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Abstract 
 
 The neural network autoencoder is a useful 
tool for the restoration of missing sensors when enough 
known sensors with some relation to those missing are 
available.  Through the idea of a contraction mapping, 
this paper provides some insight into the convergence 
of several iterative methods of sensor restoration using 
the autoencoder to some unique answer given a specific 
operating point (i.e., the known sensor values), 
regardless of how the missing sensor values are 
initialized     
 
I.  Introduction 
 

Previous work has established the ability of the 
autoassociative neural network encoder (or simply 
“autoencoder”) to aid in the restoration of sensor data 
which may be missing or corrupt, given some sort of 
correlation between the numeric outputs of the various 
sensors in a system. [1], [2] Narayanan et al. [1] describe a 
method by which the missing sensor data may be 
reconstructed using an iterative approach; in this paper we 
show that, under a set of conditions relating to the specific 
parameters of the neural network, we can provide a 
sufficient condition for the convergence of the iterative 
approach to sensor restoration.  We approach this through 
the idea of a contraction mapping.  Moreover, we will 
show compelling evidence that there exists a unique point 
of convergence for a fully trained autoencoder given an 
“operating point” defined by the set of known sensors, and 
that this convergence point should be reached regardless of 
how the missing sensors are initialized.  
 
II.  Contraction 
 

 A contractive mapping is defined [3],[4] as a 
mapping O:X→X on a complete metric space (X, d) in 
which, for any x and y in that space: 
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or, more clearly, a contraction mapping is one in which the 
output distance between two points is less than the input 
distance.  Now let us look at this property in ℜ1, where our 
metric is simply the Euclidean norm, and O is simply some 
functional mapping f(x): 
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Now, suppose we replace y with x+dx, yielding, with some 
minor rearrangement: 
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the limit of which as dx→0 gives us, as a less strict 
requirement for contraction  
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This idea is demonstrated clearly in Figure 1.  It would 
then be sufficient to show that, for some function f:  
ℜ1→ℜ1, the derivative of f is less than unity for all x.   

Consider the Banach Fixed-Point Theorem:  If f 
is a contractive mapping, then there exists a unique fixed 
point x0 for which f(x0) = x0.  Moreover, the sequence {xn}, 
for which any element xn+1 = f(xn), converges, and that 
convergent point is xo.  With this theorem, it becomes 
much clearer how any contractive tendency of the 
autoencoder can help us show whether or not the sensor 
restoration process will converge to some unique value.   

 
 

III.  Missing Sensor Restoration with 
Autoencoders 

 
There are three methods that we will examine for 

the restoration of missing sensors.  The first is a simple 
application of alternating projections onto convex sets 
(POCS).  The second and the third both employ search 
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techniques; the first involves simply minimizing the error 
between the missing sensor inputs and outputs on the 
autoencoder, while the second looks at the error between 
the entire input pattern and output pattern (both missing 
and known sensors) to achieve a final answer.  The merits 
of each are discussed below.  First, however, a few 
definitions are in order.   
The input to the neural network is comprised of two 
concatenated vectors whose total dimension is N, the input 
dimension (and necessarily the output dimension as well).  
The first vector, xk, can be thought of as the operating 
point of the restoration process, and is defined as the set of 
known sensor values for a given input pattern.  The second 
vector is then xm, the set of missing sensor values.  Without 
loss of generality, let us formulate the input as some vector 
x: 
 

{ }T
kKkkmMmm xxxxxxx ,...,,,,...,, 2121≡

r
        (5) 

 
where M is the number of missing sensors, K is the 
number of known sensors, and of course K+M = N. 
Likewise, on the outputs, we have: 
 

{ }T
kKkkmMmm xxxxxxx ˆ,...,ˆ,ˆ,ˆ,...,ˆ,ˆˆ 2121≡

r
        (6) 

 
Figure 2 shows a single-hidden-layer autoencoder 
with the appropriate labels.  Given that the encoder 
is trained as a feedforward multilayered perceptron 
(MLP) [3] we also have the following elements:  
W1,k is the matrix of weights whose (i, j)th element is 
the weight connecting the ith known sensor value to 
the jth neuron in the first hidden layer; W1,m is the 
corresponding matrix for the missing sensors, bl  is 

the vector of bias weights for the lth layer; W2 is the 
weight matrix connecting the first hidden layer to the 
second; and finally, W3,k and W3,m are the counterparts 
to W1,k and W1,m on the output.  Note that these can 
easily be extended for an encoder with more than a 
single hidden layer.   
  
