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73.1 Signal Detection

H. Vincent Poor

The field of signal detection and estimation is concerned with the processing of information-bearing signals
for the purpose of extracting the information they contain. The applications of this methodology are quite
broad, ranging from areas of electrical engineering such as automatic control, digital communications, image
processing, and remote sensing, into other engineering disciplines and the physical, biological, and social
sciences.
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There are two basic types of problems of interest in this context. Signal detection problems are concerned
primarily with situations in which the information to be extracted from a signal is discrete in nature. That is,
signal detection procedures are techniques for deciding among a discrete (usually finite) number of possible
alternatives. An example of such a problem is the demodulation of a digital communication signal, in which
the task of interest is to decide which of several possible transmitted symbols has elicited a given received signal.
Estimation problems, on the other hand, deal with the determination of some numerical quantity taking values
in a continuum. An example of an estimation problem is that of determining the phase or frequency of the
carrier underlying a communication signal.

Although signal detection and estimation is an area of considerable current research activity, the fundamental
principles are quite well developed. These principles, which are based on the theory of statistical inference,
explain and motivate most of the basic signal detection and estimation procedures used in practice. In this
section, we will give a brief overview of the basic principles underlying the field of signal detection. Estimation
is treated elsewhere this volume, notably in Section 16.2. A more complete introduction to these subjects is
found in Poor [1994].

General Considerations

The basic principles of signal detection can be conveniently discussed in the context of decision-making between
two possible statistical models for a set of real-valued measurements, Y1, Y2, . . . , Yn. In particular, on observing
Y1, Y2, . . . , Yn, we wish to decide whether these measurements are most consistent with the model

Yk = Nk , k = 1, 2, . . . , n (73.1)

or with the model

Yk = Nk + S k , k = 1, 2, . . . , n (73.2)

where N1, N2 , . . . , Nn is a random sequence representing noise, and where S1, S2, . . . , Sn is a sequence
representing a (possibly random) signal.

In deciding between Eqs. (73.1) and (73.2), there are two types of errors possible: a false alarm, in which
(73.2) is falsely chosen, and a miss, in which (73.1) is falsely chosen. The probabilities of these two types of
errors can be used as performance indices in the optimization of rules for deciding between (73.1) and (73.2).
Obviously, it is desirable to minimize both of these probabilities to the extent possible. However, the minimi-
zation of the false-alarm probability and the minimization of the miss probability are opposing criteria. So,
it is necessary to effect a trade-off between them in order to design a signal detection procedure. There are
several ways of trading off the probabilities of miss and false alarm: the Bayesian detector minimizes an average
of the two probabilities taken with respect to prior probabilities of the two conditions (73.1) and (73.2), the
minimax detector minimizes the maximum of the two error probabilities, and the Neyman-Pearson detector
minimizes the miss probability under an upper-bound constraint on the false-alarm probability.

If the statistics of noise and signal are known, the Bayesian, minimax, and Neyman-Pearson detectors are
all of the same form. Namely, they reduce the measurements to a single number by computing the likelihood
ratio

(73.3)

where pS+N and pN denote the probability density functions of the measurements under signal-plus-noise (73.2)
and noise-only (73.1) conditions, respectively. The likelihood ratio is then compared to a decision threshold,
with the signal-present model (73.2) being chosen if the threshold is exceeded, and the signal-absent model
(73.1) being chosen otherwise. Choice of the decision threshold determines a trade-off of the two error
probabilities, and the optimum procedures for the three criteria mentioned above differ only in this choice.
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There are several basic signal detection structures that can be derived from Eqs. (73.1) to (73.3) under the
assumption that the noise sequence consists of a set of independent and identically distributed (i.i.d.) Gaussian
random variables with zero means. Such a sequence is known as discrete-time white Gaussian noise. Thus,
until further notice, we will make this assumption about the noise. It should be noted that this assumption is
physically justifiable in many applications.

Detection of Known Signals

If the signal sequence S1, S2, . . . , Sn is known to be given by a specific sequence, say s1, s2 , . . . , sn (a situation
known as coherent detection), then the likelihood ratio (73.3) is given in the white Gaussian noise case by

(73.4)

where s2 is the variance of the noise samples. The only part of (73.4) that depends on the measurements is the
term S n

k =1skYk and the likelihood ratio is a monotonically increasing function of this quantity. Thus, optimum
detection of a coherent signal can be accomplished via a correlation detector, which operates by comparing the
quantity

(73.5)

to a threshold, announcing signal presence when the threshold is exceeded.
Note that this detector works on the principle that the signal will correlate well with itself, yielding a large

value of (73.5) when present, whereas the random noise will tend to average out in the sum (73.5), yielding a
relatively small value when the signal is absent. This detector is illustrated in Fig. 73.1.

Detection of Parametrized Signals

The correlation detector cannot usually be used directly unless the signal is known exactly. If, alternatively, the
signal is known up to a short vector u of random parameters (such as frequencies or phases) that are independent
of the noise, then an optimum test can be implemented by threshold comparison of the quantity

(73.6)

where we have written Sk = sk (u) to indicate the functional dependence of the signal on the parameters, and
where L and p(u) denote the range and probability density function, respectively, of the parameters.

The most important example of such a parametrized signal is that in which the signal is a modulated sinusoid
with random phase; i.e.,

FIGURE 73.1 Correlation detector for a coherent signal in additive white Gaussian noise.
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Sk = ak cos(vc k + u), k = 1, 2, . . ., n (73.7)

where a1, a2, . . . , an is a known amplitude modulation sequence, vc is a known (discrete-time) carrier frequency,
and the random phase u is uniformly distributed in the interval [–p,p]. In this case, the likelihood ratio is a
monotonically increasing function of the quantity

(73.8)

Thus, optimum detection can be implemented via comparison of (73.8) with a threshold, a structure known
as an envelope detector. Note that this detector correlates the measurements with two orthogonal components
of the signal, ak cos(vc k) and ak sin(vc k). These two correlations, known as the in-phase and quadrature
components of the measurements, respectively, capture all of the energy in the signal, regardless of the value
of u. Since u is unknown, however, these two correlations cannot be combined coherently, and thus they are
combined noncoherently via (73.8) before the result is compared with a threshold. This detector is illustrated
in Fig. 73.2.

Parametrized signals also arise in situations in which it is not appropriate to model the unknown parameters
as random variables with a known distribution. In such cases, it is not possible to compute the likelihood ratio
(73.6) so an alternative to the likelihood ratio detector must then be used. (An exception is that in which the
likelihood ratio detector is invariant to the unknown parameters—a case known as uniformly most powerful
detection.) Several alternatives to the likelihood ratio detector exist for these cases.

One useful such procedure is to test for the signal’s presence by threshold comparison of the generalized
likelihood ratio, given by

(73.9)

where Lu denotes the likelihood ratio for Eqs. (73.1) and (73.2) for the known-signal problem with the parameter
vector fixed at u. In the case of white Gaussian noise, we have

(73.10)

It should be noted that this formulation is also valid if the statistics of the noise have unknown parameters,
e.g., the noise variance in the white Gaussian case.

One common application in which the generalized likelihood ratio detector is useful is that of detecting a
signal that is known except for its time of arrival. That is, we are often interested in signals parametrized as

sk(u) = ak–u (73.11)

where {ak} is a known finite-duration signal sequence and where u ranges over the integers. Assuming white
Gaussian noise and an observation interval much longer than the duration of {ak}, the generalized likelihood
ratio detector in this case announces the presence of the signal if the quantity

(73.12)

exceeds a fixed threshold. This type of detector is known as a matched filter, since it can be implemented by
filtering the measurements with a digital filter whose pulse response is a time-reversed version of the known
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signal {ak} (hence it is “matched’’ to the signal), and announcing the signal’s presence if the filter output exceeds
the decision threshold at any time.

Detection of Random Signals

In some applications, particularly in remote sensing applications such as sonar and radio astronomy, it is
appropriate to consider the signal sequence S1 , S2 , . . . , Sn itself to be a random sequence, statistically independent
of the noise. In such cases, the likelihood ratio formula of (73.6) is still valid with the parameter vector u simply
taken to be the signal itself. However, for long measurement records (i.e., large n), (73.6) is not a very practical
formula except in some specific cases, the most important of which is the case in which the signal is Gaussian.

In particular, if the signal is Gaussian with zero-mean and autocorrelation sequence rk,l =
D E{Sk Sl }, then the

likelihood ratio is a monotonically increasing function of the quantity

(73.13)

with qk,l the element in the kth row and lth column of the positive-definite matrix

(73.14)

where I denotes the n 3 n identity matrix, and R is the covariance matrix of the signal, i.e., it is the n 3 n
matrix with elements rk,l .

Note that (73.13) is a quadratic function of the measurements; thus, a detector based on the comparison of
this quantity to a threshold is known as a quadratic detector. The simplest form of this detector results from
the situation in which the signal samples are, like the noise samples, i.i.d. In this case, the quadratic function
(73.13) reduces to a positive constant multiple of the quantity

(73.15)

FIGURE 73.2 Envelope detector for a noncoherent signal in additive white Gaussian noise.
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A detector based on (73.15) simply measures the energy in the measurements and then announces the presence
of the signal if this energy is large enough. This type of detector is known as a radiometer.

Thus, radiometry is optimum in the case in which both signal and noise are i.i.d. Gaussian sequences with
zero means. Since in this case the presence of the signal is manifested only by an increase in energy level, it is
intuitively obvious that radiometry is the only way of detecting the signal’s presence. More generally, when the
signal is correlated, the quadratic function (73.13) exploits both the increased energy level and the correlation
structure introduced by the presence of the signal. For example, if the signal is a narrowband Gaussian process,
then the quadratic function (73.13) acts as a narrowband radiometer with bandpass characteristic that approx-
imately matches that of the signal. In general, the quadratic detector will make use of whatever spectral
properties the signal exhibits.

If the signal is random but not Gaussian, then its optimum detection [described by (73.6)] typically requires
more complicated nonlinear processing than the quadratic processing of (73.13) in order to exploit the distri-
butional differences between signal and noise. This type of processing is often not practical for implementation,
and thus approximations to the optimum detector are typically used. An interesting family of such detectors
uses cubic or quartic functions of the measurements, which exploit the higher-order spectral properties of the
signal [Mendel, 1991]. As with deterministic signals, random signals can be parametrized. In this case, however,
it is the distribution of the signal that is parametrized. For example, the power spectrum of the signal of interest
may be known only up to a set of unknown parameters. Generalized likelihood ratio detectors (73.9) are often
used to detect such signals.

Deciding Among Multiple Signals

The preceding results have been developed under the model (73.1)–(73.2) that there is a single signal that is
either present or absent. In digital communications applications, it is more common to have the situation in
which we wish to decide between the presence of two (or more) possible signals in a given set of measurements.
The foregoing results can be adapted straightforwardly to such problems. This can be seen most easily in the
case of deciding among known signals. In particular, consider the problem of deciding between two alternatives:

(73.16)

and

(73.17)

where s 1
(0), s 2

(0), . . . , s n
(0) and s 1

(1), s 2
(1), . . ., s n

(1) are two known signals. Such problems arise in data transmission
problems, in which the two signals s (0) and s (1) correspond to the waveforms received after transmission of a
logical “zero’’ and “one,’’ respectively. In such problems, we are generally interested in minimizing the average
probability of error, which is the average of the two error probabilities weighted by the prior probabilities of
occurrence of the two signals. This is a Bayesian performance criterion, and the optimum decision rule is a
straightforward extension of the correlation detector based on (73.5). In particular, under the assumptions that
the two signals are equally likely to occur prior to measurement, and that the noise is white and Gaussian, the
optimum decision between (73.16) and (73.17) is to choose the model (73.16) if ( k

n
=1 s k

(0)Yk is larger than (k
n
=1

s k
(1)Yk , and to choose the model (73.17) otherwise.
More generally, many problems in digital communications involve deciding among M equally likely signals

with M > 2. In this case, again assuming white Gaussian noise, the decision rule that minimizes the error
probability is to choose the signal s 1

( j), s
2

( j), . . . , s n
( j), where j is a solution of the maximization problem

(73.18)
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There are two basic types of digital communications applications in which the problem (73.18) arises. One
is in M-ary data transmission, in which a symbol alphabet with M elements is used to transmit data, and a
decision among these M symbols must be made in each symbol interval [Proakis, 1983]. The other type of
application in which (73.18) arises is that in which data symbols are correlated in some way because of
intersymbol interference, coding, or multiuser transmission. In such cases, each of the M possible signals
represents a frame of data symbols, and a joint decision must be made about the entire frame since individual
symbol decisions cannot be decoupled. Within this latter framework, the problem (73.18) is known as sequence
detection. The basic distinction between M-ary transmission and sequence detection is one of degree. In typical
M-ary transmission, the number of elements in the signaling alphabet is typically a small power of 2 (say 8 or
32), whereas the number of symbols in a frame of data could be on the order of thousands. Thus, solution of
(73.18) by exhaustive search is prohibitive for sequence detection, and less complex algorithms must be used.
Typical digital communications applications in which sequence detection is necessary admit dynamic program-
ming solutions to (73.18) (see, e.g., Verdú [1993]).

Detection of Signals in More General Noise Processes

In the foregoing paragraphs, we have described three basic detection procedures: correlation detection of signals
that are completely known, envelope detection of signals that are known except for a random phase, and
quadratic detection for Gaussian random signals. These detectors were all derived under an assumption of
white Gaussian noise. This assumption provides an accurate model for the dominant noise arising in many
communication channels. For example, the thermal noise generated in signal processing electronics is ade-
quately described as being white and Gaussian. However, there are also many channels in which the statistical
behavior of the noise is not well described in this way, particularly when the dominant noise is produced in
the physical channel rather than in the receiver electronics.

One type of noise that often arises is noise that is Gaussian but not white. In this case, the detection problem
(73.1)–(73.2) can be converted to an equivalent problem with white noise by applying a linear filtering process
known as prewhitening to the measurements. In particular, on denoting the noise covariance matrix by (, we
can write

( = CC T (73.19)

where C is an n 3 n invertible, lower-triangular matrix and where the superscript T denotes matrix transpo-
sition. The representation (73.19) is known as the Cholesky decomposition. On multiplying the measurement
vector Y =

D (Y1 , Y2 , . . . , Yn )T satisfying (73.1)–(73.2) with noise covariance (, by C–1, we produce an equivalent
(in terms of information content) measurement vector that satistifies the model (73.1)–(73.2) with white
Gaussian noise and with the signal conformally transformed. This model can then be treated using the methods
described previously.

In other channels, the noise can be modeled as being i.i.d. but with an amplitude distribution that is not
Gaussian. This type of model arises, for example, in channels dominated by impulsive phenomena, such as
urban radio channels. In the non-Gaussian case the procedures discussed previously lose their optimality as
defined in terms of the error probabilities. These procedures can still be used, and they will work well under
many conditions; however, there will be a resulting performance penalty with respect to optimum procedures
based on the likelihood ratio. Generally speaking, likelihood-ratio-based procedures for non-Gaussian noise
channels involve more complex nonlinear processing of the measurements than is required in the standard
detectors, although the retention of the i.i.d. assumption greatly simplifies this problem. A treatment of methods
for such channels can be found in Kassam [1988].

When the noise is both non-Gaussian and dependent, the methodology is less well developed, although some
techniques are available in these cases. An overview can be found in Poor and Thomas [1993].

Robust and Nonparametric Detection

All of the procedures outlined in the preceding subsection are based on the assumption of a known (possibly
up to a set of unknown parameters) statistical model for signals and noise. In many practical situations it is
© 2000 by CRC Press LLC



not possible to specify accurate statistical models for signals or noise, and so it is of interest to design detection
procedures that do not rely heavily on such models. Of course, the parametrized models described in the
foregoing paragraphs allow for uncertainty in the statistics of the observations. Such models are known as
parametric models, because the set of possible distributions can be parametrized by a finite set of real parameters.

While parametric models can be used to describe many types of modeling uncertainty, composite models
in which the set of possible distributions is much broader than a parametric model would allow are sometimed
more realistic in practice. Such models are termed nonparametric models. For example, one might be able to
assume only some very coarse model for the noise, such as that it is symmetrically distributed. A wide variety
of useful and powerful detectors have been developed for signal-detection problems that cannot be parame-
trized. These are basically of two types: robust and nonparametric. Robust detectors are those designed to
perform well despite small, but potentially damaging, nonparametric deviations from a nominal parametric
model, whereas nonparametric detectors are designed to achieve constant false-alarm probability over very
wide classes of noise statistics.

