

Inversion of Neural Network Underwater Acoustic Model for

Estimation of Bottom Parameters Using Modified Particle Swarm
Optimizers

Benjamin B. Thompson , Robert J. Marks II , Mohamed A. El-Sharkawi ,

Warren J. Fox , and Robert T. Miyamoto

Computational Intelligence Applications (CIA) Laboratory, Department of Electrical Engineering, University of Washington,
Seattle, WA 98195

Applied Physics Laboratory (APL), University of Washington, Seattle ,WA 98105

Abstract

Given a complicated and computationally
intensive underwater acoustic model in which some
acoustic measurement is a function of sonar system
and environmental parameters, it is
computationally beneficial to train a neural
network to emulate the properties of that model.
Given this neural network model, we now have a
convenient means of performing geoacoustic
inversion without the computational intensity
required when attempting to do so with the actual
model. This paper proposes an efficient and
reliable method of performing the inversion of a
neural network underwater acoustic model to
obtain parameters pertaining to the characteristics
of the ocean floor, using two different modified
versions of particle swarm optimization (PSO):
two-step (gradient-approximation) PSO and
hierarchical cluster-based PSO.

I. Introduction

 The forward problem of modeling the
acoustical properties of an underwater environment
given a set of sonar system parameters and an
additional set of environmental parameters can be
solved using a typically computationally intensive
computer simulation [1]. It is then desirable to invert
the model such that, given a particular acoustical state
of the underwater environment (e.g., a reverberation
measurement), along with the system parameters and
certain known environmental parameters, one can
obtain information about the unknown environmental
parameters [2]-[4]. Due to the computational

complexity of the acoustic model, however, this
becomes a daunting task to perform in real time.
 The application of a feed-forward neural
network to emulate the underwater acoustic model
reduces the amount of computing power necessary to
perform the forward problem, and indeed greatly aids
in the task of inverting the model [5]. The problem
remains, however, of actually inverting the neural
network itself. As will be discussed in greater detail
in Section II, a search of the input space is used to
determine the “best” set of environmental parameters,
where “best” is measured by how well the result
matches the measured acoustic properties of the
undersea environment. This paper proposes two
different methods of inverting the neural network.
Both involve the use the particle swarm optimization
(PSO) method; however, we suggest two different
modifications of the basic PSO algorithm that are
shown to provide significant improvement to the
performance of the algorithm for this problem [6].

II. Neural Network Inversion

When we refer to “inversion” of a neural
network for the acquisition of certain input
parameters, we are actually referring to a constrained
inversion. That is to say, given the functional
relationship of the neural network inputs to the outputs

)(xfy rr
= , we are not merely trying to find

)(1 yfx rr −= . Rather, we have the forward and inverse
relationships:

),(uxfy rrr

= (1)
),(uygx t
rrr

= , (2)

where xr is the set of unknown environmental
parameters we wish to obtain, and ur is a vector of the

0-7803-7898-9/03/$17.00 ©2003 IEEE 1301

known environmental and system parameters. Given
the forward relationship described in a neural network
form by (1), we wish to find an inverse mapping
described by (2) where tyr is a target output
measurement obtained through some other method
(i.e., it cannot be an output of our model described in
(1) since xr is unknown). The proposed method by
which we obtain xr is via the following relationship:

)||),(min(||arg 2uxfyx it
x

est
i

rrrr
r

−= , (3)

where estxr is the argument that minimizes the error
between the target output tyr and the neural network
output produced by that argument. This scheme
essentially sets up the problem as one of optimization;
that is, our task is now to find the xr that optimizes the
performance of the neural network in emulating the
effects dictated by the target output vector tyr . For
this specific application, we find that particle swarm
optimization is very well suited for the problem at
hand.

