resulting from using a finite number of terms is re-
ferred to as truncation error:

en(t) =| 2(t) —zn(t) |*. (5.83)
We will show that [Papoulis (1966)]

ex(t) < 2B(E — Ey)[sinc(2Bt + N) — sinc(2B1 — N)](—l)"w
_ (B Eﬂ%sm?(%&f) )< % (5.84)

where E is the energy of z(¢) and Ey is the energy of xy(t).
Using Parseval’s theorem in (3.32) applied to zx(t) gives,
1 N

Ey = —
N7 9B

[ 2(2) [
n=—N

From (5.84), as we would expect,
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Figure 5.14: Plots of the errors bound in (5.84) as
en(7/2B)/{2B(E — Eyn)} for N = 10 and
the envelope of the error bound for N = 50.
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Figure 5.15: The left side of the inequality in (5.87) is the area
under the rectangles. The right side of the inequality

is the area under the 2B(t — 7)~2 curve over the

interval (N/2B, 00).

a) since Fo, = E, the error bound tends to zero as N — oc.

b) for | n |[< N, the error ex(5%) is zero.

A plot of ex(7/2B)/{2B(E — Ey)} is shown at the top of Fig.
5.14. Also shown is the envelope of the curve which is given by

the expression
2 N/m?
N2 _ 2

The envelope for N = 50 is shown at the bottom of Fig. 5.14.
Note that, at 7 = N — 1, the envelope has a value, for large N,

of about 1/7? a2 0.10.

Proof: Using the cardinal series expansion in (3.4), we have

(—=1)"z(55) 2

L.
en(t) = Psmz(QWBt) > 5Bt

[n|>N
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applying Schwarz’s inequality gives

sin?(27 Bt)

BB Y (-3 (68

|n|>N

€N(t) S
where we have recognized that

\ >N

We can write (5.85) as

sin (27rBt) AR Ly
spz (B Ex) > o+ Z . (5.86)

n=-—00 n=N+1

€N(t) S

Motivated by Fig. 5.15, we can write, for ¢ < N/2B,

o o0

> (t—L&)? < 2B t—7)2d
n:N+1( 25) N N/QB( ") !
N
= 2B (— — .
(2B )" (5.87)

Similarly, for ¢ > N/2B,

< N
o (t+L)? <2B(=—+1)"
n=N-+1 2B 2B

Substitution of these two inequalities into (5.86) followed by
simplification yields our desired result in (5.84).

5.3.2 Noisy Stochastic Signals

In this section, we invesigate truncation error for a noisy stochas-
tic signal at a sample point [Radbel & Marks| and compare the
certainty of the resulting estimate to that obtained from

e Simply using the noisy sample and

e A minimum mean square estimate.
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Let f(t) denote a bandlimited wide sense stationary stochas-
tic process with bandwidth B as described in Section 3.5. The
filtered cardinal series

=r Z f(557) sinc(2Bt — rn) (5.88)

n=—oc
converges to f(t) in the mean square sense when r = B/W < 1.

In other words, X
E f(t) - f@) P]=0.

Let &£(t) denote a zero mean wide sense stationary stochastic
process with autocorrelation R¢(7). Our noisy waveform is then

g(t) = f(t) +£(1).

We will assume that the signal and the noise are uncorrelated.
Thus
Ry(7) = Ry(T) + Re(7).

Our goal is to estimate f(0) from the set of samples
{9(5%) | =N <n < N}
using;:
(a) the single sample g(0)
(b) the truncated cardinal series
(c) a minimum mean square estimate

Each case will be examined separately and contrasted by the
comparison of the resulting mean square error.

Case a: The estimate here is

fa(0) = g(0). (5.89)

The resulting error is
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Case b: The truncated cardinal series expression evaluated at
t=201is
N
fB(0) =7 Y g(3%)sinc(rn). (5.90)
n=—N

The mean square error of this estimate is given by

es(N) = E[l f(0) - f5(0) ]

= E|| f(0) —rigiw sinc(rn) |*]

—N
N

= R;(0)—2r ;NRf(ﬁ) sinc(rn)

r? Z > Rg smc(rn) sinc(rm).

—Nm=—N

(5.91)

Case c: To find the minimum mean square solution [Papoulis
(1984)], we wish to find the set of coefficients {h[n] | =N < n <
N} in the expression

Z g LW h[n] (5.92)
that minimizes the error

ec(N) = E|| f(0) — fc(0) I7].

We substitute the appropriate expressions and set the deriva-
tives of ec(N) with respect to each h[n] to zero. Using this
procedure, the optimal h[n]’s can be shown to satisfy the simul-
taneous set of equations

m N m —

ﬁ): > Ryl—+ i ]h[n] —N<m< N, (5.93)

n=—N

Ry (



5. Sources of Error 159

Solving these equations and using (5.92) results in a minimum
mean square error of

N

ec(N)=R;(0) = > Ryl5) hin].

n=—N
NOTES

1. The truncated sampling theorem estimate will always be
better than the minimum mean square error estimate, i.e.
eg(N) > ec¢(N). This, however, comes at a price. The
minimum mean square estimate is parametric in the sense
that solution of the equations in (5.93) requires detailed
information about the second order statistics of both the
signal and the noise. The sampling theorem estimate in
(5.90), on the other hand, does not.

2. An example of the relative performance of the three esti-
mates is shown in Fig. 5.16 for discrete white noise with
variance £2. The signals with uniform and triangular spec-
tral densities are

Sytu) = 77 2z (599
and A
Syu) = 2 228 (5.95)
where o
f? = Ry(0).

3. The error in (5.91) can be partitioned into that due to
data noise and that due to truncation. Specifically

SB(N) :SD(N) +8T(N)

where
N

z_: Ry (57) sinc(rn)

=—N

6T(N) = Rf(O)—QT

N N n

w2 Y Y Ry Q_Wm

n=—N m=—N

| sinc(rn) sine(rm)
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10"

* curve | Si(u) | estimate| r
1 u tst 0.2
2 u tst 0.8
3 t tst 0.2
4 u mmse | 0.2
5 u mmse | 0.8
7 A 6 t mmse | 0.2

5§ 10 15 20 2% 30 35 40 45 50
N

FIGURE 5.16.

Figure 5.16: The normalized mean square error for truncated es-
timation of a noisy sample, f(0). In each case, the
signal-to-noise ratio is F/f_? = 100 and the data
noise is discrete and white. The sample point esti-
mate in (5.89) has a normalized mean square error

of e4 = €2/f2 = 0.01. This is shown by the hori-
zontal dashed line.
key:

u =uniform power spectral density as in (5.94).
t =triangular power spectral density as in (5.95).
tst =truncated sampling theorem estimate, fg(0).

% = mmse= minimum mean square estimate,

fc(0).
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and

ep(N)=7r" > ZN Rg[nQ;Vm] sinc(rn) sinc(rm).

n=—N m=—

For a fixed N,er(N) as a function of r tends to oscil-
late with a decreasing envelope. The function ep(NV), on
the other hand, is a strictly increasing function of r. This
suggests that there may exist a sampling rate that mini-
mizes the overall mean square error. This is confirmed in
Fig. 5.17 where the minimum mean square error, eg(N),
is plotted versus r for various N.! In those cases where
a minimum exists, there exists an optimal sampling rate
equal to 2W = 2B/r.

!Sometimes, a value lower than N(e.g. N —1 or N — 2) gave a better mean
square error. In such cases, the lower mean square error is plotted in Fig. 5.17.
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FIGURE 5.17.

Figure 5.17: A plot of the smallest mean square error that can
be achieved with a truncated sampling theorem es-
timate of ¢(0) using not more than 2N + 1 noisy
samples. In each case, the signal-to-noise ratio is
F/§_2 = 100 and the data noise is discrete and
white. The power spectral density of the signal is
uniform as in (5.94). Each curve’s minimum reflects
the optimal sampling rate for the corresponding set
of parameters.
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Exercises

According to (5.11), the filtered interpolation noise level
can be made arbitrarily small by simply increasing the
sampling rate. Why is this result intuitively not satisfying?
Explain why we can not make the noise level arbitrarily
small in practice.

The interpolation function for trigonometric polynomials
has infinite energy. Thus, application of either (5.23) or
(5.24) results in an infinite NINV classifying the interpo-
lation as ill-posed. Explain why this reasoning is faulty.
Derive the filtered and unfiltered NINV using (4.71) as-
suming additive discrete white noise on the P data points.

The stochastic process in (5.37) is wide sense cyclostation-
ary [Papoulis (1984); Stark & Woods]. Define the stochas-
tic process
U(t) =n(t—0)

where © is a uniform random variable on the interval
(0, T) and n(t) is given by (5.37).

(a) Show that W(#) is wide sense stationary.

(b) Evaluate U2 in terms of the Fourier coefficients in

(5.39).

In both Figures 5.1 and 5.11, colored noise always pro-
duces a worse NINV than white noise. Is this always true?
If not, specify a noise for which the statement is not true.

Using the result of Exercise 2.23, show that the interpola-
tion noise variance due to jitter in (5.67) can be bounded
as

n%(t) < (27 B)*E0 e/ (37)

where the jitter deviation is bounded by
Omaz 2| On |

and we have assumed sampling at the Nyquist rate.
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5.6 Using (5.75), let

E, = /OO var z(t) dt.

— 00

Similarly, let
E, = / var y(t) dt.

— 00

Show that E, > E,.

5.7 Show that the interpolation noise in (5.67) is not zero
mean.

5.8 Compute the NINV in (5.9) when the additive noise has
a

Cauchy autocorrelation with parameter :

&
Re(1) = ————.
=Gy
5.9 Consider restoring a single lost sample at the origin when
r < 1/2. We could use (4.9) or delete every other sample
and use the filtered cardinal series in (4.2). Contrast the
corresponding NINV’s.

5.10 A bandlimited signal, z(¢), with nonzero finite energy, can
be characterized by a finite number of samples if there
exists a T such that z(¢) = 0 for | ¢ |> T. Show, however,
that no such class of signals exists.

5.11 Show that ~
/ en(t)dt = E — Ey

—0o0

where ey(t) is the truncation error in (5.83).

5.12 Show that (5.91) can be massaged into the computation-
ally advantageous iterative form
egp(N+1) = ep(N)—4rR;[(N +1)/2W]sinc[r(N + 1)]
+2r? sinc*[r(N + 1)]{Ry(0) + Ry[(2N + 2)/2W1}
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+2r? sinc [r(N + 1)] g: {Ry[(n+ N +1)/2W]

+R,y[(n — N —1)/2W]} sinc(rn)
with initialization

ep(0) = (1 —1)*Ry(0) + Re(0).

REFERENCES

R.N. Bracewell, The Fourier Transform and its Ap-
plications, 2nd edition, Revised, McGraw-Hill, NY, 1986.]

K.F. Cheung and R.J. Marks II “Ill-posed sampling the-
orems”, IEEE Transactions on Circuits and Systems, vol.

CAS-32, pp.829-835 (1985).

[.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals,
Products and Series, Academic Press, New York, 4th
ed.,1965.

R. W. Hamming, Numerical Methods for Scientists
and Engineers, McGraw-Hill, New York, 1962.

R.J. Marks IT “Noise sensitivity of bandlimited signal de-
rivative interpolation”, IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. ASSP-31, pp.1029-1032
(1983).

R.J. Marks I and D. Radbel “Error in linear estimation of
lost samples in an oversampled bandlimited signal”, IEEFE

Transactions on Acoustics, Speech and Signal Processing,
vol. ASSP-32, pp.648-654 (1984).



5. Sources of Error 166

F.A. Marvasti, A Unified Approach to Zero-Crossing
and Nonuniform Sampling, Oak Park, I1l., 1987.

A. Papoulis “Error analysis in sampling theory”, Proc.
IEFEE, vol. 54, pp. 947-955 (1966).

A. Papoulis, Signal Analysis, McGraw-Hill, New York,
1977.

A. Papoulis, Probability, Random Variables, and
Stochastic Processes, 2nd Ed., McGraw-Hill, NY, 1984.

D. Radbel and R.J. Marks II “An FIR estimation filter
based on the sampling theorem”, IEEE Transactions on

Acoustics, Speech and Signal Processing, vol. ASSP-33,
pp.455-460 (1985).

C.E. Shannon “A mathematical theory of communication” ]
Bell System Technical Journal, vol. 27, pp.379, 623, (1948) ]

C.E. Shannon “Communications in the presence of noise”,
Proc. IRE, vol. 37, pp.10-21 (1949).

H. Stark and John W. Woods, Probability, Random
Processes, and Estimation Theory For Engineers,
Prentice-Hall, New Jersey, 1986.

Shiao-Min Tseng, Noise Level Analysis of Linear
Restoration Algorithms for Band-Limited Signals,
Thesis, University of Washington, 1984.



6

The Sampling Theorem in
Higher Dimensions

The first generalization of the Shannon sampling theorem to
two and more dimensions was done by Peterson a nd Middle-
ton. Multidimensional signals include black and white images
which can be depicted as two dimensional functions with zero
corresponding to black and one as white. Intermediate grey lev-
els are clas sified between these limits.

6.1 Multidimensional Fourier Analysis

A brief review of multidimensional signal representation and
Fourier analysis is required prior to our discussion of multidi-
mensional sampling theory. Let

t=[titatg---ty]"

denote an N dimensional vector. (The superscript 7' denotes
transposition.) The function z(Z) assigns a (possibly complex)
number over some set of £’s.

The Fourier transform of z(#) is defined by the integral

X(@) = / 2(Hexp(—j2nd T)di (6.1)
t
where ~ o o
[
and

df = dt, dty - - diy

6.1.1 Properties

Table 6.1 contains a list of properties of multidimensional Fo-
urier transforms. Many are straightforward generalizations of
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1. Transform
2(f) & X(7) = [x(aexp(—jQWaTadf
i

2. Linearity

Z akxk(f) < Z Clka(ﬁ)
k k
3. Inversion

2(f) = / X(@)exp(j2r@ 1 dad < X (@)

4. Shift
z(t = 7) < X (@)exp(—j2ri’7)

5. Separability
N

N
H Tn(tn) < H X (ug)
n=1 n=1

6. Rotation and Scale

X(A_Tﬁ)

A
7(Al) & et A

7. Convolution

2(F) * h(f) = /;x(?)h(f— P)dr < X (@)H (@)

8. Modulation
2(D)h(t) > X (@) + H(1)

Table 6.1: Properties of the multi-dimensional Fourier transform.
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their one dimensional counterparts. Those that are not warrant
further elaboration.

6.1.1.1 Separability

A function z(#) is said to be separable if it can be written as
the product of one dimensional functions:

x(tj = len(tn) (6.2)

The separability theorem states that the corresponding multi-
dimensional Fourier transform is the product of the one dimen-
sional Fourier transforms of the one dimensional signals:

where
on(tn) 5 X (uy) = /_ °:O (tn)exp( = j2muntn)din

is a one dimensional transform pair. The proof follows from
substituting (6.2) into (6.1) and separating integrals.

Example : The separability theorem allows evaluation of cer-
tain multidimensional transforms using one dimensional trans-
forms. Consider the N = 2 dimensional example in Figure 6.1
where a function is one inside the two symmetrically- spaced
squares and is zero outside. We can write

ty 1 to 1) <t1 1) <t2 1)
ti,ty) =11 (——< I {—— = M=+ Z)II(=Z2+=
x(1,2) (c 2) (c 2 + c+2 c+2
(6.3)
From the separability theorem
to 1 ty 1 ,
11 <—1 + —> II <—2 + —) & eZsinc(cuy )sine (cug )eImeuTu2)
c 2 c 2
(6.4)
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xits ti ‘e

FIGURE 6.1.

Figure 6.1: A two dimensional signal is one inside the squares
and is zero outside.

Superimposing the + and — components of (6.4) and using the
linearity property of Fourier transformation gives us the trans-
form of (6.3):

x(ty, 1) <+ 2¢*sinc(cuy )sine(cuy) cosme(uy + uy)] (6.5)

The above example is a case where a function is the difference
of two separable functions. One can easily establish that, for any
two dimensional function, we can find some one dimensional
functions such that

o

z(tl’tg): Z l‘,ﬁé)(tl)l',g)(tQ)

m=—oQ

That is, any two dimensional function can be expressed as the
superposition of separable functions. More generally, in N di-
mensions,

v = > T (). (6.6)
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Ltz
(1.1) x(t)
11 ).
F \
/// 1 B
i~ /

\ 2 y(1)

1 (1,1)

FIGURE 6.2.

Figure 6.2: Illustration of linear scaling of the unit square (bot-
tom) to a parallelogram (top).

The choices of the one dimensional functions are clearly not
unique. For such a representation, it follows that

v(@) o 3 T X ) (6.7)

m=—oc n=1
6.1.1.2 Rotation, Scale and Transposition

For any nonsingular matrix A, the function y(Af) can be envi-
sioned as a rotation, scaling, and/or transposition of the func-
tion y(£). We illustrate this with the unit square at the bottom of
Figure 6.2. What linear coordinate transformation, 7 = At, will
map this to the shaded parallelogram, x(ﬂ, shown at the top of
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Figure 6.27 If we choose to map the corner with the square on
the bottom to the corner with the square on the top, we must
satisfy

Similarly, for the circles,

Combining gives

or .
3 1| 1({1 -1
A= [ -1 1 ] 4 l 1 3 ]
Thus
t1—1>
T = [ t1é3t9 ]
2
Since

we conclude that

i(tl ) — 1} I [—(tl +31) — %}

o(t) = y(Al) =TI 5

which is our desired answer.

6.1.1.2.1 Scale

Consider the rectangular box shown in Figure 6.3. Scaling to
the unit square shown at the bottom of Figure 6.2 is performed
by 7 = St where
= 0
s[4 0] o

Ma
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e x(t)

M, m

o/,
M,

FIGURE 6.3.

Figure 6.3: Scaling the unit square in Figure 6.2 by Mj in the t;
direction and M> in the ¢ direction.

Thus y ] y ]
o= Dl -}
(7 <M1 2) \M, 2
More generally, multidimensional scaling is performed using

1 1 1
S = diag }

My My My

(6.9)

where diag denotes a diagonal matrix.