Robustness problems are usually treated analytically via minimax formulations that seek best worst-case
performance as the design objective. This formulation has proven to be very useful in the design and charac-
terization of robust detectors for a wide variety of detection problems. Solutions typically call for the intro-
duction of light limiting to prevent extremes of gain dictated by an (unrealistic) nominal model. For example,
the correlation detector of Fig. 73.1 can be made robust against deviations from the Gaussian noise model by
introducing a soft-limiter between the multiplier and the accumulator.

Nonparametric detection is usually based on relatively coarse information about the observations, such as
the algebraic signs or the ranks of the observations. One such test is the sign test, which bases its decisions on
the number of positive observations obtained. This test is nonparametric for the model in which the noise
samples are i.i.d. with zero median and is reasonably powerful against alternatives such as the presence of a
positive constant signal in such noise. More powerful tests for such problems can be achieved at the expense
of complexity by incorporating rank information into the test statistic.

Distributed and Sequential Detection

The detection procedures discussed in the preceding paragraphs are based on the assumption that all measure-
ments can and should be used in the detection of the signal, and moreover that no constraints exist on how
measurements can be combined. There are a number of applications, however, in which constraints apply to
the information pattern of the measurements.

One type of constrained information pattern that is of interest in a number of applications is a network consisting
of a number of distributed or local decision makers, each of which processes a subset of the measurements, and
a fusion center, which combines the outputs of the distributed decision makers to produce a global detection
decision. The communication between the distributed decision makers and the fusion center is constrained, so
that each local decision maker must reduce its subset of measurements to a summarizing local decision to be
transmitted to the fusion center. Such structures arise in applications such as the testing of large-scale integrated
circuits, in which data collection is decentralized, or in detection problems involving very large data sets, in which
it is desirable to distribute the computational work of the detection algorithm. Such problems lie in the field of
distributed detection. Except in some trivial special cases, the constraints imposed by distributing the detection
algorithm introduce a further level of difficulty into the design of optimum detection systems. Nevertheless,
considerable progress has been made on this problem, a survey of which can be found in Tsitsiklis [1993].

Another type of nonstandard information pattern that arises is that in which the number of measurements
is potentially infinite, but in which there is a cost associated with taking each measurement. This type of model
arises in applications such as the synchronization of wideband communication signals. In such situations, the
error probabilities alone do not completely characterize the performance of a detection system, since
consideration must also be given to the cost of sampling. The field of sequential detection deals with the
optimization of detection systems within such constraints. In sequential detectors, the number of measurements
taken becomes a random variable depending on the measurements themselves. A typical performance criterion
for optimizing such a system is to seek a detector that minimizes the expected number of measurements for
given levels of miss and false-alarm probabilities.
© 2000 by CRC Press LLC



The most commonly used sequential detection procedure is the sequential probability ratio test, which operates
by recursive comparison of the likelihood ratio (73.3) to two thresholds. In this detector, if the likelihood ratio
for a given number of samples exceeds the larger of the two thresholds, then the signal’s presence is announced
and the test terminates. Alternatively, if the likelihood ratio falls below the smaller of the two thresholds, the
signal’s absence is announced and the test terminates. However, if neither of the two thresholds is crossed, then
another measurement is taken and the test is repeated.

Detection with Continuous-Time Measurements

Note that all of the preceding formulations have involved the assumption of discrete-time (i.e., sampled-data)
measurements. From a practical point of view, this is the most natural framework within which to consider
these problems, since implementations most often involve digital hardware. However, the procedures discussed
in this section all have continuous-time counterparts, which are of both theoretical and practical interest.
Mathematically, continuous-time detection problems are more difficult than discrete-time ones, because they
involve probabilistic analysis on function spaces. The theory of such problems is quite elegant, and the interested
reader is referred to Poor [1994] or Grenander [1981] for more detailed exposition.

Continuous-time models are of primary interest in the front-end stages of radio frequency or optical
communication receivers. At radio frequencies, continuous-time versions of the models described in the
preceding paragraphs can be used. For example, one may consider the detection of signals in continuous-time
Gaussian white noise. At optical wavelengths, one may consider either continuous models (such as Gaussian
processes) or point-process models (such as Poisson counting processes), depending on the type of detection
used (see, e.g., Snyder and Miller [1991]). In the most fundamental analyses of optical detection problems, it
is sometimes desirable to consider the quantum mechanical nature of the measurements [Helstrom, 1976].

Defining Terms

Bayesian detector: A detector that minimizes the average of the false-alarm and miss probabilities, weighted
with respect to prior probabilities of signal-absent and signal-present conditions.

Correlation detector: The optimum structure for detecting coherent signals in the presence of additive white
Gaussian noise.

Discrete-time white Gaussian noise: Noise samples modeled as independent and identically distributed
Gaussian random variables.

Envelope detector: The optimum structure for detecting a modulated sinusoid with random phase in the
presence of additive white Gaussian noise.

False-alarm probability: The probability of falsely announcing the presence of a signal.
Likelihood ratio: The optimum processor for reducing a set of signal-detection measurements to a single

number for subsequent threshold comparison.
Miss probability: The probability of falsely announcing the absence of a signal.
Neyman-Pearson detector: A detector that minimizes the miss probability within an upper-bound constraint

on the false-alarm probability.
Quadratic detector: A detector that makes use of the second-order statistical structure (e.g., the spectral

characteristics) of the measurements. The optimum structure for detecting a zero-mean Gaussian signal
in the presence of additive Gaussian noise is of this form.

Related Topics

16.2 Parameter Estimation • 70.3 Spread Spectrum Communications
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Further Information

Except as otherwise noted in the accompanying text, further details on the topics introduced in this section
can be found in the textbook:
Poor, H.V. An Introduction to Signal Detection and Estimation, 2nd ed., New York: Springer-Verlag, 1994.

The bimonthly journal, IEEE Transactions on Information Theory, publishes recent advances in the theory of
signal detection. It is available from the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th
Street, New York, NY 10017.

Papers describing applications of signal detection are published in a number of journals, including the
monthly journals IEEE Transactions on Communications, IEEE Transactions on Signal Processing, and the Journal
of the Acoustical Society of America. The IEEE journals are available from the IEEE, as above. The Journal of the
Acoustical Society of America is available from the American Institute of Physics, 335 East 45th Street, New York,
NY 10017.

73.2 Noise

Carl G. Looney

Every information signal s(t) is corrupted to some extent by the superimposition of extra-signal fluctuations
that assume unpredictable values at each time instant t. Such undesirable signals were called noise due to early
measurements with sensitive audio amplifiers.

Noise sources are (1) intrinsic, (2) external, or (3) process induced. Intrinsic noise in conductors comes from
thermal agitation of molecularly bound ions and electrons, from microboundaries of impurities and grains
with varying potential, and from transistor junction areas that become temporarily depleted of electrons/holes.
External electromagnetic interference sources include airport radar, x-rays, power and telephone lines, com-
munications transmissions, gasoline engines and electric motors, computers and other electronic devices; and
also include lightning, cosmic rays, plasmas (charged particles) in space, and solar/stellar radiation (conductors
act as antennas). Reflective objects and other macroboundaries cause multiple paths of signals. Process-induced
errors include measurement, quantization, truncation, and signal generation errors. These also corrupt the
signal with noise power and loss of resolution.

Statistics of Noise

Statistics allow us to analyze the spectra of noise. We model a noise signal by a random (or stochastic) process
N(t), a function whose realized value N(t) = xt at any time instant t is chosen by the outcome of the random
variable Nt = N(t). N(t) has a probability distribution for the values x it can assume. Any particular trajectory
{(t,xt )} of outcomes is called a realization of the noise process. The first-order statistic of N(t) is the expected
value m t = E[N(t)]. The second-order statistic is the autocorrelation function RNN(t, t + t) = E[N(t)N(t + t)],
where E[–] is the expected value operator. Autocorrelation measures the extent to which noise random variables
N1 = N(t1) and N2 = N(t2) at times t1 and t2 depend on each other in an average sense.
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When the first- and second-order statistics do not change over time, we call the noise a weakly (or wide-
sense) stationary process. This means that: (1) E[N(t)] = mt = m is constant for all t, and (2) RNN(t, t + t) =
E[N(t)N(t + t)] = E[N(0)N(t)] = RNN(t) for all t [see Brown, 1983, p. 82; Gardner, 1990, p. 108; or Peebles,
1987, p. 153 for properties of RNN(t)]. In this case the autocorrelation function depends only on the offset t.
We assume hereafter that m = 0 (we can subtract m, which does not change the autocorrelation). When t = 0,
RNN(0) = E[N(t)N(t + 0)] = E[(N(t))2] = sN

2 , which is the fixed variance of each random variable Nt for all t.
Weakly stationary (ws) processes are the most commonly encountered cases and are the ones considered here.
Evolutionary processes have statistics that change over time and are difficult to analyze.

Figure 73.3 shows a realization of a noise process N(t), where at any particular time t, the probability density
function is shown coming out of the page in a third dimension. For a ws noise, the distributions are the same
for each t. The most mathematically tractable noises are Gaussian ws processes, where at each time t the
probability distribution for the random variable Nt = N(t) is Gaussian (also called normal). The first- and
second-order statistics completely determine Gaussian distributions, and so ws makes their statistics of all
orders stationary over time also. It is well known [see Brown, 1983, p. 39] that linear transformations of Gaussian
random variables are also Gaussian random variables. The probability density function for a Gaussian random
variable Nt is fN (x) = {1/[2psN

2]1/2exp[–(x – mN )2/2sN
2 ],  which is the familiar bell-shaped curve centered on

x = mN . The standard Gaussian probability table [Peebles, 1987, p. 314] is useful, e.g., Pr[–sN < Nt < sN ) =
2Pr[0 < Nt < sN ) = 0.8413 from the table.

Noise Power

The noise signal N(t) represents voltage, so the autocorrelation function at offset 0, RNN(0) = E[N(t)N(t)]
represents expected power in volts squared, or watts per ohm. When R = 1 W, then N(t)N(t) = N(t)[N(t)/R] =
N(t)I(t) volt-amperes = watts (where I(t) is the current in a 1-W resistor). The Fourier transform F[RNN(t)] of
the autocorrelation function RNN(t) is the power spectrum, called the power spectral density function (psdf),
SNN(w) in W/(rad/s). Then

(73.20)

FIGURE 73.3 A noise process.
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The psdf at frequency f is defined to be the expected power that the voltage N(t), bandlimited to an incremental
band df centered at f, would dissipate in a 1-W resistance, divided by df.

Equations (73.20) are known as the Wiener-Khinchin relations that establish that SNN(w) and RNN(t) are a
Fourier transform pair for ws random processes [Brown, 1983; Gardner, 1990, p. 230; Peebles, 1987]. The psdf
SNN(w) has units of W/(rad/s), whereas the autocorrelation function RNN(t) has units of watts. When t = 0 in
the second integral of Eq. (73.20), the exponential becomes e0 = 1, so that RNN(0) (= E[N(t)2] = sN

2) is the
integral of the psdf SNN(w) over all radian frequencies, –` < w < `. The rms (root-mean-square) voltage is
Nrms = sN  (the standard deviation). The power spectrum in W/(rad/s) is a density that is summed up via an
integral over the radian frequency band w1 to w2 to obtain the total power over that band.

(73.21)

The variance sN
2  = RNN(0) is the mean instantaneous power PNN over all frequencies at any time t.

Effect of Linear Transformations on Autocorrelation 
and Power Spectral Density

Let h(t) be the impulse response function of a time-invariant linear system L and H(w) = F[h(t)] be its transfer
function. Let an input noise signal N(t) have autocorrelation function RNN(t) and psdf SNN(w). We denote the
output noise signal by Y(t) = L[N(t)]. The Fourier transforms Y(w) [ F[Y(t)] and N(w) [ F[N(t)] do not
exist, but they are not needed. The output Y(t) of a linear system is ws whenever the input N(t) is ws [see
Gardner, 1990, p. 195; or Peebles, 1987, p. 215]. The output psdf SYY(w) and autocorrelation function RYY (t)
are given by, respectively,

SYY(w) = *H(w)*2SNN(w), RYY(t) = F–1[SYY(w)] (73.22)

[see Gardner, 1990, p. 223]. The output noise power is

(73.23)

White, Gaussian, and Pink Noise Models

White noise [see Brown, 1983; Gardner, 1990, p. 234; or Peebles, 1987] is a theoretical model W(t) of noise that
is ws with zero mean. It has a constant power level no over all frequencies (analogous to white light), so its psdf
is SWW(w) = no W/(rad/s), –` < w < `. The inverse Fourier transform of this is the impulse function RWW(t) =
(no)d(t), which is zero for all offsets except t = 0. Therefore, white noise W(t) is a process that is uncorrelated
over time, i.e., E[W(t1)W(t2)] = 0 for t1 not equal to t2 . Figure 73.4(a) shows the autocorrelation and psdf for
white noise where the offset is s = t. A Gaussian white noise is white noise such that the probability distribution
of each random variable Wt = W(t) is Gaussian. When two Gaussian random variables W1 and W2 are uncor-
related, i.e., E[W1W2] = 0, they are independent [see Gardner, 1990, p. 37]. We use Gaussian models because
of the central limit theorem that states that the sum of a number of random variables is approximately Gaussian.

Actual circuits attenuate signals above cut-off frequencies, and also the power must be finite. However, for
white noise, PWW = RNN(0) = `, so we often truncate the white noise spectral density (psdf) at cut-offs –wc to
wc . The result is known as pink noise, P(t), and is usually taken to be Gaussian because linear filtering of any
white noise (through the effect of the central limit theorem) tends to make the noise Gaussian [see Gardner,
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1990, p. 241]. Figure 73.4(b) shows the sinc function RPP(s) = F–1[SPP(w)] for pink noise. Random variables P1

and P2 at times t1 and t2 are correlated only for t1 and t2 close.

Thermal Noise as Gaussian White Noise

Brown observed in 1828 that pollen and dust particles moved randomly when suspended in liquid. In 1906,
Einstein analyzed such motion based on the random walk model. Perrin confirmed in 1908 that the thermal
activity of molecules in a liquid caused irregular bombardment of the much larger particles. It was predicted
that charges bound to thermally vibrating molecules would generate electromotive force (emf) at the open
terminals of a conductor, and that this placed a limit on the sensitivity of galvanometers. Thermal noise (also
called Johnson noise) was first observed by J. B. Johnson at Bell Laboratories in 1927. Figure 73.5 displays white
noise as seen in the laboratory on an oscilloscope.

FIGURE 73.4 Power transform pairs for white and pink noise.

FIGURE 73.5 Thermal noise in a resistor. 

Figure 73.5 not available
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The voltage N(t) generated thermally between two points in an open circuit conductor is the sum of an
extremely large number of superimposed, independent electronically and ionically induced microvoltages at
all frequencies up to fc = 6,000 GHz at room temperature [see Gardner 1990, p. 235], near infrared. The mean
relaxation time of free electrons is 1/fc = 0.5 ´ 10–10/T s, so at room temperature of T = 290K, it is 0.17 ps
(1 picosecond = 10–12 s). The values of N(t) at different times are uncorrelated for time differences (offsets)
greater than tc = 1/fc . The expected value of N(t) is zero. The power is fairly constant across a broad spectrum,
and we cannot sample signals at picosecond periods, so we model Johnson noise N(t) with Gaussian white
noise W(t). Although m = E[W(t)] = 0, the average power is positive at temperatures above 0K, and is sW

2 =
RWW (0) [see the right side of Eq. (73.21)]. A disadvantage of the white noise model is its infinite power, i.e.,
RWW(0) = s

W
2 = `, but it is valid over a limited bandwidth of B Hz, in which case its power is finite.

In 1927, Nyquist [1928] theoretically derived thermal noise power in a resistor to be

PWW(B) = 4kTRB (watts) (73.24)

where R is resistance (ohms), B is the frequency bandwidth of measurement in Hz (all emf fluctuations outside
of B are ignored), PWW (B) is the mean power over B (see Eq. 73.21), and Boltzmann’s constant is k = 1.38 3
10–23 J/K [see Ott, 1988; Gardner, 1990, p. 288; or Peebles, 1987, p. 227]. Under external emf, the thermally
induced collisions are the main source of resistance in conductors (electrons pulled into motion by an external
emf at 0K meet no resistance). The rms voltage is Wrms = sW = [(4kTRB)]1/2 V over a bandwidth of B Hz.