III. Particle Swarm Optimization

Eberhart and Kennedy [6] initially proposed
the idea of using multiple agents that behave in a
collective, swarm-like manner as a solution to various
optimization problems. The basic idea behind PSO is
described by the following two equations [7]:

() ()idididid xprandcvwv −+= *** 1 (4)
 () ()idgd xprandc −+ **2

ididid vxx += . (5)

Here, xid is the position of an agent in the search
space, vid is its velocity (i.e., the distance it will move

from iteration to iteration), pid represents the best
position that individual agent has found to date, pgd is
the group-best position (among all the agents), and w,
c1, and c2 are parameters of the system that may be
adjusted to improve performance. Also, rand()
signifies a random number picked from a uniform
distribution on [0,1]. It is this element that causes
PSO to be a stochastic process, and thus provides us
with motivation to perform Monte-Carlo-like
simulations in section IV.
 Clearly, then, this is an evaluation-only
optimization method; that is, no information about the
search-space itself is taken into account that might
improve the end result. Figure 1 shows a simple
situation, however, in which basic PSO methods can
fail to converge. As depicted, when the optimal
solution lies at the bottom of a narrow valley, it is very
easy for each swarm agent to completely “fly” over it
without registering an improvement in the global best.
We will show later that this situation occurs often in
the search spaces in which we are interested. If we
were able to take into account some local information
about our search space, the optimization algorithm
would “know” that, at the initial point x0, the gradient
was very steep, and thus it should proceed in very
short steps to find the bottom of the valley (much like
a gradient descent technique). Thus, we have
motivation for two different modifications over
standard PSO that perform significantly better in light
of this situation.

A. Two-Step PSO

The first method proposes a two-step
approach that essentially approximates the gradient at
a local point and decides which of two step sizes to
make based on that information (we will refer to this
method as PSO2 beyond this point). As anticipated in
Figure 1, we see that, in this algorithm, each agent

x0

Figure 1 - Global minima which occur in steep, narrow
valleys tend to be missed by standard PSO methods. As
depicted, a shorter step size would alleviate this problem.

xs

x l

Blowup of cluster center

 vc

 pgb

 pcb

 pab

 va
 pcb

 pcc

Figure 2 - Basic idea behind CPSO. The dotted line represents
the updated trajectory based on each other vector and the weighting

1302

takes two steps in the same direction: one in standard
PSO fashion, and the other a much shorter distance.
Then, the algorithm simply calculates the slope from
the initial point x0 to each point xs and xl, and simply
chooses the step corresponding to the greatest
negative slope. The only additional parameter this
introduces into the scheme is some fractional
coefficient δs, which is the step size relative to the
“usual” PSO step size (which could be seen as having
its own δl=1). This method is summarized in the
following additional equations, which assume the
initial execution of equation (4):

ididl xvx += (6a)

idsids vxx ∗+= δ (6b)

 −
−

−
−=

l

idl

s

ids

xx
id

xFxFxFxF
x

ls δδ
)()(

,
)()(

maxarg
,

 (7)

where F() is the fitness function used to evaluate the
position of each agent, assuming the problem is
formulated as a minimization scheme.

While this method will be shown to work
very well for the problem to be solved in this paper, it
is immediately clear that it could be prone to causing
premature stoppage of the algorithm due to local
minima. The following alternate proposal combines
the benefits outlined above of a local search with the
local-minima avoidance of a more global technique.

B. Cluster PSO

In an effort to combine both the desired

local-search properties to prevent overlooking of the

true global minimum with the global-search ability to
avoid local minima, we propose the following
“cluster”-based modification to PSO. The central
idea, as illustrated in Figure 2, is to force a sort of
hierarchical structure onto the swarm model, creating
clusters of agents that move about the search space
while remaining relatively close together. This is in
contrast to standard PSO, in which each agent is
essentially autonomous. Thus, conceptually, we have
the global searching accomplished by each cluster
(which, we will show, is designed to behave more or
less like a standard particle swarm agent), with the
local search performed by the agents within each
cluster.