6.1.1.2.2 Rotation

To rotate a function, y(f), counterclockwise by an angle of 6, we
write y(R%) where

| cos(f) sin(0)
R= l —sin(f) cos(6) ] (6.10)

Note that R™! = R”. The rotated square in Figure 6.4 can thus
be written as

o) = 11 [1ycos(6) + tpsin(6) — 2] 1 [1 sin(0) — 12 cos(0) + 3

If we wish to first rotate and then scale, we scale the rotated
function, y(R%), to y(RSt). For the function in Figure 6.5, for
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FIGURE 6.4.

Figure 6.4: Rotation of the unit square in Figure 6.2 counter-
clockwise by an angle of 6.

example, we rotate the unit square at the bottom of Figure 6.2
by 6 = 45° and scale in the 5 direction by a factor of 2. The
resulting scaling matrix is

1L B
NG 10 2 e
RS: p—
11|l 12 11
V2 V2 2 2 2V2

and
0-afi(e09)-Jofae 9+

6.1.1.2.3 Fourier Transformation

To determine the effects of rotation and scale on a function’s
Fourier transform, we evaluate

z(Al) /x (At)exp(—j2ra”t)dt (6.11)

= 3T det x / P)exp(—j2m(A~T7)T7)d7 (6.12)

X (A ")
= ~ 6.13
| det A| (6.13)
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ty

1 22
x(f)

V2/2

FIGURE 6.5.

Figure 6.5: Rotating the unit square in Figure 6.1 by 45° and
scaling by a factor of 2 in the 9 direction.

where we have made the substitution 7 = AZ and |det A| is
the transformation Jacobian. We assume A is not singular. The
superscript —1" denotes inverse transposition.

Example : For the rotation matrix in (6.10), R~! = RT. There-
fore, rotating a function rotates its transform. This is also true
in higher dimensions.

Example : For the scaling matrix in (6.8), we conclude that

1 1o >
—,— | & MMy X (M M
I<M1,M2 1 My X (Myuy, Myus)

More generally, if S is the diagonal matrix in (6.9), we have

2(AL) < My My - - - My X (Myuy, Mauy, - - -, Myuy)

Example : Since

1

y(t) =1 <t1 — 5) I (tz — %) “ sinc(ul)sinc(ug)exp[—j7r(u1+u2)]|
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we conclude from (6.13) that the Fourier transform of the par-
allelogram at the top of Figure 6.2 is

z(t) = y(At) > 4sinc(3uy — ug)sinc(uy + ug)exp(—jdmu,)

The results of the above examples can be combined to visual-
ize the effects of rotation and scaling on a function’s transform.
Rotation follows in the transform domain whereas a compres-
sion in one dimension is countered by an expansion along the
corresponding frequency dimension.

6.1.1.3 Polar Representation

Choosing other coordinates can alter the mechanics of perform-
ing a Fourier transform. Consider, for example, expressing a two
dimensional function in polar coordinates as x(r, §). The func-
tion is periodic in @ with a period of 27 and can therefore be
represented as a Fourier series

z(r,0) = Y cp(r)e (6.14)
where 1 o
_ —jnb
en(r) = 5 /0 a(r, 0)e g (6.15)

are referred to as circular harmonics.
The two dimensional polar equivalent of (6.1) can be obtained
by the variable substitutions

t; = rcos(); ty = rsin(6)

dtldtg = rdrdf
and the polar frequency coordinates, (p, ¢), related by

up = pcos(@); ux = psin(¢)

The result is

2T o)
X(p, ¢) = /0:0 /T:(]x(r, 0)exp|j2nrpcos(0 — ¢)|rdrdd  (6.16)
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where we have used a trigonometric identity. Substituting the
circular harmonic expansion in (6.14) and using the identity

1 T -
Jo(2) / /"%l #50(9) gy

" 21 Ja

gives, after some manipulation,

X(p,¢) = i 3"eT™ 0 e ()] (6.17)

n=—oo

where the nth order Hankel transform is defined by

Holf(r)] =27 /Ooo rf(r)Jn(2mrp)dr (6.18)

Note, in particular, that (6.17) is a polar Fourier series of the
spectrum of X (p, ¢) with circular harmonics (—j7)"H,[c,(1)].

6.1.1.3.1 The Hankel Transform

A zero order Hankel transform is referred to as a Fourier-
Bessel or simply Hankel transform. From (6.18)

Hf(r)=Hof(r) =2m /Uoo rf(r)Jo(2mrp)dr (6.19)

Consider the case where a two dimensional function is circularly
symmetric. That is z(r,0) = f(r). Then, from (6.14), ¢,(r) =
f(r) and all other circular harmonics are zero. The series in
(6.17) thus reduces to Hf(r). Note that, in such a case, the
transform is not a function of its angular variable and, with
F(p) = X(p, ¢), we can write

F(p) =Hf(r)

In other words, if a two dimensional function is circularly sym-
metric, then so is its two dimensional Fourier transform. Fur-
thermore, the two dimensional transform is equivalent to a (one
dimensional) Hankel transform. Generalizations of Hankel trans-|
formations in dimensions greater than two are discussed by
Bracewell.
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6.1.1.3.2 Example

Consider the unit radius circle
f(r) =TI (%) (6.20)

Substituting into (6.19) gives

1
F(p) = 27r/ rJo(2mrp)dr
0

Since y
@aJl(a) = aJy(a)

we conclude that
F(p) = 2jinc(p) (6.21)

6.1.2 Fourier Series

Multidimensional periodic functions can be expanded in a mul-
tidimensional generalization of the Fourier series. First, we must
establish some formality for characterizing multidimensional pe-
riodicity.

6.1.2.1 Multidimensional Periodicity

An N dimensional function, S(#), is said to be periodic if there
exists a set of N non-colinear vectors, {p,|1 < n < N}, such
that, for all u,

S(w) = S(@—p1) = S(d@—ps) =--- = 5(d - py) (6.22)

The matrix
P= [ﬁ1|ﬁ2| T |27N]

is referred to as the periodicity matriz. Requiring that the p;,’s

not be colinear is equivalent to requiring that P not be singular
(detP #0).

Example : A periodic N = 2 signal is shown in Figure 6.6 with
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Figure 6.6: A two dimensional periodic function is one inside the
replicated closed curve and zero outside.

periodicity matrix

1 2
P= l 10 ] (6.23)

The concept of a period is not as straightforward as in one
dimension since we now must deal with geometrical forms rather
than with simple intervals. A period cell is any region that, when
replicated in accordance with the periodicity matrix, will fill
the entire space without gaps. Two of many possible cells for
the replication geometry in Figure 6.6 are shown in Figure 6.7.
Although there are many possible choices, every cell must have
the same area.!

A periodicity cell can always be formed from the multidimen-
sional equivalent of the parallelogram defined by the periodicity
vectors. The parallelogram formed by the periodicity vector and
the dashed lines in Figure 6.6, for example, clearly form a cell

!In this chapter, area means, in general, multidimensional area, e.g., for N = 3,
volume.
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Figure 6.7: For a given replication geometry, there may exist
many ways to partition the plane with periodicity
cells. Shown here are two such partitionings for the
replication geometry shown in Figure 6.6. Solid dots,
shown at the center of each cell, are identically posi-
tioned in both partitions.
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for the replication geometry shown.

Note that there exists one replication point per cell. The num-
ber of periods per unit area, T, is thus equal to the area of a cell
which can be calculated from the parallelogram configuration as

T = |detP|

The periodicity in Figure 6.6, for example, has 2 cells per unit
area.

6.1.2.2 The Fourier Series Expansion

In this section, we derive the Fourier series for a periodic func-
tion, S(u), with given periodicity matrix P. First we establish
as a Fourier transform pair

S 0(F— Qi) < |det P| Y 6(i — Pri) (6.24)

where

Q' =p! (6.25)

and the multidimensional Dirac delta is

O() = 6(t1)d(t2) - - (tw)

Proof:
If we define
AE) =D 6(F — Qi)
then .
*) Z 5(t —m) N
AMQt) = “———— = |detP comb(t,
(@0} = g = 1ot Pl T combi(n)
where we have used the identities
1
det P| =
4P = Therq
and
ot
§(Al) = LION (6.26)

| det A|
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Using the last entry in Table 2.2 and the separability theorem,
we conclude that

N
ANQt) < |det P| [] comb(u,) = |det P| 3" (i — )

n=1

Using the rotation and scale theorem, we find that
AE) < > 6(Q"d — m

from which (6.24) immediately follows.

* % ok %k ok ok

Using (6.24), we can now show that a periodic function, S(#)
with periodicity matrix P can be expressed via the Fourier series
expansion

S(@) =" c[m)exp(—j2mi" Qi) (6.27)

—

m

where the Fourier coefficients are
c[m] = | det Q|/ i)exp(j2ni’ Qm)dil (6.28)

and C is any periodicity cell.

Proof :

Let |detP|X (@) = S(u) over any cell region and be zero
elsewhere. This function is equivalent to a period of S(@). We
can therefore replicate it to form S(#):

S(i) = | det P| X (u Zé (6.29)

Using the modulation theorem in Table 6.1, and Equation (6.24),]]
we conclude

s(t) = x(f) 3_o(f— Qm) = 32 (Qm)d(f — Qi)

where

z(t) « X (1) (6.30)
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Figure 6.8: A periodic function for which we find a Fourier series.
The function is zero inside the circles and one outside.

and
s(f)  S()

Transforming gives

S(i) =Y x(Qm)exp(—j2mi’ Qm) (6.31)

m
and, after noting that ¢[m] = x(Qmni) our proof is complete.

Example : Consider the periodic function, S(i), shown in Fig-
ure 6.8. The function is zero in the shaded circles and one out-
side. A periodicity matrix for this function is

[0
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We choose the rectangular periodicity cells shown with the dashed]]
lines. To find the Fourier coefficients, we choose the cell centered
at (3,0). Correspondingly,

| det P| X (@) = 11 (“1 - 3) 1 (ﬁ) |V =32 4]

6 5 [ 4 J

Therefore
| det P|z(t) = [30sinc(6t,)sinc(5t,) —8jinc(24/13 + t%)]exp(—jﬁﬂtl)l

and, since
my
—mym
we conclude that our desired Fourier coefficients are
. m
cfmi,mo] = (=1)™ {6[m1]smc <71 - m2>

4 2 2
I [2\/<@> () |
157 VA6 10 5/
The resulting Fourier series using these coefficients is

oo

Slun,u) = > > c[my, molexp [—j27r (m%ul B mll(’]uQ + m;ug)}l

mi=—o0 ma=—

6.2 The Multidimensional Sampling Theorem

We have established in one dimension that the Shannon sam-
pling theorem is the Fourier dual of a Fourier series. The same is
true in higher dimensions. Indeed, we can glean the multidimen-
sional sampling theorem from our development of the Fourier
series by interpreting

e z(f) as a multidimensional bandlimited function

e X (i) as its spectrum. The function z(#) is defined to be
bandlimited if X (@) = 0 outside of an N-dimensional
sphere of finite radius.
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e S(i) as the replication of | det P| X (@) as a result of sam-
pling.

Clearly, we must choose our periodicity matrix, P, so that the
spectral replications do not overlap and therefore alias. We then
can always choose a periodicity cell, C, so that

S(i) = | det P|X (a@); @€ C (6.32)

From (6.28),
c[m] = z(Qm)
and the Fourier series in (6.27) becomes
S(d) =Y =(Qin)exp(—j2nd’ Qi)

m

Using (6.32) and inverse transforming over a cell gives

o(f) = 3 #(Qiit) fe (- Quit) (6.33)

where

fo(®) = | det Q|[ exp(j2rii)di (6.34)

Equations (6.33) and (6.34) summarize the multidimensional
sampling theorem.

The Q matrix is called the sampling matriz and dictates the
geometry of the uniform sampling. We decompose Q into vector
columns:

Q = [q@1]q] - - - |gn] (6.35)

As with the periodicity matrix, each component vector is a basis
vector for sampling. An example is shown in Figure 6.9 for N =
2 and

Q= l _31 _22 ] (6.36)

It follows that

N | =
N

[N
=
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FIGURE 6.9.

Figure 6.9: Sampling geometry corresponding to the sampling
matrix in (6.36).

An example of the spectral replication using this matrix is shown
in Figure 6.10.

Consider the parallelogram defined by the column vectors of
Q. Visualize replication to fill the entire plane. Clearly, there
is a one to one correspondence of a sample to a parallelogram.
Since the area of the parallelogram is | det Q|, we conclude that
the sampling density corresponding to Q is

SD

= = | det P| samples/unit area
vy = |det Pl samples/
The sampling geometry in Figure 6.9, for example, has a density
of one fourth of a sample per unit area.

We call the region A, over which a spectrum X (&) is not
identically zero, the spectral support. In order for :E(f) to follow
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our definition of bandlimitedness, A must be totally contained
within an N dimensional sphere of finite radius.

uz

FIGURE 6.10.

Figure 6.10: Spectrum replication from the sampling geometry
of Figure 6.9.

6.2.1 The Nyquist Density

The lowest rate at which a temporal bandlimited signal can

be sampled without aliasing is the Nyquist rate. This measure

can be generalized to higher dimensions. For a given spectral

support, A, the Nyquist density is that density resulting from

maximally packed unaliased replication of the signal’s spectrum.
Some illustrative examples are in order.

Example a : If the support of an N = 2 dimensional spectrum
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Figure 6.11: Two spectral supports. The value outside a support
region is identically zero.

has the rectangular shape shown on the left of Figure 6.11, then
an optimal sampling geometry results in the replication shown
at the top of Figure 6.7.

Example b : For the hexagonal support shown at the right of
Figure 6.11, the Nyquist density is achieved by the replication
shown at the bottom of Figure 6.7.

Notes:

e In Example a, there is more than one sampling geometry
that can achieve the Nyquist density. Placing the rectan-
gles in a chess board grid is another possibility. There is
only one way, on the other hand, to replicate the hexagon
in Example b to efficiently fill the plane.

e For both Example a and b, the support of the spectrum,
A, is of the shape of a cell, C. In such instances, the
Nyquist density is equal to the area of the spectral sup-
port.

Example c : Any imaging system that uses lenses with circular
pupils will generate images the spectra of which have a circular
region of support if the monochromatic illumination is either
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Figure 6.12: (Top) Minimum density rectangular sampling of im-
ages with spectra of circular support yields circles
packed as shown. (Bottom) A single cell with in-
scribed circular spectrum support.

coherent or incoherent [Goodman] [Gaskill]. Consider, then, the
case where the support of an N = 2 dimensional spectrum is a
circle of radius W. If we limit ourselves to rectangular sampling
(i.e., restrict Q to be a diagonal matrix), then the closest we
can pack circles is illustrated at the top of Figure 6.12. The
periodicity and sampling matrices are, respectively,

2W 0
P o]

o1 1]
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g e

FIGURE 6.13.

Figure 6.13: (Top) Densely packed circles correspond to Nyquist
sampling of images with spectra of circular support.
Note the hexagonal structure. (Bottom) A single
hexagonal cell with inscribed circular spectrum sup-
port.

where
o 1
2

The cell, C, corresponding to rectangular sampling is the square
shown at the bottom of Figure 6.12.

Example d : Maximally dense packing of circles is shown in
Figure 6.13. The corresponding density matrix is

P:[\/%VW \;;VVV] (6.37)
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Figure 6.14: Hexagonal sampling geometry required to pack cir-
cles densely as shown in Figure 6.13.

The sampling matrix follows as

Qzlﬁ f]
V3 V3

As shown in Figure 6.14, this sampling geometry is hexagonal
in nature. The cell resulting from such sampling is the hexagon
shown at the bottom of Figure 6.13.

% % ok k ok %k %

What is the savings in sampling density of the hexagonal ge-
ometry in Example d over the rectangular geometry in Example
c? For hexagonal sampling, the (Nyquist) sampling density is
equal to the area of the hexagon shown at the bottom of Fig-
ure 6.13 which in turn, is equal to the determinant magnitude
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of (6.37):
SD, = 2V/3W? (6.38)
The corresponding density for rectangular sampling is clearly
SDyeet = 4W?
The ratio of these densities is
ro = S%:Z = 0.866

where the subscript denotes N = 2 dimensions. Thus, use of
hexagonal sampling reduces the sampling density by 13.4% over
rectangular sampling.

This result has been extended to higher dimensions for an N
dimensional hypersphere of radius W [Peterson and Middleton]
[Dudgeon and Mersereau|. The minimum rectangular sampling
density is SD,ct = (2W)Y. The Nyquist density, SDy,,, can be
evaluated from the geometry of maximally packed spheres. The

ratio
SDyyq

B SDrect
is plotted in Figure 6.15 up to eight dimensions. The difference
in sampling densities clearly becomes more significant in higher

dimensions. The numerical values from which this plot was made
are in Table 6.2. We will need them later.

N

6.2.2 Generalized Interpolation Functions

In this section, we extend some of the results of Section 4.1 to
higher dimensions.

6.2.2.1 Tightening the Integration Region

A single cell for the replication in Figure 6.10 is shown in Fig-
ure 6.14. Clearly, the support of a signal’s spectrum, A, will be
subsumed in a periodicity cell, C. Since the spectrum is identi-
cally zero outside of the support region, A, we can rewrite the
interpolation formulae in (6.33) and (6.34) as

o(f) = 3 (Qm) fis (T — Qi) (6.39)
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FIGURE 6.15.

Figure 6.15: The ratio of the Nyquist density to the minimum

rectangular sampling density when the support of
the signal’s spectrum is an N dimensional hyper-
cube.
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N
1.000
0.866
0.705
0.499
0.353
0.217
0.125
0.062

O ~1 O Uk W |2

Table 6.2: The numbers from which Figure 6.15 was generated.

FIGURE 6.16.

Figure 6.16: One cell of Figure 6.10. The region of integration,
B, must contain the spectral support region, A, and
must not infringe onto adjacent spectra. C is a cell
region. The areas of the regions A, B and C are A,
B and C respectively.
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and
f5(D) = | det Q| / exp(j2n @1 dit (6.40)
ueB

where B is any region within a periodicity cell that contains the
support , A. Indeed, the region B could be the support region, A,
or, as in (6.34), a periodicity cell, C. Note that, in one dimension,
A = B = C at the Nyquist rate. In higher dimensions, such an
equality is not assured at the Nyquist density.

6.2.2.2 Allowing Slower Roll Off

In one dimension, we were able to allow the spectrum of the
interpolation function to be any desired function over those in-
tervals where the signal’s spectrum was identically zero. This al-
lowed use of interpolation functions whose spectra had a slower
roll off (see Figure 4.2). An analogous freedom occurs in higher
dimensions. We can write, for example

o(f) = 3 (Qm) fif (F— Qi) (6.41)
where
f5 @) = fuld) + [ R(@exp(j2ni’i)di (6.42)

and N denotes intersection. The function (@) can be any con-
venient function. Integration is over all points in C not contained

in B.