Planck’s radiation law is SNN(w) = (2hu f u)/[exp(hu f u/kT) – 1], where h = 6.63 3 10–34 J/s is Planck’s constant,
and f  is the frequency [see Gardner, 1990, p. 234]. For u f u much smaller than kT/h = 6.04 3 1012 Hz » 6,000 GHz,
the exponential above can be approximated by exp(hu f u/kT) = 1 + hu f u/kT. The denominator of SNN(w) becomes
hu f u/kT, so SNN(w) = (2hu f u)/(hu f u/kT) = 2kT W/Hz in a 1-W resistor. Over a resistance of R W and a bandwidth
of B Hz (positive frequencies), this yields the total power PWW(B) = 2BRSNN(w) = 4kTRB W over the two-sided
frequency spectrum. This is Nyquist’s result.

Thermal noise is the same in a 1000-W carbon resistor as it is in a 1000-W tantalum thin-film resistor [see Ott,
1988]. While the intrinsic noise may never be less, it may be higher because of other superimposed noise (described
in later sections). We model the thermal noise in a resistor by an internal source (generator), as shown in Fig. 73.6.
Capacitance cannot be ignored at high f, but pure reactance (C or L) cannot dissipate energy, and so cannot
generate thermal noise. The white noise model W(t) for thermal noise N(t) has a constant psdf SWW(w) = no

W/(rad/s) for –` < w < `. By Eq. 73.21, the white noise mean power over the frequency bandwidth B is

(73.25)

FIGURE 73.6 Thermal noise in a resistor.
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Solving for the constant no , we obtain no = PWW(B)/2B, which we put into Eq. (73.20) to get the spectral density
as a function of temperature and resistance using Nyquist’s result above.

SWW(w) = no = PWW(B)/4pB = 4kTR2pB/4pB = 2kTR watts/(rad/s) (73.26)

Some Examples

The parasitic capacitance in the terminals of a resistor may cause a roll-off of about 20 dB/octave in actual
resistors [Brown, 1983, p. 139]. At 290K (room temperature), we have 2kT = 2 3 1.38 3 10–23 3 290 = 0.8
3 10–20 W/Hz due to each ohm [see Ott, 1988]. For R = 1 MW (106 W), SWW(w) = 0.8 3 10–14. Over a band
of 108 Hz, we have PW W(B) = SW W(w)B = 0.8 3 10–14 3 108 = 0.8 3 10–6 W = 0.8 mW by Eqs. (73.24) and
(73.26). In practice, parasitic capacitance causes thermal noise to be bandlimited (pink noise). Now consider
Fig. 73.6(b) and let the temperature be 300K, R = 106 W, C = 1 pf (1 picofarad = 10–12 farads), and assume L
is 0H. By Eq. (73.26), the thermal noise power is

SWW(w) = 2kTR = 2 3 1.38 3 10–23 3 300 3 106 = 828 3 10–17 W/Hz

The power across a bandwidth B = 106 is PWW(B) = SWW(w)B = 8280 3 10–12 W, so the rms voltage is Wrms =
[PWW(B)]1/2 = 91 mV.

Now let Y(t) be the output voltage across the capacitor. The transfer function can be seen to be H(w) =
{I(w)(1/jwC)}/{I(w)[R + (1/jwC)]} = (1/jwC)/[R + 1/jwC] = 1/[1 + jwRC] (where I(w) is the Fourier transform
of the current). The output psdf [see Eq. (73.22)] is

SYY(w) = *H(w)*2SWW(w) = (1/[1 + w 2R2 C2])SWW(w)

Integrating SYY(w) = (1/[1 + w2R2C 2])SWW(w) over all radian frequencies w = 2pf [see Eq. (73.21)], we obtain
the antiderivative (828 3 10–17)(1/RC)atan(RCw)/2p. Upon substituting the limits w = ±`, this becomes 828 3
10–17[p/2 + p/2]/2pRC = 414 3 10–17(1/2RC) = 207 3 10–17 3 106 = 2070 3 10–12 W/Hz. Then sY

2 = E[Y(t)2] =
PYY(–`,`) = 2070 3 10–12 W, so Yrms(t) = sY = [PYY(–`,`)]1/2 = 45.5 mV. The half-power (cut-off) radian
frequency is wc = 1/RC = 106 rad/s, or fc = wc /2p = 159.2 kHz. Approximating SYY(w) by the rectangular spectrum
SYY(w) = no, –106 < w < 106 rad/s (0 elsewhere), we have that RYY(t) = (wc /p)sinc(wct), which has the first zeros
at uwctu = p, that is utu = 1/(2fc) [see Fig. 73.4(b)]. We approximate the autocorrelation by RYY(t) = 0 for usu ³ 1/2fc .

Measuring Thermal Noise

In Fig. 73.7, the thermal noise from a noisy resistor R is to be measured, where RL is the measurement load.
The incremental noise power in R over an incremental frequency band of width df is PWW(d f ) = 4kTRdf W,
by Eq. (73.24). PYY(d f ) is the integral of SYY(w) over df by Eqs. (73.21), where SYY(w) = *H(w)*2SWW(w), by Eq.
(73.22). In this case, the transfer function H(w) is nonreactive and does not depend upon the radian frequency
(we can factor it out of the integral). Thus,

To maximize the power measured, let RL = R. The incremental available power measured is then PYY(d f ) =
4kTR2df /(4R2) = kTdf [see Ott, 1988, p. 201; Gardner, 1990, p. 288; or Peebles, 1987, p. 227]. Thus, we have
the result that incremental available power over bandwidth df depends only on the temperature T.

PY Y(df) = kTdf (output power over df) (73.27)

Albert Einstein used statistical mechanics in 1906 to postulate that the mean kinetic energy per degree of
freedom of a particle, (1/2)mE[v2 (t)], is equal to (1/2)kT, where m is the mass of the particle, v(t) is its
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instantaneous velocity in a single dimension, k is Boltzmann’s constant, and T is the temperature in kelvin. A
shunt capacitor C is charged by the thermal noise in the resistor [see Fig. 73.6(b), where L is taken to be zero].
The average potential energy stored is (1/2)CE[W(t)2]. Equating this to 1/2kT and solving, we obtain the mean
square power

E[W(t)2] = kT/C (73.28)

For example, let T = 300K and C = 50 pf, and recall that k = 1.38 3 10–23 J/K. Then E[W(t)2] = kT/C = 82.8 3
10–12, so that the input rms voltage is {E[W(t)2]}1/2 = 9.09 mV.

Effective Noise and Antenna Noise

Let two series resistors R1 and R2 have respective temperatures of T1  and T2 . The total noise power over an
incremental frequency band df is PTotal(df ) = P11 (df ) + P22(df ) = 4kT1 R1 df  + 4kT2 R2 df  = 4k(T1 R1 + T2 R2 )df. By
putting

TE = (T1 R1 + T2 R2 )/(R1 + R2 ) (73.29)

we can write PTotal(df ) = 4kTE (R1 + R2 )df. TE is called the effective noise temperature [see Gardner, 1990, p. 289;
or Peebles, 1987, p. 228]. An antenna receives noise from various sources of electromagnetic radiation, such as
radio transmissions and harmonics, switching equipment (such as computers, electrical motor controllers),
thermal (blackbody) radiation of the atmosphere and other matter, solar radiation, stellar radiation, and galaxial
radiation (the ambient noise of the universe). To account for noise at the antenna output, we model the noise
with an equivalent thermal noise using an effective noise temperature TE . The incremental available power
(output) over an incremental frequency band df is PYY (df ) = kTE df, from Eq. (73.27). TE  is often called antenna
temperature, denoted by TA . Although it varies with the frequency band, it is usually virtually constant over a
small bandwidth.

Noise Factor and Noise Ratio

In reference to Fig. 73.8(a), we define the noise factor F = (noise power output of actual device)/(noise power
output of ideal device), where (noise power output of ideal device) = (power output due to thermal noise source).
The noise source is taken to be a noisy resistor R at a temperature T, and all output noise measurements must
be taken over a resistive load RL (reactance is ignored). Letting PWW (B) = 4kTRB be the open circuit thermal
noise power of the source resistor over a frequency bandwidth B, and noting that the gain of the device is G,
the output power due to the resistive noise source becomes G2PWW (B) = 4kTRBG2/RL . Now let Y(t) be the
output voltage measured at the output across RL . Then the noise factor is

FIGURE 73.7 Measuring thermal noise voltage.
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F = (PYY(B)/RL)/(G 2PWW(B)/RL) = (PYY(B))/(4kTRBG 2) (73.30)

F is seen to be independent of RL , but not R. To compare two noise factors, the same source must be used. In
the ideal noiseless case, F = 1, but as the noise level in the device increases, F increases. Because this is a power
ratio, we may take the logarithm, called the noise ratio, which is

NF = 10 log10(F) = 10 log10(PYY(B)) – 10 log10(4kTRBG 2) (73.31)

The noise power output PYY (B) of an actual device is a superposition of the amplified source thermal noise
G2PWW (B) and the device noise, i.e., PYY (B) = G 2 PWW (B) + (device noise). The output noise across RL can be
measured by putting a single frequency (in the passband) source generator S(t) as input. First, S(t) is turned
off, and the output rms voltage Y(t) is measured and the output power PY(W)(B) is recorded. This is the sum
of the thermal available power and the device noise. Next, S(t) is turned on and adjusted until the output power
doubles, i.e., until the output power PY (W)(B) + PY(S)(B) = 2PY(W)(B). This PSS(B) is recorded. Solving for
PY(S)(B) = PY(W)(B), we substitute this in F = PY (W) (B)/(G2 PWW (B)) to obtain

F = PY( S)(B)/(G2 · PW W(B)) = (G2PSS(B))/(G24kTRB) = PSS(B)/4kTRB (73.32)

A better way is to input white noise W(t) in place of S(t) (a noise diode may be used). The disadvantages of
noise factors are (1) when the device has low noise relative to thermal noise, the noise factor has value close
to 1; (2) a low resistance causes high values; and (3) increasing the source resistance decreases the noise factor
while increasing the total noise in the circuit [Ott, 1988, p. 216]. Thus, accuracy is not good. For cascaded
devices, the noise factors can be conveniently computed [see Buckingham, 1985, p. 67; or Ott, 1988, p. 228].

Equivalent Input Noise

Shot noise (see below) and other noise can be modeled by equivalent thermal noise that would be generated
in an input resistor by increased temperature. Recall that the (maximum) incremental available power (output)
in a frequency bandwidth df is PWW(df ) = kTdf from Eq. (73.27). Figure 73.8(b) presents the situation. Let the
resistor be the noise source at temperature To with thermal noise W(t). Then E[W(t)2] = 4kTo Rdf, by Eq. (73.24)
(Nyquist’s result). Let the open circuit output noise power at RL be E[Y(t)2]. The incremental available noise
power PYY(df ) at the output (RL = R) can be considered to be due to the resistor R having a higher temperature
and an ideal (noiseless) device, usually an amplifier. We must find a temperature Te at which a pseudothermal

FIGURE 73.8 Equivalent input noise and noise factor.
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noise power E[We (t)2] = 4kTeRdf yields the extra “input” noise power. Let V(t) = W(t) + We (t). Then PVV (df) =
4kToRdf + 4kTe Rdf = 4k(To  + Te)Rdf W, from Eq. (73.24). Te is called the equivalent input noise temperature. It
is related to the noise factor F by Te = 290(F – 1). In cascaded amplifiers with gains G1, G2 , . . . and equivalent
input noise temperatures Te1 , Te2 , . . . , the total equivalent input noise temperature is

Te (Total) = Te1  + Te2 /G1 + Te3 /G1G2 + . . . (73.33)

[see Gardner, 1990, p. 289].

Other Electrical Noise

Thermal noise and shot noise (which can be modeled by thermal noise with equivalent input noise) are the
main noise sources. Other noises are discussed in the following paragraphs.

Shot Noise

In a conductor under an external emf, there is an average flow of electrons, holes, photons, etc. In addition to
this induced net flow and thermal noise, there is another effect. The potential differs across the boundaries of
metallic grains and particles of impurities, and when the kinetic energy of electrons exceeds this potential,
electrons jump across the barrier. This summed random flow is known as shot noise [see Gardner, 1990, p. 239;
Ott, 1988, p. 208]. The shot effect was analyzed by Schottky in 1918 as Ish = (2qIdc B)1/2, where q = 1.6 3 10–19

coulombs per electron, Idc = average dc current in amperes, and B = noise bandwidth (Hz).

Partition Noise

Partition noise is caused by a parting of the flow of electrons to different electrodes into streams of randomly
varying density. Suppose that electrons from some source S flow to destination electrodes A and B. Let n(A)
and n(B) be the average numbers of electrons per second that go to nodes A and B respectively, so that n(S) =
n(A) + n(B) is the average total number of electrons emitted per second. It is a success when an electron goes
to A, and the probability of success on a single trial is p, where

p = n(A)/n(S), 1 – p = n(B)/n(S) (73.34)

The current to the respective destinations is I(A) = n(A)q, I(B) = n(B)q, where q is the charge of an electron,
so that I(A)/I(S) = p and I(B)/I(S) = 1 – p. Using the binomial model, the average numbers of successes are
E[n(A)] = n(S)p and E[n(B)] = n(S)(1 – p). The variance is Var(n(A)) = n(S)p(1 – p) = Var(n(B)) (from the
binomial formula for variance). Therefore, substitution yields

Var(I(A)) = q2[n(S)p(1 – p)] = q2n(S){I(A)I(B)/[I(A) + I(B)]} (73.35)

Partition noise applies to pentodes, where the source is the cathode, A is the anode (success), and B is the
grid. For transistors, the source is the emitter, A is the collector, and B represents recombination in the base.
In photo devices, a photoelectron is absorbed, and either an electron is emitted (a success) or not. Even a
partially silvered mirror can be considered to be a partitioner: the passing of a photon is a success and reflection
is a failure. While the binomial model applies to partitions with destinations A and B, multinomial models are
analogous for more than two destinations.

Flicker, Contact, and Burst Noise

J.B. Johnson first noticed in 1925 that noise across thermionic gates exceeded the expected shot noise at lower
frequencies. It is most noticeable up to about 2 kHz. The psdf of the extra noise, called flicker noise, is

S( f ) = I2/af, f > 0 (73.36)

where I is the dc current flowing through the device and f is the positive frequency. Empirical values of a are
about 1 to 1.6 for different sources. These sources vary but include the irregularity of the size of macro regions
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of the cathode surface, impurities in the conducting channel, and generation and recombination noise in
transistors. In the early days of transistors, this generation-recombination was of great concern because the
materials were not of high purity. Flicker noise occurs in thin layers of metallic or semiconducting material,
solid state devices, carbon resistors, and vacuum tubes [see Buckingham, 1985, p. 143]. It includes contact noise
because it is caused by fluctuating conductivity due to imperfect contact between two surfaces, especially in
switches and relays. Flicker noise may be high at low frequencies.

Burst noise is also called popcorn noise: audio amplifiers sound like popcorn popping in a frying pan
background (thermal noise). Its characteristic is 1/f n (usually n = 2), so its power density falls off rapidly, where
f is frequency. It may be problematic at low frequencies. The cause is manufacturing defects in the junction of
transistors (usually a metallic impurity).

Barkhousen and Other Noise

Barkhousen noise is due to the variations in size and orientation of small regions of ferromagnetic material and
is especially noticeable in the steeply rising region of the hysteresis loop. There is also secondary emission,
photo and collision ionization, etc.

Measurement and Quantization Noise

Measurement Error

The measurement X t of a signal X(t) at any t results in a measured value X t = x that contains error, and so is
not equal to the true value X t = xT . The probability is higher that the magnitude of e = (x – x T) is closer to
zero. The bell-shaped Gaussian probability density f(e) = [1/(2ps2]1/2exp(–e2/2ps) fits the error well. This
noise process is stationary over time. The expected value is me = 0, the mean-square error is se

2 , and the rms
error is se . Its instantaneous power at time t is se

2 .  To see this, the error signal e(t) = (x – xT) has instantaneous
power per W of

Pi = e(t)i(t) = e(t)[e(t)/R] = e2(t) (73.37)

where R = 1 W and i(t) is the current. The average power is the summed instantaneous power over a period
of time T, divided by the time, taken in the limit as T ® `, i.e.,

This average power can be determined by sampling on known signal values and then computing the sample
variance (assuming ergodicity: see Gardner [1990, p. 163]). The error and signal are probabilistically independent
(unless the error depends on the values of X). The signal-to-noise power ratio is computed by S/N = Psignal /Pave .