A.  POCS 
 

As described by Narayanan et al. [1], a 
straightforward method for missing sensor restoration 
using a trained autoencoder is the use of POCS [5] to 
achieve a convergent value.  Under the assumption of 
convexity, our two sets are then a) the space defined as 
the output of the autoencoder, and b) the set of all input 
patterns to the neural network containing xk, the known 
sensors, and an arbitrary xm.  While the second set is 
definitely convex, the first requires the assumption of 
convexity.  By choosing some initial xm to create an 
input vector x, we then obtain x̂ , the output of the 
autoencoder.  This corresponds to a projection onto the 

first set, the operator for which we will denote P1.  We 
then change the outputs 

kx̂  to xk to perform the projection 
onto the first set, denoted as P2.  If we alternate between 
these projections, under the assumption of convexity, the 
series will converge to an answer representing the 
intersection of the two sets.  Thus, a single iteration of this 
process is defined as the successive application of P1 and 
then P2.   

 
B.  Unconstrained Search 
 
 Because of the potential lack of convexity and 
other performance issues, we are motivated to find a better 
method for discovering the true point of convergence.  In 
this case, our iterative operator Ou  is simply a single 
iteration of any search algorithm which seeks to minimize 
the error between the missing sensor values and the 

x 

f(x) 

Figure 1 -  For a function whose derivative is less than unity, the input distance of 
two points will always be greater than the output distance (the distances projected 
onto the horizontal and vertical axes, respectively).  For a derivative greater than 
one, we achieve expansion rather than contraction. Note that points v and y exist 
where |df(x)/dx|<1, and w and z exist where |df(x)/dx|>1. 
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Figure 2 -  a diagram of a generic 2-layer autoencoder, with 
appropriate labels, as described in the text. 
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outputs of the autoencoder corresponding to those missing 
sensor values, or: 
 

mm
x

xx
m

ˆminarg −      (7) 

 
This method allows for greater refinement of the missing 
sensor values over the POCS method described above; 
moreover, it should be noted that, if the assumption of 
convexity were true, Ou and Op would converge to the 
same value, assuming the two sets intersect. 
 
C.  Constrained Search 
 
 A notable shortcoming of both POCS and the 
unconstrained search is that neither one uses the 
information contained in 

kx
r
ˆ  to better refine the final 

answer.  Thus, we define a third operator, Oc, which is 
similar to Ou except that it corresponds to a search 
algorithm which seeks to minimize the entire output error 
of the autoencoder; namely: 
 
   xx

mx
ˆminarg −       (8) 

 
recalling that x is a vector composed of xm and xk.  This 
way, we actually ensure a smoother match between the 
input and the output, which can help eliminate spurious 
answers that, while minimizing the error between 
consecutive iterations on xm, tend not to make sense in the 
context of the known sensors. 
 
IV.  Analysis Results 
 

x be contractive.  Recall that, by definition, a perfectly 
trained autoencoder is one for which we have the 
following relationship:  
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where ONN is the neural network treated as an operator, and 
C is the set of all training data.  Thus, except in the case of 
an autoencoder trained on a single pattern, a perfectly 
trained autoencoder guarantees that the Banach Fixed-
Point Theorem cannot hold, and thus the operator is not 
contractive.   

An operator is nonexpansive in (10) when, instead 
of k<1, we allow k≤1.  A convex set orthogonal projection 
operator is nonexpansive [6] so this is a result to be 
expected from the autoencoder.  If O is nonexpansive, the 
operation xn+1 = O(xn) will converge to a fixed point.  This 
point, however, is not unique and is dependent on 
initialization . 
 