6.3 Restoring Lost Samples

In this section, we will show that an arbitrarily large but finite
number of lost samples can be regained from those remaining for
certain band-limited signals even when sampling is performed
at the Nyquist density [Marks].

6.3.1 Restoration Formulae

Let M denote a set of M integer vectors corresponding to the
M lost-sample locations in an /N- dimensional bandlimited sig-



6. The Sampling Theorem in Higher Dimensions 196
I
L * L [
& 1+ .
— —
q2 9,
! @ ' N5 f @ I L3
L
& ] T~ @ @)
® #® ® L]
FIGURE 6.17.

Figure 6.17: Illustration of the three lost samples in the set M =
{mM1, Mg, m3}. The location of the three lost samples
is Qmy; k=1,2,3.

nal sampled in accordance with a sampling matrix, Q. As an
example, consider Figure 6.17 where the sampling matrix is

=[]

A total of M = 3 lost samples are shown by hollow dots. It

R R R R

Theorem : If (%) is a bandlimited signal and Q is chosen to
ensure that there is no aliasing, then the missing samples can
be regained from solution of the M equations:

> w(QA){o[k — 7] — fs]Q(k — )]} = Caen 2(QR) f5[Q(K —

ngM

)]
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ke M
assuming that the solution is not smgular [The Kronecker delta
function, 6[#], is unity when # = 0 and is zero otherwise.]

The left-hand side of (6.43) contains the unknown samples. The
right-hand side can be found from the known data.

Proof: We can write (6.39) as

=2+ X

AgM  AeM
This expression can be evaluated at M points, and we can solve
for the sample set {x(Q7i|7i € M}. Let these M points be the
t = Qk, where k € M:
#(QF) = [Y + X 1(Qi) fs{QUk — )} ke M

n¢gM  neM

2(Q7) f5(f — Q)

Rearranging gives (6.43).

Corollary 1 : For a single lost sample at the origin, if f5(0) # 1,
then

2(0) = [1 — fs(0)] " 2$(Qﬁ)fs(—Qﬁ) (6.44)
70

This follows from (6.43) for M = 1 and M containing only the
origin. Note that, by using (6.39), the signal’s interpolation can
be written directly void of the sample at the origin:

() = 3 (Qi)[fs(f — Qit) + {1 — f5(0)} " fs(— Qi) f(7)]
0
Corollary 2 : A sufficient condition for (6.43) to be singular is
when the integration region, B, is equal to a cell region, C.

Proof : On a cell, the functions {exp(j2ri’ Qii)} form an or-
thogonal basis set. From (6.40) with B = C we have

fa(Qit) = | det Q] [ exp(j2mi” Qii)di = o[

The left-hand side of (6.43) is thus zero and the resulting set of
equations singular.

(6.43)
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6.3.2 Noise Sensitivity

Our purpose here is to investigate the restoration algorithm’s
performance when inaccurate data are used. In general, the al-
gorithm becomes more unstable when (1) M increases and/or
(2) the area corresponding to B increases with respect to that
of C. Indeed, restoration is no longer possible when B = C.

The restoration algorithm in (6.43) is linear. Let &(Z) denote
a zero mean stochastic process. If () is uncorrelated with & (%),
then the use of {z(Qil) + £(Q7)|7i ¢ M} in (6.43) instead of
{z(Qn)|7 ¢ M} will result in {z(Q7) + n(Qn)|7 € M}, where
{n(Qm)|77 € M} is the response to {£(Qi?)|7i ¢ M} alone:

> Q) {0k — 7] — fs{QUk — )} = Trerm E(QR) f5{Q(k — 1)}

AgM
ke M (6.45)

The restoration noise, 77, depends linearly on the data noise, &.
Thus the cross correlation between these two processes and the
autocorrelation of 7 can be determined from a given data noise
autocorrelation.

Our treatment will be limited to the case when a single sample
is lost and the data noise is white, i.e.,

E[£(QA)E* Q)] = 20 — ] (6.46)

where £2 is the data noise level (variance) and E denotes expec-
tation. With no loss in generality, we place the lost sample at
the origin, and (6.45) becomes

n(0) =[1— f5(0)]7" Y £(Qi) f5(— Qi)

i#£0

Taking the square of the magnitude, expectating, and using
(6.46) gives

”;0) S O QAP (6.47)
#

S
(=1
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where the restoration noise level is
2 -, - 2 -,
n?*(0) = E[|n*(0)]]

The sum in (6.47) can be evaluated through (6.44) with x(f) =
f*(=1) [= f(f) since Fy() is real]. The result is

2(0) __ fs(0)
& 1— f5(0)
The result has a fascinating geometrical interpretation. From
(6.40)

(6.48)

fa(0) = | det Q| [ di
But, with an illustration in Figure 6.16,

B= / di = area of integration, B.
B

and
C= / dii = area of a cell, C = |detP].
c

Thus (6.48) can be written as

-1

WZLE) _ (% _ 1) (6.49)

The restoration noise level is thus directly determined by the
area of the integration region for fB(f) and the area of a cell.
Equation (6.49) is a strictly increasing function of B. Thus, for
minimum restoration noise level, we choose B = A =the region
of support of the signal z(f).

For Nyquist density sampling in one dimension, A = B = C.
In this case oversampling is required to restore lost samples.
For higher dimensions, the restoration capability is dependent
on the region of support of the signal’s spectrum. If the sup-
port is in the shape of a cell (e.g., rectangular, hexagonal), then
restoration is not possible at the Nyquist density.
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6.3.2.1 Filtering

Discrete white noise has a uniform spectral density and thus
significant high-frequency energy. Once lost data have been re-
stored, the data noise level can be reduced by filtering the result
through B assuming that B < C. The noise level at the lost sam-
ple location remains the same. The noise level at locations far
removed from the lost-sample locations will asymptotically be
the same as that for the filtered noisy samples if no data were
lost. If £(Qfi) is zero mean and stationary, then after filtering,
the process ¥(Qfi) is also stationary. If the data noise is white
as in (6.46), its spectral density is uniform in C. Thus if we filter
the noise through B, the resulting normalized noise level is

v _b 6.50
==C (6.50)
(A more rigorous derivation is left as an exercise.) To minimize,
we clearly would choose B = A.
For a single lost sample in discrete white noise, the ratio of
the restoration noise level to that of data far removed is, after
filtering through B,

-1

"g) - (1 - g) (6.51)

where we have used (6.49) and (6.50). To minimize, we again
would choose B = A. Note that (6.51) exceeds both unity and
(6.49).

6.3.2.2 Deleting Samples from Optical Images

The Nyquist sampling density for images whose spectra have
circular support is achieved when the circles in the frequency
domain are densely packed as is shown at the top of Figure 6.13.

Note, as is shown at the bottom of Figure 6.13, that the area
of A is less than that of C. Thus, in the absence of noise, an
arbitrary number of lost image samples can be restored from
those (infinite number) remaining. For B = A, the interpolation
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function here is
jine(Wr)
V3

We can numerically illustrate the effects of discrete white
noise on restoring a lost sample from an image that has a spec-
trum with circular support. Suboptimal rectangular sampling is
considered first, followed by the optimal hexagonal case. Both
cases are extended to higher dimensions.

fa(ti ) = 2W?| det Qljinc(Wr) =

Rectangular Sampling

If limited to rectangular sampling, (see Figure 6.13), the restora-
tion noise level from (6.49) follows as

7*(0) _ (i _ 1) T 3.66 (6.52)

Z  \x

After filtering through the A circle, the ratio of the restoration
noise level to the data noise level at points far removed from the
origin is

7%(0)
W2
where we have used (6.51) with B = A = 7W?2. The lost-sample
noise is thus 6.7 dB above the filtered data noise at infinity.
The results can easily be extended to higher dimensions. As-
sume that the spectrum has support within an N- dimensional
hypersphere of radius W [Wozencraft and Jacobs]:

—1
— <1 - %) ~ 1.66 (6.53)

N (NN
) Mo T CF)WY L odd N 654
—_= N : .
(2ﬂ)| : even N
2

For rectangular sampling, C = (2W)". The corresponding plots
of 72(0) /€2 and 12(0) /2 are shown as solid lines in Figure 6.18.
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FIGURE 6.18.

Figure 6.18: Plots of n2/£2 (filled circles) and 72/%2 (open cir-
cles) in dB [10log;,(+)]. The solid lines are for mini-
mum density rectangular sampling and the dashed
for Nyquist (hexagonal) sampling.
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Hexagonal Sampling

A single hexagonal cell is shown at the bottom of Figure 6.14
for minimum density sampling. The area of the hexagon is

C = 2/3W?

Thus, from (6.49) for B= A = 7W?
= -1
2 2
70) [J@—ql ~ 9.74
e

7
and, similarly, from (6.51)

2 -1
7O T 104
P2 2V/3

As one would expect, these values (=~ 10dB) are greater than
those of the corresponding rectangular sampling cases in (6.52)
and (6.53).

In higher dimensions, Nyquist sampling corresponds to denselyf]
packing hyperspheres in the frequency domain. We use Table 6.2
in conjunction with (6.54) to generate the restoration noise level
plots in Figure 6.18 for Nyquist density sampling when the sig-
nal’s spectrum support is a hypersphere. The plots are shown
with broken lines and, as we would expect, exceed the corre-
sponding rectangular sampling results.

6.4 Periodic Sample Decimation and Restoration

In the previous section, we showed that if gaps exist in the repli-
cation of spectra, then an arbitrarily large but finite number of
lost samples can be regained from those remaining. In this sec-
tion, we show that under the same circumstances, certain peri-
odic sample decimation can be reversed from knowledge of the
remaining samples. Thus, an infinite number of lost samples can
be restored in certain scenarios. This procedure is applicable in
certain cases even at the Nyquist density. The overall sampling
density can thus be reduced to below the Nyquist density.
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Fundamentally, we will distinguish between the Nyquist and
minimum sampling densities which, in one dimension, are the
same. The Nyquist density is the area of a periodicity cell when
the replicated spectra are most densely packed. The minimum
sampling density, we will show, is equal to the area of the sup-
port of a signal’s spectrum. With reference to Figure 6.14, we
showed, for example, that the Nyquist density for a signal with
a circular spectrum is, from (6.38), 2¢/3W?2. We will show that
the minimum sampling density is the area of the circle, 7W?, a
sampling density reduction of over 9%. In practice, this reduc-
tion can achieved by the decimation procedure described in this
section.

6.4.1 Preliminaries

Before a discussion of the procedure to restore decimated sam-
ples, we need to establish a formality for decimation notation.
Consider sampling geometry at the top of Figure 6.19 with sam-
pling matrix

T -T
As shown, the samples are divided into four groups labeled one
through four. The sampling matrix for the group of solid dots

is clearly
2T =2T
D= |3
Each of the other subgroups has the same sampling matrix, but

with a different offset vector. Using the four samples in the bold
square diamond, these offset vectors are
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i}

FIGURE 6.19.

Figure 6.19: (Top) Samples are divided into four subgroups la-
beled 1 through 4. (Bottom) A periodicity cell for
all the samples is the large square diamond. Each
diamond contains four subcells. A subcell is a peri-
odicity cell for any one sample subgroup.
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Qe = [—gT]

Correspondingly, we define the offset matrix
S oo o o 0 0 -1 -1

Let’s examine the frequency domain periodicity generated by
these sampling geometries. The periodicity matrix for all of the
samples is

. wo-w
PZQTZ[W W]

The large square diamonds shown at the bottom of Figure 6.19
are corresponding periodicity cells. (Each contains four smaller
square diamonds.) For any one of the sample subgroups, the
periodicity matrix is

N

w
2
P,=DT=

W W
2 2

The smaller square diamonds at the bottom of Figure 6.19 out-
lined by broken lines can serve as periodicity subcells for a sam-
ple subgroup, A cell, C, and subcell, Cp, for this example are
shown in Figure 6.20.

We can generalize our observations. For a given Q, we have

D = QM

where M is a nonsingular matrix of integers. For our previous

example
2 0
M-[0 ]

The E matrix of offset vectors is obtained through examination
of any period of sample subgroups. There are

L = |det M|
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Ep_A

FIGURE 6.20.
Figure 6.20: A periodicity cell divided into four subcells.

subgroups and L subcells per periodicity cell.
The spectrum of all of the samples is

s(f) = 2 2(Qi)d(F — Qi)

< S(i) =" 2(Q) exp(—j2ri’ Q)

-

n

The samples can be recovered via
2(Qf) = | det M| / S(@) exp(j2r T Q) di
c

where C is any periodicity cell.
The i** sample subgroup has a spectrum of

si(t) =Y 2(Dii — Q&)5(f — Dii + Qé;) >

Si(i6) = exp(—j2mi’ Qé;) X 2(Dii — Qé;) exp(—j27ri’ Dii);
1<i<L (6.55)
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A sample subgroup can be obtained from

z(Dii — Qé;) = |det D| / i) exp[j27ri’ (DA — Qé;)|di
(6.56)
where Cp is any subcell. Clearly
L
S(@) =>_5(4) (6.57)
i=1

6.4.2 First Order Decimated Sample Restoration

Consider unaliased replication of a spectrum in such a manner
that gaps occur. As we have seen, this can even occur at Nyquist
densities. We will show that if a subcell is totally subsumed in
a gap contained within a cell, then any sample subgroup can
be expressed as a linear combination of those sample subgroups
remaining. Thus, a sample subgroup can be lost and the signal
can still be interpolated from those samples remaining.

Proof :
If a subcell, Cp, lies in a gap, then S(%) is identically zero
there. Thus, for @ within the subcell we have from (6.57)

S(if) = 0 = S,.(7) + z_‘; Si(@)
Su(@) = — Z (@)

Substituting into (6.56) and simplifying gives
x(Dii—QéL) = —| det D] Z / i) explj2ni’ (Dii—Qéy)]di
Substituting (6.55) and simplifying gives

+(Dii — zz Dii — Q&) f[D(7i — 1) + Q(& — 1))
" (6.58)
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FIGURE 6.21.

Figure 6.21: A periodicity cell for the replicated circles shown is
the bold outlined tilted rectangle. The rectangle can
be divided into eight square diamond subcells one
of which, shown shaded, lies within a gap among
the circles.

where

F(B) = —| det D|L exp(j2rid’t)di (6.59)

is the interpolation kernel. Equation (6.58) shows the manner
by which the L' sample subgroup can be recovered from the
remaining L — 1 subgroups.

Example : We reconsider the minimum rectangular sampling
density of N = 2 dimensional signals whose spectrum has a cir-
cular support. The spectral replication of Figure 6.12 is redrawn
in Figure 6.21 with a bold outlined tilted rectangle shown as a
periodicity cell. We divide the cell into eight identical square di-
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FIGURE 6.22.

Figure 6.22: The decimation shown with solid dots achieves the
periodicity subcell structure shown in Figure 6.21.
Therefore, the samples at the locations of the solid
dots can be deleted and restored as a linear combi-
nation of those remaining.

amond subcells. One of the cells clearly falls into the gap among
replications. Using the periodicity matrix in (6.35), we find such
subcells can be generated by using

2 =2
M-[d
A sample grouping that will achieve these subcells is shown
in Figure 6.22. The deleted samples are shown as solid dots.

The interpolation function for this example follows from (6.59)f]
using the square diamond in Figure 6.21 as the integration pe-
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riod, Cp. The result is

: 13 +t . th— 1 7 ( )
f(t1,ts) = —sinc ( 14T 2) sinc ( 14T 2) o

This decimation geometry reduces the sampling rate to £ (21W)?]]
= 3.50W? which is still higher than the Nyquist density of
2V/3W? ~ 3.46W2.

6.4.3 Sampling Below the Nyquist Density

If there are gaps among spectral replications at the Nyquist
density, then first order sample decimations can always be ap-
plied thereby reducing the overall sampling density below that
of Nyquist [Cheung] [Cheung and Marks|. We offer two exam-
ples.

Example 1 : A spectral support is shown in Figure 6.23 that is
zero inside the small square and zero outside the large square.
The Nyquist density is clearly (21¥)?. The large square, however,
can be divided into a three by three array of smaller squares,
the center one of which falls within an identically zero region.
We may therefore decimate every ninth sample as shown in Fig-
ure 6.24. The decimated samples can be recovered using (6.59)
with Cp as the small square in Figure 6.23. The required inter-
polation function follows as

2 2
f(t1,19) = —sinc ( th) sinc ( W;t2>

The resulting sampling density is 8/9 that of Nyquist and is
equal to the area of the spectral support.

Example 2 - Optical Images : We return to the example of
maximally packed circles as illustrated in Figure 6.13. A period-
icity cell for this replication follows from choosing midpoints at
four gaps and forming the parallelogram shown in Figure 6.25.
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Figure 6.23: A spectral support for which a sub-Nyquist sam-
pling density is possible.
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FIGURE 6.24.

Figure 6.24: If a signal has the spectral support shown in Fig-
ure 6.23, then every ninth sample can be decimated
as shown here. The composite sampling density is
below that of Nyquist.
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The cell is divided into four congruent parallelograms. The
upper right parallelogram is divided into four smaller parallel-
ograms. The process is repeated one final time. A small par-
allelogram, shown shaded, is totally contained in a gap. Using
this as a subcell, we see that we can reduce the overall sampling
density to g—i that of Nyquist. A sample decimation procedure

to achieve this is shown in Figure 6.26.

u,

X ;

FIGURE 6.25.

Figure 6.25: The small shaded parallelogram subcell lies totally
in th e gap among maximally packed circles. Since
the subcell is &th the area of the larger parallelo-
gram cell, the (Nyquist) samplin g density can be
reduced by a factor of %.
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Figure 6.26: A sampling decimation procedure that will achieve
the subcell structure shown in Figure 6.25.
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6.4.4 Higher Order Decimation

First order decimation restoration can be straightforwardly gen-
eralized. If M < L nonoverlapping subcells lie in a gap within
one periodicity cell, then M sample subgroups can be repre-
sented as linear combinations of the remaining L — M. The
analysis procedure is identical to that in Sec. 6.4.2., except that
one solves for the M sample subgroups’ spectra corresponding
to M functional equations. The analysis is similar to a multidi-
mensional extension of Papoulis” Generalization as presented in
Chapter 4. Details are given elsewhere [Cheung], [Cheung and
Marks].