Quantization Noise

Quantization noise is due to the digitization of an exact signal value vt = v(t) captured at sampling time t by
an A/D converter. The binary representation is bn–1bn–2 . . . b1b0 (an n-bit word). The n-bit digitization has 2n

different values possible, from 0 to 2n–1. Let the voltage range be R. The resolution is dv = R/2n . Any voltage
vt is coded into the nearest lower binary value xb , where the error e = xt – xb satisfies 0 £ e £ dv. Thus, the errors
e are distributed over the interval [0, dv] in an equally likely fashion that implies the uniform distribution on
[0, dv]. The expected value of e = et = e(t) at any time is me = dv/2, and the variance is me

2 = dv2/12 (the variance
of a uniform distribution on an interval [a,b] is s = (b – a)2 /12). Thus the noise is ws and the power of
quantization noise is

(73.38)
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We can find the signal-to-noise voltage ratio for the total range R via R/(dv/(12)1/2 ) = 2n dv/(dv/(12)1/2) =
2n (12)1/2. The power ratio is the square of this, which is (22n)(12). In decibels this becomes (S/N)dB =
10 log10(22 n · 12) = 10 log10(12) + 20n log10(2) = 10.8 + 6.02n. Thus, quantization S/N power ratio depends
directly upon the number of bits n in that the higher S/N power ratio is better, just as we would have expected.

Coping with Noise

External interference is ubiquitous. Intrinsic noise is present up to the incremental available power at temper-
atures above absolute zero, and other intrinsic noises depend on material purity and connection integrity.
Processing error is always introduced in some form.

External Sources

Standard defenses are (1) shielding of lines and circuits, (2) twisted wire pairs or coaxial cables, (3) short lines
and leads, (4) digital regeneration at waypoints of digital signals, (5) narrowband signals, (6) correlation of
received signals with multipaths, and (7) adaptive notch filtering to eliminate interference at known frequencies;
e.g., the second harmonic of 60-Hz ac power lines may interfere with biological microvoltage measurements
but could be eliminated via adaptive notch filtering. Ferrite beads can dampen interference [Barnes, 1987].
Digital signal processing, spectral shaping filters [see Brown, 1983], and frequency-shift filters [see Gardner,
1990, p. 400] can be used to lower noise power. Kalman filtering is a powerful estimation method, and frequency-
shift filtering is a newer technique for discriminating against both measurement error (e.g., in system identi-
fication applications) and extrinsic sources of both noise and interference [Gardner, 1990, p. 400].

Intrinsic Sources

Strategies for minimizing intrinsic noise are (a) small bandwidth B, (b) small resistances R, (c) low temperature
T (higher temperatures can be devastating), (d) low voltage and currents (CMOS transistors), (e) modern
materials of high purity, (f) wrapped wire resistors (thermal noise is the same, but other noise will be less),
(g) fewer and better connections (of gold), (h) smaller circuits of lower power, and (i) shunt capacitors to
reduce noise bandwidth. Greater purity of integrated circuit materials nowadays essentially reduces intrinsic
noise to thermal noise. Better design and materials are the keys to lower noise.

Processing Sources

Processing errors can be reduced by using higher resolution of analog-to-digital converters, i.e., more bits to
represent each value. This lowers the quantization error power. Measurement error can be reduced while using
the same instruments by taking multiple measurements and averaging. Other estimation/correlation can yield
better values (e.g., the Global Positioning System location determination can be reduced from meters to a few
centimeters by multiple measurement estimation).

Defining Terms

Autocorrelation: A function associated with a random signal X(t) that is defined on pairs of time instants t1

and t2 and whose value is the expected value of the product of the random variables X(t1) and X(t2), i.e.,
RXX(t1,t2) = E[X(t1)X(t2)]. For weakly stationary random signals, it depends only on the offset t = t2 – t1,
so we write RXX(t) = E[X(t)X(t + t)].

Noise: A signal N(t) whose value at any time t is randomly selected by events beyond our control. At any
time instant t, N(t) is a random variable Nt with a probability distribution that determines the relative
frequencies at which Nt assumes values. The statistics of the family of random variables {Nt} may be
constant (stationary) over time (the usual case) or may vary.

Power spectral density: The Fourier transform of the power X2(t) does not necessarily exist, but it does for
XT

2 (t)/2T (XT (t) = 0 for * t * > T, = X(t) elsewhere), for any T > 0. Letting T® ¥, the expected value of
the Fourier transforms E[F[XT

2 (t)/2T]= F[E[XT
2 (t)]/2T goes to the limit of the average power in X(t)

over – T to T, known as the power spectral density function Sxx (w). Summed up over all frequencies, it
gives the total power in the signal X(t).
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Random process: (signal): A signal that is either a noise, an interfering signal s(t), or a sum of these such as
X(t) = s1(t) + . . . + sm(t) + N1(t) + . . . + Nn(t).

Realization: A trajectory {(t , xt ): X(t) = xt } determined by the actual outcomes {xt} of values from a random
signal X(t), where X(t) = xt at each instant t. A trajectory is also called a sample function of X(t).

Weakly stationary (ws) random process (signal): A random signal whose first- and second-order statistics
remain stationary (fixed) over time.

Related Topic

15.2 Speech Enhancement and Noise Reduction
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Further Information

The IEEE Individual Learning Program, Random Signal Analysis with Random Processes and Kalman Filtering,
prepared by Carl G. Looney (IEEE Educational Activities Board, PO Box 1331, Piscataway, NJ 08855-1331,
1989) contains a gentle introduction to estimation and Kalman filtering.

Also see H. M. Denny, Getting Rid of Interference, IEEE Video Conference, Educational Activities Dept.,
Piscataway, NJ, 08855-1331, 1992.

73.3 Stochastic Processes

Carl G. Looney

Introduction to Random Variables

A random variable (rv) A is specified by its probability density function (pdf)

fA(a) = lime®0 (1/e)P[a – (e/2) < A £ a + (e/2)]

In other words, the rectangular area e · fA(a) approximates the probability P[(A £ a + (e/2)] – P[a – (e/2)< A].
The joint pdf of two rv’s A and B is specified by

fAB(a,b) = lime®0 (1/e2)P[a – e < A £ a + (e/2) and b – e < B £ b + (e/2)]

A similar definition holds for any finite number of rv’s.
The expected value E[A], or mean mA, of a rv A is the first moment of the pdf, and the variance of A is the

second centralized moment, defined respectively by

(73.39a)m A AE A af a da= º
-¥

¥

ò[ ] ( )
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(73.39b)

The square root of the variance is the standard deviation, which is also called the root mean square (rms) error.
The covariance of two rv’s A and B is the second-order centralized joint moment

(73.40)

The noncentralized second moments are the mean-square value and the correlation, respectively,

A set of rv’s A, B, and C is defined to be independent whenever their joint pdf factors as

fAB C(a,b,c) = fA(a)fB(b)fC(c) (73.41)

for all a, b, and c, and similarly for any finite set of rv’s. A weak independence holds when the second moment
of the joint pdf, the correlation, factors as E[AB] = E[A]E[B], so that sAB = 0, in which case the rv’s are said
to be uncorrelated. The covariance of A and B is a measure of how often A and B vary together (have the same
sign), how often they vary oppositely (different signs), and by how much, on the average over trials of outcomes.
To standardize so that units do not influence the measure of dependence, we use the correlation coefficient

rAB [ sAB /sA sB

The accuracy of approximating a rv A as a linear function of another rv B, A » cB + d, for real coefficients
c and d, is found by minimizing the mean-square error e = E{[A – (cB + d)]2}. Upon squaring and taking the
expected values, we can obtain emin = sA

2 (1 – *rAB *2), which shows *rAB * to be a measure of the degree of linear
relationship between A and B. Because emin ³ 0, this shows that *rAB * £ 1, which demonstrates the Cauchy-
Schwarz inequality

*E[AB]* £ {E[A2]E[B2]}1/2 (73.42)

When *rAB * = 1, then knowledge of one of A or B completely determines the other (c ¹ 0), and so A and B are
completely dependent, while*rAB * = 0 indicates there is no linear relationship, i.e., that A and B are uncorrelated.

An important result is the fundamental theorem of expectation: if g(·) is any real function, then the expected
value of the rv B = g(A) is given by

(73.43)

Stochastic Processes

A stochastic (or random) process is a collection of random variables {Xt : t Î T}, indexed on an ordered set T
that is usually a subset of the real numbers or integers. Examples are the Dow-Jones averages D(t) at each time t,
the pressure R(x) in a pipe at distance x, or a noise voltage N(t) at time t. A process is thus a random function
X(t) of t whose value at each t is drawn randomly from a range of outcomes for the rv Xt = X(t) according to
a probability distribution for Xt . A trajectory {xt : t Î T} of outcomes over all t Î T, where Xt = xt is the realized
value at each t, is called a sample function (or realization) of the process. A stochastic process X(t) has mean
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value E[X(t)] = m(t) at time t, and autocorrelation function RXX(t, t + t) = E[X(t)X(t + t)] at times t and t +
t, the correlation of two rv’s at two times offset by t. When m(t) = 0 for all t, the autocorrelation function
equals the autocovariance function CXX(t, t + t) = E[(X(t) – m(t))(X(t + t) – m(t + t))].

A process X(t) is completely determined by its joint pdf ’s fX(t(1)) . . . X(t (n))(x(t1), . . . , x(tn)) for all time
combinations t1, . . . , tn and all positive integers n (where t( j) = tj ). When the rv’s X(t) are iid (independent,
identically distributed), then knowledge of one pdf yields the knowledge of all joint pdf ’s. This is because we
can construct the joint pdf by factorization, per Eq. (73.41).

Classifications of Stochastic Processes

The ordered set T can be continuous or discrete, and the values that X(t) assumes at each t may also be
continuous or discrete, as shown in Table 73.1.

In another classification, a stochastic process X(t) is deterministic whenever an entire sample function can
be determined from an initial segment {x t: t £ t1} of X(t). Otherwise, it is nondeterministic [see Brown, 1983,
p. 79; or Gardner, 1990, p. 304].

Stationarity of Processes

A stochastic process is nth order (strongly) stationary whenever all joint pdf ’s of n and fewer rv’s are independent
of all translations of times t1, . . . , tn to times t + t1, . . . , t + tn . The case of n = 2 is very useful. Another type
of process is called weakly stationary (ws), or wide-sense stationary, and is defined to have first- and second-
order moments that are independent of time (see Section 73.2 on noise). These satisfy (1) m(t) = m (constant)
for all t, and (2) RXX(t, t + t) = RXX(t + s, t + s + t) for all values of s. For s = –t, this yields RXX(t, t + t) =
RXX(0, 0 + t), which is abbreviated to RXX(t). X(t) is uncorrelated whenever CXX(t) = 0 for t not zero [we say
X(t) has no memory]. If X(t) is correlated, then X(t1) depends on values X(t) for t ¹ t1 [X(t) has memory].

Some properties of autocorrelation functions for ws processes follow. First, *RXX(t)* £ RXX(0), –` < t < `,
as can be seen from Eq. (73.42) with *RXX(t)*2 = E[X(0)X(t)] £ E[X(0)2]E[X(t)2] = RXX(0)RXX(t). Next, RXX(t)
is real and even, i.e., RXX(–t) = RXX(t), which is evident from substituting s = t – t in E[X(s)X(s + t)]and using
time independence. If X(t) has a periodic component, then RXX(t) will have that same periodic component,
which follows from the definition. Finally, if X(t) has a nonzero mean m and no periodic components, then
the variance goes to zero (the memory fades) and so limt®` RXX(t) ® 0 + m2 = m2.

Gaussian and Markov Processes

A process X(t) is defined to be Gaussian if for every possible finite set {t1, . . . , tn} of times, the rv’s X(t1), . . . ,
X(tn) are jointly Gaussian, which means that every linear combination Z = a1X(t1) + . . . + anX(tn) is a Gaussian
rv, defined by the Gaussian pdf

(73.44)

In case the n rv’s are linearly independent, i.e., Z = 0 only if a1 = · · · = an = 0, the joint pdf has the Gaussian
form [see Gardner, 1990, pp. 39–40]

TABLE 73.1 Continuous/Discrete Classification of Stochastic Processes

X Values

T Values Continuous Discrete

Continuo
us

Continuous stochastic 
processes

Discrete valued stochastic 
processes

Discrete Continuous random 
sequences

Discrete valued random 
sequences

f z  zZ Z  Z Z( ) ( ) exp{ ( ) }= [ ] - -1 2  22 2/ /s p  m s
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fX(t (1)) . . . X(t (n))(x1, . . ., xn) = [1/(2p)n/2* C *1/2] · exp{–(x – m) t C–1(x – m)} (73.45)

where x = (x1, . . . , xn) is a column vector, xt is its transpose, m = (m1, . . . , mn) is the mean vector, C is the
covariance matrix

(73.46)

and *C * is the determinant of C. If X(t1), . . . , X(tn) are linearly dependent, then the joint pdf takes on a form
similar to Eq. (73.45), but contains impulses [see Gardner, 1990, p. 40].

A weakly stationary Gaussian process is strongly stationary to all orders n: all Gaussian joint pdf ’s are
completely determined by their first and second moments by Eq. (73.45), and those moments are time inde-
pendent by weak stationarity, and so all joint pdf ’s are also. Every second-order strongly stationary stochastic
process X(t) is also weakly stationary because the time translation independence of the joint pdf ’s determines
the first and second moments to have the same property. However, non-Gaussian weakly stationary processes
need not be strongly second-order stationary.

Rather than with pdf ’s, a process X(t) may be specified in terms of conditional pdf ’s

fX( t (1)) . . . X( t (n))(x1, . . ., xn) = fX( t (n)) * X( t (n–1))(xn*xn–1) · . . . · fX( t (2)) * X( t (1))(x2*x1)fX( t (1))(x1)

by successive applications of Bayes’ law, for t1 < t2 < · · · < tn . The conditional pdf ’s satisfy

fA*B(a *b) = fAB(a,b)/fB(b) (73.47)

The conditional factorization property may satisfy

(73.48)

which indicates that the pdf of the process at any time tn , given values of the process at any number of previous
times tn–1, . . . , t1, is the same as the pdf at tn given the value of the process at the most recent time tn–1. Such
an X(t) is called a first-order Markov process, in which case we say the process remembers only the previous
value (the previous value has influence). In general, an nth-order Markov process remembers only the n most
recent previous values. A first-order Markov process can be fully specified in terms of its first-order conditional
pdf ’s fX( t) * X(s)(xt,xs) and its unconditional first-order pdf at some initial time t0, fX(t(0))(x0).

Examples of Stochastic Processes

Figure 73.9 shows two sample functions of nonstationary processes. Now consider the discrete time process
X(k) = A, for all k ³ 0, where A is a rv (a random initial condition) that assumes a value 1 or –1 with respective
probabilities p and 1 – p at k = 0. This value does not change, once the initial random draw is done at k = 0.
This stochastic sequence has two sample functions only, the constant sequences {–1} and {1}. The expected
value of X(k) at any time k is E[X(k)] = E[A] = p · 1 + (1 – p) · (–1) = 2p – 1, which is independent of k. The
autocorrelation function is, by definition, E[X(k)X(k + m)] = E[A · A] = E[A2] = p · 12 + (1 – p) · (–1)2 = 1
which is also independent of time k. Thus X(k) is perfectly correlated for all time (the process has infinite
memory). This process is deterministic.

For another example, put X(t) = (c) · cos(wt + F), where F is the uniform rv on (–p, p). Then X(t) is a
function of the rv F (as well as t), so by use of Eq. (73.39a), we obtain
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Therefore, the mean does not vary with time t. The autocorrelation is

[using cos(x)cos(y) = 1⁄2{cos(x + y) + cos(x – y)} and letting Q = 2wt + 2F + wt]. Therefore, X(t) is ws. The
autocorrelation is periodic in the offset variable t.

FIGURE 73.9 Examples of nonstationary processes.
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Now consider the example X(t) = A cos(2p f0t) for each t, where f0 is a constant frequency, and the amplitude A
is a random initial condition as given above. There are only two sample functions here: (1) x(t) = cos(2pf0t)
and (2) x(t) = –cos(2pf0t). A related example is X(t) = A cos(2pf0t + F), where A is given above, the phase F
is the uniform random variable on [0,p], and A and F are independent. Again, F and A do not depend on
time (initial random conditions). Thus, the sample functions for X(t) are x(t) = ±cos(2pft + f), where F =
f is the value assumed initially. There are infinitely many sample functions because of the phase. Equation
(73.39b) and the independence of A and F yield

which is dependent upon time. Thus, X(t) is not ws.
Next, let X(t) = [a + S(t)]cos[2pft + F], where the signal S(t) is a nondeterministic stochastic process. This

is an amplitude-modulated sine wave carrier. The carrier cos[2pft + F] has random initial condition F and
is deterministic. Because S(t) is nondeterministic, X(t) is also. The expected value E[X(t)] = E[a +
S(t)]E[cos(2pft + F)] can be found as above by independence of S(t) and F.