A.  Contraction of the Entire Autoencoder 
 
 While we have shown that the autoencoder itself 
is neither strictly contractive nor nonexpansive, it is 
informative to see how closely it approaches these 
conditions.  As described in (3), there is a k-value 
associated with a set of two inputs and their corresponding 
outputs.  If, for a very large set of input pairs, we can show 
that that k-value is less than or equal to one, then we have 
justification for treating the operator as nearly 
nonexpansive We examine the k-values from a specific 
example of a trained autoencoder.  For the purposes of this 

Figure 3 -  a histogram of the k-values associated 
with our autoencoder as a whole, for a randomly 
generated data set.  The scale of the x-axis is from 
0.2 to 1.  Note that the largest tail value is actually 
less than unity. 

Figure 4 -  a histogram of the k-values based on  
the training data.  Note the dynamic range of the 
plot is [0.966, 1.015]. 
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paper, we have trained an autoencoder on Mackey-Glass 
chaos, defined by the nonlinear difference equation [7]: 
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where A, B, n, θ, and τ are defined parameters, along with 
some x[0] value.  We generate a data set using this 
function, and train a 40-20-40 autoencoder using input 
patterns taken as consecutive 40-point “windows” of the 
data set.  All data is normalized to the interval [0,1] before 
training. 
 The autoencoder thus trained, we then generate a 
large (on the order of 105 patterns) set of randomly 
generated input vectors (from a uniform distribution on 
[0,1]).  We then select, at random, two different vectors 
from this set as vectors x and y as per equation (3).  From 
this, we can calculate a corresponding k-value.  With a 
sufficiently large number of these k-values, we can create 
estimate the probability density function of k, to examine 
how it behaves, particularly around the value of 1.   
 Figure 3 shows the result of this experiment.  
Clearly we have that, for a randomly generated data set, 
we never even approach the limits of being contractive; 
that is, our autoencoder behaves statistically as though it 
were in fact contractive.  The largest k-value it achieves in 
this simulation, in fact, is 0.9206, well below the threshold 
beyond which it would no longer be contractive.   
 While this demonstrates the behavior of the 
autoencoder towards randomly generated data, we next 
perform a more interesting experiment.  Given that the 
autoencoder is trained such that the output mirrors the 
input as closely as possible, we would expect the k-values 
for the actual training data to be very near 1 for each 
training pattern (recall that, for a perfectly trained 

autoencoder, k would be exactly unity for every single 
one).  Thus, we have motivation to repeat the above 
experiment, replacing the randomly-generated data with 
the training data itself. 
   We see the result of this experiment in Figure 4.  
From this histogram, we have proof that our initial 
conjecture holds true even for this “imperfect” autoencoder 
– due to the k-values above 1, the operator is not strictly 
nonexpansive.  However, it would clearly be fair to say 
that, from the evidence presented in this figure, our 
operator is nearly nonexpansive, since k never deviates 
from unity by more than 0.01. 
  
B.  Contraction of Subsets of the Autoencoder 
 

At this point, we then want to show that, while 
the autoencoder as a whole is neither strictly contractive 
nor nonexapnsive, the autoencoder at some operating point 
may be contractive as it operates on a subset of the input 
vector; namely, xm.   At this point, it is useful to write out 
the functional form of the neural network as an operator.  
Let us formulate this for a two-hidden layer neural network 
as described in Figure 2, although it can easily be 
generalized for greater or fewer dimensions: 
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where σ  is a vector operator that imposes a sigmoid 
nonlinearity  on each element of the applied vector, and all 
other parameters are as described above.  This function 

Figure 5 - average derivative of our overall restoration 
operator for a single missing sensor using randomly-
initialized operating points xk 

Figure 6 - same as Fig. 5 with training data used instead of randomly-
initialized xk 
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represents the functional form of our operator O1, as 
described above.  Likewise, we can define out operator O2 
as: 
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where T is an N×N matrix in which: 
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and B is an N×K matrix defined as: 
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Thus, combining equations (11) and (12) yields our 
operator Op: 
 

( ) ( ) kkmkmp xxxfxxO ⋅+⋅= BT ,,
r

  (15) 
 
With this, we have a framework for which we can examine 
the contractiveness of the entire process.  Specifically, we 
can look at the case in which only one sensor is missing.  

