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Abstract 
 

Given a complicated and computationally 
intensive underwater acoustic model in which some 
acoustic measurement is a function of sonar system 
and environmental parameters, it is 
computationally beneficial to train a neural 
network to emulate the properties of that model.  
Given this neural network model, we now have a 
convenient means of performing geoacoustic 
inversion without the computational intensity 
required when attempting to do so with the actual 
model.  This paper proposes an efficient and 
reliable method of performing the inversion of a 
neural network underwater acoustic model to 
obtain parameters pertaining to the characteristics 
of the ocean floor, using two different modified 
versions of particle swarm optimization (PSO):  
two-step (gradient-approximation) PSO and 
hierarchical cluster-based PSO.   
   
 
I.  Introduction 
 
 The forward problem of modeling the 
acoustical properties of an underwater environment 
given a set of sonar system parameters and an 
additional set of environmental parameters can be 
solved using a typically computationally intensive 
computer simulation [1].  It is then desirable to invert 
the model such that, given a particular acoustical state 
of the underwater environment (e.g., a reverberation 
measurement), along with the system parameters and 
certain known environmental parameters, one can 
obtain information about the unknown environmental 
parameters [2]-[4].  Due to the computational 

complexity of the acoustic model, however, this 
becomes a daunting task to perform in real time.   
 The application of a feed-forward neural 
network to emulate the underwater acoustic model 
reduces the amount of computing power necessary to 
perform the forward problem, and indeed greatly aids 
in the task of inverting the model [5].  The problem 
remains, however, of actually inverting the neural 
network itself.  As will be discussed in greater detail 
in Section II, a search of the input space is used to 
determine the “best” set of environmental parameters, 
where “best” is measured by how well the result 
matches the measured acoustic properties of the 
undersea environment.  This paper proposes two 
different methods of inverting the neural network.  
Both involve the use the particle swarm optimization 
(PSO) method; however, we suggest two different 
modifications of the basic PSO algorithm that are 
shown to provide significant improvement to the 
performance of the algorithm for this problem [6]. 
 
II.  Neural Network Inversion 
 

When we refer to “inversion” of a neural 
network for the acquisition of certain input 
parameters, we are actually referring to a constrained 
inversion.  That is to say, given the functional 
relationship of the neural network inputs to the outputs 

)(xfy rr
= , we are not merely trying to find 

)(1 yfx rr −= .  Rather, we have the forward and inverse 
relationships: 
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where xr  is the set of unknown environmental 
parameters we wish to obtain, and ur  is a vector of the 
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known environmental and system parameters.  Given 
the forward relationship described in a neural network 
form by (1), we wish to find an inverse mapping 
described by (2) where tyr  is a target output 
measurement obtained through some other method 
(i.e., it cannot be an output of our model described in 
(1) since xr  is unknown).  The proposed method by 
which we obtain xr  is via the following relationship: 
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where estxr  is the argument that minimizes the error 
between the target output tyr  and the neural network 
output produced by that argument.  This scheme 
essentially sets up the problem as one of optimization; 
that is, our task is now to find the xr  that optimizes the 
performance of the neural network in emulating the 
effects dictated by the target output vector tyr .  For 
this specific application, we find that particle swarm 
optimization is very well suited for the problem at 
hand. 
    
III.  Particle Swarm Optimization 
 

Eberhart and Kennedy [6] initially proposed 
the idea of using multiple agents that behave in a 
collective, swarm-like manner as a solution to various 
optimization problems.  The basic idea behind PSO is 
described by the following two equations [7]: 
 

( ) ( )idididid xprandcvwv −+= *** 1            (4) 
                 ( ) ( )idgd xprandc −+ **2  

ididid vxx += .              (5) 
 
Here, xid is the position of an agent in the search 
space, vid is its velocity (i.e., the distance it will move 