Finally, let X(t) be uncorrelated (E[X(t)X(t + t)] = 0 for t not zero) such that each rv X(t) = Xt is Gaussian
with zero mean and variance s2(t) = t, for all t > 0. Any realized sample function x(t) of X(t) cannot be predicted
in any average sense based on past values (uncorrelated Gaussian random variables are independent). The
variance grows in an unbounded manner over time, so X(t) is neither stationary nor deterministic. This is
called the Wiener process.

A useful model of a ws process is that for which m = 0 and RXX(t) = sX
2exp(–a*t*). If this process is also

Gaussian, then it is strongly stationary and all of its joint pdf ’s are fully specified by RXX(t). In this case it is
also a first-order Markov process and is called the Ornstein-Uhlenbeck process [see Gardner, 1990, p. 102].
Unlike white noise, many real-world ws stochastic processes are correlated (*RXX(t, t + t)* > 0) for *t* > 0. The
autocorrelation either goes to zero as t goes to infinity, or else it has periodic or other nondecaying memory.
We consider ws processes henceforth [for nonstationary processes, see Gardner, 1990]. We will also assume
without loss of generality that m = 0.

Linear Filtering of Weakly Stationary Processes

Let the ws stochastic process X(t) be the input to a linear time-invariant stable filter with impulse response
function h(t). The output of the filter is also a ws stochastic process and is given by the convolution

(73.49)

The mean of the output process is obtained by using the linearity of the expectation operator [see Gardner,
1990, p. 32]

(73.50)

where H( f) = *
`

–  ̀h(t)e– j2pftdt is the filter transfer function and H(0) is the dc gain of the filter.
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The autocorrelation of the output process, obtained by using the linearity of E[·], is

(73.51)

where rh(t) = *
`

–` h(t + u)h(u)du. However, rh(t) has Fourier transform H( f )H*( f ) = *H( f )*2, because the
Fourier transform of the convolution of two functions is the product of their Fourier transforms, and the
Fourier transform of h(–t) is the complex conjugate H*( f ) of the Fourier transform H( f ) of h(t). Thus, the
Fourier transform of RYY(t), denoted by F{RYY(t)}, is

F{RYY(t)} = F{RXX(t)*h(t)*h(–t)} = F{RXX(t)} · H( f )H*( f ) = F{RXX(t)} · *H( f )*2

Upon defining the functions

SXX( f ) [ F{RXX(t)}, SYY( f ) [ F{RYY(t)} (73.52)

we can also determine RYY(t) via the two steps

SYY( f ) = SXX( f ) · *H( f )*2 (73.53)

(73.54)

Equations (73.52) define the power spectral density functions (psdf ’s) SXX( f ) for X(t) and SYY( f ) for Y(t).
Thus, RXX(t) and SXX( f ) are Fourier transform pairs, as are RYY(t) and SYY( f ) (see Eq. 73.20). Further, the psdf
SXX( f ) of X(t) is a power spectrum (in an average sense). If X(t) is the voltage dropped across a 1-W resistor,
then X2(t) is the instantaneous power dissipation in the resistance. Consequently, RXX(0) = E[X2(t)] is the
expected power dissipation over all frequencies, i.e., by Eq. (73.54) with t = 0, we have

We want to show that when we pass X(t) through a narrow bandpass filter with a bandwidth d centered at
the frequency ±f0, the expected power at the output terminals, divided by the bandwidth d, is SXX(f0) in the
limit as d ® 0. This shows that SXX( f ) is a density function (whose area is the total expected power over all
frequencies, just as the area under a pdf is the total probability). This result that RXX(t) and SXX( f ) are a Fourier
transform pair is known as the Wiener-Khinchin relation [see Gardner, 1990, p. 230].

To verify this relation, let H( f ) be the transfer function of an ideal bandpass filter, where

H( f ) = 1, * f – f0* < d/2; H( f ) = 0, otherwise
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Let Y(t) be the output of the filter. Then Eqs. (73.54) and (73.53) provide

Dividing by 2d and taking the limit as d ® 0 yields (1/2)SXX(f0) + (1/2)SXX(–f0), which becomes SXX(f0) when
we use the fact that psdf ’s are even and real functions (because they are the Fourier transforms of autocorrelation
functions, which are even and real).

For example, let X(t) be white noise, with SXX( f ) = N0, being put through a first-order linear time-invariant
system with respective impulse response and transfer functions

h(t) = exp{–at }, t ³ 0; h(t) = 0, t < 0 H( f ) = 1/[a + j2p f ], all f

The temporal correlation of h(t) with itself is rh(t) = (1/2a)exp{–a*t*}, so the power transfer function is *H( f )*2 =
1/[a2 + (2p f)2]. The autocorrelation for the input X(t) is 

which is an impulse. It follows (see Eq. 73.22) that the output Y(t) has respective autocorrelation and psdf

RYY(t) = [N0d(t)]*[(1/2a) e–a|t|] = (N0/2a) e–a|t|, SYY( f ) = N0/[a2 + (2p f)2]

The output expected power E[Y2(t)] can be found from either one of

If the input X(t) to a linear system is Gaussian, then the output will also be Gaussian [see Brown, 1983; or
Gardner, 1990]. Thus, the output of a first-order linear time-invariant system driven by Gaussian white noise
is the Ornstein–Uhlenbeck process, which is also a first-order Markov process.

For another example, let X(t) = A cos(wot + Q), where the random amplitude A has zero mean, the random
phase Q is uniform on [–p, p], and A and Q are independent. As before, we obtain RXX(t) = sA

2cos(wot), from
which it follows that SXX( f ) = (sA

2/2)[d(f – wo /2p) + d(f + wo /2p)]. These impulses in the psdf, called spectral
lines, represent positive amounts of power at discrete frequencies.

Cross-Correlation of Processes

The cross-correlation function for two random processes X(t) and Y(t) is defined via

RXY(t, t + t) [ E[X(t)Y(t + t)] (73.55)

Let both processes be ws with zero means, so the covariance coincides with the correlation function. We say
that two ws processes X(t) and Y(t) are jointly ws whenever RXY(t,t + t) = RXY(t). In case Y(t) is the output of
a filter with impulse response h(t),we can find the cross-correlation RXY(t) between the input and output via
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(73.56)

Cross-correlation functions of ws processes satisfy (1) RXY(–t) = RYX(t), (2) uRXY(t)u2 £ RXX(0)RYY(0), and
(3) uRXY(t)u £ (1/2)[RXX(0) + RYY(0)]. The first follows from the definition, while the second comes from
expanding E[{Y(t + t) – aX(t)}2] ³ 0. The third comes from the fact that the geometric mean cannot exceed
the arithmetic mean [see Peebles, 1987, p. 154].

Taking the Fourier transform of the leftmost and rightmost sides of Eqs. (73.56) yields

SXY( f ) = SXX( f )H( f ) (73.57)

The Fourier transform of the cross-correlation function is the cross-spectral density function

(73.58)

According to Gardner [1990, p. 228], this is a spectral correlation density function that does not represent power
in any sense.

Equation (73.57) suggests a method for identifying a linear time-invariant system. If the system is subjected
to a ws input X(t) and the power spectral density of X(t) and the cross-spectral density of X(t) and the output
Y(t) are measured, then the ratio yields the system transfer function

H( f ) = SXY( f )/SXX( f ) (73.59)

In fact, it can be shown that this method gives the best linear time-invariant model of the (possibly time varying
and nonlinear) system in the sense that the time-averaged mean-square error between the outputs of the actual
system and of the model, when both are subjected to the same input, is minimized [see Gardner, 1990,
pp. 282–286].

As an application, suppose that an undersea sonar-based device is to find the range to a target, as shown in
Fig. 73.10, by transmitting a sonar signal X(t) and receiving the reflected signal Y(t). If v is the velocity of the
sonar signal, and to is the offset that maximizes the cross-correlation RXY(t), then the range (distance) d can
be determined from d = vto /2 (note that the signal travels twice the range d).

Coherence

When X(t) and Y(t) have no spectral lines at f, the finite spectral correlation SXY( f ) is actually a spectral
covariance and the two associated variances are SXX( f ) and SYY( f ). We can normalize SXY( f ) to obtain a spectral
correlation coefficient YXY( f ) defined by

YXY( f )2 = * SX Y( f )*2/SXX( f )SY Y( f ) (73.60)

We call YXY( f ) the coherence function. It is a measure of the power correlation of X(t) and Y(t) at each frequency f.
When Y(t) = X(t)*h(t), it has a maximum: by Eqs. (73.53), (73.59), and (73.60), *YXY( f )*2 = *SXX( f ) ·
H( f )*2/[SXX( f ) · SXX( f ) · *H( f )*2 ] = 1. In the general case we have

*SXY( f )* £ [SXX( f )SYY( f )]1/2 (73.61)
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Upon minimizing the mean-square error e = E[(Y(t) – X(t)*h(t))2 ] over all possible impulse response
functions h(t), the optimal one, ho(t), has transfer function

Ho( f ) = SXY( f )/SXX( f ) (73.62)

Further, the resultant minimum value is given by

[see Gardner, 1990, pp. 434–436; or Bendat and Piersol, 1986]. At frequencies f  where *YXY( f )* » 1, emin » 0.
Thus 1 – *YXY( f )*2 is the mean-square proportion of Y(t) not accounted for by X(t), while *YXY( f )*2 is the
proportion due to X(t). When Y(t) = X(t)*h(t), emin = 0.

The optimum system Ho( f ) of Eq. (73.62) is known as the Wiener filter for minimum mean-square error
estimation of one process Y(t) using a filtered version of another process X(t) [see Gardner, 1990; or Peebles,
1987, p. 262].

Ergodicity

When the time average

exists and equals the corresponding expected value E[X(t)], then the process X(t) is said to possess an ergodic
property associated with the mean. There are ergodic properties associated with the mean, autocorrelation (and
power spectral density), and all finite-order joint moments, as well as finite-order joint pdf ’s. If a process has
all possible ergodic properties, it is said to be an ergodic process.

Let Y(t) = g[X(t + t1), . . ., X(t + tn)], where g[·] is any nonrandom real function, so that Y(t) is a function
of a finite number of time samples of a strongly stationary process. For example, let (1) Y(t) = X(t + t1)X(t +
t2), E[Y(t)] = RXX(t1 – t2) and (2) Y(t) = 1 if X(t) < x, Y(t) = 0, otherwise, so that

FIGURE 73.10 A sonar range finder.

e min ( )[  ( ) ]= -
-¥

¥

ò S f  f dfYY XY1 2* *Y

lim ( / ) ( )T
T

T
T X t dt® ¥ -ò1

2

2

/

/

E Y t  P X t  x  P X t  x  P X t  x  f  z dzX t[ ( )]  ( ( ) )  ( ( ) ) ( ( ) )  ( )( )= ×  < + ×  ³ =  < =
-¥ò1 0
1

© 2000 by CRC Press LLC



We want to know under what conditions the mean-square error between the time average

and the expected value E[Y(t)] will converge to zero. It can be shown that a necessary and sufficient condition
for the mean-square ergodic property

(73.63)

to hold is that

(73.64)

For example, if CYY(t) ® 0 as t ® `, then Eq. (73.64) will hold, and thus Eq. (73.63) will also, where CYY(t)
is the covariance function of Y(t). As long as the two sets of rv’s {X(t + t1), . . ., X(t + tn)} and {X(t + t1 + t), . . .,
X(t + tn + t)} become independent of each other as t ® `, the above condition holds, so Eq. (73.63) holds
[see Gardner, 1990, pp. 163–174].

In practice, if X(t) exhibits ergodicity associated with the autocorrelation, then we can estimate RXX(t) using
the time average

(73.65)

In this case the mean-square estimation error E[{áX(t)X(t + t)ñ T – RXX(t)}2] will converge to zero as T increases
to infinity, and the power spectral density SXX( f ) can also be estimated via time averaging [see Gardner, 1990,
pp. 230–231].

Defining Terms

Autocorrelation function: A function RXX(t, t + t) = E[X(t)X(t + t)] that measures the degree to which any
two rv’s X(t) and X(t + t), at times t and t + t, are correlated.

Coherence function: A function of frequency f that provides the degree of correlation of two stochastic
processes at each f by the ratio of their cross-spectral density function to the product of their power
spectral density functions.

Power spectral density function: The Fourier transform of the autocorrelation function of a stochastic process
X(t), denoted by SXX(f). The area under its curve between f1 and f2 represents the total power over all t
in X(t) in the band of frequencies f1 to f2. Its dimension is watts per Hz.

Sample function: A real-valued function x(t) of t where at each time t the value x(t) at the argument t was
determined by the outcome of a rv Xt = x(t).

Stochastic process: A collection of rv’s {X t: t  Î T}, where T is an ordered set such as the real numbers or
integers [X(t) is also called a random function, on the domain T].

Time average: Any real function g(t) of time has average value gave on the interval [a,b] such that the
rectangular area gave(b – a) is equal to the area under the curve between a and b, i.e., gave = [1/(b – a)]
*a

b g(t)dt. The time average of a sample function x(t) is the limit of its average value over [0,T] as T goes
to infinity.

Weakly stationary: The property of a stochastic process X(t) whose mean E[X(t)] = m(t) is a fixed constant m
over all time t, and whose autocorrelation is also independent of time in that RXX (t, t + t) = RXX (s + t,
s + t + t) for any s. Thus, RXX (t, t + t) = RXX (0, t) = RXX (t).
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73.4 The Sampling Theorem

R. J. Marks II

Most signals originating from physical phenomena are analog. Most computational engines, on the other hand,
are digital. Transforming from analog to digital is straightforward: we simply sample. Regaining the original
signal from these samples and assessing the information lost in the sampling process are the fundamental
questions addressed by the sampling theorem.

The fundamental result of the sampling theorem is, remarkably, that a bandlimited signal is uniquely specified
by its sufficiently close equally spaced samples. Indeed, the sampling theorem illustrates how the original signal
can be regained from knowledge of the samples and the sampling rate at which they were taken.

Popularization of the sampling theorem is credited to Shannon [1948] who, in 1948, used it to show the
equivalence of the information content of a bandlimited signal and a sequence of discrete numbers. Shannon
was aware of the pioneering work of Whittaker [1915] and Whittaker’s son [1929] in formulating the sampling
theorem. Kotel’nikov’s [1933] independent discovery in the then Soviet Union deserves mention. Higgins [1985]
credits Borel [1897] with first recognizing that a signal could be recovered from its samples.

Surveys of sampling theory are in the widely cited paper of Jerri [1977] and in two books by the author
[1991, 1993]. Marvasti [1987] has written a book devoted to nonuniform sampling.

The Cardinal Series

If a signal has finite energy, the minimum sampling rate is equal to two samples per period of the highest
frequency component of the signal. Specifically, if the highest frequency component of the signal is B Hz, then
the signal, x(t), can be recovered from the samples by

(73.66)

The frequency B is also referred to as the signal’s bandwidth and, if B is finite, x(t) is said to be bandlimited.
The signal, x(t), is here being sampled at a rate of 2 B samples per second. If sampling were done at a lower
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rate, the replications would overlap and the information about X(v) [and thus x(t)] is irretrievably lost.
Undersampling results in aliased data. The minimum sampling rate at which aliasing does not occur is referred
to as the Nyquist rate which, in our example, is 2B. Eq. (73.66) was dubbed the cardinal series by the junior
Whittaker [1929].

A signal is bandlimited in the low-pass sense if there is a B > 0 such that

(73.67)

where the gate function P (j) is one for j £ 1/2 and is otherwise zero, and

(73.68)

is the Fourier transform of x(t). That is, the spectrum is identically zero for *v* > 2pB. The B parameter is
referred to as the signal’s bandwidth. The inverse Fourier transform is

(73.69)

The sampling theorem reduces the normally continuum infinity of ordered pairs required to specify a
function to a countable—although still infinite—set. Remarkably, these elements are obtained directly by
sampling.

How can the cardinal series interpolate uniquely the
bandlimited signal from which the samples were taken?
Could not the same samples be generated from another
bandlimited signal? The answer is no. Bandlimited
functions are smooth. Any behavior deviating from
smooth would result in high-frequency components
which in turn invalidates the required property of being
bandlimited. The smoothness of the signal between
samples precludes arbitrary variation of the signal
there.