We then have the following expanded set of
equations that defines the behavior of this cluster-
based PSO extension (CPSO), where (8) and (10)
apply to a cluster of agents, and (9) and (11)
correspond to the update equations for each individual
agent:
 () ()cccbcccc pprandavwv −+= ***

1
 (8)

 () ()ccgbc ppranda −+ **
2

() ()aabaaa pprandavwv −+= *** 1 (9)
 () ()acb ppranda −+ **2

() ()acc ppranda −+ **3

ccc vpp += (10)

acaa vvpp ++= . (11)

Here, vc is the velocity of a cluster center, pcc is the
position of the cluster center, pcb is the position
corresponding to the best fitness found so far for an
agent within that cluster, pgb is the global best, and wc,

Figure 4 - Typical error surface for two parameters Mz and
σ2,, in dB. Note shallow local minimum and steep valley in
which lies the global minimum

Figure 3 - Typical reverberation measurement in
dB as a function of time after transmit, in seconds.

1303

ac1, ac2 are weighting factors for the cluster-velocity
update equation. Additionally, va is the velocity of
each agent, pa is the position of an individual agent,
pab is the personal best of each agent, and wa, a1, a2,
and a3 are weighting factors for the agent-velocity
update equation.
 What we see then is the following: each of C
total clusters has within it N agents, which are
associated strictly with a single cluster only. First, the
velocity of each cluster is updated as though the
“center” of the cluster (effectively an arbitrary point in
space, not the actual geometric center) was a standard
PSO agent – it is modified based on its distance from
some global best, along with its distance from its own
personal best. Next, the velocity of each agent is
calculated as a weighted sum of its distance from its
own personal best, its cluster’s best, and the cluster
center, which serves to keep the cluster together.
Finally, the position of the cluster center is adjusted by
the center-velocity, and each agent is modified by
both its cluster-center velocity and the individual
agent-velocity update.

IV. Inversion Results

The model used to emulate the geoacoustic
environment has thirty inputs: three sonar system
parameters, and 27 environmental parameters
including surface wind-speed, bathymetry, and the
speed of sound at different depths in the water
column. The three bottom parameters in which we are
interested are Mz, σ2, and ω2. The grain size parameter
Mz is a measure the log of the bulk grain size of the
ocean floor sediment, and is used to categorize the
floor as mud, sand, rock, etc. σ2 is the ratio of the
sediment volume scattering cross section to the
sediment attenuation coefficient. It controls the

sediment volume scattering strength in the model.
Finally, ω2 is the interface roughness spectral strength.
A measure of the roughness of the ocean floor, it
controls the interface roughness scattering strength in
the model. While we would like to invert ω2 along
with the other parameters, for the purposes of testing
the algorithm in this paper we will only invert the first
two. The output of the neural network model consists
of 599 neurons corresponding to 599 points in an
underwater acoustic reverberation-level time series.
This is the signal at an active sonar receiver due to
scattering from inhomogeneities in the ocean medium,
including the sea surface and the bottom. Figure 3
shows a typical example of this reverberation.

The neural network used to emulate the
underwater acoustic model was trained using standard
backpropagation methods [8] combined with a
principal-component based method for reducing the
redundant dimensionality of the data [9]. The
resultant structure of the network consists of two
hidden layers with 40 neurons in the first layer and 43
neurons in the second layer. With the fully trained
neural network, we now have a method for calculating
a fitness function for our optimizer. Specifically, we
use the RMS error of the neural network output
reverberation, as a function of the known inputs along
with the current guess of the unknown parameters,
compared to some target reverberation level obtained
via the original underwater acoustic model (or a
reverberation measurement obtained from an actual
undersea environment).

As a test of the algorithm, we have set up the
three PSO algorithms (standard PSO, CPSO, and
PSO2) to invert only the two parameters Mz and σ2.
The parameters used in the latter two algorithms are
listed in Table 1, along with a short description of the
function of each parameter. We see in Figure 4 a

Figure 5 - Error in inverted bottom parameters
compared to true bottom parameters based on exhaustive
search of input space

Figure 6 - Typical RMS error from inversion results
over 200 realizations around a single operating point.
Top -- PSO2 wins. Middle -- CPSO wins. Bottom -- All
three tie.