from iteration to iteration), pid represents the best 
position that individual agent has found to date, pgd is 
the group-best position (among all the agents), and w, 
c1, and c2 are parameters of the system that may be 
adjusted to improve performance.  Also, rand() 
signifies a random number picked from a uniform 
distribution on [0,1].  It is this element that causes 
PSO to be a stochastic process, and thus provides us 
with motivation to perform Monte-Carlo-like 
simulations in section IV. 
 Clearly, then, this is an evaluation-only 
optimization method; that is, no information about the 
search-space itself is taken into account that might 
improve the end result.  Figure 1 shows a simple 
situation, however, in which basic PSO methods can 
fail to converge.  As depicted, when the optimal 
solution lies at the bottom of a narrow valley, it is very 
easy for each swarm agent to completely “fly” over it 
without registering an improvement in the global best.  
We will show later that this situation occurs often in 
the search spaces in which we are interested.  If we 
were able to take into account some local information 
about our search space, the optimization algorithm 
would “know” that, at the initial point x0, the gradient 
was very steep, and thus it should proceed in very 
short steps to find the bottom of the valley (much like 
a gradient descent technique).  Thus, we have 
motivation for two different modifications over 
standard PSO that perform significantly better in light 
of this situation. 
 

A.  Two-Step PSO 
 

The first method proposes a two-step 
approach that essentially approximates the gradient at 
a local point and decides which of two step sizes to 
make based on that information (we will refer to this 
method as PSO2 beyond this point).  As anticipated in 
Figure 1, we see that, in this algorithm, each agent 

x0 

Figure 1 - Global minima which occur in steep, narrow 
valleys tend to be missed by standard PSO methods.  As 
depicted, a shorter step size would alleviate this problem. 

xs 
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Figure 2 - Basic idea behind CPSO.  The dotted line represents  
the updated trajectory based on each other vector and the weighting 
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takes two steps in the same direction:  one in standard 
PSO fashion, and the other a much shorter distance.  
Then, the algorithm simply calculates the slope from 
the initial point x0 to each point xs and xl, and simply 
chooses the step corresponding to the greatest 
negative slope.  The only additional parameter this 
introduces into the scheme is some fractional 
coefficient δs, which is the step size relative to the 
“usual” PSO step size (which could be seen as having 
its own δl=1).  This method is summarized in the 
following additional equations, which assume the 
initial execution of equation (4): 

 
ididl xvx +=             (6a) 

idsids vxx ∗+= δ             (6b) 
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where F() is the fitness function used to evaluate the 
position of each agent, assuming the problem is 
formulated as a minimization scheme.   

While this method will be shown to work 
very well for the problem to be solved in this paper, it 
is immediately clear that it could be prone to causing 
premature stoppage of the algorithm due to local 
minima.  The following alternate proposal combines 
the benefits outlined above of a local search with the 
local-minima avoidance of a more global technique. 

   
B.  Cluster PSO 

 
In an effort to combine both the desired 

local-search properties to prevent overlooking of the 

true global minimum with the global-search ability to 
avoid local minima, we propose the following 
“cluster”-based modification to PSO.  The central 
idea, as illustrated in Figure 2, is to force a sort of 
hierarchical structure onto the swarm model, creating 
clusters of agents that move about the search space 
while remaining relatively close together.  This is in 
contrast to standard PSO, in which each agent is 
essentially autonomous.  Thus, conceptually, we have 
the global searching accomplished by each cluster 
(which, we will show, is designed to behave more or 
less like a standard particle swarm agent), with the 
local search performed by the agents within each 
cluster.   

We then have the following expanded set of 
equations that defines the behavior of this cluster-
based PSO extension (CPSO), where (8) and (10) 
apply to a cluster of agents, and (9) and (11) 
correspond to the update equations for each individual 
agent: 
 ( ) ( )cccbcccc pprandavwv −+= ***

1
   (8) 

                ( ) ( )ccgbc ppranda −+ **
2

 

( ) ( )aabaaa pprandavwv −+= *** 1           (9) 
        ( ) ( )acb ppranda −+ **2  

( ) ( )acc ppranda −+ **3  

ccc vpp +=             (10) 

acaa vvpp ++= .               (11) 
 

Here, vc is the velocity of a cluster center, pcc is the 
position of the cluster center, pcb is the position 
corresponding to the best fitness found so far for an 
agent within that cluster, pgb is the global best, and wc, 

Figure 4 - Typical error surface for two parameters Mz and 
σ2,, in dB.  Note shallow local minimum and steep valley in 
which lies the global minimum 

