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Abstract—Many search and optimization techniques are 
influenced by the choice of initial starting location, including 
power amplifier circuit optimization.  Intelligent choice of an 
initial starting location relies upon some understanding of the 
underlying search space.  Given a small sample of the search 
space, deep learning image completion techniques can be 
utilized to extrapolate an understanding of the entire search 
space.  This extrapolation can be used in lieu of a traditional 
search algorithm or can inform the selection of a starting 
location for a complete optimization.  Using the techniques of 
this work applied to as few as nine sampled measurements, the 
optimum amplifier gain can be estimated with a typical error 
of < 0.6 dB and the corresponding load reflection coefficient 
can be estimated to a typical distance of < 0.2 linear units, with 
improved accuracy with larger measurement sample sizes. 

Index Terms—artificial neural networks, circuit 
optimization, machine learning algorithms, measurement 
techniques, power amplifiers. 

I. INTRODUCTION

During amplifier design and optimization, as well any 
search process, it is necessary to choose some initial 
starting location.  In cases where the optimization search 
locations are known in advance (dubbed “simultaneous 
search” by [1]), the choice of starting point has no impact 
on the final result. Examples of such search approaches 
include exhaustive searches and full amplifier load-pulls.  
However, significant time savings can be achieved by 
selecting a specific region of the search space, assuming the 
chosen region contains the desired optimum. 

For techniques that select additional search locations 
based on previous measurements (dubbed “sequential 
search” by [1]) significant speed improvements can be 
gained based on the start location.  Here, choosing a starting 
location near the final result typically allows the search to 
converge to the optimum value faster than from a more 
distant location. 

In order to choose a good starting location, it is helpful 
to have at least a sparse or estimated understanding of the 
underlying search space.  The common load-pull technique 
of performing consecutive load-pulls with increasing 
density utilizes the sparse understanding generated by 
previous iterations to select a region of focus for the next 
iteration [2].  For real time circuit optimization techniques, 
the conjugate of the device under test’s (DUT) output 
reflection coefficient is considered a good starting location 
[3].  Absent a priori knowledge of the DUT, all possible 
locations are equally likely to be the optimum, so beginning 

at the center of the Smith Chart minimizes the average 
expected distance to the device optimum.  For search spaces 
where convexity, and by extension convergence, is not 
guaranteed, “Sarvin’s method” of [4] has demonstrated the 
ability to select a good starting location by testing a few 
locations spread throughout the load tuner search space and 
choosing the best performing location, with the intention 
that the best performing point will be close enough to the 
optimum to ensure the search is able to converge. 

This work presents an alternative method to generating 
an estimate of the underlying amplifier performance across 
the complete search space by employing a deep learning 
image completion on a generative neural network.  The 
objective is to extrapolate a complete evaluation using only 
measured samples from a small region, as illustrated in 
Fig. 1.  The optimum of this estimated search space can be 
used in lieu of some other optimization technique or refined 
by applying a more traditional search technique starting 
from this optimum, as opposed to the method of [4] that 
only provides feedback on directly measured points. 

Fig. 1.  Illustration of load-pull extrapolation objective.  Given the 
partial set of load-pull measurements (top), it is desired to produce 
the complete set of contours (bottom) without additional 
measurement. 
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II. EXTRAPOLATION METHOD

To achieve the partial load-pull extrapolation results of 
this paper, a gradient-based image completion technique is 
applied to a generative adversarial network (GAN) trained 
on known load-pull contours.  GANs consist of two 
adversarial neural networks trained with opposing goals [5].  
The first network (discriminator) is trained to classify 
instances of data as either belonging to some defined 
dataset or not belonging to the dataset.  The second network 
(generator) is trained to utilize random input values to 
produce instances of data that are misclassified by the 
discriminator.  These networks are trained in an alternating 
fashion to allow each to adapt to weaknesses in the other’s 
behavior.  Once a GAN is successfully trained on a specific 
dataset, the generator can be used to synthesize elements 
that belong to the dataset, despite not being in the explicit 
subset used for training.  Given a functional GAN, image 
completion can be performed by searching for an input to 
the generator that produces a result that closely agrees with 
the known portion of the image undergoing completion.  As 
the GAN is pre-trained prior to image completion, this 
approach provides a good basis for quickly evaluating an 
unknown device.  

