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Abstract—The ongoing deregulation of the energy market in-
creases the need to operate modern power systems close to the
security border. This requires enhanced methods for thevulnera-
bility border tracking. The high-dimensional nature of power sys-
tems’ operating space makes this difficult. However, new multi-
agent search techniques such asparticle swarm optimizationhave
shown great promise in handling high-dimensional nonlinear prob-
lems. This paper investigates the use of a new variation of particle
swarm optimization to identify points on the security border of the
power system, thereby identifying a vulnerability margin metric
for the operating point.

Index Terms—Border tracking, particle swarm optimization,
security assessment, system dynamics.

I. INTRODUCTION

I N THE last few decades, dynamic security evaluation
(DSE) methods have been developed based on time-domain

simulations and direct methods of energy function evaluation
[1]–[4]. Despite advances in computer processing time, these
methods, although potentially identifying the security status of
the system, still require a time-consuming computational effort
to calculate accurate and reliable security indices or margins.
This is due to the structural complexity and wide operating
ranges of modern power systems.

With the current trend toward deregulation and the participa-
tion of diverse players in the power market, power systems are
being required to operate closer than ever to their security border
[5]. The market’s economic constraints may force the system
to move even nearer to its security limits or vulnerability bor-
ders thereby decreasing the overall system’s security margins
[6]. Under this scenario, the operator must be acutely aware of
the location of the security border in the operating space. Pro-
viding this data is a highly computational process that cannot be
achieved by a model-based approach. The problem is even more
complex because the border is a dynamically changing surface.

In recent years different approaches and new technologies
have been applied to automate the DSE process and cope with
the new challenges while simultaneously maintaining accuracy.
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Fig. 1. Flow diagram for dynamic security border identification using
enhanced particle swarm optimization.

Intelligent system technologies have provided promising appli-
cations in DSE. Examples include decision trees [7], [8], neural
networks (NNs) [9]–[13], expert systems [14] and integrated
techniques [15], [16]. Neural networks have received the most
attention, where operating states are correlated with transient
stability assessment [11], [12] or a security margin [9], [13].

Variations of this approach use the NN to visualize [17] or
identify [18] the stability border. By the technique in [17], two-
dimensional (2-D) visualizations of the security boundary can
be obtained by varying only two independent critical param-
eters. In [18], offline simulations are used to train a NN in a
query-based learning process to enhance the accuracy of the
NN in the vicinity of a high order security border. Once trained,
the NN is inverted to identify points on the border of the power
system. This is a computationally intensive process.

We propose a technique where by the security border can
be identified more quickly. Moreover, the border can be dy-
namically updated to reflect changes in system’s topology due
to faults or reconfigurations. The proposed technique has two
steps. First, the main features for security border identification
are selected. In the second step, an enhanced particle swarm op-
timization procedure is used as a fast constraint search technique
to identify the border or the section of the border close to the
current operating conditions.

The overall general system is shown in Fig. 1. Feature selec-
tion is performed both to overcome the NN curse of dimension-
ality, and to allow fast execution of particle swarm optimization
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(PSO). The use of a NN as a security estimator is fundamental
for a fast calculation of border operating points.

The procedure for border tracking is depicted in more detail
inside the dashed box. PSO uses a NN as a predictor of security
index values. The security index is compared with the desired
security index. If the difference is small, the algorithm exits and
produces the points on the border. Otherwise, the loop continues
until it reaches a satisfactory solution or the maximum number
of iterations is exceeded.

II. FEATURE SELECTION

For large-scale power systems, the dimensionality of the input
space for security assessment is high [9], [10], [13]. This leads
to computational problems for the boundary tracking algorithm,
as well as the performance of the NN. The problems include the
need for unrealistically large training data that spans the oper-
ating space, the likelihood that the NN memorizes the training
data, the need for extensive training time, and the possibility of
high testing errors when the system operation drifts [19]. Fur-
thermore, a high dimensional input space increases the com-
putational time needed for border identification. To decrease
the dimensionality of the feature space while maintaining the
classification accuracy, feature selection or extraction should be
implemented [20].