1304

typical error surface; we generated this error surface
by first choosing an operating point (a specific input
vector and corresponding target reverberation
measurement), and then generating neural network
outputs for every possible combination of Mz and σ2,
and calculating the corresponding error level. As
described above, note the narrow valley-like area in
which resides the global minimum, along with a fairly
shallow local minimum far away from the global

minimum. While Figure 4 does not describe every
possible type of error surface (we have found a
number with only a single bowl-like minimum as
well), the shape represents a substantial portion of the
error surfaces corresponding to each data point.

It should be noted at this point that any
further discussion of inverting the neural network as

described above to obtain the desired input parameters
is worthless without first showing that the parameters
obtained in such a manner actually correspond to the
desired parameters. Since, for our model, we have a)
the actual parameters used to generate a reverberation
series, b) the target reverberation level itself, and c) a
fully generated error surface in which the minimum is
calculated simply by exhaustive search, we can
quantify how well our inverted parameters match the
actual true parameters, under the assumption that the
proposed algorithms worked perfectly. Thus, we have
a benchmark to which we can compare our PSO2 and
CPSO results.

 Figure 5 shows a histogram of the error
between the inverted parameter value corresponding
to the overall lowest error at a given operating point
and the true parameter values used to calculate the
target reverberation level. The top plot of this figure
displays the errors in predicting Mz, and the bottom
plot corresponds to errors in σ2 prediction. We should
note that the dynamic range of Mz is [-10000, 10000]
(with values only landing on multiples of 500 – so the
minimum possible nonzero error is +/- 500), and the
dynamic range of σ2 is all the integers on [1,200]. The
data set from which the test cases were taken
corresponds to the 1000 patterns which the neural
network could reproduce the best (from the entire
training data set). Thus, from these plots we can
conclude that, in general, under the above assumption,
our inverted parameters would match the desired
parameters very well overall, with relatively few
outliers. It should also be mentioned here that, even if
the parameters do not match perfectly, what is needed
in practice is the ability to generate a good
reproduction of the ensonification of the water column

Parameter Description Value
PSO2

 δl Long step-size 1

 δs Short step-size 0.1
CPSO
 wc Cluster inertia weight 0.9
 ac1 Cluster-best weight 2
 ac2 Global-best weight 2
 wa Agent inertia weight 0.9
 a1 Agent-best weight 2
 a2 Agent Cluster-best weight 2
 a3 Agent Cluster-center weight 2

Table 1 – Parameter list for PSO methods

Figure 7 - Overall performance of each of the three
algorithms in terms of their best RMS errors over the same
200 operating points.

Figure 8 - Scatterplot of average RMS from each of 200
training patterns. Circle: PSO. Triangle: PSO2. Square:
CPSO

1305

based on the inverted parameters, rather than
specifically the parameters themselves.

We have quantified the performance of each
algorithm by first running them at the same operating
point (i.e., the same input vector and target reverb
level) 100 times, and then generating a histogram of
the minimum error found by the algorithm each time.
Given the bimodal nature of most of the error surfaces
(that is to say, there tends to exist a single global
minimum and a single local minimum), we expect to
see a histogram with a peak at either error level, or
both. Figure 6 shows three typical plots of the results:
one case in which CPSO outperforms PSO2, another
in which PSO2 outperforms CPSO, and a third in
which all three methods manage to find the global
minimum quite well. It should be noted at this point
that standard PSO almost never outperforms either of
the other two algorithms.

Figure 7 shows another measure of
performance of the three methods: histograms of the
average RMS error found at each of 200 different
operating points. We see from this plot that the
overall performance, from the perspective of this
figure of merit, is virtually identical for both PSO2
and CPSO, and that both algorithms do outperform
standard PSO. Finally, Figure 8 shows a scatter plot
of the lowest average error per pattern for each of the
three methods. Again we see that both of the
algorithms either outperform or match almost exactly
with standard PSO in nearly every single case.