Higher order decimation can be used to establish that the
minimum sampling density for a bandlimited signal is equal to
the area of its support. In Figure 6.27, for example, we have
replication of circular support resulting from rectangular sam-

pling.

=11
|

L~
I

FIGURE 6.27.

Figure 6.27: Higher order decimation can be used to illustrate
that the sampling density for a bandlimited image
can be reduced to the area of its support.
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Each large square periodicity cell is divided into 441 square sub-
cells. In each cell, 68 of these subcells (shown shaded) lie in a
gap. Thus, if the circular radius is W, the sampling rate is re-
duced from (2W)? to 33(2W)? = 3.38W2, which is below the
Nyquist density of 3.46WW2. Ultimately, by increasing the num-
ber of subcells, the sampling density can be reduced to 3.46W?2,

the area of the circular support.

6.5 Raster Sampling

Raster Sampling of a two dimensional signal, z(ty,1), is illus-
trated in Figure 6.28. The one dimensional vertical slices can be
expressed via

o0

s(ti,t2) = D x(nT,t2)d(ty — nT)

n=—oo

where T is the sampling interval. The most familiar applica-
tion of raster scanning is in television. In order for there to be
no aliasing in the raster sampled signal, the signal spectrum,
X (u1,us), must be identically zero for |us| > 5= for all values
of uy.

x(2T.ty)

—> T<— t? /\/

FIGURE 6.28.

Figure 6.27: Illustration of raster sampling
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Interestingly, every slice of z(¢;,t5) is a one-dimensional func-
tion with the same spectral support (e.g. bandwidth). We can
establish this by inspection of Figure 6.29 where the support of
a bandlimited signal, X (u1,us), is shown in the bottom right
corner. We can obtain xz(t;,t;) by first inverse transforming
X (ug,uz) in the uy direction and then the w; direction. The
result of the first step is pictured in the upper right corner of
Figure 6.29. The vertical slice of this function at uy = v is
simply the inverse transform of the slice X (v, us). Since, for a
fixed v, this is a bandlimited function, it cannot be zero on
any finite interval. Extending this to all of the vertical slices of
X (u1,ug), we conclude that the one dimensional inverse trans-
form of X (uy,us) pictured in the upper right hand corner is
identically equal to zero outside of the strip |u;| > B and is
almost everywhere nonzero inside the strip.

Consider, then, the one dimensional slice, z(¢;,7), shown at
the upper left of Figure 6.29. For a given 7, what is the band-
width of this signal? Taking the one dimensional Fourier trans-
form results in the ¢; = 7 slice shown at the upper right of
Figure 6.29. From our previous arguments, the bandwidth of
x(7,t1) is B. Indeed, the bandwidth of all the horizontal slices
of z(ty,1y) is B. We therefore conclude that any two parallel
slices of a two dimensional bandlimited function have the same
spectral support (e.g. bandwidth).

The required raster sampling rate, 2W, is clearly deduced by
inspection of the lower left corner of Figure 6.29. This rate can
be finite even when B is not. The 2W support interval is the
geometric shadow of the support of X (uy,us). This rate will
generally vary as we rotate the signal and thereby rotate its
spectrum.
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Figure 6.29: A two dimensional signal can be Fourier trans-
formed by first transforming each horizontal slice
(upper right hand corner) and then Fourier trans-
forming each vertical slice of the resulting function.
Alternately, we can first Fourier transform each ver-
tical slice (lower left hand corner)
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6.6 Exercises

219

6.1 Compute the Fourier transform of the two dimensional
functions shown in Figure 6.30. All are one inside and
zero outside the curves shown. The ellipses in (¢) and (d)

are identical.
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FIGURE 6.30.

[

6.2 Compute the Hankel transform of exp(—mr?).

6.3 Let f(r) <> F(p) denote Hankel transform pairs. Complete
the following theorems:

(a) Scaling

flar) <7

(b) Inversion

£y =27 [ o (p)Jo(2rrp)dp



6.4

6.5

6.6

6.7

6.8

6.9

6.10
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Show that the magnitudes of the circular harmonics of
x(r, 0) are the same as those for the rotated image z(r, 6 —

P).

Compute the Fourier series coefficients for the following
periodic functions

(a) S(@) = X; G(d—Pii) where G(#) is a given function
that is not a period of S(i)

(b) S(uy,us) = cos[2m(sin uy + sin usg)]

A function, x(t1, t5), is sampled using the sampling matrix
in (6.36). All samples are zero except for z(0,0) = 1. As-
suming no aliasing and a cell equal to the tilted rectangle
in Figure 6.10, give a numerical value for z(3,0).

A sampling geometry is denoted by Q. Show that QM
produces the same geometry when M is a matrix of inte-
gers and |det M| = 1.

Replace the sample data in (6.39) by the noisy data z(Qn})
+£(Qm). The result is x(£) + W (#). Assume that £(Qnmi) is
zero mean and wide sense stationary with variance &2.

(a) Show for B = C, that W2(t) = £2. Thus the interpo-
lation noise level is the same as the data noise level.

(b) Show that when the data noise is discrete white noise,
that the interpolation noise level is given by (6.50).

A signal x(t1, 1) is known to have a spectrum that is iden-
tically equal to zero outside of an equilateral triangle. If a
side of the triangle is B, what is a sampling matrix that
we can use to minimize the sampling density? Draw the
replicated spectra resulting from this sampling geometry.

A signal x(t1, t) is known to have a spectrum that is iden-
tically zero outside of a circle of finite radius in the (uq, us)
plane. The signal is sampled at its Nyquist density corre-
sponding to this circle and the sample at the origin is lost.
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6.12

6.13

6.14
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If all of the known samples are zero, what is the value of
the lost sample?

For a fixed x(f) and Q, numerically investigate the con-
vergence rate of (6.44) for various B’s.

Derive the interpolation function for the second exam-
ple in section 6.4.3 as illustrated in Figure 6.25 and Fig-
ure 6.26.

Instead of x(Dni—Q¢;) on the right side of (6.58), suppose
we had z(Dni — Q¢;) +{(Dm — Qé;) where ¢ is zero mean

discrete white noise with variance £2. Thus

E[¢(Din — Qé;)¢(D7i — Q&;)] = £20[7 — m]d[i — 5]
Let the response to this noisy data be

(D — Qér) + (i)
Clearly, n(7i) is zero mean and has the same variance,
E[ln(@) "] = n?

for all 7i. Find a closed form expression for the NINV,
n* /&%
Consider the parallelogram periodicity cell for maximally
packed circles pictured in Figure ?7. The parallelogram
can be divided into two equilateral triangles. One triangle
is positioned, as shown, with its three vertices centered in
gaps. The triangle is divided into four smaller equilateral

triangles. The center triangle is again divided. Note that
the small equilateral triangle falls completely in a gap.
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FIGURE 6.31.

(a) Using this observation, describe a second order deci-
mation scheme to reduce sampling below the Nyquist
rate. (Note: as shown, the periodicity cell can be ori-
ented as to contain these two gaps.)

(b) What is the overall density of this decimation scheme?}}

(c) For your choice of subgroup decimation, derive the
required interpolation functions.

6.15 Assume that functions in Figure 6.30 are functions of
(u1, ug) rather than (1, ?5). We wish to raster sample N =
2 dimensional signals that have spectra with supports il-
lustrated in Figure 6.30(a), (b) and (d). We have the free-
dom to choose the sense of sampling. All sample slices, for
example, can be horizontal, all can be at 45° or 30, etc.

(a) In each case, specify a sampling sense that produces
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the minimum number of line samples per unit inter-
val. Also, give this minimum rate.

(b) Sketch the resulting spectral replication.
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Continuous Sampling

To this point, sampling has been discrete. In this chapter we con-
sider reconstruction of bandlimited signals from continuous sam-
pling. Our definition of continuous sampling is best presented
by illustration. A signal, f(¢), is shown in Fig. 7.1a, along with
some possible continuous samples. Regaining f(¢) from knowl-
edge of g.(t) = f(¢)II(t/T) in Fig. 7.1b is the extrapolation
problem which has applications in a number of fields. In optics,
for example, extrapolation in the frequency domain is termed
super resolution.

Reconstructing f(¢) from its tails [i.e., g;(t) = f(t){1-11(¢/T)} |}
is the interval interpolation problem. Prediction, shown in Fig.
7.1d, is the problem of recovering a signal with knowledge of
that signal only for negative time.

Lastly, as illustrated in Fig. 7.1e, is periodic continuous sam-
pling. Here, the signal is known in sections periodically spaced
at intervals of 7. The duty cycle is a. Reconstruction of f(t)
from this data includes a number of important reconstruction
problems as special cases:

1. Assume f(t) goes to zero as t — +o0o. Then, by keeping
o1 constant, we can approach the extrapolation problem
by letting T" go to oo.

2. Redefine the origin to be centered in a zero interval. Under
the same assumption as (1), we can similarly approach the
interpolation problem.

3. Redefine the origin as in Exercise 7.1. Then the interpola-
tion problem can be solved by discarding data in Fig. 7.1c
to make it periodically sampled.

4. Keep T constant and let a — 0. The result is reconstruct-
ing f(t) from discrete samples as discussed in Chapter 3.



7. Continuous Sampling 226

(t)

(a) //_/

t

() N Eel) = HOTI(/T)
\ |
——p—
g ()=f([1-TT(t/T)]
///—‘ i t
o

g,{t) = f(th(~t)
(d)/

t
/ﬂ%(t):f(t) ra(t/T)
(e)
df’l‘ ‘ [ t

\—_

oL Tl T —

FIGURE 7.1.

Figure 7.1: Tllustration of continuous sampling (a) the original
signal; (b) extrapolation; (c) interpolation; (d) pre-
diction; (e) periodic continuous sampling. The value
and meaning of T varies in each case.
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Indeed, this model has been used to derive the sampling
theorem [Carlson].

Figures 7.1b-e all illustrate continuously sampled versions of
f(t). In this chapter, we will present techniques by which the
signal can be reconstructed assuming that f(¢) is bandlimited.
In the absence of noise, any finite energy bandlimited signal can
be reconstructed from any continuous sample. Such signals are
analytic (or entire) everywhere [Boas, Papoulis (1977)]. Thus,
if we know the signal within an arbitrarily small neighborhood
centered at t = 7, we can compute the value of the function and
all its derivatives at 7 and generate a Taylor series about t = 7
that converges everywhere:

o
f@)y= > (t=n)"f"(r)/nl.
n=—oo
In practice, of course, this can only be done to an approxima-
tion. We could, for example, empirically determine f(7) and
fO(7) and maybe even f®(7). But, as we have seen in Sec-
tion 5.1.4.; higher order derivative determination will become
critically muddled by measurement inexactitude. Thus, in our
example, we could at best fit a quadratic to the signal at t = 7.
In the absence of uncertainty, however, restoration can be per-
formed from any continuously sampled bandlimited signal.

Intuitively, one should not be surprised that a known por-
tion of a bandlimited signal can be extended at least near to
where the signal is known. Bandlimited signals are smooth. The
extension of such a signal must be similarly smooth. Simply con-
tinuing the curve will in general yield a good estimate “near”
to where the signal is known.

For the extrapolation problem, Pask explained the relation-
ship between the known interval and those samples far removed
from the interval using the cardinal series interpolation. In Fig.
7.2, the sample f(n/2W) is assumed to be outside of the known
interval. From the sampling theorem, the interpolation contri-
bution of this sample is a sinc function whose tails will intersect
and thus make a contribution to the known portion of the sig-
nal. Thus, the known portion of the signal contains information
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Figure 7.2: Illustration that a sample value far removed from an
interval has an effect on the signal in that interval.

about the unknown part of the signal. Note, however, as we go
farther and farther away from the known portion of the signal,
the contribution becomes less and less.

Unlike the Taylor series treatment, most of the restoration
algorithms in this chapter make use of the entire known portion
of the signal. Like the Taylor series treatment, the sensitivity
of these algorithms to inexactitude must be considered. Indeed,
a number of the algorithms are ill-posed. This means that a
small amount of noise on the known data can render the recon-
struction unstable. In such cases, further a priori information
about f(¢) must be included in the algorithm i.e., the original
problem statement is too vague. If we assume only that f(¢)
is bandlimited with finite energy, the extrapolation and predic-
tion problems are ill-posed whereas restoration from periodic
continuous samples and interpolation problems are not.

7.1 Interpolation From Periodic Continuous
Samples

The given data for the periodic continuously sampled signal in

Fig. 7.1e is ,
gc(t) = f(t)ra(?) (71)
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Figure 7.3: Illustration of the degradation of f(t) to g(¢) (a) in
t. (b) in the frequency domain.

where the duty cycle, a, lies between zero and one and the pulse

train is
t _

«

)= 3 =), (7.2

Given that f(¢) is bandlimited, the problem is to find f(t) given
gc(t) and the signal’s bandwidth, B.

The degradation process described by (7.1) is illustrated by
the top three functions in Fig. 7.3. The corresponding operation
in the frequency domain, shown in the bottom three functions
in Fig. 7.3 is

Ge(u) = F(u) * TR, (Tu) (7.3)
where the upper case letters denote the Fourier transforms of the
corresponding functions in (7.1) and the asterisk denotes con-

volution. Expanding (7.2) in a Fourier series followed by trans-
formation gives

TR,(Tu)= S Cod(u—2) (7.4)
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FIGURE 7.4.

Figure 7.4: Tllustration of (a) first order aliasing. (b) second order
aliasing.

where
C,, = asinc(an).

Then the spectrum of the degradation in (7.3) can be written:

Colu) = Y CuF(u— ).

n=—oo

7.1.1 The Restoration Algorithm

Clearly, if the sampling rate 1/T exceeds 2B, the replicated
spectra do not overlap and F'(u) can be regained from G(u) by
a simple low pass filter. We are interested in restoration when
the data is aliased. If one of the spectra overlaps the right half
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Figure 7.5: Tllustration of the methodology of restoring M-th or-

der aliased data by summing

2M + 1 shifted and

weighted versions for the degraded spectrum.

zero order spectrum as in Fig. 7.4a, we have first order aliasing.
If two overlap, as in Fig. 7.4b, we have second order aliasing,

etc. In general, the order of aliasing is
M =< 2BT >

where < ¢ > denotes “the greatest integer
Consider Fig. 7.5 in which 2M +1 shifted
shown, i.e., the set

{Gelu=75) | =M <m <

not exceeding (.”
versions of G.(u)are

M.
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The interfering component spectra in each shifted GG are shown
not overlapping for presentation clarity. We now simply need to
weight the m'* shifted G, by a coefficient b, so that

> bnGelu= ) Tgp) = Flu) (7.5)

With attention again to Fig. 7.5, this is equivalent to summing
the weights of the component spectra in each column to give
zero for the interferring spectra and unity for the zero order
spectrum. That is, find the b,,’s which satisfy

M
Z by Cr . = [0 =M <n< M. (7.6)

m=—M

Viewing this as a matrix operation:

[0, O, i Oy o Cooyr ] (ILM_ (0‘
¢, Gy o Oy o Coopga b_nr 0
Cy Cuy1 - Cy e Oy bo — 11

G Gy - O o O | Lbw | 0

(7.7)

it is clear the b,,’s can be solved for by solution of a Toeplitz'
set of equations.

Inverse transforming (7.5) gives the time domain restoration
formula

F(6) = [0:(1)On ()] * 2Bsine(231) (7.8)

where O (1) is the trigonometric polynomial

M
Ou(t) = 3 by 2 (7.9)
m=—M

1The nm?" element of the matrix is a function only of n — m.
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Note, however, that since

i

7)

we only require knowledge of ©,,(t) where r, is unity. Thus we
define the periodic function

Y (t) = Onr(t)ralt). (7.10)

Expanding in a Fourier series gives

9e(t) = ge(t)ral

¢M(t) — io: dn €j27rnt

n=-—oo

The coefficients are

dn = 2 'Q/)M(t) €7j27rntdt

= [ oult) e #at

(V][] wol=

IR

= « ;M by, sincla(n —m)]

where, in the last step we have used (7.9). From (7.6), we con-
clude that

M
@ Y bysincla(n—m)] ;|n|>M
dn — m=—M

d[n] | n| < M.

Note that the d,,’s are also the weights of the remaining spec-
tra after restoration. Plots of 1y, (¢) for « = 0.5 are shown in
Fig. 7.6. Plots of ¢ (t) for various duty cycles are shown in Fig.
7.7.

In lieu of (7.8), the restoration algorithm pictured in Fig. 7.8
now becomes

£(8) = loe(t) s (7)) + 2Bsine(2B1). (7.11)
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Figure 7.6: Plots of 9y (t) = ¢y (—t) for « = 0.5 and M =
1,2,3,4, and 5. The vertical scale is linear for |
¥ar(t) |< 1 and logarithmic otherwise.
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Figure 7.7: Plots of ¢9(t) for various a.. The vertical scale is linear
for | 12(t) |[< 1 and logarithmic otherwise.
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Figure 7.8: Restoration of continuously sampled signals. The pe-
riodic function y;(t) is parametrized by the duty
cycle and the severity of aliasing. The low-pass filter
has the same bandwidth, B, as the restored signal.

This is our desired result.

Trigonometric Polynomials
If f(t) is the trigonometric polynomial,

N
f(t) — Z ﬁn 6j271"nt/T

n=—N

then , for | ¢ |< T'/2, the restoration algorithm in (7.11) becomes

f@)=1r1 H(@%)?/)M(%)] % %h(%) (7.12)
where
h(t) = Sin[z(ii](\; t‘; DiJ )= 3 o(u=n)

This restoration process is illustrated in Fig. 7.9. Note that
H(uT) acts as a sampler in the frequency domain. Plots of h(t)
are shown in Fig. 7.10 for various N.
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Figure 7.9: Restoration of a period of a trigonometric polynomial
known only over the subperiod of | ¢ |< 3.

Proof: We can write (7.11) as

+5

o=y [

n=-—oo

%);T 9e(T) ¢M(%)Sinc[23(t — ).

Since both g. and 1, are periodic, setting & = 7 — nT" gives

10 = [ 0€) v kit - € de

—aT/2
where
k(t)=2B > sinc[2B(t — nT)).