Feature selection is applied to the data set before the NN
is trained. The training set is represented by ordered pairs

, where is an -dimensionalvector
representing the operating point andis the security index of
that point. The main objective of the feature selection technique
is to generate a-dimensionalfeature vector, , where .
The components of the feature vector are selected from the orig-
inal -dimensional input vector. The “” selected features rep-
resent the original data in a new training set .
The training of the NN is considered successful if the mean and
variance of the training and testing error of the NN using the
-dimensional vector is comparable to the mean and variance

of the training and testing error of the NN using the-dimen-
sional original input vector.

One way to achieve feature selection is through exhaustive
search by examining all possible subsets with respect to some
evaluation function. The number of possibilities

grows exponentially with the size of, making exhaustive
search impractical.

A more effective method based on genetic algorithms (GA)
is proposed in [20]. In this method, a distance measure based on
the Fisher’s discriminant (FD) distance is used as the evaluation
function [21].

An example of the feature selection performance is shown in
Fig. 2. The figure is for the IEEE 50 generators system [22]. The
original number of features is 102 representing all generated
active and reactive powers, and the total system load’s active
and reactive power. The NN is trained to identify the system’s
critical clearing time (CCT), which is used as a security index.
After the GA-based feature selection technique is applied, the
original feature vector is reduced to a cardinality of only 10. The
figure shows the testing error for both the-dimensional and
the -dimensional NN’s. The error is the difference between the

(a)

(b)

Fig. 2. NN performance on the test set with (a) 102 input features and (b) ten
input features.

actual target value and the NN output. As seen in the figures, the
errors are comparable and the selected features should represent
the security status of the system accurately. In the case when the
accuracy must be higher, more features can be selected.

For this specific system, the advantages of feature selection
are the following:

a) decrease of the training time of the NN;
b) increase of the speed of convergence of our PSO border

identification algorithm.
The training time of the NN with ten features is 1.7 min and that
of the 102-feature NN is 30 min, both on an old PII-233Mhz
PC. For the speed of PSO convergence, it should be noted that
a higher-dimensional feature space causes both slower conver-
gence and decreased accuracy. In order to tackle this problem,
more particles per swarm have to be used, thus increasing the
computation time. The increase in particles would follow the
curse of dimensionalityrule [19], thus making PSO inefficient.

III. PARTICLE SWARM OPTIMIZATION

Due to the complexity of the power system, it is not possible
to determine the dynamic security border analytically. An alter-
native is to use a search technique to place as many points on
the border as needed to achieve desired interpolation accuracy
[23]. This process requires the use of a fast dynamic security as-
sessment technique and a rapid optimization search algorithm.
The NN is used as a fast assessment tool and particle swarm op-
timization (PSO) is used as the search technique.

PSO is a novel optimization method developed by Eberhart,
et al.[24]–[26]. It is a multiagent search technique that traces its
evolution to the emergent motion of a flock of birds searching
for food. It uses a number of agents (particles) that constitute a
swarm. Each agent (particle) traverses the search space looking
for the global minimum (or maximum). PSO has been recently
proposed for power systems applications such as those reported
in [27]. The goal of PSO is to find operating points that lie on
the border.
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While the agents in the PSO algorithm are searching the
space, each agent remembers two positions. The first is the
position of the best point the agent has found (self best). The
second one is the position of the best point found among all
agents (group best). The equations that govern the motion of
each agent are

(1)

where is a solution vector of a single particle,is the velocity
of this particle, and are two scalar parameters of the al-
gorithm, is an inertia weight, is a uniform random
number between 0 and 1, is the best solution of
all particles and is the best solution observed by the
current particle. A maximum velocity, that cannot be ex-
ceeded may also be imposed.

It has been found through experimentation [24]–[26] that the
design parameter values that work best are , and
between 0.9 and 1.2.