Let’s examine the cardinal series more closely. Eval-
uate Eq. (73.74) at t = m/2B. Since sinc(n) is one for
n = 0 and is otherwise zero, only the sample at t = m/2B
contributes to the interpolation at that point. This is
illustrated in Fig. 73.11, where the reconstruction of a signal from its samples using the cardinal series is shown.
The value of x(t) at a point other than a sample location [e.g., t = (m + 1⁄2)/2B] is determined by all of the
sample values.

Proof of the Sampling Theorem

Borel [1897] and Shannon [1948] both discussed the sampling theorem as the Fourier transform dual of the
Fourier series. Let x(t) have a bandwidth of B. Consider the periodic signal

(73.70)
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FIGURE 73.11 Illustration of the interpolation that
results from the cardinal series. A sinc function, weighted
by the sample, is placed at each sample bottom. The sum
of the sincs exactly generates the original bandlimited func-
tion from which the samples were taken.
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The function Y(v) is a periodic function with period 4pB. From Eq. (73.67) X(v) is zero for v > 2pB and is
thus finite in extent. The terms in Eq. (73.70) therefore do not overlap. Periodic functions can be expressed as
a Fourier series.

(73.71)

where the Fourier series coefficients are

or

(73.72)

where we have used the inverse Fourier transform in Eq. (73.69). Substituting into the Fourier series in Eq.
(73.71) gives

(73.73)

Since a period of Y(v) is X(v), we can get back the original spectrum by

Substitute Eq. (73.73) and inverse transforming gives, using Eq. (73.69),

or

(73.74)

where

is the inverse Fourier transform of P (v/2p). Eq. (73.74) is, of course, the cardinal series.
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The sampling theorem generally converges uniformly, in the sense that

where the truncated cardinal series is

(73.75)

Sufficient conditions for uniform convergence are [Marks, 1991]

1. the signal, x(t), has finite energy, E,

2. or X(v) has finite area,

Care must be taken in the second case, though, when singularities exist at v = ±2pB. Here, sampling may
be required to be strictly greater than 2B. Such is the case, for example, for the signal, x(t) = sin (2pBt). Although
the signal is bandlimited, and although its Fourier transform has finite area, all of the samples of x(t) taken at
t = n/2B are zero. The cardinal series in Eq. (73.74) will thus interpolate to zero everywhere. If the sampling
rate is a bit greater than 2B, however, the samples are not zero and the cardinal series will uniformly converge
to the proper answer.

The Time-Bandwidth Product

The cardinal series requires knowledge of an infinite number of samples. In practice, only a finite number of
samples can be used. If most of the energy of a signal exists in the interval 0 £ t £ T, and we sample at the
Nyquist rate of 2B samples per second, then a total of S = á2BTñ samples are taken. (áuñ denotes the largest
number not exceeding u.) The number S is a measure of the degrees of freedom of the signal and is referred
to as its time-bandwidth product. A 5-min single-track audio recording requiring fidelity up to 20,000 Hz,
for example, requires a minimum of S = 2 3 20,000 3 5 3 60 = 12 million samples. In practice, audio sampling
is performed well above the Nyquist rate.

Sources of Error

Exact interpolation using the cardinal series assumes that (1) the values of the samples are known exactly, (2) the
sample locations are known exactly, and (3) an infinite number of terms are used in the series. Deviation from
these requirements results in interpolation error due to (1) data noise, (2) jitter, and (3) truncation, respectively.
The effect of data error on the restoration can be significant. Some innocently appearing sampling theorem
generalizations, when subjected to performance analysis in the presence of data error, are revealed as ill-posed.
In other words, a bounded error on the data can result in unbounded error on the restoration [Marks, 1991].

Data Noise

The source of data noise can be the signal from which samples are taken, or from round-off error due to finite
sampling precision. If the noise is additive and random, instead of the samples
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we must deal with the samples

where j(t) is a stochastic process. If these noisy samples are used in the cardinal series, the interpolation, instead
of simple x(t), is

x(t) + h(t)

where the interpolation noise is

If j(t) is a zero mean process, then so is the interpolation noise. Thus, the noisy interpolation is an unbiased
version of x(t). More remarkably, if j(t) is a zero-mean (wide-sense) stationary process with uncertainty
(variance) s2, then so is h(t). In other words, the uncertainty at the sample point locations is the same as at all
points of interpolation [Marks, 1991].

Truncation

The truncated cardinal series is in Eq. (73.75). A signal cannot be both bandlimited and of finite duration.
Indeed, a bandlimited function cannot be identically zero over any finite interval. Thus, other than the rare
case where an infinite number of the signal’s zero crossings coincide with the sample locations, truncation will
result in an error.

The magnitude of this truncation error can be estimated through the use of Parseval’s theorem for the
cardinal series that states

The energy of a signal can thus be determined directly from either the signals or the samples. The energy
associated with the truncated signal is

If E – EN << E, then the truncation error is small.

Jitter

Jitter occurs when samples are taken near to but not exactly at the desired sample locations. Instead of the
samples x (n/2W), we have the samples
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where sn is the jitter offset of the nth sample. For jitter, the sn’s are not known. If they were, an appropriate
nonuniform sampling theorem [Marks, 1993; Marvasti, 1987] could be used to interpolate the signal.

Using the jittered samples in the cardinal series results in an interpolation that is not an unbiased estimate
of x(t). Indeed, if the probability density function of the jitter is the same at all sample locations, the expected
value of the jittered interpolation is the convolution of x(t) with the probability density function of the jitter.
This bias can be removed by inverse filtering at a cost of decreasing the signal-to-noise ratio of the interpolation
[Marks, 1993].

Generalizations of the Sampling Theorem

There exist numerous generalizations of the sampling theorem [Marks, 1991; Marks, 1993].

1. Stochastic processes. A wide-sense stationary stochastic process, x(t), is said to be bandlimited if its
autocorrelation, Rc(t), is a bandlimited function. The cardinal series

converges to x(t) in the sense that

where E denotes expectation.
2. Nonuniform sampling. There exist numerous scenarios wherein interpolation can be performed from

samples that are not spaced uniformly. Marvasti [1987] devotes a book to the topic.
3. Kramer’s generalization. Kramer generalized the sampling theorem to integral transforms other than

Fourier, for example, to Legendre and Laguerre transforms.
4. Papoulis’ generalization. Shannon noted that a bandlimited signal could be restored when sampling

was performed at half the Nyquist rate if, at every sample location, a sample of the signal’s derivative
were also taken. Recurrent nonuniform sampling is where P samples are spaced the same in every P
Nyquist intervals. Another sampling scenario is when a signal and its Hilbert transform are both sampled
at half their respective Nyquist rates. Restoration of the signal from these and numerous other sampling
scenarios are subsumed in an eloquent generalization of the sampling theorem by Papoulis.

5. Lagrangian interpolation. Lagrangian interpolation is a topic familiar in numerical analysis. An Nth
order polynomial is fit to N + 1 arbitrarily spaced sample points. If an infinite number of samples are
equally spaced, then Lagrangian interpolation is equivalent to the cardinal series.

6. Trigonometric polynomials. All periodic bandlimited signals can be expressed as trigonometric poly-
nomials (i.e., a Fourier series with a finite number of terms). If the series has M terms, then the signal
has M degrees of freedom which can be determined from M samples taken within a single period.

7. Multidimensional sampling theorems. Multidimensional signals, such as images, require dimensional
extensions of the sampling theorem. The sampling of the signal now requires geometrical interpretation.
Uniform sampling of an image, for example, can either be done on a rectangular or hexagonal grid. The
minimum sampling density for one geometry may differ from that of another. The smallest sampling
density that does not result in aliasing can be achieved, in many cases, with a number of different uniform
sampling geometries and is referred to as the Nyquist density. Interestingly, sampling can sometimes be
performed below the Nyquist density with nonuniform sampling geometries such that the multidimen-
sional signal can be restored. Such is not the case for one dimension.
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8. Continuous sampling. When a signal is known on one or more disjoint intervals, it is said to have been
continuously sampled. Divide the time line into intervals of T. Periodic continuous sampling assumes
that the signal is known on each interval over an interval of aT where a is the duty cycle. Continuously
sampled signals can be accurately interpolated even in the presence of aliasing. Other continuously
sampled cases, each of which can be considered as a limiting case of continuously periodically sampled
restoration, include
(a) Interpolation. The tails of a signal are known and we wish to restore the middle.
(b) Extrapolation. We wish to generate the tails of a function with knowledge of the middle.
(c) Prediction. A signal for t > 0 is to be estimated from knowledge of the signal for t < 0.

Final Remarks

Since its popularization in the late 1940s, the sampling theorem has been studied in depth. More than 1000
papers have been generated on the topic [Marks, 1993]. Its understanding is fundamental in matching the
largely continuous world to digital computation engines.

Defining Terms

Aliasing: A phenomenon that occurs when a signal is undersampled. High-frequency information about the
signal is lost.

Cardinal series: The formula by which samples of a bandlimited signal are interpolated to form a continuous
time signal.

Fourier transform: The mathematical operation that converts a time-domain signal into the frequency
domain.

Jitter: A sample is temporally displaced by an unknown, usually small, interval.
Kramer’s generalization: A sampling theory based on other than Fourier transforms and frequency.
Lagrangian interpolation: A classic interpolation procedure used in numerical analysis. The sampling the-

orem is a special case.
Nyquist rate: The minimum sampling rate that does not result in aliasing.
Papoulis’ generalization: A sampling theory applicable to many cases wherein signal samples are obtained

either nonuniformly and/or indirectly.
Sampling rate: The number of samples per second.
Sampling theorem: Samples of a bandlimited signal, if taken close enough together, exactly specify the

continuous time signal from which the samples were taken.
Signal bandwidth: The maximum frequency component of a signal.
Time bandwidth product: The product of a signal’s duration and bandwidth approximates the number of

samples required to characterize the signal.
Truncation error: The error that occurs when a finite number of samples are used to interpolate a continuous

time signal.

Related Topic

8.5 Sampled Data
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Further Information

An in-depth study of the sample theorem and its numerous variations is provided in R. J. Marks II, Ed.,
Introduction to Shannon Sampling and Interpolation Theory, New York:Springer-Verlag, 1991.

In-depth studies of modern sampling theory with over 1000 references are available in R. J. Marks II, Ed.,
Advanced Topics in Shannon Sampling and Interpolation Theory, New York: Springer-Verlag, 1993.

The specific case of nonuniform sampling is treated in the monograph by F. A. Marvasti, A Unified Approach
to Zero-Crossing and Nonuniform Sampling, Oak Park, Ill:Nonuniform, 1987.

The sampling theorem is treated generically in the IEEE Transactions on Signal Processing. For applications,
topical journals are the best source of current literature.

73.5 Channel Capacity

Sergio Verdú

Information Rates

Tens of millions of users access the Internet daily via standard telephone lines. Modems operating at data rates
of up to 28,800 bits per second enable the transmission of text, audio, color images, and even low-resolution
video. The progression in modern technology for the standard telephone channel shown in Fig. 73.12 exhibits,
if not the exponential increases ubiquitous in computer engineering, then a steady slope of abut 825 bits per
second per year.

Few technological advances can result in as many time-savings for worldwide daily life as advances in modem
information rates. However, modem designers are faced with a fundamental limitation in the maximum trans-
missible information rate. Every communication channel has a number associated with it called channel capacity,
which determines the maximum information rate that can flow through the channel regardless of the complexity
of the transmitting and receiving devices. Thus, the progression of modem rates shown in Fig. 73.12 is sure to
come to a halt. But, at what rate? Answering this question for any communication channel model is one of the
major goals of information theory—a discipline founded in 1948 by Claude E. Shannon [Shannon, 1948].

Communication Channels

The communication channel is the set of devices and systems that connects the transmitter to the receiver. The
transmitter and receiver consist of an encoder and decoder, respectively, which translate the information stream
produced by the source into a signal suitable for channel transmission and vice versa (Fig. 73.13). For example,
in the case of the telephone line, two communication channels (one in each direction) share the same physical
channel that connects the two modems. That physical channel usually consists of twisted copper wires at both
ends and a variety of switching and signal processing operations that occur at the telephone exchanges. The
modems themselves are not included in the communication channel. A microwave radio link is another example
of a communication channel that consists of an amplifier and an antenna (at both ends) and a certain portion
of the radio spectrum. In this case, the communication channel model does not fully correspond with the
physical channel. Why not, for example, view the antenna as part of the transmitter rather than the channel
© 2000 by CRC Press LLC



(Fig. 73.13)? Because considerations other than the optimization of the efficiency of the link are likely to dictate
the choice of antenna size. This illustrates that the boundaries encoder–channel and channel–decoder in
Fig. 73.13 are not always uniquely defined. This suggests an alternative definition of a channel as that part of
the communication system that the designer is unable or unwilling to change.

A channel is characterized by the probability distributions of the output signals given every possible input
signal. Channels are divided into (1) discrete-time channels and (2) continuous-time channels depending on
whether the input/output signals are sequences or functions of a real variable. Some examples are as follows.

Example 1: Binary Symmetric Channel

A discrete-time memoryless channel with binary inputs and outputs (Fig. 73.14) where the probabilities that
0 and 1 are received erroneously are equal.

Example 2: Z-Channel

A discrete-time memoryless channel with binary inputs and outputs (Fig. 73.15) where 0 is received error-free.

Example 3: Erasure Channel

A discrete-time memoryless channel with binary inputs and ternary outputs (Fig. 73.16). The symbols 0 and
1 cannot be mistaken for each other but they can be “erased”.

FIGURE 73.12 Information rates of modems for telephone channels.

FIGURE 73.13 Elements of a communication system.
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Example 4: White Gaussian Discrete-Time Channel

A discrete-time channel whose output sequence is given by

yi = xi + ni (73.76)

where xi is the input sequence and ni is a sequence of independent
Gaussian random variables with equal variance.

Example 5: Linear Continuous-Time Gaussian Channel

A continuous-time channel whose output signal is given by (Fig.
73.17)

y(t) = h(t) * x(t) + n(t) (73.77)

where x(t) is the input signal, n(t) is a stationary Gaussian process,
and h(t) is the impulse response of a linear time-invariant system.
The telephone channel is typically modeled by Eq. (73.77).

The goal of the encoder (Fig. 73.13) is to convert strings of binary data (messages) into channel-input signals.
Source strings of m bits are translated into channel input strings of n symbols (with m £ n) for discrete channels,
and into continuous-time signals of duration T for continuous-time channels. The channel code (or more
precisely the codebook) is the list of 2m codewords (channel input signals) that may be sent by the encoder.
The rate of the code is equal to the logarithm of its size divided by the duration of the codewords. Thus, the
rate is equal to

FIGURE 73.14 Binary symmetric channel. FIGURE 73.15 Z-channel.

FIGURE 73.17 Linear continuous-time gaussian channel.

FIGURE 73.16 Erasure channel.
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bits per channel use

for a discrete-time channel, whereas it is equal to

bits per second

for a continuous-time channel.
Once a codeword has been chosen by the encoder, the channel probabilistic mechanisms govern the distortion

suffered by the transmitted signal. The role of the decoder is to recover the transmitted binary string (message)
upon reception of the channel-distorted version of the transmitted codeword. To that end, the decoder knows
the codebook used by the encoder. For most channels (including those above) there is a nonzero probability
that the best decoder (maximum likelihood decoder) selects the wrong message. Thus, for a given channel the
two figures of merit and of interest are the rate and the probability of error. The higher the tolerated probability
of error, the higher the allowed rate; however, computing the exact tradeoff is a formidable task unless the code
size either is very small or tends to infinity. The latter case was the one considered by Shannon and treated in
the following section.

Reliable Information Transmission: Shannon’s Theorem

Shannon [1948] considered the situation in which the codeword duration grows without bound. Channel
capacity is the maximum rate for which encoders and decoders exist whose probability of error vanishes as the
codewords get longer and longer.

Shannon’s Theorem [Shannon, 1948] The capacity of a discrete memoryless channel is equal to

C = max
X

I (X; Y), (73.78)

where I(X; Y) stands for the input-output mutual information, which is a measure of the dependence of the
input and the output defined as the divergence between the joint input/output distribution and the product
of its marginals, D(PXY ||PX PY). For any pair of probability mass functions P and Q defined on the same space,
divergence is an asymmetric measure of their similarity:

D(P ||Q) = log . (73.79)

Divergence is zero if both distributions are equal; otherwise it is strictly positive. The maximization in Eq.
(73.78) is over the set of input distributions. Although, in general, there is no closed-form solution for that
optimization problem, an efficient algorithm was obtained by Blahut and Arimoto in 1972 [Blahut, 1987]. The
distribution that attains the maximum in Eq. (73.78) determines the statistical behavior of optimal codes and,
thus, is of interest to the designer of the encoder. For the discrete memoryless channels mentioned above, the
capacity is given by the following examples.