Recognizing that B = N/T, we can evaluate this sum in the
same manner we evaluated (4.75). The result is

_ sin[m(2N + 1) £]

k(1) = T sin(Zt)

and (7.12) results. Note that we must have the strict inequality
M > 2N since, at M = 2N, we have first order aliasing due to
the Dirac delta nature of the spectrum of f(t).
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FIGURE 7.10.

Figure 7.10: Plots of the convolution kernels h(t). When a
trigonometric polynomial of period T is known for
| t]< %, the convolution of this function with the
known portion of the polynomial ( after weighting
with ¢p7(t)) results in a whole period of the trigono-
metric polynomial.
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7.1.2 Noise Sensitivity

In this section, we explore the performance of the restoration
algorithm in (7.12) in the presence of additive wide sense sta-
tionary zero mean noise, £(t) [Marks & Kaplan]. Because of
linearity, an input of g.(t) + £(¢) into the restoration algorithm
will yield an output of f(¢) + n(t), where n(t) is the algorithm
response to £(t) alone. Using (7.11), it follows that

(1) = (1) var ()] + 2Bsine(2B1).

The interpolation noise, 7(t), is also zero mean although it is
not stationary.
The restoration noise level follows as

2(t) = E ()
— E[/T £(r) sz(%) 2Bsinc{2B(t — 1)} dr

=—00

< [T e sz(%) 2 Bsinc{2B(t — A)} d\ ]

=—0

— 4B [ °:o 1 Z R§(T—)\)wM(%)wM(%)sinc[2B(t—T)]sinc[QB(t—)\)]de)\.I

By straightforward integral manipulations we have

P = [ Re()h(t:7)dy (713)
where

h(t:7) = 2B b (F)sinc2B(t = 7)] % 2B Yas(F)sine[2B(t 7))
(7.14)

The % denotes autocorrelation with respect to . The output
noise level in (7.13) is an even periodic function with period 7.

7.1.2.1 White Noise

For continuous white noise

Re(1) = £25(7). (7.15)
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Equation (7.13) becomes
2(t
O o)
2

= (2B)%sinc*(2Bt) * ’gb?w(%) (7.16)
From (7.10)

Vi (t) = ra ()0} (¢)
where, from (7.9)
M

M
QL) = > 3 byb, kL (7.17)

k=—M r=—M

Fourier transforming both sides of (7.16) gives
2(t u t
T o 2BAGHF ()

= 2BA( )[TR (Tu) x FO2,( (7.18)

)
where F denotes the Fourler transform operator. Substituting
(7.4) and the transform of (7.17) into (7.18) gives

772_(0 = QBA(QB io: Cp Z by Z by6[u k%—p)]

62 p=—00
= 2BA(55 Zkab ZC,W -5

where ¢ = k+7r—p and we have recognlzed that the finite extent
of the triangle function lets through only 2M + 1 of the Dirac
delta functions. Evaluating A(u/2B) at u = ¢/T and inverse
transforming gives the desired result:

szbz Ly e

(7.19)

An illustration of the restoration noise level for various duty

cycles for first-degree aliasing is shown in Fig. 7.12. The effects
of variation of the aliasing order are illustrated in Fig. 7.11.
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Figure 7.11: NINV for additive white noise for various orders of
aliasing M. The values of T' corresponding to M =
1,2,3 are T = 0.9,1.4, 1.9, respectively. Because of

symmetry, plots are needed only for 0 < z < %

(2B =2 and a = 0.6)
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7.1.2.2 Colored Noise

With the aim of placing (7.14) in more tractable form for col-
ored noise, we Fourier tranform with respect to 7 using the
autocorrelation theorem of Fourier analysis

H(t;v) = [ O:Oh(t;v) e ™ dy
= | T U (Tv) %[ 72 H(%)] 2 (7.20)

where W,,(v) is the Fourier transform of 1,;(7) and convolution
is with respect to v. Clearly

Uy(v) = i dnd(v +n).

Thus (7.20) becomes S
Htr) = | 3 dyessl-gontv+ i 5 P
_ niodn exp(_j;””t) H(VZZ/T) 2. (7.21)
Since
(50 550 = M G )

substituting into (7.21) and further recognizing from (7.6) that
dy, = 6[m] for | m |< M gives

}

v
H(tv) = (55)
M v+ Idn —j2n(n —m)t
=M > M T
|ln—m|<M
v
= TITI(—
(55)
M v+ 2m —j27mt
+2 X dednnlI () exp{ =)
n==M1m|< M T

|ln—m|>M
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Using the power theorem, (7.13) can be written as

7= [ Z Se(u) H(t; u)du (7.23)

where the power spectral density, S¢(u), is the Fourier transform
of R¢(t). Define the odd indefinite integral

Ie(ust) = /Ou Se(v)H (t;v)dv.

Then substituting (7.22) into (7.23) and recognizing that n*(t)
is real gives the Fourier series

n(t) = 21¢(B;t)

M
+ Z Z Ay cos(
n=—M |m|§M
|ln—m|>M

m— | m|—2n
—— + B;t) — [,
5T + B;t) — Ig(

2mmt

) X

m+ | m | —2n

- — B;1]1.24)

[ (
For white noise, as in (7.15), I¢(u;t) = 2. The equivalent
result in (7.19), however, is in closed form.
For an example application of (7.24), consider the Laplace
autocorrelation

Re(t) =& ¢
where \ is a specified positive parameter. Then

L(u:1) = €2 arctan(27ru/)\).

™

In the numerical examples to follow, B is set to unity. Figure
7.13 shows the dependence of output noise level on the duty
cycle « for first-order aliasing. The dependence of the Laplace
parameter is shown in Fig. 7.14 for a fixed duty cycle. As A
increases, adjacent points of the input noise become less corre-
lated and the interpolation noise level decreases. Dependence of
the output noise level on order of aliasing is illustrated in Fig.
7.15.
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7.1.3 Observations
7.1.3.1 Comparison with the NINV of the Cardinal Series

For certain combinations of the parameters 7,28, and «, the
continuously sampled signal can be discretely sampled uniformly
at or in excess of the Nyquist rate. Let this rate be denoted by
2W > 2B. The result is the same as if we had discretely sampled
the original signal at a rate of 2W. Let T, 2B, and « be such

Example | T | 2B | a | 2W | min 72(t)/€2 | max n2(t)/€2 | n2/&2
(a) 11157090 5 0.7460 0.7478 0.7647
(b) 11151070 3 0.7768 0.7842 0.8020
(c) 5103096 | 1 0.2810 0.2822 0.3754

Table 7.1: Comparison of noise levels for some cases in which the
signal can be restored using either the continuously
sampled signal-restoration algorithm or the conven-
tional sampling theorem (followed by filtering). The
former, in each case, has a lower level. In each case,
the Laplace parameter is A = 2.

that this uniform sampling can be performed. Assume that, as in
the previous section, each sample point is perturbed by additive
Laplace autocorrelation noise with parameter a. When the noisy
samples are interpolated and passed through a filter unity on
| u |< B and zero otherwise, the resulting NINV is given by
(5.15). One would expect that the periodic continuous sample
restoration would yield a lower noise level since more data are
used in the recovery. As the results in Table 7.1 indicate, this is
indeed the case.

7.1.3.2 In the Limit as an Extrapolation Algorithm

Keeping o1 constant and letting 7" tend to oo alters our algo-
rithm to an extrapolation algorithm if f(¢) — 0 as t — oco. As
a consequence, the degree of aliasing, M, becomes unbounded.
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It is clear from Figures 7.13 and 7.17 that the noise sensitiv-
ity in this case increases enormously. This is our first observed
indication that the extrapolation problem is ill-posed.

7.1.4 Application to Interval Interpolation

Use of the periodic continuous sample restoration algorithm for
interval interpolation is shown in Fig. 7.16. The known data,
shown in the top figure, consists of the signal’s tails. By selec-
tively throwing away portions of the known data, we can form
the continuously sampled signal shown. Our algorithm can be
applied and the signal restored.

The unknown interval of length (1—a)7T must stay fixed. Note,
however, that we have freedom in our choice of T'. If we choose T’
to be small, then we have a small duty cycle and, as is illustrated
in Fig. 7.12, a correspondingly large restoration noise level. If
we choose T' to be large, then the order of aliasing increases and,
as witnessed by Figs. 7.11 and 7.14, the restoration noise level
is also large. These observations suggest that there might exist
some intermediate value of 7" that has optimal restoration noise
properties [Marks & Tseng].

An example where this is the case is pictured in Fig. 7.17,
where the normalized interpolation noise variance (NINV) at
the origin is plotted versus T for the additive white noise in
(2.30). As T increases, the restoration noise level decreases un-
til 7" is sufficiently large to increase the order of aliasing. Then,
as shown, the noise level makes a quantum leap and begins de-
creasing again until the next order of aliasing is reached. (Values
of M are given at the top of the plot.) Note that in this case, the
relative minima increase with 7" and, for minimum restoration
noise level, the best choice for T"is 1 — € where 0 < ¢ < 1.

As is shown in Fig. 7.18, the relative minima can also increase
with T". Here, the noise has a Laplace autocorrelation with pa-
rameter A = 2. All other parameters are the same. Increasing
A to 10 again yields decreasing minima as shown in Fig. 7.19.
Note that, in any case, the interpolation noise level is finite. By
this measure, the interpolation problem is thus well posed.
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Figure 7.12: NINV for additive white noise for various duty cy-
cles. 2B = 2 and T = 0.9, giving M = first-order

aliasing.
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FIGURE 7.13.

NINV for input noise with Laplace autocorrelation
for various duty cycles . 2B = 2 and T = 0.9,
giving M = first-degree aliasing. The Laplace pa-
rameter is A = 2.
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Figure 7.14: NINV for additive input noise with Laplace au-
tocorrelation f or various Laplace parameters .
2B =2 and T = 0.9, giving M = first-degree alias-
ing. The duty cycle is @ = 0.6.
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FIGURE 7.15.

Figure 7.15: NINV for additive input noise with Laplace au-
tocorrelation for various degrees of aliasing. The
T values corresponding to M = 1,2,3 are T =
0.9,1.4,1.9, respectively. Because of symmetry,
plots are needed only for 0 < z < T/2. ( 2B = 2
and a = 0.6, and \ = 2.)
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Figure 7.16: Forming a continuously sampled signal (bottom)
from the known interpolation problem data (top).
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Figure 7.17: Continuous sample restoration of the interval inter-
polation problem yields this 72(0)/£2 curve when
the data are perturbed by white noise. The opti-
mum choice of T is a bit below one (2B = 2,(1 —
a)T =0.4).
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Figure 7.18: Same as Fig. 7.17, except the noise has a Laplace
autocorrelation with parameter A = 2. The minima
here increase.
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Figure 7.19: Same as Fig. 7.19, except A = 10. The minima here
decrease. The optimal value of T is a bit below one.
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7.2 Prolate Spheroidal Wave Functions

A set of orthogonal functions which prove highly useful in the
extrapolation and interval interpolation problems are the prolate
spheroidal wave functions (PSWE’s). Their use in these prob-
lems was initially reported by Slepian and Pollak in what today
is considered the first in a classic series of papers.

The PSWEF’s can be defined as the solution of the integral
equation:

T/2
Anthn(t) = 2B / ,¥alr) sincl2B(t —7)] dr (7.25)
—T/2
where 0 < n < oo and the \,’s are the eigenvalues. Equivalently
t
Ann (1) = [Un(2) H(T)] * 2Bsinc(2Bt). (7.26)

The PSWEF’s can thus be viewed as the eigenfunctions of low
pass filtering signals of finite support.

Although not explicitly stated in the notation, both 1), (¢) and
A, are continuous functions of the parameter

¢ = 2BT. (7.27)

Plots of some PSWF’s are shown in Fig. 7.20

7.2.1 Properties

Here we present without proof some significant properties of the
PSWF’s and their eigenvalues.

(a) The eigenvalues of the PSWF’s are real. Note from (7.26),
that energy in ,(t) is reduced first by truncation and
then by filtering. Thus, each A, should have a magnitude
less than unity. We will choose them to be positive and
will index them in decreasing order:

I>X>A>-->0. (7.28)
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Figure 7.20: vo(t), 11(t), and 12(t) vs. 2Bt for ¢ = 0.6.

(b) From (7.26), the PSWEF’s are clearly bandlimited and thus
are not affected by low pass filtering:

U (t) = 1, (t) * 2Bsinc(2Bt). (7.29)
(c) For a given ¢, the PSWEF’s are orthonormal on (—o0, 00):

[ O:O U (7)o (T)dr = 8]0 — m]. (7.30)

Furthermore, they form a complete basis set for finite en-
ergy bandlimited signals. Thus, if f(¢) is bandlimited, then

o0

f() =" anihn(t) (7.31)

n=0

where

an= [ FOn(t)dr. (7.32)
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Like the sampling theorem, convergence of (7.31) is uni-
form [Gallagher & Wise].

For a given ¢, the PSWE’S are orthogonal on the interval
|t |<T/2:

/ (P (1) d = A S — ] (7.33)

T2

Furthermore, the PSWF’s are complete finite energy func-
tions on the interval | ¢ |< T'/2. Specifically

b= 3 bamltrltl< T (73

where

T/2
Anby = [ oy PO (D

Like the Fourier series, convergence of (7.34) is assured in
the mean square sense.

The PSWEF’s are also eigenfunctions of a sort for the Fourier]]
transform. Specifically

Tu U
)

5 HGg) (7.35)

T
Un(t) < 2B, U (

Similarly, for the truncated PSWEF:

t TA,
2B

dlyg) (130

This follows from (7.35) and duality.

The PSWE’s are difficult to deal with numerically. For our
purposes, they will prove to be primarily an analytic tool.
Their detail structure, shown in Fig. 7.20, is of secondary
interest.
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7.2.2 Application to Extrapolation

Let f(t) be bandlimited with known bandwidth B. The extrap-
olation problem is to regain f(¢) from

t
9:(t) = f(t) II(). (7.37)
A solution to this problem is obtained by expanding ¢(¢) into

a PSWF series:

(1) = > 0,0 (1) () (7.3%)
where -
M= [ acld) W) dr. (7.39)

Also, since f(t) is bandlimited, it can be expanded as in (7.31).
The coefficients of an orthogonal function expansion are unique.
Thus, the coefficients in (7.31) and (7.39) are the same. The
significant point is that these coefficients can be determined
only with knowledge of g () via (7.39). Then f(t) can be found
from (7.31) and our extrapolation is complete.

This result should bother our intuition. For example, tele-
phone conversation waveforms can be considered bandlimited.
Our result says that the entirety of a phone conversation can be
determined if we know only a word or two in the middle. This,
of course, is an unacceptable conclusion.

The resolution of this apparent paradox between mathematics
and intuition lies in the fact that our analysis has been to this
point deterministic. In practice, the known portion of the signal
will be accompanied by some type of noise. To understand how
noise affects the algorithm, we must examine the structure of
the eigenvalues shown in Fig. 7.21. Fix c. For n below a certain
number, the eigenvalues are essentially one. Above that thresh-
old, they are close to zero. A typical plot of A, versus n is shown
in Fig. 7.22.

Consider, then, the evaluation of the coefficients in (7.39)
when either the integral computation and/or g.(t) is accompa-
nied by a small degree of inexactitude. If n is above the thresh-
old, then division by A, &~ 0 will greatly magnify this error.
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eigenvalue

FIGURE 7.21.
Figure 7.21: Eigenvalues, A\, of the PSWF integral equation.

Thus, the a, coefficients can be only computed reliably up to
that threshold which we will call S.

To get a feeling for the value of S, consider again, g.(t). If
we sample this known portion at the Nyquist rate, 2B, over
a time interval of duration 7T, then the total number of non-
zero samples is about 2B7T. This is the time-bandwidth product
discussed in Chapter 3. It is also roughly the number of discrete
values required to specify g.(¢) to a “good” approximation. We
can show empirically that this is the threshold we seek. The
value

S =2BT

has also been called the Shannon number [diFrancia]. Note that
S = ¢. Thus, we conclude that in most any practical situation,
ge(t) can be represented by roughly S numbers, be they samples
or PSWF coefficients. In very high signal-to-noise ratio situa-
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Figure 7.22: Eigenvalues for the PSWF for ¢ = 10. The points
are connected for clarity.

tions, however, it is possible to add a few degrees of freedom to
a truncated signal.

7.2.3 Application to Interval Interpolation

Mathematically, the interpolation problem is similar to extrapo-
lation with a significant difference - interval interpolation is well
posed. As is shown in Fig. 7.1c, our given data here is:

a(t) = F(B)[L — H(%)]. (7.40)
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From (7.25) and (7.29), we conclude that

(1= A)n(t) =2B | | ¥n(7)sinc[2B(t — 7)ldr.  (7.41)
T> 5
It follows that the PSWF’s are complete for g;(¢) when f(t) is
bandlimited. Equation (7.31) applies and the expansion coeffi-
cients can be found with knowledge only of g;(t):

= (1= Ap)"! /T>1| i) () dr.

Here, we are dividing the integral by a small number for n below
S. The difference here is that the number is finite. Thus, finite
data error yields a finite amount of interval interpolation error
and the problem is well posed.

7.3 The Papoulis-Gerchberg Algorithm

The Papoulis-Gerchberg algorithm (PGA) is an ingenious tech-
nique for restoring any continuously sampled bandlimited signal
without directly using PSWF’s. Indeed, the algorithm requires
only the operations of filtering and truncation.

The PGA was first discovered by Papoulis (1973-74) but was
first published in an archival journal, independently, by Gerch-
berg. DeSantis and Gori, independently, published the algorithm
proof shortly after Gerchberg’s paper appeared.

The PGA is applicable to each of the continuous sampling
problems illustrated in Fig. 7.1 when f(¢) is bandlimited. The
algorithm is most easily proved for the cases of extrapolation
and interval interpolation. Since most of the work performed
has been on the extrapolation problem, this will be our main
focus. As before, our results will be ill-posed. Problems - not
algorithms - are well or ill posed.

7.3.1 The Basic Algorithm

The PGA is illustrated in Fig. 7.23 for the case of extrapola-
tion. The known portion of the signal is g.(¢) as shown in Fig.
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Figure 7.23: Illustration of the PGA applied to extrapolation.
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7.1b. We know, secondly, that our signal to be restored, f(¢),
is bandlimited with bandwidth B. The PGA iterates back and
forth between the time and frequency domains reinforcing these
criteria.