Figure 3 - Typical reverberation measurement in 
dB as a function of time after transmit, in seconds. 
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ac1, ac2 are weighting factors for the cluster-velocity 
update equation.  Additionally, va is the velocity of 
each agent, pa is the position of an individual agent, 
pab is the personal best of each agent, and wa, a1, a2, 
and a3 are weighting factors for the agent-velocity 
update equation.   
 What we see then is the following:  each of C 
total clusters has within it N agents, which are 
associated strictly with a single cluster only.  First, the 
velocity of each cluster is updated as though the 
“center” of the cluster (effectively an arbitrary point in 
space, not the actual geometric center) was a standard 
PSO agent – it is modified based on its distance from 
some global best, along with its distance from its own 
personal best.  Next, the velocity of each agent is 
calculated as a weighted sum of its distance from its 
own personal best, its cluster’s best, and the cluster 
center, which serves to keep the cluster together.  
Finally, the position of the cluster center is adjusted by 
the center-velocity, and each agent is modified by 
both its cluster-center velocity and the individual 
agent-velocity update.   
 
IV.  Inversion Results 
 

The model used to emulate the geoacoustic 
environment has thirty inputs:  three sonar system 
parameters, and 27 environmental parameters 
including surface wind-speed, bathymetry, and the 
speed of sound at different depths in the water 
column.  The three bottom parameters in which we are 
interested are Mz, σ2, and ω2.  The grain size parameter 
Mz is a measure the log of the bulk grain size of the 
ocean floor sediment, and is used to categorize the 
floor as mud, sand, rock, etc.  σ2 is the ratio of the 
sediment volume scattering cross section to the 
sediment attenuation coefficient. It controls the 

sediment volume scattering strength in the model.  
Finally, ω2 is the interface roughness spectral strength.  
A measure of the roughness of the ocean floor, it 
controls the interface roughness scattering strength in 
the model.  While we would like to invert ω2 along 
with the other parameters, for the purposes of testing 
the algorithm in this paper we will only invert the first 
two. The output of the neural network model consists 
of 599 neurons corresponding to 599 points in an 
underwater acoustic reverberation-level time series.  
This is the signal at an active sonar receiver due to 
scattering from inhomogeneities in the ocean medium, 
including the sea surface and the bottom.  Figure 3 
shows a typical example of this reverberation.   

The neural network used to emulate the 
underwater acoustic model was trained using standard 
backpropagation methods [8] combined with a 
principal-component based method for reducing the 
redundant dimensionality of the data [9].  The 
resultant structure of the network consists of two 
hidden layers with 40 neurons in the first layer and 43 
neurons in the second layer.  With the fully trained 
neural network, we now have a method for calculating 
a fitness function for our optimizer. Specifically, we 
use the RMS error of the neural network output 
reverberation, as a function of the known inputs along 
with the current guess of the unknown parameters, 
compared to some target reverberation level obtained 
via the original underwater acoustic model (or a 
reverberation measurement obtained from an actual 
undersea environment).   

As a test of the algorithm, we have set up the 
three PSO algorithms (standard PSO, CPSO, and 
PSO2) to invert only the two parameters Mz and σ2.  
The parameters used in the latter two algorithms are 
listed in Table 1, along with a short description of the 
function of each parameter.  We see in Figure 4 a 

Figure 5 - Error in inverted bottom parameters 
compared to true bottom parameters based on exhaustive 
search of input space 

Figure 6 - Typical RMS error from inversion results 
over 200 realizations around a single operating point.  
Top -- PSO2 wins.  Middle -- CPSO wins.  Bottom -- All 
three tie. 
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typical error surface; we generated this error surface 
by first choosing an operating point (a specific input 
vector and corresponding target reverberation 
measurement), and then generating neural network 
outputs for every possible combination of Mz and σ2, 
and calculating the corresponding error level.  As 
described above, note the narrow valley-like area in 
which resides the global minimum, along with a fairly 
shallow local minimum far away from the global 

minimum.  While Figure 4 does not describe every 
possible type of error surface (we have found a  
number with only a single bowl-like minimum as 
well), the shape represents a substantial portion of the 
error surfaces corresponding to each data point.   

It should be noted at this point that any 
further discussion of inverting the neural network as 

described above to obtain the desired input parameters 
is worthless without first showing that the parameters 
obtained in such a manner actually correspond to the 
desired parameters.  Since, for our model, we have a) 
the actual parameters used to generate a reverberation 
series, b) the target reverberation level itself, and c) a 
fully generated error surface in which the minimum is 
calculated simply by exhaustive search, we can 
quantify how well our inverted parameters match the 
actual true parameters, under the assumption that the 
proposed algorithms worked perfectly.  Thus, we have 
a benchmark to which we can compare our PSO2 and 
CPSO results.  