Example 1: Binary Symmetric Channel

C = 1 – d log  – (1 – d) log

attained by an equiprobable distribution and shown in Fig. 73.18.
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Example 2: Z-Channel

attained for a distribution whose probability mass at 0 ranges from 1/2 (d = 0) to 1/e (d ® 1) (Fig. 73.19).

Example 3: Erasure Channel

C = 1 – d

attained for equiprobable inputs.
Oftentimes the designer is satisfied with not exceeding a certain fixed level of bit error rate, e , rather than

the more stringent criterion of vanishing probability of selecting the wrong block of data. In such a case, it is
possible to transmit information at a rate equal to capacity times

which is shown in Fig. 73.20.
If, contrary to what we have assumed thus far, the message source in Fig. 73.13 is not a source of pure bits,

the significance of capacity can be extended to show that as long as the source entropy (see Chapter 73.6 on

FIGURE 73.18 Capacity of the binary symmetric channel as a function of crossover probability.

FIGURE 73.19 Capacity of the Z-channel.
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Data Compression) is below the channel capacity, an encoder/decoder pair exists that enables arbitrarily reliable
communication. Conversely, if the source entropy is above capacity, then no such encoder/decoder pair exists.

Bandwidth and Capacity

The foregoing formulas for discrete channels do not lead to the capacity of continuous-time channels such as
Example 5. We have seen that in the case of the telephone channel whose bandwidth is approximately equal to
3 kHz, capacity is lower bounded by 28,800 bits per second. How does bandwidth translate into capacity? The
answer depends on the noise level and distribution. For example, if in the channel of Example 5, the noise is
absent, capacity is infinite regardless of bandwidth. We can encode any amount of information as the binary
expansion of a single scalar, which can be sent over the channel as the amplitude or phase of a single sinusoid;
knowing the channel transfer function, the decoder can recover the transmitted scalar error-free. Clearly, such
a transmission method is not recommended in practice because it hinges on the non-physical scenario of
noiseless transmission.

In the simplest special case of Example 5, the noise is white, the channel has an ideal flat transfer function
with bandwidth B (in Hz), and the input power is limited. Then, the channel capacity is equal to

C = B SNRdB log2 100.1 bits per second (73.80)

where log2 100.1 = 0.33 and SNRdB is equal to the optimum signal-to-noise ratio (in dB) of a linear estimate of
a flat input signal given the channel output signal. Such an optimum signal-to-noise ratio is equal to one plus
the power alloted to the input divided by the noise power in the channel band, i.e.,

SNRdB = 10 log10 .

It is interesting to notice that as the bandwidth grows, the channel capacity does not grow without bound. It
tends to

bits per second

where log2 e = 1.44. This means that the energy per bit necessary for reliable communication is equal to 0.69
times the noise power spectral density level. When the channel bandwidth is finite, the energy necessary to
send one bit of information is strictly larger. The energy required to send one bit of information reliably can

FIGURE 73.20 Capacity expansion factor as a function of bit-error-rate.
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be computed for other (non-Gaussian) channels even in cases where expressions for channel capacity are not
known [Verdú, 1990].

When the channel transfer function H( f ) and/or noise spectral density N( f ) are not flat, the constant in
Eq. (73.80) no longer applies. The so-called water-filling formula [Shannon, 1949] gives the channel capacity as

where w is chosen so that

and

The linear Gaussian-noise channel is a widely used model for space communication (in the power limited
region) and for the telephone channel (in the bandwidth limited region). Thanks to the prevalence of digital
switching and digital transmission in modern telephone systems, not only signal-to-noise ratios have improved
over time but the Gaussian-noise model in Example 5 becomes increasingly questionable because quantization
is responsible for a major component of the channel distortion. Therefore, future improvements in modem
speeds are expected to arise mainly from finer modeling of the channel.

Due to the effect of time-varying received power (fading), several important channels fall outside the scope
of Example 5 such as high-frequency radio links, tropospheric scatter links, and mobile radio channels.

Channel Coding Theorems

In information theory, the results that give a formula for channel capacity in terms of the probabilistic
description of the channel are known as channel coding theorems. They typically involve two parts: an achiev-
ability part, which shows that codes with vanishing error probability exist for any rate below capacity; and a
converse part, which shows that if the code rate exceeds capacity, then the probability of error is necessarily
bounded away from zero. Shannon gave the first achievability results in [Shannon, 1948] for discrete memory
channels. His method of proof, later formalized as the method of “typical sequences” (e.g., [Cover and Thomas,
1991]), is based on showing that the average probability of error of a code chosen at random vanishes with
blocklength. Other known achievability proofs such as Feinstein’s [1954], Gallager’s [1968], and the method
of types [Csiszar and Korner, 1981] are similarly non-constructive. The discipline of coding theory deals with
constructive methods to design codes that approach the Shannon limit (see Chapter 71.1). The first converse
channel coding theorem was not given by Shannon, but by Fano in 1952. A decade after Shannon’s pioneering
paper, several authors obtained the first channel coding theorems for channels with memory [Dobrushin, 1963].
The most general formula for channel capacity known to date can be found in [Verdú and Han, 1994]. The
capacity of channels with feedback was first considered by Shannon in 1961 [Shannon, 1961], with later
developments for Gaussian channels summarized in [Cover and Thomas, 1991]. In his 1961 paper [Shannon,
1961], Shannon founded the discipline of multiuser information theory by posing several challenging channels
with more than one transmitter and/or receiver. In contrast to the multiaccess channel (one receiver) which
has been solved in considerable generality, the capacities of channels involving more than one receiver, such as
broadcast channels [Cover, 1972] and interference channels remain unsolved except in special cases.
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Channel capacity has been shown to have a meaning outside the domain of information transmission [Han
and Verdú, 1993]: it is the minimum rate of random bits required to generate any input random process so
that the output process is simulated with arbitrary accuracy.

Defining Terms

Blocklength: The duration of a codeword, usually in the context of discrete-time channels.
Channel capacity: The maximum rate for which encoders and decoders exist whose probability of error

vanishes as the codewords get longer and longer.
Codeword: Channel-input signal chosen by the encoder to represent the message.
Communication channel: Set of devices and systems that connect the transmitter to the receiver, not subject

to optimization.
Broadcast channel: A communication channel with one input and several outputs each connected to a

different receiver such that possibly different messages are to be conveyed to each receiver.
Discrete memoryless channel: A discrete-time memoryless channel where each channel input and output

takes a finite number of values.
Discrete-time channel: A communication channel whose input/output signals are sequences of values. Its

capacity is given in terms of bits per “channel use”.
Continuous-time channel: A communication channel whose input/output signals are functions of a real

variable (time). Its capacity is given in terms of bits per second.
Interference channel: A channel with several inputs/outputs such that autonomous transmitters are con-

nected to each input and such that each receiver is interested in decoding the message sent by one and
only one transmitter.

Memoryless channel: A channel where the conditional probability of the output given the current input is
independent of all other inputs or outputs.

Multiaccess channel: A channel with several inputs and one output such that autonomous transmitters are
connected to each input and such that the receiver is interested in decoding the messages sent by all the
transmitters.

Decoder: Mapping from the set of channel-output signals to the set of messages.
Maximum-likelihood decoder: A decoder which selects the message that best explains the received signal,

assuming all messages are equally likely.
Encoder: Mapping from the set of messages to the set of input codewords.
Modem: Device that converts binary information streams into electrical signals (and vice-versa) for trans-

mission through the voiceband telephone channel.
Rate: The rate of a code is the number of bits transmitted (logarithm of code size) per second for a continuous-

time channel or per channel use for a discrete-time channel.

Related Topics

70.1 Coding • 73.4 The Sampling Theorem
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73.6 Data Compression

Joy A. Thomas and Thomas M. Cover

Data compression is a process of finding the most efficient representation of an information source in order
to minimize communication or storage. It often consists of two stages—the first is the choice of a (probabilistic)
model for the source and the second is the design of an efficient coding system for the model. In this section,
we will concentrate on the second aspect of the compression process, though we will touch on some common
sources and models in the last subsection.

Thus, a data compressor (sometimes called a source coder) maps an information source into a sequence of
bits, with a corresponding decompressor, that given these bits provides a reconstruction of the source. Data
compression systems can be classified into two types: lossless, where the reconstruction is exactly equal to the
original source, and lossy, where the reconstruction is a distorted version of the original source. For lossless
data compression, the fundamental lower bound on the rate of the data compression system is given by the
entropy rate of the source. For lossy data compression, we have a tradeoff between the rate of the compressor
and the distortion we incur, and the fundamental limit is given by the rate distortion function, which is discussed
later in this section.

Shannon [1948] was the first to distinguish the probabilistic model that underlies an information source
from the semantics of the information. An information source produces one of many possible messages; the
goal of communication is to transmit an unambiguous specification of the message so that the receiver can
reconstruct the original message. For example, the information to be sent may be the result of a horse race. If
the recipient is assumed to know the names and numbers of the horses, then all that must be transmitted is
the number of the horse that won. In a different context, the same number might mean something quite
different, e.g., the price of a barrel of oil. The significant fact is that the difficulty in communication depends
only on the length of the representation. Thus, finding the best (shortest) representation of an information
source is critical to efficient communication.

When the possible messages are all equally likely, then it makes sense to represent them by strings of equal
length. For example, if there are 32 possible equally likely messages, then each message can be represented by
a binary string of 5 bits. However, if the messages are not equally likely, then it is more efficient on the average
to allot short strings to the frequently occurring messages and longer strings to the rare messages. Thus, the
Morse code allots the shortest string (a dot) to the most frequent letter (E) and allots long strings to the
infrequent letters (e.g., dash, dash, dot, dash for Q). The minimum average length of the representation is a
fundamental quantity called the entropy of the source, which is defined in the next subsection.
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Entropy

An information source will be represented by a random variable X, which takes on one of a finite number of
possibilities i Î X  with probability pi = Pr(X = i). The entropy of the random variable X is defined as

(73.81)

where the log is to base 2 and the entropy is measured in bits. We will use logarithms to base 2 throughout this
chapter.

Example 73.1 Let X be a random variable that takes on a value 1 with probability u and takes on the value
0 with probability 1 – u. Then H(X) = –u log u – (1 – u) log (1 – u). In particular, the entropy of a fair coin
toss with q = 1/2 is 1 bit.

This definition of entropy is related to the definition of entropy in thermodynamics. It is the fundamental
lower bound on the average length of a code for the random variable.

A code for a random variable X is a mapping from X, the range of X, to the set of finite-length binary strings.
We will denote the code word corresponding to i by C(i), and the length of the code word by li . The average
length of the code is then L(C) = (i pi li .

A code is said to be instantaneous or prefix-free if no code word is a prefix of any other code word. This
condition is sufficient (but not necessary) to allow a sequence of received bits to be parsed unambiguously into
a sequence of code words.

Example 73.2 Consider a random variable X taking on the values {1, 2, 3} with probabilities (0.5, 0.25,
0.25). An instantaneous code for this random variable might be (0, 10, 11). Thus, a string 01001110 can be
uniquely parsed into 0, 10, 0, 11, 10, which decodes to the string x = (1, 2, 1, 3, 2). Note that the average
length of the code is 1.5 bits, which is the same as the entropy of the source.

For any instantaneous code, the following property of binary trees called the Kraft inequality [Cover and
Thomas, 1991].

(73.82)

must hold. Conversely, it can be shown that given a set of lengths that satisfies the Kraft inequality, we can find
a set of prefix-free code words of those lengths.

The problem of finding the best source code then reduces to finding the optimal set of lengths that satisfies
the Kraft inequality and minimizes the average length of the code. Simple calculus can then be used to show
[Cover and Thomas, 1991] that the average length of any instantaneous code is larger than the entropy of the
random variable, i.e., the minimum of (pi li over all li satisfying ( 2–li £ 1 is –(pi log pi . Also, if we take li =
élog 1/pi ù (where étù denotes the smallest integer greater than or equal to t), we can verify that this choice of
lengths satisfies the Kraft inequality and that

(73.83)

The optimal code can only have a shorter length, and therefore we have the following theorem:

Theorem 73.1 Let L* be the average length of the optimal instantaneous code for a random variable X. Then

H(X) £ L* < H(X) + 1 (73.84)
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This theorem is one of the fundamental theorems of information theory. It identifies the entropy as the
fundamental limit for the average length of the representation of a discrete information source and shows that
we can find representations with average length within one bit of the entropy.

The Huffman Algorithm

The choice of code word lengths li = élog 1/più (called the Shannon code lengths) is close to optimal, but not
necessarily optimal, in terms of average code word length. We will now describe an algorithm (the Huffman
algorithm) that produces an instantaneous code of minimal average length for a random variable with distri-
bution p1 , p2 , . . ., pm . The algorithm is a greedy algorithm for building a tree from the bottom up.

Step 1. Arrange the probabilities in decreasing order so that p1 ³ p2 ³ . . . ³ pm.
Step 2. Form a subtree by combining the last two probabilities pm–1 and pm to a single node of weight p9m–1 =

pm–1 + pm .
Step 3. Recursively execute Steps 1 and 2, decreasing the number of nodes each time, until a single node is

obtained.
Step 4. Use the tree constructed above to allot code words.

The algorithm for tree construction is illustrated for a source with distribution (0.5, 0.2, 0.2, 0.1) in Fig. 73.21.
After constructing the tree, the leaves of the tree (which correspond to the symbols of X) can be assigned code
words that correspond to the paths from the root to the leaf. We will not give a proof of the optimality of the
Huffman algorithm; the reader is referred to Gallager [1968] or Cover and Thomas [1991] for details.

Entropy Rate

The entropy of a sequence of random variables X1, X2 , . . ., Xn with joint distribution p(x1, x2 , . . ., xn ) is defined
analogously to the entropy of a single random variable as

(73.85)

For a stationary process X1, X2 , . . ., we define the entropy rate H(X) of the process as

(73.86)

It can be shown [Cover and Thomas, 1991] that the entropy rate is well defined for all stationary processes. In
particular, if X1, X2 , . . ., Xn is a sequence of independent and identically distributed (i.i.d.) random variables,
then H(X1, X2 , . . ., Xn ) = nH(X1), and H(X) = H(X1).

FIGURE 73.21 Example of the Huffman algorithm.
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In the previous subsection, we showed the existence of a prefix-free code having an average length within
one bit of the entropy. Now instead of trying to represent one occurrence of the random variable, we can form
a code to represent a block of n random variables. In this case, the average code length is within one bit of
H(X1, X2 , . . ., Xn ). Thus, the average length of the code per input symbol satisfies

(73.87)

Since [H(X1, X2 , . . ., Xn)]/n ®H(X), we can get arbitrarily close to the entropy rate by using longer and longer
block lengths. Thus, the entropy rate is the fundamental limit for data compression for stationary sources, and
we can achieve rates arbitrarily close to this limit by using long blocks.

All the above assumes that we know the probability distribution that underlies the information source. In
many practical examples, however, the distribution is unknown or too complex to be used for coding. There
are various ways to handle this situation:

• Assume a simple distribution and design an appropriate code for it. Use this code on the real source. If
an estimated distribution p̂ is used when in fact the true distribution is p, then the average length of the
code is lower bounded by H(X) + (x p(x) log [p(x)/ p̂(x)].  The second term, which is denoted D(p** p̂) is
called the relative entropy or the Kullback Leibler distance between the two distributions.

• Estimate the distribution empirically from the source and adapt the code to the distribution. For example,
with adaptive Huffman coding, the empirical distribution of the source symbols is used to design the
Huffman code used for the source.

• Use a universal coding algorithm like the Lempel–Ziv algorithm (see the subsection “Lempel–Ziv Coding”).

Arithmetic Coding

In the previous subsections, it was shown how we could construct a code for a source that achieves an average
length within one bit of the entropy. For small source alphabets, however, we have efficient coding only if we
use long blocks of source symbols. For example, if the source is binary, and we code each symbol separately,
we must use 1 bit per symbol, irrespective of the entropy of the source. If we use long blocks, we can achieve
an expected length per symbol close to the entropy rate of the source.