A. Implemented GAN Architecture
This work utilizes a variation of the traditional GAN

architecture known as Wasserstein GAN (WGAN) [6].  
This architecture uses the Wasserstein distance (also called 
Earth Mover distance, representing the amount of work 
required to transfer the mass of one probability distribution 
to another) as the loss metric when training the generator 
and critic (WGAN discriminator) networks.  This distance 
metric avoids the metric saturation that can occur when one 
of the networks performs too well (such as if the critic is 
never wrong).  Avoiding this saturation greatly improves 
the stability and robustness of the network training process 
by ensuring that the gradient calculations used to update the 
generator network do not vanish if the critic becomes too 
performant.  The WGAN system used in this work is trained 
according to the approach presented by [7] utilizing 
gradient penalties (WGAN-GP) as opposed to the weight 
clipping methods of the initial WGAN architecture [6].  The 
implementation (in Tensorflow 2.0), including network 
layer topology, is adapted from [8]. 

B. Image Completion Process
The trained WGAN system is then extended for image

completion using the techniques of [9].  Although [9] 
originally utilizes a Deep Convolution GAN (DCGAN) 
architecture, the image completion process readily 
translates to other GAN architectures, such as WGAN. 

The goal of image completion is to find an input 𝑧̂ to the 
generator network 𝐺() that produces an image 𝐺(𝑧̂) that is 
similar to the known partial image 𝑥' and fits the overall 

target dataset.  To complete an image, a mask 𝑀 is first 
specified that encodes what portion of the full image size is 
provided by 𝑥'.  The mask is specified as 

𝑀(𝑛) = + 1, 𝑥'
(𝑛)	𝑖𝑠	𝑣𝑎𝑙𝑖𝑑

0, 𝑥'(𝑛)	𝑖𝑠	𝑖𝑛𝑣𝑎𝑙𝑖𝑑 (1) 

where 𝑛 specifies pixels within the image.  This mask is 
used in (2) to determine which portions of the generated 
image should be used when comparing the quality of the 
generated image to the provided partial image. 

Two loss metrics are used to determine the quality of 
𝐺(𝑧̂): contextual loss and perceptual loss.  Contextual loss 
describes how similar the generated and partial images are 
to each other, and is defined as: 

𝐿!"#$%&$(𝑧̂) = 7|𝑀 ∗ 𝐺(𝑧̂) − 𝑀 ∗ 𝑥'|7'.         (2)
Perceptual loss describes how closely the generated 

image resembles members of the trained dataset according 
to the critic network 𝐶(), and is defined as: 

𝐿(%)!%($(𝑧̂) = log ?1 − 𝐶@𝐺(𝑧̂)AB.    (3) 
These two losses are combined with a hyperparameter 𝜆 

that weights the relative importance of the two metrics.  
(Reference [9] recommends 𝜆 = 0.1; this work instead uses 
𝜆 = 1.) The final loss is then: 

𝐿(𝑧̂) = 𝐿!"#$%&$(𝑧̂) + 𝜆𝐿(%)!%($(𝑧̂)    (4) 
with the optimization searching for 𝑧̂ that minimizes 𝐿(𝑧̂).  
The results presented in this work are completed using 1000 
iterations of the Adam optimization technique [10], with 
learning rate 0.01, 𝛽' = 0.9, 𝛽* = 0.999, and 𝜖 = 10+,. 

Note that the method of [9] combines the generated and 
partial images, utilizing the mask to remove part of the 
generated image and replace it with the original partial 
image.  This work forgoes this step, using only the 
generated image as the final output. 