Beginning with g.(¢), the first step in the algorithm is Fourier
transformation. Since g.(t) is of finite extent, its transform will
be identically zero nowhere. This is contrary to our knowledge
that the signal to be restored is bandlimited. Thus, we make the
spectrum that of a bandlimited function in step 2 by multiplying
by II(u/2B). Step 3 is inverse transformation back to the time
domain. This signal, shown at the bottom of Fig. 7.23, is clearly
bandlimited. It is not, however, equal to g.(¢) on the interval
| t |[< T/2. To impose this criterion, we first set the signal to
zero on | t |< T/2 in step 4 by multiplying by 1 — II(u/2B).
Then, in step 5, the known portion of the signal, g.(t), is inserted
in the dead space. We will call this signal fi(¢).

In general, f;(¢) will be a discontinuous function which, in
turn, cannot be bandlimited. Thus, we need to reimpose the
criterion of bandlimitedness. Thus, in step 6, we begin the set
of the same operations again. Denote the results of the N
iteration by fy(t). We will show in the next section that

lim fy(t) = f(1)

N—oxo

Thus, our extrapolation is performed.

Note that, by simple alteration, the algorithm can be applied
to the interval interpolation, prediction and, indeed, to any con-
tinuously sampled bandlimited signal.

Let’s operationally compress the PGA of Fig. 7.23. Steps 1,
2 and 3 are simply a low pass filtering operation. We define the
low pass filter operator

Bph(t) = h(t) * 2Bsinc(2Bt).
The operation of discarding the center can be modeled by 1—D
where the duration limiting operator is defined by:
t

Dyrh(t) = h(t) TI().
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Figure 7.24: An equivalent illustration of the PGA algorithm.
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With this notation, the PGA can be written as
Sna(t) = ge(t) + [1 — Dr|Bpfn(1) (7.42)

with initialization
fo(t) = ge(t). (7.43)

The PGA using operators is illustrated in Fig. 7.24.
An alternate derivation of the PGA makes use of the identity

B f(t) = f(1).
This follows from the bandlimitedness of f(¢). Thus
9¢(t) =[1— (1 - Dr)Bglf(?)
If the operator in square brackets can be inverted, then we have
f@)=[1—(1—-Dz)Bg] 'g.(t). (7.44)

For inversion, we generalize the geometric series in (5.13) and

write:
o

f(t)=>_[(1 — D7)Bg]"g.(1).

n=0

In the spirit of truncation, define
N
fn(t)=2_[(1—Dr)Bp]"g.(t). (7.45)
n=0

Equations (7.42) and (7.43) follow as a direct consequence.

Again, the PGA can be used for restoration of any bandlim-
ited signal that is continuously sampled in the absence of noise.
The algorithm for interval interpolation is, for example:

frni1(t) = gi(t) + DrBpfr(t) (7.46)

where

ge(t) = (1—=Dr)f(t)
= Jo(®). (7.47)
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Numerical results of the PGA for extrapolation.
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The interpolation equivalents of (7.44) and (7.45) are, respec-
tively
f(t) =[(1 = Dr)Bg| " gi(t) (7.48)

and
N

In(t) =" [DrBg]"gi(t). (7.49)

n=0
A numerical example of the PGA for extrapolation is shown in
Fig. 7.25 for the case of a sinc. “Good” convergence takes place
in only eight iterations. We must remark, however, that sincs
extrapolate well. Furthermore, the only noise in the unknown
signal is computational round off error.

7.3.2 Proof of the PGA using PSWF’s

Here, we offer a proof of the PGA using PSWEF’s for the case of
extrapolation [Papoulis (1975), DeSantis and Gori, Marks and
Smith]. An alternate proof in a vector space setting, is given by
Youla.

We begin by noting that the identities in (7.25) and (7.29)
can be respectively written as

BBDT77/)n (t) = )‘n’lvbn (t)

and
BB77/)n (t) = ’lvbn (t)

Also, from (7.38) we can write the known portion of the signal
as

ge(t) = i anDTd)n(t)- (750)

From (7.42) and (7.43), the first iteration of the PGA can be
written:

fit) = g¢.(t)+(1—Dr)Bp+ i a, D71, (t)

n=0

() +(1=D1)' S anhen(t). (7.51)

n=0
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Expanding g.(t) via (7.50) and applying the second iteration
gives:

o

f2(t) = ge(t) + (1 - DT) Z an(2)‘n - )‘721)77/)n(t)
n=0
Repeating
Falt) = 9u(0) + (1= D) Y- an(3A, = 302 + X205, (1)
n=0

o0

fi(t) = g.(t) + (1 — Dy) Z (4N, — 6A2 +4X2 — A1), (2).

This is a sufficient number of iterates to recognize that the coeffi-
cients of the eigenvalues are binomial. We can show by induction
that

oo

fN(t) = ge(t) + (1 - DT) Z an[l - (1 - An)N]¢n(t) (752)
n=0
Specifically, from (7.51), the result is true for N = 1. We will
assume (7.52) and show the corresponding equation for N + 1
follows. An additional iteration gives

9e(t) + (1—=Dr)Bgfyii(t)

oo

= ge(t) + (1 - DT) Z an[)‘n + (1 - )‘n){l - (1 o )‘n)}N]T/)n(t)

n=0

After a small bit of algebra, this relationship becomes (7.52) for
N + 1. The validity of (7.52) is thus proved.
Since, from (7.28),
D<A\ <1 (7.53)

we conclude that

lim [1 — (1 —-X,)"] =1

N—
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and, in the limit,

oo

Jim fy(®) = 0.6) + (1= Dr) Y an()

n=0

= T@/T)f() + 1= TI(t/T)] f(t)

where we have used (7.37) and (7.31). This completes our proof
of the PGA.

7.3.3 Geometrical Interpretation in a HilbertSpace

An intriguing geometrical interpretation of the PGA is shown in
Fig. 7.26 for the case of extrapolation [Youla]. Three subspaces
are illustrated. The first, on the horizontal axis, consists of all
duration limited signals for which

DTh1 (t) - h1 (t) .

Thus, as shown, our known signal, ¢.(¢), lies in this space.
The second subspace corresponds to the vertical axis and rep-
resents all signals with a dead space in the middle. That is

(1 — Dp)ho(t) = ha(t).

Note that these two subspaces are orthogonal since

/ ha () ho (£)dt = 0.
Thus, they are shown at 90° in Fig. 7.26.

The final subspace is that of all bandlimited signals with
bandwidth B. If a signal is in this space,

BBhg(t) - hg(t)

We now will illustrate the PGA illustrated in Fig. 7.24 in this
vector space setting. The signal we wish to retrieve, f(¢), lies
on the bandlimited signal subspace. We only have knowledge
of the projection of this signal onto the duration limited sub-
space. Referring again to Fig. 7.24, the first step in the PGA is
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Figure 7.26: Youla’s illustration of the convergence of the algo-
rithm in Fig. 7.24 in a Hilbert space.
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to bandlimit the signal, g.(¢). This is done in Fig. 7.26 by pro-
jecting g.(t) onto the bandlimited signal subspace. In the next
step, we discard the middle of the signal. This is performed by
a second projection onto the vertical subspace. Next, we add
in the known portion of the signal. This is performed by vec-
torially adding the projection on the vertical subspace to the
known signal, g.(t). As is shown in Fig. 7.26, the result is f;(¢).
Beginning with fi(¢), we repeat the process and generate fo(t).
One can see geometrically that each iteration produces a signal
closer and closer to our desired result. Appealing to this signal
space format, the PGA can be proven as a special case of Von
Neumann’s alternating projection theorem.

Youla and others [Stark] have generalized these concepts to
projection onto arbitrary convex sets and have, as a result, for-
mulated a number of important signal recovery and synthesis
algorithms.

7.3.4 Remarks

A fundamental problem of the PGA is the ill-posed nature of the
extrapolation problem. We note, however, that extrapolation is
ill-posed in the sense that the restoration noise level cannot
be bounded. This makes sense. The uncertainty of restoration
should in general increase as we remove ourselves farther and
farther from the known portion of the signal. Clearly, the uncer-
tainty of restoration with knowledge of a signal only on a interval
of length T will be enormous at a distance of, say, 10!°T away.
Thus, extrapolation is ill-posed in a global sort of way. As has
been mentioned, however, one would expect “good” results near
to where the (smooth) signal is known.

A problem is ill-posed because insufficient information about
the restored signal has been provided. To regularize such prob-
lems, either additional information about the signal must be
provided, or the class of allowable solutions restricted.
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7.4 Exercises

7.1 The periodic continuously sampled signal at the bottom
of Fig. 7.16 can be written:

9e(t) = f(t) [1 = r1-a(t/T)].

Assume f(t) has bandwidth B. Specify how to find the
trigonometric polynomial, ©,(¢), such that

f(t) = [ge(t) a1 (£)] = 2B sinc(2Bt)

where

Y (t) = Om()[1 = ria(t)].
7.2 (a) If f(t) is real, F(u) is Hermetian:
F(u) = F*(—u)

Thus, knowledge of F(u) for u > 0 is sufficient to
uniquely specify f(¢). Write the formula for f(¢) in
terms of F'(u) for u > 0.

(b) Consider, then, first order aliasing for periodic con-
tinuous sampling of a bandlimited signal. As shown
in Fig. 7.27, we add two weighted versions of G(u) to
rid ourselves of the positive frequency overlap. Spec-
ify F'(u) for positive u in terms of G(u) and G(u— 7).

(c) Find f(t) directly from g(t).

(d) Draw a diagram of your interpolation algorithm akin
to Fig. 7.8. All operations should be real.

7.3 Find the PSWF expansion of 2Bsinc[2B(t — 7)].

7.4 The cardinal series can be viewed as an orthogonal expan-
sion using {sinc(2Wt —n) | —oo < n < oo} as the basis
function set

(a) Show these functions form an orthogonal set.
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Figure 7.27: Removing the first order spectrum by substracting
two weighted and shifted versions of the degraded
spectrum.

(b) Express the PSWF expansion coefficients, a,,, in termsj
of the samples f(n/2B) assuming f(t) is bandlimited.
The result is an infinite sum. Is it well-posed?

(c) Similarly, express, f(t/2B) as a weighted sum of
PSWF coefficients, a,,. Is it well-posed?

7.5 (a) Show that (7.33) follows as a consequence of (7.30)
and (7.25).

(b) Show that (7.33) follows as a consequence of (7.30)
and (7.35).

7.6 Clearly, if ,(t) is a solution of (7.25), then so is const
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X1y, (t). Is there an ambiguity here in our definition of the
PSWE? If not, how have we removed it?

7.7 Parseval’s Theorem for PSWF'’s

(a) For the expansion in (7.31), show that the energy of

f(t) is
E=Y Ja, .
n=0
(b) Derive a similar expression for the energy of h(t) in
(7.34).

7.8 We pass a signal, z(t) = z(t) I1(¢/T'), through a low pass
filter with bandwidth B. The output is y(¢). Assuming
x(t) has unit energy, what input will yield an output with
the maximum energy? What is this energy?

7.9 Prove the PGA as applied to interval interpolation.

7.10 For the extrapolation problem, g.(t) in (7.37) can be ex-
pressed in terms of a Fourier series:

j2mnt t
II(=).
T ()

)= 3 guexpl

n=—oo

(a) Find the a,’s in (7.39) directly as an infinite weighted
sum of the Fourier coefficients, g,. Is this restoration
well-posed or ill-posed?

(b) Conversely, find the g,’s. Comment again on the posed-J
ness.

7.11 Show that (7.42) follows as a consequence of (7.45).

7.12 (a) Show that the three subspaces in Fig. 7.26 have only
the signal that is identically zero ( the origin) as a
common element.

(b) Using the same subspaces as are in Fig. 7.26, illus-
trate geometrically the PGA for interval interpola-
tion.
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(a) Assume we know apriori that the signal to be restored
is non-negative, i.e., f(t) > 0. Incorporate this con-
straint into the PGA for extrapolation.

(b) Suppose f(t) = Re(t) is an autocorrelation. Incorpo-
rate this information into the PGA for extrapolation.

The geometric series, > 00 z" = 1/(1 — z), converges if
| z |< 1. Similarly, a sufficient condition for the equivalent
equation:

(1—H) 'h(t) = >_ H"h(t)
n=0
is that
|| H||< 1.

The operator norm can be defined by

IH|=  sup  [[HA() ]l
A1) [I=1

where the L, norm is defined by

Ly I1P= [ 1) [ ar

and sup denotes ‘supremum’.

(a) For the extrapolation algorithm, from (7.44), H =
(1 - Dy)Bp. Compute || H ||

(b) For interval interpolation, from (7.46), H = DrBp.
Compute || H |[].

We apply the PGA to the restoration of a single lost sam-
ple at the origin of an oversampled signal. The given signal,
g(t), is shown in Figure 7.28. It can be written as

g(t) =r>_ f(nT)sinc(2Wt — rn)
n#0

where T = 1/2W and f(t) has bandwidth of B < W.
From ¢(t) we wish to find f(0). As is shown in Fig. 7.28,
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Figure 7.28: Application of the PGA to the restoration of a single
lost sample at the origin of an oversampled signal.
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we first Fourier transform this sequence and multiply by
[I(u/2B) to form Sy(u). The inverse Fourier transform of
this expression is evaluated at the origin and used as an
estimate for the lost sample. After the N* iteration, we
have

sn(t) =T fn(0) + g(t).
The iteration is repeated. Evaluate f,(0) and compare
your answer with (4.9).
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Appendix: Solution to
Selected Problems

Solutions, Chapter 2
2.1 Since

X(0) = /°° z(t)dt,
the transforms in Table 2.2 can be used. The functions
I1(t),sinc(t), A(t) and jinc(t) all have unit area. Jo(27t)
has an area of 1/.
2.2 (a) O(t) =lima_0o AA(AL).
(b) 0(t) = limy o Ajinc(At).
(¢) O(t) = limy_ o Asinc?(At).

In each case, the limit of the transform approaches
one. For example

Ajinc(At) +— mn(%)
— las A — oo.

2.3 Selected solutions

(a) Derivative
o

(%)n o) = [ x (%)n 2t gy

/
/oo (527u)" X (u)e* ™ du.

— 00
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(b) Convolution
) * h(t H/ [/ h(t — 7)dr)e™* ™ dt.

Reverse integration orders and applying the shift the-
orem gives

2(t) % h(t) s H(u) / T a(t)e iy,

— 00

(c¢) Inversion
/ X(v)eﬂ’”’tde/ [/ X(v)eﬂ”tdv]eﬂ”tdu.l

Reverse integration order and note
oo
[ = )
—00

Proof results from sifting property.
(d) Duality

— / (t)e? =wigy

2.4 (a)

§(t)e2mut dt

I T
—~g 8

by the sifting property of the Dirac delta

M(t) <+— / e J2mut

1/2

1 1 —g27rut|1/2
it ]2 1/2

= sinc(u).



2.6 (a)

Solutions 281

Use (2.14) and the convolution property in Table 2.
Use (2.20). The result follows from linearity.
Use (2.15) with ¥ =1 and apply (2.18).

g(t) = a(t — to) around the neighborhood t = t,.

Since §(t) is nonzero only when £ = 0, we conclude

5(9(t)) = dlalt —1o))
= Lo—).

al

g(t) =1In(t/b); to=10b
Jgt)=1/t —a=1/b

and
d(In(t/b)) = bd(t — b).

The argument has an infinite number of zero cross-
ings:

sin(rt,) =0 ;t, =0, £1, £2, ....

Since
g (t,) = mcos(rt,)
= (-1)"r
= Qp,
we have
r(sin(rt) = 1 3 |al—|5(t—tn)
= comb(t)

From duality
sinc(t) «— II(u)
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2.7 (a) (i) Use Parseval’'s theorem with 2(t) = sinc?(#):

[ sinct(nyar = /_11A2(u)du

B = 2/01(1 — u)?*du
— 2/3.

(ii) Same approach, but z(t) = jinc(t):

/OO finc(f)dt = /1 (1 — u?)du

—00 -1
= 4/3.
(iii) Parseval’s theorem gives
o0 1 /b du
Jo@rt)dt = —
/foo O(ﬂ—) 7T2 —11—?1,2
= o0.

(b) Using the power theorem and (2.19) gives

00 1/2
/ sinc(t)jinc(t)dt = V1 —u?du

0 —-1/2

2.8 (a) Use the Poisson Sum Formula:

o o

> sinc(t—n) = > I(n)e™

n=—oo n=—oc

=1
since II(n) = §[n].
(b) Same result since A(n) = d[n].
(c) Same result since /1 — n?II(n/2) = d[n].



(d)

Solutions

sinc(at) <— Tl(u/a)/a. Thus

o0

> sincla(t —n)] =

n=-—oo

i I (%) pi2mnt

pi2mnt

WE

Q= Q|

=—N

283

where N is the greatest integer not exceeding a/2.

Using a geometric series:

i sincla(t — n)] = sin[(2N + 1)mt]

n=—oo

asin(mt)

Part (a) is a special case fora =1 (N =0).

o0

> sincla(t —n)] = é[l +2 z_: cos(2mnt)].

n=-—00 n=1
Part (a) is special case for a = 1(/N = 0).
Use (2.24) with T'= 2

o0

S jine(2n) — % S /1 - (n/2)I(n/4)

n=—oo n=—oc

= (1+V3)/2.

Use (2.24) with T'=1/4 :

i jinc?(n/4) = 4 i: C(4n)
where
Cu) = V1—u?ll(u/2)* V1 —u?ll(u/2)
= C(u)I(u/4).
Thus :

i jinc?(n/4) = 4C(0)

n=—oo



2.9

2.10

Solutions 284

where
1

c0) = /(1—u2)du

1

_ 43

(g) The n > 0 and n < 0 terms cancel. The n = 0 term
is zero.

(a) (L)sinc(t) = 0 = 6 = tan(d);0 = nt. The n'

extrema location, 6,, can be founded iteratively by
0,[m| — 0,, as m — oo with

0,[m+1] = nm+arctan(0,[m]) ; n=0, £1, £2,....

The first few locations and the corresponding ex-
trema are listed in Table A.1.
(b) 6, — n+1/2asn — oo and
(=n"

sinc(t,) — .
(tn) 7r(n—|—%)

(To justify, compare plots of § and tan(f) vs. 6).

The Fourier series is

y(t)=a Y sinc(an)e™/T,
Thus ~
y(r/2) =a Y sinc(an) cos(nma).