If this is the case, then xm is a scalar, and equation (4) can 
be applied.   
 Explicitly calculating the derivative of Op is a 
cumbersome task, particularly if xm is not scalar. For the 
purposes of this paper, we again apply a randomly 
initialized simulation to show that the derivative tends to 
be less than one for various xk operating points.  We 
perform this experiment using the same Mackey-Glass 
autoencoder as used above.  First, we examine all forty 
“sensor” values by randomly generating xk (as a vector of 
uniform random variables on [0,1]) and calculating the 
corresponding derivatives.  Figure 5 shows the overlaid 
plot of the derivatives for each of the forty sensors.  Each 
curve represents an average over multiple realizations of 
xk.  The maximum standard deviation at any point for any 
of the sets of curves was as small as 0.0042, giving us a 
great deal of confidence that, for random xk, and a single 
missing sensor, we will always converge to a unique 
answer, since the less-than-unity derivative implies 
contractiveness of the sub-operator as it acts around a 
fixed point.   
 Next, we perform the same experiment, again 
replacing the randomly initialized portion (in this case, the 
value of the fixed point xk) with the actual training data.  
Figure 6 displays the results clearly, in a form identical to 
Figure 5.  In this case, the maximum standard deviation for 
any value of xm over any set of the curves was 0.0036, 
which gives us even greater confidence of our conclusion.  
Comparing Fig. 5 to Fig. 6, we see that they are almost 
completely indistinguishable.  No difference is graphically 
discernable.  This gives us substantial reason to believe 
that the derivative is largely insensitive to the actual value 
of the operating point (as long as the operating point is 
within the unit-cube in K dimensions – which is reasonable 
since it is possible to define the valid range of sensors to be 
within that limit).   
 Finally, we perform an experiment to demonstrate 
the contractive characteristics of situations in which more 
than a single sensor are missing.  For this, we calculate a 
series of k-values as above, the exception being that some 
fixed-point xk is chosen, and the remaining sensors xm are 
randomly initialized as above.  We then perform this for a 
variety of missing-sensor configurations (obviously, all the 
possible permutations would take a prohibitive amount of 
time to calculate even for a relatively small autoencoder, 
and even more so for our situation using the Mackey-Glass 
autoencoder).   
 Figure 7 displays these results, for 10 different 
cases corresponding to 1, 5, 9, 13, 17, 21, 25, 29, 33, and 
37 missing sensors.  The specific sensors in each case were 
selected at random from the 40 possible sensors.  We note 
that, in every single plot, we are well below the unity 
threshold required for contraction.  Moreover, it is 
interesting to note that the upper limit of the k-value seems 
to approach unity gradually as the number of missing 

Figure 7 - histograms of k-values various combinations of missing 
sensors.  Figs. (a)-(j) correspond to 1, 5, 9, 13, 17, 21, 25, 29, 33, and 37 
missing sensors, respectively.  The specific missing sensors were chosen 
at raondom, and the operating point, selected from the training data, was 
the same for each case.   
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(d) 
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sensors increases (implying that the operation is “more 
contractive” for fewer missing sensors).   
. 
V.  Conclusions  
 
 By demonstrating the contractive nature of the 
autoencoder as a method for restoring missing sensors, we 
have given compelling evidence that such iterative 
procedures will, for the case examined, converge to a 
unique answer dependent only on the neural network 
autoencoder itself, and the operating point (the known 
sensor values) about which the process is implemented.  
We have shown that the autoencoder itself is nearly 
nonexpansive to most types of data, the marginal exception 
being the training data itself.  Finally, we have provided 
reason to believe that, the fewer sensors that are missing, 
the more likely the autoencoder-method of restoring 
missing sensors is to have such a unique value of 
convergence. 
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