C. Training Dataset Generation
The data used for this project is generated in MATLAB

by simulating the output power contours for randomly 
generated sets of amplifier S-Parameters.  As such, these 
contours represent linear device performance.  This 
approach is used in lieu of large-signal device behavior 
because of the need for a large dataset during training and 
the relative ease of generating S-Parameters compared to 
simulating non-linear models.  Datasets for large-signal 
operation could be produced by performing load-pull 
simulations using existing nonlinear device models across 
a variety of settings (frequency, bias conditions, input 
power, etc.). 

Given a set of amplifier S-Parameters and source and 
load impedances, the amplifier output power can be 
calculated using the methods of Gonzalez [11].  The 
magnitude bounds for the amplifier S-Parameters are 
included in Table I.  These bounds were selected to avoid 
generating potentially unstable amplifiers.  Only 
unconditionally stable amplifiers are used for training and 



evaluation to avoid unbounded performance values, 
determined by the stability conditions 𝐾 > 1 and |Δ| < 1 
as defined in [11]. 

The source impedance was fixed at 50 Ω, and the load 
reflection coefficient’s real and imaginary parts were varied 
over [-1, 1] with 28 points each and uniform spacing, 
discarding values with |Γ-| > 1. 

The resulting dataset was pre-processed by standardizing 
to zero mean and unit variance and applying sigmoidal 
normalization with a hyperbolic tangent function as 
recommended by [12], such that 

𝑃.(𝑛) = '+%!"#(%)

'/%!"#(%)
= tanh?0#(#)

*
B  (5) 

𝑃3(𝑛) =
0(#)+04

5"
,    (6) 

where 𝑃′(𝑛) are the normalized power samples and 𝑃3(𝑛) 
are the power samples standardized from the mean 𝑃T and 
variance 𝜎0*  of the original samples 𝑃(𝑛), represented in 
Watts.  Neglecting to apply the sigmoidal normalization 
results in the networks failing to predict optimized powers 
far from the mean observed power.  This preprocessing can 
be inverted to recover predicted powers as 

𝑃()%6(𝑛) = ?2 tanh+' ?𝑃()%6. (𝑛)B ∗ 𝜎0B + 𝑃T.        (7) 
For computational efficiency, each load-pull was 

rendered as 32×32 pixel greyscale images for use in the 
load-pull extrapolation system. 

TABLE I 
DATASET S-PARAMETER GENERATION BOUNDS 

S-Parameter Bound (Linear 
Magnitude) 

𝑆!! [0, 0.8] 

𝑆!" [0.0001, 0.001] 

𝑆"! [2, 20] 

𝑆"" [0, 0.8] 

III. RESULTS

The load-pull extrapolation system was trained using 
100,000 simulated amplifier load-pulls.  The resulting 
system was then tested by presenting incomplete load-pulls 
dictated by the mask of (1).  Three mask sizes were selected 
such that known values were given for regions of the Smith 
Chart where |Re(Γ-), Im(Γ-)| < {0.25, 0.15, 0.05}.  These 
are referred to as “0.25 Mask,” “0.15 Mask,” and “0.05 
Mask” and correspond to partial load-pulls of 256, 81, and 
9 values, respectively.  Example extrapolated load-pulls are 
shown in Fig. 2-4 along with the masked region used as a 
basis for prediction and the true load-pull contours. 

Each mask was then tested with 100 different simulated 
amplifier load-pulls.  The prediction performance for each 
set is summarized in Table II. 