It is therefore desirable to have an efficient coding procedure that works for long blocks of source symbols.
Huffman coding is not ideal for this situation, since it is a bottom-up procedure with a complexity that grows
rapidly with the block length. Arithmetic coding is an incremental coding algorithm that works efficiently for
long block lengths and achieves an average length within one bit of the entropy for the block.

The essential idea of arithmetic coding is to represent a sequence x n = x1, x2 , . . ., xn by the cumulative
distribution function F(x n) (the sum of the probability of all sequences less than x n) expressed to an appropriate
accuracy. The cumulative distribution function for x n is illustrated in Fig. 73.22. We can use any real number
in the interval [F(x n) – p(x n), F(x n)] as the code for x n. Expressing F(x n) to an accuracy of élog 1/p(x n)ù will
give us a code for the source. The receiver can draw the cumulative distribution function, draw a horizontal
line corresponding to the truncated value ëF(x n)û that was sent, and read off the corresponding x n. (This code
is not prefix-free but can be easily modified to construct a prefix-free code [Cover and Thomas, 1991]). To
implement arithmetic coding, however, we need efficient algorithms to calculate p(x n) and F(x n) to the appro-
priate accuracy based on a probabilistic model for the source. Details can be found in Langdon [1984] and Bell
et al. [1990].

Lempel–Ziv Coding

The Lempel–Ziv algorithm [Ziv and Lempel, 1978] is a universal coding procedure that does not require
knowledge of the source statistics and yet is asymptotically optimal. The basic idea of the algorithm is to
construct a table or dictionary of frequently occurring strings and to represent new strings by pointing to their
prefixes in the table. We first parse the string into sequences that have not appeared so far. For example, the
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binary string 11010011011100 is parsed into 1,10,100,11,0,111,00. Then instead of sending the bits of each
phrase, we send a pointer to its prefix and the value of the last bit. Thus, if we use three bits for the pointer,
we will represent this string by (000,1), (001,0), (010,0), (001,1), (000,0), (100,1), (101,0), etc. For this short
example, the algorithm has not compressed the string—it has in fact expanded it.

The very surprising fact is that, as Lempel and Ziv have shown, the algorithm is asymptotically optimal for
any stationary ergodic source. This is expressed in the following theorem [Ziv and Lempel, 1978; Cover and
Thomas, 1991]:

Theorem 73.2 Let Ln be the length of the Lempel–Ziv code for n symbols drawn from a stationary ergodic
process X1, X2 , . . ., Xn with entropy rate H(X). Then

(73.88)

Thus, for long enough block lengths, the Lempel–Ziv algorithm (which does not make any assumptions
about the distribution of the source) does as well as if we knew the distribution in advance and designed the
optimal code for this distribution.

The algorithm described above is only one of a large class of similar adaptive dictionary-based algorithms,
which are all rather loosely called Lempel–Ziv. These algorithms are simple and fast and have been implemented
in both software and hardware, e.g., in the compress command in UNIX and the PKZIP command on PCs. On
ASCII text files, the Lempel–Ziv algorithm achieves compressions on the order of 50%. It has also been
implemented in hardware and has been used to “double” the capacity of data storage media or to “double” the
effective transmission rate of a modem. Many variations on the basic algorithm can be found in Bell et al. [1990].

Rate Distortion Theory

An infinite number of bits are required to describe an arbitrary real number, and therefore it is not possible
to perfectly represent a continuous random variable with a finite number of bits. How “good” can the repre-
sentation be? We first define a distortion measure, which is a measure of the distance between the random
variable and its representation. We can then consider the trade-off between the number of bits used to represent
a random variable and the distortion incurred. This trade-off is represented by the rate distortion function
R(D), which represents the minimum rate required to represent a random variable with a distortion D.

We will consider a discrete information source that produces random variables X1 , X2 , . . ., Xn that are drawn
i.i.d. according to p(x). (The results are also valid for continuous sources.) The encoder of the rate distortion

FIGURE 73.22 Cumulative distribution function for sequences xn.
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system of rate R will encode a block of n outputs Xn as an index f(Xn) Î {1, 2, . . ., ë2n Rû}. (Thus, the index will
require R bits/input symbol.) The decoder will calculate a representation X̂n(f (Xn )) of Xn. Normally, the repre-
sentation alphabet X̂ of the representation is the same as the source alphabet X, but that need not be the case.

Definition: A distortion function or distortion measure is a mapping

(73.89)

from the set of source alphabet–reproduction alphabet pairs into the set of nonnegative real numbers. The
distortion d(x, x̂) is a measure of the cost of representing the symbol x by the symbol x̂.

Examples of common distortion functions are

• Hamming (probability of error) distortion. The Hamming distortion is given by

(73.90)

and thus Ed(X , ̂ X) = Pr(X ¹ X̂).

• Squared error distortion. The squared error distortion

(73.91)

is the most popular distortion measure used for continuous alphabets. Its advantages are its simplicity
and its relationship to least squares prediction. However, for information sources such as images and
speech, the squared error is not an appropriate measure for distortion as perceived by a human observer.

The distortion between sequences xn and x̂n of length n is defined by

(73.92)

For a rate distortion system, the expected distortion D is defined as

(73.93)

Definition: The rate distortion pair (R,D) is said to be achievable if there exists a rate distortion code of rate
R with expected distortion D. The rate distortion function R(D) is the infimum of rates R such that (R,D) is
achievable for a given D.

Definition: The mutual information I(X, X̂) between random variables X and X̂, with joint probability mass
function p(x, x̂) and marginal probability mass functions p(x) and p(x̂ ) is defined as

(73.94)

The mutual information is a measure of the amount of information that one random variable carries about
another.
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The main result of rate distortion theory is contained in the following theorem, which provides a charac-
terization of the rate distortion function in terms of the mutual information of joint distributions that satisfy
the expected distortion constraint:

Theorem 73.3 The rate distortion function for an i.i.d. source X with distribution p(x) and distortion
function d(x, x̂) is

(73.95)

We can construct rate distortion codes that can achieve distortion D at any rate greater than R(D), and we
cannot construct such codes at any rate below R(D).

The proof of this theorem uses ideas of random coding and long block lengths as in the proof of the channel
capacity theorem. The basic idea is to generate a code book of 2nR reproduction code words X̂n at random and
show that for long block lengths, for any source sequence, it is very likely that there is at least one code word
in this code book that is within distortion D of that source sequence. See Gallager [1968] or Cover and Thomas
[1991] for details of the proof.

Example 73.3 (Binary source) The rate distortion function for a Bernoulli (p) source (a random variable
that takes on values {0, 1} with probabilities p, 1 – p) with Hamming distortion is given by

(73.96)

where H(p)= –p log p – (1 – p)log (1 – p) is the binary entropy function.

Example 73.4 (Gaussian source) The rate distortion function for a Gaussian random variable with variance
s2 and squared error distortion is

(73.97)

Thus, with nR bits, we can describe n i.i.d. Gaussian random variables X1, X2, ..., Xn ; N(0, s2) with a
distortion of s22–2R per symbol.

Quantization and Vector Quantization

The rate distortion function represents the lower bound on the rate that is needed to represent a source with
a particular distortion. We now consider simple algorithms that represent a continuous random variable with
a few bits. Suppose we want to represent a single sample from a continuous source. Let the random variable
to be represented be X and let the representation of X be denoted as X̂ (X). If we are given R bits to represent
X, then the function X̂ can take on 2R values. The problem of optimum quantization is to find the optimum
set of values for X̂ (called the reproduction points or code points) and the regions that are associated with each
value X̂ in order to minimize the expected distortion.

For example, let X be a Gaussian random variable with mean 0 and variance s2 , and assume a squared error
distortion measure. In this case, we wish to find the function X̂(X) such that X̂ takes on at most 2R values and
minimizes E(X – X̂ (X))2. If we are given 1 bit to represent X, it is clear that the bit should distinguish whether
X > 0 or not. To minimize squared error, each reproduced symbol should be at the conditional mean of its
region. If we are given 2 bits to represent the sample, the situation is not as simple. Clearly, we want to divide
the real line into four regions and use a point within each region to represent the samples within that region.
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We can state two simple properties of optimal regions and reconstruction points for the quantization of a single
random variable:

• Given a set of reconstruction points, the distortion is minimized by mapping a source random variable
X to the representation X̂(w) that is closest to it (in distortion). The set of regions defined by this mapping
is called a Voronoi or Dirichlet partition defined by the reconstruction points.

• The reconstruction points should minimize the conditional expected distortion over their respective
assignment regions.

These two properties enable us to construct a simple algorithm to find a “good” quantizer: we start with a
set of reconstruction points, find the optimal set of reconstruction regions (which are the nearest neighbor
regions with respect to the distortion measure), then find the optimal reconstruction points for these regions
(the centroids of these regions if the distortion measure is squared error), and then repeat the iteration for this
new set of reconstruction points. The expected distortion is decreased at each stage in the algorithm, so the
algorithm will converge to a local minimum of the distortion. This algorithm is called the Lloyd algorithm
[Gersho and Gray, 1992].

It follows from the arguments of rate distortion theory that we will do better if we encode long blocks of
source symbols rather than encoding each symbol individually. In this case, we will consider a block of n
symbols from the source as a vector-valued random variable, and we will represent these n-dimensional vectors
by a set of 2nR code words. This process is called vector quantization (VQ). We can apply the Lloyd algorithm
to design a set of representation vectors (the code book) and the corresponding nearest neighbor regions.
Instead of using the probability distribution for the source to calculate the centroids of the regions, we can use
the empirical distribution from a training sequence. Many variations of the basic vector quantization algorithm
are described in Gersho and Gray [1992].

Common information sources like speech produce continuous waveforms, not discrete sequences of random
variables as in the models we have been considering so far. By sampling the signal at twice the maximum
frequency present (the Nyquist rate), however, we convert the continuous time signal into a set of discrete
samples from which the original signal can be recovered (the sampling theorem). We can then apply the theory
of rate distortion and vector quantization to such waveform sources as well.

Kolmogorov Complexity

In the 1960s, the Russian mathematican Kolmogorov considered the question “What is the intrinsic descriptive
complexity of a binary string?” From the preceding discussion, it follows that if the binary string were a sequence
of i.i.d. random variables X1, X2 , . . ., Xn , then on the average it would take nH(X) bits to represent the sequence.
But what if the bits were the first million bits of the binary expansion of p? In that case, the string appears
random but can be generated by a simple computer program. So if we wanted to send these million bits to
another location which has a computer, we could instead send the program and ask the computer to generate
these million bits. Thus, the descriptive complexity of p is quite small.

Motivated by such considerations, Kolmogorov defined the complexity of a binary string to be the length of
the shortest program for a universal computer that generates that string. (This concept was also proposed
independently and at about the same time by Chaitin and Solomonoff.)

Definition: The Kolmogorov complexity KU(x) of a string x with respect to a universal computer U is
defined as

(73.98)

the minimum length over all programs that print x and halt. Thus KU(x) is the shortest description length
of x over all descriptions interpreted by computer U.

A universal computer can be thought of as a Turing machine that can simulate any other universal computer.
At first sight, the definition of Kolmogorov complexity seems to be useless, since it depends on the particular
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computer that we are talking about. But using the fact that any universal computer can simulate any other
universal computer, any program for one computer can be converted to a program for another computer by
adding a constant length “simulation program” as a prefix. Thus, we can show [Cover and Thomas, 1991] that
for any two universal computers, U and A ,

(73.99)

where the constant c, though large, does not depend on the string x under consideration. Thus, Kolmogorov
complexity is universal in that it does not depend on the computer (up to a constant additive factor).

Kolmogorov complexity provides a unified way to think about problems of data compression. It is also the
basis of principles of inference (Occam’s razor: “The simplest explanation is the best”) and is closely tied with
the theory of computability.

Data Compression in Practice

The previous subsections discussed the fundamental limits to compression for a stochastic source. We will now
consider the application of these algorithms to some practical sources, namely, text, speech, images, and video.
In real applications, the sources may not be stationary or ergodic, and the distributions underlying the source
are often unknown. Also, in addition to the efficiency of the algorithm, important considerations in practical
applications include the computational speed and memory requirements of the algorithm, the perceptual quality
of the reproductions to a human observer, etc. A considerable amount of research and engineering has gone
into the development of these algorithms, and many issues are only now being explored. We will not go into
the details but simply list some popular algorithms for the different sources.

Text

English text is normally represented in ASCII, which uses 8 bits/character. There is considerable redundancy
in this representation (the entropy rate of English is about 1.3 bits/character). Popular compression algo-
rithms include variants of the Lempel–Ziv algorithm, which compress text files by about 50% (to about
4 bits/character).

Speech

Telephone quality speech is normally sampled at 8 kHz and quantized at 8 bits/sample (a rate of 64 kbits/s)
for uncompressed speech. Simple compression algorithms like adaptive differential pulse code modulation
(ADPCM) [Jayant and Noll, 1984] use the correlation between adjacent samples to reduce the number of bits
used by a factor of two to four or more with almost imperceptible distortion. Much higher compression ratios
can be obtained with algorithms like linear predictive coding (LPC), which model speech as an autoregressive
process, and send the parameters of the process as opposed to sending the speech itself. With LPC-based
methods, it is possible to code speech at less than 4 kbits/s. At very low bit rates, however, the reproduced
speech sounds synthetic.

Images

A single high-quality color image of 1024 by 1024 pixels with 24 bits per pixel represents about 3 MB of storage
in an uncompressed form, which will take more than 14 minutes to transmit over a 28800-baud modem. It is
therefore very important to use compression to save storage and communication capacity for images. Many
different algorithms have been proposed for image compression, and standards are still being developed for
compression of images. For example, the popular GIF standard uses a patented version of Lempel–Ziv coding,
and the JPEG standard being developed by the Joint Photographic Experts Group uses an 8 by 8 discrete cosine
transform (DCT) followed by quantization (the quality of which can be chosen by the user) and Huffman
coding. Newer compression algorithms using wavelets or fractals offer higher compression than JPEG. The
compression ratios achieved by these algorithms are very dependent on the image being coded. The lossless
compression methods achieve compression ratios of up to about 3:1, whereas lossy compression methods
achieve ratios up to 50:1 with very little perceptible loss of quality.

* *K x K x cU A( ) ( )- <
© 2000 by CRC Press LLC



Video

Video compression methods exploit the correlation in both space and time of the sequence of images to improve
compression. There is a very high correlation between successive frames of a video signal, and this can be
exploited along with methods similar to those used for coding images to achieve compression ratios up to 200:1
for high-quality lossy compression. Standards for full-motion video and audio compression are being developed
by the Moving Pictures Experts Group (MPEG). Applications of video compression techniques include video-
conferencing, multimedia CD-ROMs, and high-definition TV.

A fascinating and very readable introduction to different sources of information, their entropy rates, and
different compression algorithms can be found in the book by Lucky [1989]. Implementations of popular data
compression algorithms including adaptive Huffman coding, arithmetic coding, Lempel–Ziv and the JPEG
algorithm can be found in Nelson and Gailly [1995].

Defining Terms

Code: A mapping from a set of messages into binary strings.
Entropy: A measure of the average uncertainty of a random variable. For a random variable with probability

distribution p(x), the entropy H(X) is defined as (x – p(x) log p(x).
Huffman coding: A procedure that constructs the code of minimum average length for a random variable.
Kolmogorov complexity: The minimum length description of a binary string that would enable a universal

computer to reconstruct the string.
Lempel-Ziv coding: A dictionary-based procedure for coding that does not use the probability distribution

of the source and is nonetheless asymptotically optimal.
Quantization: A process by which the output of a continuous source is represented by one of a set of discrete

points.
Rate distortion function: The minimum rate at which a source can be described to within a given average

distortion.
Vector quantization: Quantization applied to vectors or blocks of outputs of a continuous source.

Related Topics

17.1 Digital Image Processing • 69.5 Digital Audio Broadcasting
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Further Information

Discussion of various data compression algorithms for sources like speech and images can be found in the IEEE
Transactions on Communications and the IEEE Transactions on Signal Processing, while the theoretical under-
pinnings of compression algorithms are discussed in the IEEE Transactions on Information Theory.

Some of the latest developments in the areas of speech and image coding are described in a special issue of
the IEEE Journal on Selected Areas in Communications, June 1992. It includes an excellent survey by N.S. Jayant
of current work on signal compression, including various data compression standards.

Special issues of the IEEE Proceedings in June 1994 and February 1995 also cover some of the recent
developments in data compression and image and video coding.

A good starting point for current information on compression on the World Wide Web is the FAQ for the
newsgroup comp.compression, which can be found at

http://www.cis.ohio-state.edu/hypertext/faq/usenet/compression-faq/top.html.
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