V. Conclusions and Further Research

 We have shown that, for the purpose of
inverting a neural network trained to emulate an
underwater acoustic model in an attempt to determine
certain bottom parameters, a particle-swarm
optimization approach works very well. Moreover,
both a two-step, gradient-approximation approach and
a hierarchical cluster-based approach to modifying the
standard PSO algorithm provide significant gains over
the original algorithm. While these approaches were
both tailored to the specific error surfaces to be
optimized over in this problem, there exist many
similar problems in which either of these approaches
would be useful. Possible drawbacks exist, however.
In the case of the two-step approach, twice as many
fitness-function evaluations are required as in standard
PSO. For the cluster method, Table 1 clearly
illustrates a great deal of parameter tuning is
necessary; even for this problem the listed values may
be suboptimal.
 As for further areas of research, first and
foremost is the inversion of all three bottom
parameters, including the ω2 parameter. Likewise, we
will soon work on a non-particle-swarm-based

intelligent optimization scheme, such as simulated
annealing or genetic algorithms as a method of
comparison in inversion of the neural network.
Finally, perhaps a fuzzy-systems approach to
optimizing the many parameters in the CPSO
approach (and perhaps even in PSO2) would offer
even greater gain in performance.

VI. References

[1] Jensen, F. B., W. A. Kuperman, M. B. Porter, and

H. Schmidt, Computational Ocean Acoustics.
New York: Springer Verlag, 2000.

[2] Jensen, C.A.; Reed, R.D.; Marks, R.J., II; El-
Sharkawi, M.A.; Jae-Byung Jung; Miyamoto,
R.T.; Anderson, G.M.; Eggen, C.J., "Inversion
of feedforward neural networks: algorithms and
applications", Proceedings of the IEEE,
Volume: 87 9, Sept. 1999 , pp. 1536 –1549

[3] Dosso, S., “Geoacoustic Inversion and Appraisal,”
OCEANS 2000 MTS/IEEE Conference and
Exhibition, Volume: 1, 2000 pp. 423-428.

[4] Benson, J., Chapman, N.R., and Antoniou, A.,
“Geoacoustic Inversion with Artificial Neural
Networks,” OCEANS ’99 MTS/IEEE. Riding
the Crest into the 21st Century, Volume: 1,
1999, pp. 446-451.

[5] Fox, W. L. J., M. U. Hazen, C. J. Eggen, R. J.
Marks II, and M. A. El-Sharkawi,
"Environmentally adaptive sonar control in a
tactical setting," in Impact of Littoral
Environmental Variability on Acoustic
Predictions and Sonar Performance (N. G.
Pace and F. B. Jensen, eds.), pp. 595-602,
Sept.2002.

[6] Eberhart, R., and Kennedy, J., “Particle Swarm
Optimization,” 1995 Proceedings of the IEEE
Conference on Neural Networks, Volume: 4,
1995. pp. 1942-1948.

[7] Eberhart, R., and Shi, Y., “A Modified Particle
Swarm Optimizer,” Evolutionary Computation
Proceedings, 1998. IEEE World Congress on
Computational Intelligence., The 1998 IEEE
International Conference on , 4-9 May 1998
pp. 69 -73

[8] Reed, R. D., and Marks, R. J. II, Neural Smithing:
Supervised Learning in Feedforward Artificial
Neural Networks, MIT Press, Cambridge, MA,
1999.

[9] Mann, T., et al., “Preprocessing Neural Network
Outputs For Improved Tolerance To Error,”
2003 Proceedings of the IEEE International
Joint Conference on Neural Networks,
forthcoming.

1306

	MAIN MENU
	CONFERENCE PROGRAM
	AUTHOR INDEX

	Search CD-ROM
	Search Results
	Print

	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

	IJCNN CD-ROM Help