TABLE II 
PREDICTION PERFORMANCE STATISTICS 

0.25 Mask 0.15 Mask 0.05 Mask 
Mean Gain Error 0.162 dB 0.453 dB 0.584 dB 

Median Gain Error 0.092 dB 0.241 dB 0.401 dB 

Mean Γ# Error 0.074 0.114 0.186 

Median Γ$ Error 0.065 0.091 0.144 

Fig. 2.  Original and predicted load-pull contours based on known 
data in the region |Re(Γ𝐿), Im(Γ𝐿)| < 0.25  (shaded region).  
Actual maximum gain is 40.28 dBm at Γ# = 0.59∠112.4° .  
Predicted maximum gain is 40.65 dBm at Γ# = 0.68∠115.3°. 

Fig. 3.  Original and predicted load-pull contours based on known 
data in the region |Re(Γ#), Im(Γ#)| < 0.15  (shaded region).  
Actual maximum gain is 42.27 dBm at Γ# = 0.82∠ − 25.6° .  
Predicted maximum gain is 41.68 dBm at Γ# = 0.70∠ − 20.2°. 
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Fig. 4.  Original and predicted load-pull contours based on known 
data in the region |Re(Γ#), Im(Γ#)| < 0.05  (shaded region).  
Actual maximum gain is 37.92 dBm at Γ# = 0.62∠171.0° .  
Predicted maximum gain is 37.78 dBm at Γ# = 0.57∠163.6°. 

As expected, the extrapolation system performs better, 
on average, when given a larger initial load-pull sample (the 
0.25 mask case).  However, it still performs remarkably 
well even when given only nine measurements (0.05 Mask) 
as a prediction basis.  Performance of optimum Γ- 
predictions appears to encounter diminishing returns with 
increased sample size compared to predicted gain.  This is 
likely an effect of confining Γ-  to the discrete 32×32 
measurement grid used for evaluation as opposed to 
interpolating to a more precise maximum location. 

In some cases, the prediction fails to converge to a 
reasonable set of contours for the given data, such as in 
Fig. 5.  Such failures are indicated by large values of 
𝐿(%)!%($(𝑧̂), suggesting that the resulting prediction does 
not represent an expected set of contours, and 𝐿!"#$%&$(𝑧̂), 
indicating the prediction doesn’t match the known data.  To 
fight convergence failure, a different initial value set 𝑧̂ can 
be chosen and another prediction can be run to obtain more 
realistic results.  In practice, multiple predictions from 
various initial 𝑧̂  values can be aggregated to improve 
reliability at the cost of increased computation, or 
predictions could be repeated as needed according to 
predetermined thresholds applied to 𝐿(%)!%($(𝑧̂)  and 
𝐿!"#$%&$(𝑧̂).  Note that these mitigations are not utilized in 
the results of this paper. 

IV. CONCLUSION

The ability to extrapolate device performance from 
partial load-pull datasets utilizing deep learning image 
completion techniques has been demonstrated.  Such an 
approach can be used to usefully estimate the location and 
value of optimum device performance with as few as nine 

sample points near Γ- = 0.  These estimates can be used to 
inform amplifier optimization processes, such as traditional 
load-pulls or real-time impedance tuning techniques by 
eliminating large regions of the Smith Chart from 
consideration.  Improved estimates are expected through 
the aggregation of multiple prediction iterations.   

Fig. 5.  Demonstration of failure to generate reasonable load-pull 
contours.  Original and predicted load-pull contours based on 
known data in the region |Re(Γ#), Im(Γ#)| < 0.05  (shaded 
region).  Actual maximum gain is 31.00 dBm at Γ# = 0.46∠39.3°.  
Predicted maximum gain is 29.98 dBm at Γ# = 0.05∠45.0°. 

The authors are optimistic that this technique can be 
applied to large-signal operation, as similar deep learning 
approaches have achieved great success in much more 
complex applications, such as generation of full-color 
photographs [7] and completion of partial electron 
microscopy [13].  Additionally, the ability of neural 
networks to learn and extrapolate performance of an 
individual large-signal microwave device has been 
previously demonstrated [14], which suggests favorable 
outcomes in applying the techniques of this paper to this 
class of devices in general. 
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