 Figure 5 shows a histogram of the error 
between the inverted parameter value corresponding 
to the overall lowest error at a given operating point 
and the true parameter values used to calculate the 
target reverberation level. The top plot of this figure 
displays the errors in predicting Mz, and the bottom 
plot corresponds to errors in σ2 prediction.  We should 
note that the dynamic range of Mz is [-10000, 10000] 
(with values only landing on multiples of 500 – so the 
minimum possible nonzero error is +/- 500), and the 
dynamic range of σ2 is all the integers on [1,200]. The 
data set from which the test cases were taken 
corresponds to the 1000 patterns which the neural 
network could reproduce the best (from the entire 
training data set). Thus, from these plots we can 
conclude that, in general, under the above assumption, 
our inverted parameters would match the desired 
parameters very well overall, with relatively few 
outliers.  It should also be mentioned here that, even if 
the parameters do not match perfectly, what is needed 
in practice is the ability to generate a good 
reproduction of the ensonification of the water column 

Parameter Description Value
PSO2     

 δl Long step-size  1

 δs Short step-size 0.1
CPSO     
 wc Cluster inertia weight 0.9
 ac1 Cluster-best weight 2
 ac2 Global-best weight 2
 wa Agent inertia weight 0.9
 a1 Agent-best weight 2
 a2 Agent Cluster-best weight 2
 a3 Agent Cluster-center weight 2

Table 1 – Parameter list for PSO methods 

Figure 7 - Overall performance of each of the three 
algorithms in terms of their best RMS errors over the same 
200 operating points.   

Figure 8 - Scatterplot of average RMS from each of 200 
training patterns.  Circle:  PSO.  Triangle:  PSO2.  Square:  
CPSO  
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based on the inverted parameters, rather than 
specifically the parameters themselves. 

We have quantified the performance of each 
algorithm by first running them at the same operating 
point (i.e., the same input vector and target reverb 
level) 100 times, and then generating a histogram of 
the minimum error found by the algorithm each time.   
Given the bimodal nature of most of the error surfaces 
(that is to say, there tends to exist a single global 
minimum and a single local minimum), we expect to 
see a histogram with a peak at either error level, or 
both.  Figure 6 shows three typical plots of the results:  
one case in which CPSO outperforms PSO2, another 
in which PSO2 outperforms CPSO, and a third in 
which all three methods manage to find the global 
minimum quite well.  It should be noted at this point 
that standard PSO almost never outperforms either of 
the other two algorithms. 

Figure 7 shows another measure of 
performance of the three methods:  histograms of the 
average RMS error found at each of 200 different 
operating points.  We see from this plot that the 
overall performance, from the perspective of this 
figure of merit, is virtually identical for both PSO2 
and CPSO, and that both algorithms do outperform 
standard PSO.  Finally, Figure 8 shows a scatter plot 
of the lowest average error per pattern for each of the 
three methods.  Again we see that both of the 
algorithms either outperform or match almost exactly 
with standard PSO in nearly every single case.   

  
V.  Conclusions and Further Research 
 
 We have shown that, for the purpose of 
inverting a neural network trained to emulate an 
underwater acoustic model in an attempt to determine 
certain bottom parameters, a particle-swarm 
optimization approach works very well.  Moreover, 
both a two-step, gradient-approximation approach and 
a hierarchical cluster-based approach to modifying the 
standard PSO algorithm provide significant gains over  
the original algorithm.  While these approaches were 
both tailored to the specific error surfaces to be 
optimized over in this problem, there exist many 
similar problems in which either of these approaches 
would be useful.  Possible drawbacks exist, however.  
In the case of the two-step approach, twice as many 
fitness-function evaluations are required as in standard 
PSO.  For the cluster method, Table 1 clearly 
illustrates a great deal of parameter tuning is 
necessary; even for this problem the listed values may 
be suboptimal.   
 As for further areas of research, first and 
foremost is the inversion of all three bottom 
parameters, including the ω2 parameter.  Likewise, we 
will soon work on a non-particle-swarm-based 

intelligent optimization scheme, such as simulated 
annealing or genetic algorithms as a method of 
comparison in inversion of the neural network.  
Finally, perhaps a fuzzy-systems approach to 
optimizing the many parameters in the CPSO 
approach (and perhaps even in PSO2) would offer 
even greater gain in performance. 
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