Write sinc as sin(nz)/(7z) and use a trigonometric iden-
tity:

o0

y(t/2) =a Y sinc(2an).

n=—00
We evaluate using (2.24) which, for z(¢) = sinc(t), can be
written

o 1 o

o Y sinc(2an) = 3 > I(=—)

n=—oo n=—oo



n |6, | sinc(6,) |
1 144934 |-0.21723
2 | 7.7253 0.12837
3 110.9041 | -0.09133
4 114.0662 | 0.07091
5 | 17.2208 | -0.05797
6 |20.3713 | 0.04903
7 1 23.5194 | -0.04248
8 |26.6661 | 0.03747
9 |29.8116 | -0.03353
10 | 32.9564 | 0.03033
11 | 36.1006 | -0.02769
12 | 39.2444 | 0.02547

Table A.1: The first few extrema of sinc(t).

2.11 Since the integrand in (2.24) is even

J, (27t 2)¥ 1 1

(2r?) = (7/2) T / (1 —u?)” 2 cos(2mut) du.

(2t)v VTl(v +3) J1
Thus we have the transform pair

J,(27t) R (m/2)"
@2ty AT+ 1)

The entries in Table 2.2 for v = 0, 1 follow immediately
using (2.16).

(1—u?)” 21(u/2).

2.12 With attention to Fig.A.1:

T T
t— I t+ 2L

Thus T .
Zp(u) = —j sinc(7“) sin(%).
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z(t)

T/2

Figure A.1

The Fourier coefficients follow as:

1
Cn = TZT(n/T)

= —jsinc(n/2)sin(mn/2).

Thus, since z(t) is real :

2(t) = i —jsinc(n/2) sin(mn/2) i 2mnt/T

ad 2mnt

= Z sinc(n/2) sin(mn/2) sin( T ).

n=—oo
The truncated series is

()= 3 sine(n/2) sin(rn/2) sin(27;nt).

n=—N

Extrema come from:

d

286
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2T & 2mnt
= >~ sine(n/2) sin(rn/2) n cos( m )
T .~y T
1 & 2mnt
— Tn:z_:NsinQ(wnﬂ) cos( 7;? ).

0 = 7 1= () eon(C)
~ %mnzNu — (=1)"] BT,

Consider the geometric series:

N
S= > a"=a N +a M+ +adV.
n=—N

Thus
aS=a 4. e +a¥T
Substituting:
G aN+3 _ g (N+3)
T ql/2 = g-1/2
For a = —e 727/T = _¢i?
(=1)N cos(N + 3)0
Sum =
cos(0/2)
For a = €%
S sin(N + 3)0
um =
sin(0/2)

Thus
_sin(N+3)0  (=1)Y cos(N + 3)0
~ sin(0/2) cos(0/2)

or, for N even:

tan(N + %)0 = tan(0/2).
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Therefore
1 0
(N+§)0:§+p7r ;o p=0, &1, £2, ...
o ot T
m i b
L LN
T N TN

The first extrema is at p = 1 corresponding to ¢t = T//2N.
Substituting gives

T N sin?(mn/2)
way) = X T

n=—N

sin(mn/N)

= 22 sin(mn/2) sin(rn/N)

/2

2N1——

= Z 1= (0" sin(mn/N).

Let 2m+1=n

T 4 N2 (2m+1)
o ( :_ZS
T =0 2m+1
Define
M sin(2 1)t
:Zsm m+1) M= NJ2
=0 2m+1
so that T A
—) = —h(w/N).
an(5re) = —h(x/N)

Note that ~(0) = 0. Now

dh(t) = &
B 2(M + 1)t
N 2 sin(t)

Thus:

h(t) = /Ot —Sing(sji\ﬁ(;l)T dr
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2.14

2.15
2.16

Solutions 289

and

T 4 [~/Ngin(N + 1
/ sin(N + 1)1 i
0

wisy) = 2sin(1)

oN’ T 7
Since the interval of integration gets smaller and smaller,
sinT — 7 and as N — oo

T ) N %fﬂ'/N sin(N+2)7 dr

ZN(ﬁ 0 o7

m+3T sin
=25 e,
Since Si(7) = 1.8519370, we conclude that, as N — oc,

A— 1—2Si(nm)
= 0.1789797.

(a) € = Re(0) =[5, Se(u)du.
(b) & = Re[0].
Note that (2.28) is a Fourier series with period 1. Thus
£ = / Se(u)du
T
where integration is over any period.

These derivations can be found in most any introductory
text on stochastic processes.

Same as 2.14.
(a) From (2.26)

Ri(r—t) = E[¢(r) @]
= Re(t—¢).

Sg(u) = / R{(t) €™ dt
= /Oo Ri(—7) e 9*™7 dr

= /Oo Re(7) e777™7 dr
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L ](0,1)](1,00) |
A 4 00 Table A.2
E 00 2

2.17 Using the shift theorem

comb(t —1/2) «— comb(u) e ™
=y _6(u—n)edm™

= Xntoo(=1)" 6(u —n).

Separating the sum into even and odd n completes the
problem.

2.18 (a) See Table A.2.

(b) on the interval (0, 1), z(¢) has finite area and energy.
On the interval (0, co), the area is infinite and the
energy is finite.

(c) A < oo = F < oo. This follows from the proof
that the space of [; sequences is subsumed in [y [Lu-
enburger: Naylor and Sell]. The converse is not true.
Consider

x(t) = sinc(Bt).

Clearly, E = 1/B. However, since

n 1 ; n=20
2 .
255 | = { oy ¢ oddn
0 ;  otherwise
we have the divergent series
2 1
A=14— = 0.
PP ke



2.19 (a)

2.20

221 (a)

Solutions 291

|z(t) | = | J%% X(u) e*™" du]
< %% [ X (u) | du
— A

Thus, C' = A. Note, then, that x(¢) is bounded if
X (u) has finite area.

A counterexample is z(t) = sgn(t).

|2(t) P = | [Ty X(u) ™ du]?
<2B [Py | X(u) [* du
= 2BE.

Yes, because applying Parseval’s theorem to the deriva-Jj
tive theorem gives

E, = /oo|x(p)(t)|2dt

— 00

_ /B | (j2ru)? X (u) | du.

-B
Since (u/B)* < 1 over the interval |u| < B,
E,= (2xB)* [T (u/B)* | X (u)[* du
< (2nB) [B, | X (w) P du
= (2rB)* E
where E is the energy of x(t). Also, 2(P)(¢) is clearly
bandlimited.
Yes:
(2P| = | [P (j2mu)? X (u) €7 du]
< 2, [2mup | X (u)] du
= (2rB) [Z |u/B P | X (u) | du
< (2rB)? A
where A is the area of X (u).
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2.22 The series converges absolutely if

S(t) = i L_ﬂm

m=0

‘ | 2™ (1)] < oo.
m!

From the derivative theorem for Fourier transforms,
S(t) = oo | 12 (2mu)™ X (u) €27 du |
<3 & [, (2mu)?™ du]'/?
-[f_B | X () [* du]'?

where, in the second step, we have used Schwarz’s inequal-
ity. Since z(¢) has finite energy,

B
jo / X(u)|2d
X du
is finite. Thus
oo T —r|2)ym
S(H) < V2BE Yy, GhU”
<V2BE yx_, GBlr)”

m!

— /2B E 627TB‘t77'|.
This bound is finite for all finite ¢ and 7.

2.23 (a) From the derivative theorem
B
AW F = [ G2rw™ X () dul?
-B
B
< 202m)*M E / w*™ du
-B

which, when evaluated, gives (2.39).
(b) Clearly

t+71
a(t+7)—a(t)| = |/ £) d|
< [T 1ae)) e
< /27TB3E /t+Td

which, when evaluated, gives (2.40).

I



Solutions 293

2.24 Define ~
Er= [ 1f@at

Then, applying Schwarz’s inequality to the integral gives
lg(t)[* < Ef Ep(t).

Note that Exercise 2.19 is a special case for the Fourier
inversion integral over the interval |u| < B.
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Solutions, Chapter 3

3.1 The Fourier dual of the Poisson sum formula is

2B S X(u-2nB)= Y x(%) e~imu/B

n=—oo n=-—oc

Since X (u) = X(u) II(u/2B), we multiply both sides by

I1(3%) and inverse transform. The sampling theorem series

results.

3.2 Use the Fourier dual of the Poisson sum formula again:

o0

i X(u— %) =T >  x(nT)e?™T,

n=-—oo n=-—oo

For B < 1/T < 2B, the sum on the left will be the over-
lapping aliased version in Fig.A.2. Note that no spectra
overlap the zeroth order spectrum at u = 0. Thus

3 X(u—%) lieo = X(0) ;B <1/T < 2B

n=—oo
and

/°° d()dt=T Y a(nT) ;T <1/B.

- n=—oc

3.3 If z(t) is bandlimited, so is z(¢ + «). Thus

oo

rt+a)= > x(% + a) sinc(2Bt — n).

n=—00
Substitute t — « for ¢ and we’re done.
3.4 Since
(—j2mt)™ s §™(t)
we use (3.4) and ask the question :

) 1 () (_1)n nm

m L in(27 Bt =
gy Sn@rBY 2 SBi-w

n=—0o0

The result is clearly a divergent series for m > 1.
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Solutions

2B X(U)\ 2B X(u—2B)

1

4 5

Figure A.2
3.5
5(t) = i y(nT) 6(t — nT).
Thus

S()= Y y(nT) e

S(u) is periodic with Fourier coefficients:

1T

y(nT)=T S(u) e dy,
—1/T
Thus
yr
T S(u) du = y(0).
—1/T

From the inversion formula:

y(t) = /_O:o Y (u) e/*™ du.
Thus ~
y(0) :/m Y (u) du

and our exercise is complete.
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3.7

3.8
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[y mdi= g5 Y alon) v

n=—oo

The new signal’s spectrum is no longer Hermetian. The
signal, therefore, is complex. Although the sampling rate
is reduced by a factor of a half, each sample now requires
two numbers.

The resulting low pass kernel is

, u
k(u;t) = exp(—j2mut) H(2B).

We are thus assured that g(u), the Fourier transform of
f(t), is zero outside of the interval |u| < B. Since this
is the definition of a bandlimited function, the result is
of little use. Note that Fourier inversion of (3.23), as we
would expect, results in the cardinal series.
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Solutions, Chapter 4

4.1 (a)

y(t:C) = DC? i x(nT) sinc*[C(t — nT)]
y(t:: W) = DW? ii x(nT) sinc?[W (t — nT)]

z(t) = ; x(nT) k,.(t —n/2W)
where
k.(t) = D [C?sinc*(Ct) — B? sinc?(Bt)]
— K,(u) =D [CA(u/C) — BA(u/B)].

For |u| < B,
K@ = plea-2h-pp-Liy

1
= T : D=—
’ 2W(C — B)

and z(t) is recovered.

Here,
k.(t) = D C?sinc(Ct)
s K(u) =K(—) = DCA(u/C)

2B
and
H(sz) = TG5) /K(5p)
1 u
~ D(C - [u]) 3p)

Notice, for |u| < B,

1
D(C—B)

1/DC < H(%) <
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4.2 (a) K(35)=1/(a+ j2nu) and

u u
H(—) = 2 I(—).
(o) = (a+ j2mu) TI(;)
This inverse filter is shown in Fig.A.3.2
(b)
u 2a
K(—)=— 2"
(2B) a? — (j2mu)?
and
U a 1 . 9 U
H(yg) =15 = 5, (2mu)” [ 15 5).
The inverse filter is shown in Fig.A.3.
d
» dt
b L
( ) » [PF e j/( /) >
u
H(z5)
Figure A.3

43 (b) H(u) = —j sgn(u). Since 1/sgn(u) = sgn (u),

)

u

K(u) = = sgn(u) (o

2B

2Note: the LPF should be used first to avoid differentiating discontinuities.



x(t)

——— LPF|—>|

4.5

Solutions

E :
Figure A .4

and

2B
1 (B
= f/o sin(27ut) du

= —7Btsinc?(Bt).

k(t) = S /Z sgn(u) [j sin(27wut)] du

299

(%)3 1

Thus, if ¢(¢) is the Hilbert transform of f(¢) with

bandwidth B, then

(—1)” cos(2rBt) — 1

o Z 923 9Bt —n

n=—oo
Doing so gives

Z{é[n m]—rsinc(r(n— m))}x(QW — Z

n¢gM

or

bn

=Sz
where § has elements {9(55) | n € M} and

= 3 {0l —m] = rsine(r(n —m)) Yo (5

n¢M

can be found from the known data.

2(557) smc(r(n—m))l



4.6

4.8

Solutions

4(=1)n/2

F(nT) = =@ ;oeven n ‘
0 ; odd n, n#+1

Therefore, for T'=1/2W,

4(—1)n/2 +1—
(=1) sine( 5 1

g(&T) = % >

even n (1 —n?)
Note g(T) = g(—T). Using the + gives

n—1_ 2(-1)"?
2 )= (1 —n)

sine( ;even n

and

J1+T) = @7 3 !

even n (1 —n?)(1—n)

= (2/7)*1+2 il m

where we have let 2m = n. Numerically,

g(£T) = 1/2.
Now,
~1/2 0
H = l 0 1/2 ] '
Thus
f(£T) = 1.

).

300

Note: The function these samples were taken from is

1 1
f(t) = sinc(2Bt — 5) + sinc(2Bt + 5).

The samples are taken from the signal

_ cos(mt) — sinc(t).

£t = L sine(t) :

dt
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Thus f(0) = 0. (Note » = 1/2). Using (4.7) :

) e R )
even n odd n
n=#0
=0

since both summands are odd.
411 (a) For M =1 and a = 0, (4.50) becomes

A(u) = j2rB.

Equation (4.51) becomes

1 U 1 U 1
Kitw) = G MG =5~ TG+ 5)
1 U B B
= T () [plu = 3) —u+ )
Thus
1 .
ki(t) = Esmc(Bt) sin(m Bt)
sin? (7 Bt)
72 B2t
Equation (4.52) becomes
Kolw) = —5 |—(u—B)I(% = 2)+ (u+ B) (=
A= T B 2/ B
— — A/B)

Thus

ko(t) = sinc?(Bt)
sin? (7 Bt)
(rBt)? ~

DN | —
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(b) The interpolation is

o0

ft)y="3%

n=-—oo

Since ki (p/B) = d[n| and ky(p/B) = 0, the equa-
tion reduces to an identity at t = m/B.

n

= 5+ Gk )]

Differentiate
)= 3 [F(G) K= p)+f () k=)l
Clearly:

, d .,

ki(t) = - Sinc (Bt)

= 2B sinc(Bt) d,(Bt)
and o
kl(ﬁ)zo

since d;(0) = 0 and sinc(n) is zero everywhere
else. Note that

kg(t) — t kl(t),

Thus

ky(t) = thy (2) + ki (2)
and

k;(%) = sinc?(n)

= d[n].

The interpolation therefore also interpolates the
derivative samples.

4.12 We have implicitly assumed that Cyny = 0. If P =
2N + 1 then, in the spectral replication, the Dirac
delta at w = N/T would be aliased by the shifted
Dirac delta originally at u = —N/T.
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4.14
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We evaluate the Fourier coefficients in (4.70) with the
familiar formula

1 fT/2 .
—_ j2nnT /T dr.
Cn T/—T/2 x(7) e T
Substituting (4.71 ) followed by manipulation com-
pletes the problem.

Since v(t) is real, V(u) is Hermitian. Thus, as illus-
trated in Fig. A.5, X(u) has a four fold symmetry.
We can, therefore, hetrodyne the center frequency f

(rather than the lower frequency fr to the origin).
Let

y(t) = x(t)cos(2m fot)
= v(t) cos? (27 fot)

_ %v(t) + %v(t) cos(r fot).

A lowpass filter gives

1

2(t) = iv(t)

which can be sampled at the Nyquist rate of B.

V(w)
B/Z u
X(u)

Figure A.5
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4.16

4.17
4.18
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Since y(t) > 0 and approaches zero for large |t|, no
matter how small A, there exists some value of ||
above which there will be no more samples. Thus,
the number of samples is finite and the signal is not
uniquely determined.

Clearly
k(n) = sinc(n/2) cos[r(2N + 1)n/2].

Except for n = 0, sinc(n/2) is zero for even n. The
cosine term is always zero for odd n. Therefore, (4.23
) is satisfied.

Real N** order polynomials.

We wish to compute the interpolation function corre-
sponding to a,. The Lagrangian kernel in (4.82) can
be partitioned as

kp(t) = ap(t) by(1)
where b~ (T + o)
ap(t) = ngo a, — (mTy + o)

is due to sample locations located distances m1" from
a, and the contribution due to the remaining terms
is

t— (mTn + ayp)
a, — (mTy + )

w= T 11
g=1 ""%°
qFp

Using the product formula for sin(z) (Section 4.8),
a,(t) = sinc[2By (t — ay)].

After factoring out the zero term, the m product in
by(t) can be written as

t—a
t -+ Oéq H 1-— mT]\‘i
1— Qp—Qgq *

ap = Qg g T
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Expressing both products as sincs and simplifying re-
veals the resulting interpolation function to be iden-
tical to that in (4.47).

4.19 No. Lagrangian interpolation would result in the con-
ventional cardinal series. Recall that Lagrangian in-
terpolation results in an interpolation where only the
sample value contributes to the interpolation at that
point. Equation(4.2), on the other hand, usually has
every sample value contributing to the sample at
t=m/2W.

420 We write (4.2) as
z(t) = rz(0)sinc(2Bt)+r Y x(n/2B) sinc(2Bt—rn).
n#0

Substitute (4.9) and simplify. The same result can be
obtained by filtering (4.10).