IV. PSO VARIATION FOR BORDERTRACKING

The goal of border tracking is to identify as many points
as possible on the border. Therefore, we initiate a separate
swarm for each point to be placed on the border. Each point is
sequentially identified by running one swarm after the other.
This method also provides the ability to impose constraints
on the distribution of the points placed on the border. For this
reason, we propose the following three different approaches to
the border identification problem:

Case 1: Cover the entire security border with a predeter-
mined number of points, without restrictions on the distribution
of the points on the border.

Case 2: Place points uniformly on the entire security border.
Case 3: Uniformly cover the portion of the security border

that is closest to the operating state.
In the first approach, our goal is to find points as accurately on

the border as possible. The PSO variation requires an objective
function to perform this task. In our dynamic security applica-
tion, we seek to minimize the objective function

(2)

where is the security index produced by the neural network,
is the current position of the particle (operating point of the

power system) and is the security index of the border and is
set by the user.

In the second approach, proximity to the closest neighbor
is penalized, where neighbors are defined as the points found
by previous swarms. The objective function in this case has a
penalty term for the closeness on border point as follows:

(3)

where is the current position of the particle, is the distance
to the closest border point, and is the weighting factor for .

Covering the entire border with points in a high-dimensional
power system, however, is very time-consuming. This is be-
cause the number of border points, as a rule of thumb, increases

Fig. 3. Midpoint and its proximity to the border in the input space.

exponentially with the increase in the feature space dimension-
ality. The third approach addresses this issue. In order to accom-
plish this, we modify the fitness function to reward for proximity
of the border point to the current operating state. In addition, the
penalty for closeness of border points is maintained. These are
two contradicting demands and must be balanced through ap-
propriate weighting in the objective function

(4)

where is the distance from the operating point andis the
weighting factor for .

These weighting factors affect the objective function in a very
crucial manner and their choice should be such that the desired
effect is accomplished. In our case, the desired effect is to be
able to find points on the border, while imposing restrictions
on their distance from each other, which is done through,
or their proximity to the current operating state, which is done
through . These restrictions can be conflicting with the goal
of finding points close to the border, since points already on the
border can, in effect, “push” the others away from the current
operating state, while the current operating state can attract the
points toward it and thus away from the border. Thus we choose

and so that the maximum of the products and
does not exceed 1% of the of the desired border value.

Also, if is greater than the points will tend to be close
to the operating state but not as uniformly distributed, while if

is greater than the points will tend to be more uniformly
distributed but not as close to the current operating state.

To determine if enough points are on the border, we propose
a technique utilizing the midpoints between neighboring border
points. The midpoint is defined as the point derived by linear
interpolation between a pair of closest neighbors. Each point
on the border has one closest neighbor, thus the total number
of midpoints is at least equal to half the number of points, but
not greater than the total number of points. In Fig. 3, we show
the midpoint of A and B. By definition, no other points exist on
the segment AB. The proximity of the midpoint to the border
can only be determined in the output space, since the segment
AB is unknown. Thus, we choose to calculate the distance in the
output space. We use this distance to determine whether enough
points are placed on the border.

V. TWO-DIMENSIONAL BORDERIDENTIFICATION EXAMPLE

Before addressing the higher dimensional problem of power
systems, we use a 2-D test case to illustrate the proposed al-
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Fig. 4. Results for finding points about a distributed minimum. In this case,
the objective function reaches a minimum around a circle. The points around
this minima, using Case 2 of the enhanced particle swarm, are shown as�s on
the bottom plane.

gorithm. We use a 2-D surface that has a constant value for its
ridge. The surface is used as an error function for the search al-
gorithm. The purpose of the algorithm is to place as many points
as possible on that ridge. The gradient of the surface around the
ridge is not constant. The challenge in this case is to try to dis-
tribute the points uniformly on the border. Since the gradient on
the border is not constant, more points tend to cluster in the high
gradient region [18].

To address this problem, the three cases mentioned in
Section IV are applied. In Fig. 4, we show the results for the
second case only, where the points are spread uniformly on
the border. As seen in Fig. 4, all points are nearly uniformly
distributed on the ridge. For the first case, the points tend to
gather around the area with the highest gradient, while, in the
third case, they tend to gather around the current operating
point in a uniformly distributed manner. In this simple example,
we use a total of 32 swarms, with 10 particles, each initialized
randomly. We set , and . For
the parameters of the objective function, we set and

.

