STOCHASTIC RESONANCE OF A THRESHOLD DETECTOR: IMAGE VISUALIZATION

AND EXPLANATION

Robert J. Marks II/, Benjamin T, hompson/,

-

Mohamed A. El-Sharkawi”, , Warren L.J. Fox “# & Robert T, Miyamoto

~ Department of Electrical Engineering, University of Washington, Seattle, WA
- Applied Physics Laboratory, University of Washington, Seattle, WA

ABSTRACT

Stochastic resonance is said to occur when just the right
amount of noise enhances the performance of a process.
For a simple threshold detector, the first moment of
stochastic resonance is obtained by passing the signal
through a transfer function equal to a transposed and
shifted version of the underlying noise's probability
distribution function. The process is readily evident in
images wherein noise corresponding to a linear transfer
function produces a better visual representation than when
other noise is used.

1. INTRODUCTION

Stochastic resonance is loosely defined as the
phencmena in a detection process wherein the
addition of just the right amount and type of
noise improves performance. Too little or too
much noise result in degraded performance.
The phenomenon has numerous manifestations

image from the right is at a stochastic resonance.

2. STOCHASTIC RESONANCE OF A THRESHOLD
DETECTOR

Although the effect in Figure 1 has been described as
"subjective response of our nonlinear perceptual

the

system" [4], the phenomenen is readily explainable, Our
derivation is for a continuous time signal. Its extension to
images is straightforward.

Let the signal to be detected by the threshold
detector be x(t). Distribution stationary noise, &(f), is
added and the sum is subjected to a threshold T to form
the binary stochastic process

{1-9). Pictures of the type illustrated in Figure 1
are used to illustrate a simple type of stochastic
resonance when a simple threshold detector is
used [9]. A gray level image is subjected to
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noise¢ and is then subjected to a threshold. Too b
litile noise renders the picture unrecognizable
as does too much noise. When just the right
amount of noise is added, a semblance of the
original image is evident. This is even more
evident in Figure 2 in which multiple
realizations of the stochastic resonance
phenemencn are averaged together to form a
composite image that converges 10 the original

image. In both Figures 1 and 2, the second
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Z()=U(x()+£(t)-T) o)

where U(-), the unit step, is one for positive argument and

E(Z(1)) = Prob(x(2) + £(t) - T > 0)

= Prob(&(t) > T-x(1) )
=1-F,(T - x())

is otherwise zero. The expected value of the process is where F,; (y)= Pr( £< y) is the cumulative probability

distribution of the noise which, due to the assumption of

—
1-Fe(y)
E(Z()

Figure 3. When noise, &), is added to a signal, x(r), the expected
value of the thresholded sum can be visualized as here. The signal
provides an input to a nonlinear transfer function determined by the
probability distribution function of the additive noise.

Figure 4

—

the noise’s distribution stationarity, is the
same for all values of ¢, An illustration
interpreting (2) is shown in Figure 3. A
signal, x(¢), inverted and biased to form the
signal T-x(f), acts as the input a nonlinear
transfer function, formed by the cumulative
probability density function, to generate
E(Z(n) .

3. STOCHASTIC RESONANCE IN UNIFORM
NOISE

The process in Figure 3 can be used to
explain the images in Figure 1. Assume
the (one byte) image in the original image
scales to [0,1]. The probability density
function (pdf a.k.a. normalized histogram),
h{x), of such an image is then as illustrated
in the bottom left of Figure 4. The image,
x, is subjected to uniform white noise with
probability density

a=1
(ust righe), | | 1-Fe &)
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For the case of images, there is
therefore certainty (i.e. zero variance)
at 0 and 1. The uncertainty increases
as we deviate from these values into
midrange gray levels.
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where

and &) is the Dirac delta (impulse) function. An
unscaled and undistorted version occurs in Equation (3)
for @ =1.0. From lefl to right in Figure 1, we have the
original image, a = 0.0, 1.0 and 1.5. As predicted in the
analysis, “resonance” occurs at & =1.0.

Observing versions of the image subjected to
different realizations of the noise in a rapidly framed
movie allows the eye to average. Since the average
converges to the expected value, the effect is more
striking. Examples are available on the web [7,10].

Lastly [11], we note that, since Z(r) is binary,
ZXH)= Z(¢) and

2

var(Z(i)) =Z(t) - (Z (t))
=Fr/T —x(end — FeiT — x(tha<
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