4.22 The matrix to solve is (for £ < u < B)

S(w) | = | jpmu jpn(u=20) - jen(u—4)
Ssl) G2m)? j2m(u— )P [j2ntu— )P
F(u)
x| F(u— %)
F(u— 47)
Using the third order Vandermonde determinant
_4AnB
A(u) = JQ(T)3

and Cramer’s rule, we have

1,3, 2B 4B
F) = 5 G2 lu- 20— )50
i) G u = B)Sy(u)
1.3, B
~(g2)(5g) 5w s 3 <u<B
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Flu-3) = ~(op)ulo— 5)Si()
)= 2185
) (5)"S5(0) g <u<B
Flu-"2) = S0 ulu— )8 ()
1) ()1 = 2)S5(u)
() og S+ 5 <u<B

To construct F'(u), we evaluate the equation

Solving gives

1,3, 9B, 4B, 3u
Ki(u) = 5(@) [(U—?)(U—?)H(@—l)
2B 2B 3u

=2 (u= 5 )(u+ )55
2B 4B 3u

+(u + ?)(u + ?)H(@ +1)],
1.3 3u
5-)(gg) (= B)ll(55 —1)
—2uH(3—u Su

2B
2B) + (u+ B)H(@ +1)]

Kz(u) = j(

and

1 3 3u
K = —(—)(—)M(— — 1
W) = ()G Mis — 1)
3u 3u
—2I(— II(— + 1)].
(55) + T +1)]
With a bit of work we inverse Fourier transform to
the interpolation functions in (4.57).
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Solutions, Chapter 5

5.1

3.3
5.4

2.6

5.7

The explanation is unreasonable because the noise level
on a bandlimited signal could, in the limit, be reduced to
zero. The resolution is that any physical continuous noise
has a finite correlation length. Thus, as the samples are
taken closer and closer, the noise eventually must become
correlated and the white noise assumption is violated. For
continuous white noise, all noise samples are uncorrelated.
But the noise level is infinite.

U2 — Co-

Consider a power spectral density that is nonzero only
over the interval B < |u | < W. Interpolating and filtering
would yield a zero NINV.

Clearly

o0 o0

E= 3 [22(n/20) = 2(n/2W) ] [~ K2 (0) d.

From (5.73) and Parseval’s theorem,

/O:o K (1) dt = ﬁ /Z | ®g(u) | du.

The case of y(t) can be obtained by k(t) = r sinc(2Bt).
Since

00 B
7'2 /_oo SinCQ(QBt) dt = W /_B du

We conclude that £, > E,.

Clearly



2.8

2.9

5.10
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The power spectral density of the noise follows from the
transform of (5.6);

>, cos(mnu/W) u

Sy(u) =2W~* & >~ @y )

L)
(2Wr)? *

Since [Gradsteyn & Ryzhik #1.445.2]

i cos(kx) m cosha(m — x) 1 0< <9
e €T T
k*+a?>  2a  sinh(am) 2a% -

k=1
we conclude that

8,0) = ez B ),

Substituting into (5.9) and evaluating gives

12/€ = sinh(27yB) coth(2myW)
= sinh(2rryW) coth(2ryW).

A semilog plot of the NINV is shown in Figure A.6 as a
function of yW for various values of r.

By deleting every other sample, the sampling rate param-
eter becomes 2r. The NINV for a single sample is r/(1—r).
Since

r<r/(1—r) ; r<1/2,

we conclude that (4.9) yields a smaller NINV.

Since z(t) is bandlimited, it is analytic. Thus, it’s Taylor
series expanded about any given point converges every-
where. We choose an interval for which z(¢) is identically
zero. The resulting Taylor series, however, converges to
x(t) = 0 everywhere.
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101

100 |
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bl f LAtll

W

0.1

0.2

0.3

0.4 0.5

Figure A.6

0.6

0.7

0.8

09
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Figure A.7

Solutions, Chapter 6

6.15 (a) The minimum raster sampling rate occurs when sam-
pling with parallel lines with a slope of 9/5 (or —9/5
). The resulting minimum sampling rate is equal to
the shortest distance between two parallel sides of
the parallelogram which can be shown, after a bit of
work, to be 1/T = 2+/56.

(b) Use horizontal lines at a sampling interval 7' = 1/2.

(c) Sample with lines of unit slope separated by T =
1 intervals. Corresponding spectral replications are
shown in Figure A.7.
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Solutions, Chapter 7
7.1

9e(t) = F(O[L = r1-a(t/T)]

1—71_o(t/T) = Z Cn e—J2mnt/T

. ) 1-« ;0 n=20
n = —(1—a)sinc[(1—a)n] ; n#0 "
The b,, coefficients are solutions of
M
Y bmlnm =90 ; |n| <M
m=—M
And :
A M
GM(t) — Z bm 67327rmt
m=—M
dar(t) = O (1) [1 =11 a(t/T)),
7.2 (a)

o0

£(t) = 2R [ /0 Fu) e gy .

If f(t) is bandlimited, the upper integration limit is
B.

(b) From the Figure:

Flu) = co G1(u) — ¢y G(u — 1/T).

(c)
1) = Rl = T
[ B sinc(Bt) e/™P!]
= # [{g(t) [co cosmBt

(Co - 0—101)
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cpeos(Bt) — c,cos((B—E)t]  cos(nBt)

w0,

¢, Sin(TBt) — e, sin[r(B—3)t]  sin(mBt)

Figure A.8: Restoration of first order aliased data from the shift
method illustrated in Fig. 7.27, using Hermetian
symmetry. The filters are unity for |u| < B/2 and
zero elsewhere.

2
—cy cosT(B — T) t]} * Bsinth] cos mBt

+m [{g(t) [co sinTBt

2
—c; sinm(B — T) ]} = Bsinth} sin 7 Bt.

(d) See Figure A.8

7.3
2B sinc[2B(t — 7)] Z an Pn(t)
where
a4, = 2B / °:o Sinc[2B(t — 7)] n (1) dr
= a(t).
Thus:

2B sinc[2B(t — 7)] Z U (t)
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7.4 (a) From the power theorem:

/ sinc(2Bt — n) sinc(2Bt — m) dt

1 ) U 1 : U
N I L S R R I L S sy gy U
/[236 H(QB)} [236 (zp5)] du
1

(b) Clearly:

=3 f(%) sinc(2Bt — n)

= Z ap Yn(t).

n=0

Multiply both sides by v, (t) and integrate. Using
(7.30) and (4.47) gives:

1 o0
wn =55 X 1(3p) ¥n(p)

(c) Here, multiply by sinc(2Bt — m) and integrate

m

Fn/2B) = 2B 3" ay (5

n=0

)
Both are well-posed.
75 (a)
[ att) )
=2 [ z Unlt) [ () sine[2B(t = 7)] dr dt

T
2

— 2B /_Z Do () /_ " alt) sinc[2B(t — 7)] dt dr

= A /_O:O ¢n(7) ¢m(7) dr
= A, d[n —m].
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(b) Let
I = /_i ¢n(t) 77/)m(t) dt
T2 Tu
T B)\

Where in the second step we have substituted ¢t =
Tu/2B. From which (7.33) follows.

7.6 The ambiguity is removed by (7.30) which requires each
PSWF to have unit energy.

7.7 (a)
JlmEa = Y a Y e [ e
- n=0 m=0 -
= 2 q
n=0
(b)
[ 1 di= ZMbF
7.8

y(t) = x(t) = 2B sinc(2Bt)
-/ Z 2(r) sinc[2B(t — 7)) dr

- f% by [ nlr) sincl(2B(t - 7)] dr



7.9

7.10
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From (4.20), the energies of x and y are

and

E, = io (A\b)? = i} A (Y Anbn)?.

We wish to maximize F, subject to E, = 1. Since ) is
the largest eigenvalue, we choose b, = \/A¢d[n] and

t
2(t) = vo(t) () /\ Ao
The output has energy E, = A,.

The results are the same as for extrapolation except that,
An becomes (1 — A,) and (1 — D) replaces Dy. Thus,
instead of (7.52), we have:

o0

fu(t)=gi(t) + Dr D an(l =N )w (1)
n=0
as with the extrapolation case, the validity of this equation

can be proven by induction. Convergence again follows due
to (7.53).

00
ge(t) - Z On ej?ﬂnt/T

n=0
o

n=0

(a) Multiplying both sides by 1), (t) and integrate over
|[t| <T/2:

)\m Ay = Z Jn / ¢m(t) e—j27rnt/T dt
n=0

— 0o
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or, using (7.36):

1 = Thm .
- “omay (—
= n:zoo 9\ g Tn(3p)

T © n
~ \ 2B, n;oo 9n ¥m(5p)-

The restoration is ill-posed due to the 1/y/A,, coef-
ficient.

(b) Using the top equation, multiply both sides by e/2 ™/}
and integrate over |t| < T/2:

00 T
TGm = Z ay, /QT Y (t) e2mt/T gy
n=0 2

Again, using (7.36)

1 & TN\, -n
1 & n
ﬁ nz::() \/Ean T/Jm(2B)

The result is well-posed.

7.12 (a) All bandlimited signals are analytic. The only func-
tion that can be identically zero over any interval is
zero everywhere (Taylor series).

(b) The first two iterations are shown in Figure A.9.
7.13 (a) Instead of (7.42), we have
fn41(t) = ge(t) + R(1 — Dr)Bg fx (1)

where the nonlinear half wave rectifier operator is
defined by
R h(t) = h(t) plh(t)].
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BB
ACIEAD)

g(t) £(t)

Figure A.9

(b) Here we know S¢(u) > 0. Since

Bg=F'DgF
our altered algorithm could be:

fys1(t) = ge(t) + (1 - Dx) F' R Dy F fy(1).

This is the so—called minimum negativity con-
straint proposed by Howard. Both are special cases

of alternated projections onto convex sets [Stark],
[Youla and Webb],[Cheung, Marks, and Atlas].

Let h(t) have finite energy. Then Bg h(t) = f(t) is

bandlimited and can be written as
o0

f@) =" an vu(t).

n=0
(Note that maximum energy occurs when h(t) is cho-
sen to be bandlimited.) Thus,

[H|| = sup [[Hf({)|
I@)l=1
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IH| = sup [ (1-Dx)f(®) |
IF@l=1

where f(t) is bandlimited. Now

(]_—DT Zan 1_DT 77/)’0()
and

[E=D0fO I = X S avay [, valt) vnle)

where we have used (5.41). Since, from Exercise 7.7a,

o

S Jan )P =1
n=0
we choose ao, =1 (since Ao =0) and | H ||= 1.

(b) Same as above, except

[H = sup || Dr f(1) ]
OIS

Since

I Dr f(t) |I*= ZA | an |7,

we choose |a,| = 1 since )y is max and || H ||=

Vo < 1.
7.15 Clearly

en(0) = /_O:OXN(u)du
_ 1 °:O 1 °:O {an_1(0)6(1) + i} 2(nT) 6(t — 7)} €2 gt du
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_ 7 / P nei(0) 3 2(nT) eI dy
e n=0
= ray 1(0)+r i x(nT) sinc(rn)
n=0
where r = 2BT. Letting N — oo gives
ZToo(0) = rxee(0) + 1 i x(nT') sinc(rn).
n=0

Solving for z,,(0) therefore results in (4.9). Note also that
xn(t) — z(t).



Index

Abel transform 42

absolutely convergent series
30, 88

aliasing 37, 71, 72, 139, 187,
196, 216, 220, 231, 236,11
237,240, 243, 245, 2711

analytic functions 9, 50, 88,
308, 316

autocorrelation 23-25, 52, 112-}
114, 116, 138-141, 143,
148, 157, 164, 242-244
274

bandlimited signals 41, 107,
136, 153, 225, 255, 268
316

bandpass signals 92, 93, 96-
98, 107, 108, 127

bandwidth 1, 8, 13, 33, 35,
37,42, 51, 55, 58, 64,
81, 84, 92, 97, 104,
110,111,117, 118, 157,
217,229, 257, 262, 271,}
273, 299

Bessel functions 16, 83, 177

Black, H.S. 2, 5

Borel, E. 2

bounded signals 8, 29

320

Bracewell, R. 9, 17, 18, 31,
42,56, 113, 165, 177,
223
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comb function 21

complete 12, 108, 255, 256,
260

condition number 127

continuous sampling 225, 260,
271

convolution 10, 35, 37, 42,
49, 83, 84, 229, 238,
281

correlation 42, 116

cyclostationary processes 163}



decimation 203, 204, 210-213.
215, 222

derivative kernel 82, 84, 87,
88, 136

DeSantis, P. 260, 266, 276

Dirac delta 15, 16, 35, 37,
50, 51, 181, 237, 240,
280, 302

doublet 51

entire functions 3, 227

Euler 20, 92

expected value 22, 112, 146,
149, 198

extrapolation 225-228, 244,
245, 254, 257, 259-262.}
265, 266, 268, 270, 2741
315

finite energy signals 30, 107

Fourier series 3, 11-13, 21,
24, 27, 28, 35, 38-41,
130, 176-178, 181, 182,
184, 220, 229, 243, 256,
273, 284, 289

Fourier transform 9-11, 13,
14, 26, 229, 240, 242,
256, 262, 276, 292, 296,
306

Gamma function 16, 242

Gaussian 20, 151

geometric series 92, 115, 143,
264, 274, 283, 287

Solutions 321

Gibb’s phenonema 27, 28, 41
Gori, F. 260, 260, 276

Hamming, R.W. 76, 136, 165
Hankel 42, 177, 219
heterodyne 93, 107, 303
hermetian 24, 55, 92, 296
Higgins, J.R. 2, 5
Hilbert 42, 44, 48, 49, 68, 95,
100, 104, 105, 299
Hilbert space 268, 269
Howard, S.J. 276, 317

ill posed 65, 68, 129-132, 135}
163, 228, 245, 260, 270

implicit sampling 107

incomplete cosine 82

incomplete sine 82

induction 267, 315

interlaced sampling 68, 76,
130, 132, 135

interpolation function 41, 57}
63, 64, 66, 69, 76-78,
80, 81, 89, 90, 92, 100,1
105-107, 119, 123, 131,
132, 195, 211, 306

interpolation noise level 57,
87,113, 115,116, 136,
141,143, 163, 220, 243 ]
245

interval interpolation 225, 245.]}
254, 260, 262, 264, 273}
274, 277

jinc function 17, 26, 279



jitter 111, 145-149, 151, 152,
163

Kotel’nikov, V.A. 1, 3, 5

Kramer, H.P. 1, 5, 57, 102,
108

Kramer’s generalization 13,
57,102, 108

Kronecker delta 12, 15, 197

Lagrangian interpolation 57,
100, 107, 304, 305

Laplace transform 18, 44, 45}
47

Linden, D.A. 68, 78, 80, 109

lost sample restoration 58-63.J]
105,109, 118-121, 123§
129, 164, 165, 195-201,}
203, 221, 274

low passed kernels 43, 44, 47,
48

LPK - see low passed kernels

mean square 11, 12, 39, 40,
52,157,158, 160-162,]
256

Mellin transform 42

Middleton, D. 5, 167, 192,
223

minimum mean square error
156-161

minimum negativity constraintj
317

modulation 5, 168, 182

Solutions 322

mth-let 54

NINV 118,120, 121, 126-129.]
136, 138, 141, 142, 150,
163, 164, 221, 241, 244-§
249, 307, 308

noise level 22, 24, 25, 82, 114,
115,120, 121, 124-127
130, 135, 137, 138-140,}
163, 198-201, 203, 239,
240, 243-245, 270, 307

Nyquist 3, 5, 37, 42, 43, 50,
54, 67-69, 76, 77, 80,
93,105, 114, 118, 125,
129, 130, 135, 163, 187
188,190, 191-193, 195,}
199, 200, 202-204, 208,
211-213, 216, 222, 244 ]
258, 303

optical images 200, 211

orthogonal 12, 13, 102, 197,
254, 256, 257, 268

orthonormal 12, 13, 103, 108.]j
255

oversampling 59, 60, 63, 65,
81, 82, 105, 107, 113,
117,135, 199, 274, 275

Papoulis, A. 5, 6, 9, 22, 57,
68, 69, 70, 106, 129,
145,153, 158, 163, 215,
227, 260, 266, 277



Papoulis-Gerchberg algorithmfi
260

Parseval’s theorem 21, 49, 131,
153, 273, 282, 291, 3078

Pask, C. 227, 277

period cell 179

periodic signals 7, 9, 16

periodic continuous sampling]]
228

periodicity 178-180, 204-207
210, 211, 221, 222

Peterson, D.P. 167, 192

PGA - see Papoulis-Gerchbergj]
algorithm

piecewise 41-43, 67

Poisson sum formula 21, 54,
65, 71, 92, 130, 137,
149, 282, 294

Pollak, H.O. 254, 277

power spectral density 23-25 ]
114, 115, 137, 160, 243 .1
307, 308

prediction 226, 228, 262

probability 146, 147, 149, 153}

prolate spheroidal wave func-Jj
tions 254-260, 266, 272
273

PSWF - see prolate spheroidallj
wave functions

raster sampling 216, 217, 222J

rectangle function 13, 155, 188,
201, 209, 220

recurrent nonuniform sampling]]
57, 77,101, 107

regularize 270

Solutions 323

rotation 171, 174, 182
rotation matrix 175

sample and hold 66, 67

sampling density 55, 186, 191-}
193, 200, 203, 204, 211-1
213, 215, 216

sampling matrix 191, 196, 204,
220

sampling rate 1, 37, 51, 96,
97,107,111,114, 1181
138,139, 141, 161, 163 1
211, 216, 217, 230, 296,
308

sampling rate parameter 58,
101, 127

Schwarz’s inequality 29, 30,
39, 156, 292, 293

separable functions 169, 170

separability theorem 169, 182]

Shannon, C.E. 1, 3, 68, 78,
110, 129

Shannon number 50, 258

Shannon sampling theorem
1, 2,167, 184

signal level 23

signal-to-noise ratio 160, 162 ]
258

sinc function 13, 14, 227

sine integral 135

Slepian, D. 2, 6, 254, 277

stationary processes 23, 117,
130, 200, 220, 239

subcell 205-210, 213-216

super resolution 225



Taylor series 8, 30, 80, 81,
88, 144, 227,228, 308 1
316

time-bandwidth product 50,
258

Toeplitz 232

Solutions 324

wide sense stationarity 23, 24,
52,111, 137,148, 157
163

Youla, D.C. 266, 268-270, 278 i

trapezoidal integration 41-45.J 317
47, 48
triangle function 26, 139-141,
220, 221, 240 Zemanian, A.H. 51, 56

trigonometric polynomial 88}
90, 163, 232, 236-238

truncation error 50, 61, 64,
153, 156, 164

uniform 3, 13, 40, 41, 145,
151,159, 162, 163, 185,11
200

unit doublet (see doublet)

unit step function 17, 45

Vandermonde determinant 76,
105, 305

Von Neumann’s alternating
projection theorem 270

Walsh functions 13, 108
well-posed 135, 272-273
Whittaker, E.M. and J.M. 3,
6
Whittaker-Shannon Sampling]]
Theorem 1
Whittaker-Shannon-Kotel’nikov-ii
Kramer sampling the-}j
orem 1
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