VI. PRACTICAL APPLICATION OF ENHANCED PSO
AND TEST SYSTEM DESCRIPTION

We discuss here the issues concerning the practical applica-
tion of our method. Our goal is to provide a fast and accurate tool
for dynamic security border identification, which can be used by
the system operator to avoid potentially vulnerable states. Fig. 5
shows the basic steps.

1) The dimensionality of the current operating state is re-
duced using feature selection.

2) Identify the border close to the operating state, in the se-
lected feature space.

3) Use the distances in the feature-space as yardsticks for
preventive control. Since the selected features are the
most important of the whole feature set, based on the
Fisher distance [20], [28], these distances represent the
most important rules to prevent the system from getting
close to the border.

This whole process relies on a NN trained for a specific fault
and a specific system topology. In order to be able to handle a
variety of faults and different topologies, it is necessary to have
NNs that can cover these situations. Fortunately, it is possible

Fig. 5. Preventive control for feature selection.

to cover a range of similar topologies by a single NN, thereby
decreasing the number of NNs that need to be trained [28]. How-
ever, extensive topological changes may require different NN’s
to be trained and a new boundary to be computed.

This raises the question of which cases of the enhanced PSO
can be used offline and which online. Cases 1 and 2 are both
offline, since they place points on the entire border, which can
be time-consuming. However, Case 3 can be used online, since
only a small section of the border has to be identified. This
means that a smaller number of points is necessary. As a matter
of fact, PSO finds points in a sequential manner. Therefore,
some information about the border is available once the first few
points are located. This information is further refined once new
points are discovered.

As a test system, we use the IEEE 50 generator system [22].
The inputs to the NN are ten features, selected by the GA tech-
nique mentioned in Section II. The system was modeled using
ETMSP (Extended Transient-Midterm Stability Program) from
the PSAPAC 5.0 software package supplied by EPRI. The vul-
nerability border is determined by the clearing time of the pro-
tection devices. The purpose of the NN is to predict the critical
clearing time of a given operating point. We arbitrarily select
the clearing time of the protection device at 0.45 s. We define
the clearing time margin (CTM) as the difference between the
CCT of a point and the clearing time of the protection devices.

For the PSO parameters, we use 20 particles in each swarm.
Also, we set , and . These values
were determined through experimentation. For the parameters
of the fitness function, we set and .

VII. T EST RESULTS

We implement all three cases of PSO, as described in
Section IV, for the system described in Section VI. The results
are presented in Fig. 6, Table I, and Fig. 7.

In Fig. 6, we present the histograms of the results for Case 1
with 5000 points placed on the border, Case 1 with 20 000
points, Case 2 with 5000 points and Case 3 with 5000 points.
Each row in Fig. 6 corresponds to one case. In Fig. 6, Fig. 7 and
Table I the labels a), b), c), or d) have the following meaning.

a) The distribution of CTM of the points. This identifies the
distance of the points from the border in the output space.

b) The distribution of the CTM of the midpoints. This
serves as an indicator of whether the points are enough
to represent the border by interpolation, as explained in
Section IV.
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Fig. 6. Result histograms for all cases. (1) Case 1–5000 pts. (2) Case 1–20 000
pts. (3) Case 2–5000 pts. (4) Case 3–5000 pts.

c) The distribution of the distance of each point from its
closest neighbor. This distribution is an indicator of the
density and uniformity of border coverage.

d) The distribution of the average distance of each point from
all the other points. This is an indicator of the size of the
region of the border that is covered by the points.

Also, in Table I, and stand for mean and standard deviation
respectively.

From Fig. 6 and Table I, we observe the following for Case 1
with 5000 points.

• Almost all the points are on the border, as shown in a).
• The midpoints are close to the border, as shown in b).

Hence, the portion of the border where most of the points are
located is covered satisfactorily. From c) and d) we derive no
conclusions yet, rather we expect differences with cases 2 and 3.

The next step is to investigate whether an increase in the
number of points produces any significant changes in the re-
sults. Thus we increase the number of border points to 20 000.
Again, from Fig. 6 and Table I we observe the following for
Case 1 with 20 000 points.

• Almost all the points are on the border, as shown in a).
• The midpoints are close to the border, as shown in b).
• There is a decrease in the mean distance to the closest

neighbor, shown in c), as compared to Case 1-5000.

Fig. 7. Plots of means for a)–d) for all the cases.

TABLE I
MEAN AND STANDARD DEVIATION FOR ALL CASES

• The average distance to all the points, shown in d), remains
the same as in Case 1-5000.

From the third observation, we conclude that the border is
covered more densely when more points are used. From the
fourth observation, we conclude that the area of the covered
border has the same size as in Case 1-5000.

Because the above tests show that the area covered is the same
and is almost independent of the number of points placed on
the border, we implement the second case (i.e., penalizing the
proximity of neighboring points). The objective is to examine

1) if there is an increase in the mean distance of each point
to its closest neighbor with a decrease in the variance;

2) if the average distance of each point from the other points
has increased.
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From Fig. 6 and Table I we observe the following for Case 2
with 5000 points.

• The points, and midpoints are close to the border, but not
as close as in the previous two tests, as shown in a) and b),
respectively.

• There is a notable increase in the mean but a decrease in
the variance of the distance to the closest neighbor, com-
pared to Case 1-5000 and Case 1-20 000, as shown in c).

• The mean of the average distance of all points to all the
other points has increased, compared to Case 1-5000 and
Case 1-20 000, as shown in d).

From the first observation, we note that the points and mid-
points are close to the border, but not as close as in Case 1-5000
or Case 1-20 000. The reason for this is that the fitness function
now also emphasizes the separation of the points on the border,
as in (3). From the second observation, we conclude that the
points are distributed more uniformly and with greater spacing,
hence covering a greater area, which is also verified by the third
observation.

In Fig. 7 the results are summarized for better visualization,
showing just the means for a), b), c), and d). In Fig. 7, we observe
the following.

• Although the results of case 2 are satisfactory, the mean of
the CTM of the midpoints, shown in b), is higher than in
Case 1-5000 and Case 1-20 000.

• The distance to the closest neighbor, shown in c) is also
higher than the previous two cases.

From these two observations, we conclude that the number
of border points is not large enough. A remedy is to increase
the number of points, but this requires an excessive amount of
computational time. An alternative approach is to focus on the
section of the border near the current operating point, which is
done in Case 3.

From Fig. 6 and Table I we observe the following for Case 3
with 5000 points.

• The midpoints are much closer to the border than
Case 2-5000, as shown in b).

• The points are further away from the border than all pre-
vious cases, as shown in a).

• The distance to the closest neighbor has decreased signif-
icantly, and has a smaller variance than Case 2-5000, as
shown in c).

• The average distance of each point to all others has also
decreased, as shown in d).

From the first and second observations, we conclude that
the decrease in midpoint CTM is achieved while the CTM of
the points is increased. However, their CTM is still acceptable.
From the third observation, we conclude that the specific
region of the border is covered more densely and uniformly.
Finally, the fourth observation indicates that the points are
concentrated in a specific section of the border closest to the
current operating state.

The computation time required to compute 5000 points on the
border is 1600 s using Matlab on a P4-1.7 GHz with 512 MB of
RAM. However, our code is designed just for proof of principle
and not optimized for speed. We maintain that by transferring

the code to or even to dedicated hardware, we can achieve im-
provements by several orders of magnitude. Furthermore, since
the points are placed on the border in a sequential manner near
the current operating condition, Case 3 can be used online.

VIII. C ONCLUSION

In this paper, we propose a novel method for the identifi-
cation of the security/vulnerability border of power systems.
The technique is quite general, and can be applied to a number
of problems where a desired border is required. The algorithm
is excellent for real-time evaluation of the security index of a
power system.
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