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Abstract – Preprocessing of data to be learned by a neural 

network is typically done to improve neural network 
performance.  Output preprocessing is especially important 
since it directly affects the influence of error in the hidden layers 
on the error in the neural network output.  Principal component 
analysis is a commonly used preprocessing method that can 
improve network performance by reducing the output 
dimensionality and reducing the number of parameters in a 
neural network model.  Transforming the principal components 
of the outputs with an orthonormal matrix prior to scaling can 
further improve network performance. 

 
I.  INTRODUCTION 

 
Preprocessing the outputs to be learned by a neural 

network is an important step prior to network training.  If the 
outputs have magnitudes that are larger than the range of the 
activation function of the output nodes, then the outputs need 
to be scaled appropriately for training, and the neural network 
outputs must also be unscaled when the neural network is 
used.  Additionally, principal component analysis [1] is often 
used to reduce the dimensionality of the outputs.  This is 
beneficial since it reduces the number of parameters in a 
neural network model, and also eliminates redundancy in the 
dataset. 

In order to distinguish between output data before and after 
preprocessing, unpreprocessed output vectors are referred to 
as data, and preprocessed output vectors are referred to as 
targets.  The preprocessing methods are affine 
transformations that map data to targets, and the networks are 
then trained on the targets.  Data error is used to refer to the 
difference between the neural network output and the data 
vectors after the preprocessing has been undone, and target 
error is used to refer to the difference between raw network 
output and target vectors. 

The neural networks considered in this paper are multilayer 
perceptrons [2] with a linear output layer.  The weights of the 
linear output layer are algebraically chosen, and then the 
network weights that are not in the linear output layer are 
chosen by training the neural network using the RPROP [3] 
algorithm.  The default preprocessing method for vector 
valued output data in this paper is mean centering, followed 
by principal component analysis and then range scaling.  The 
range scaling is necessary to match the dynamic range of the 
targets and the dynamic range of the nonlinearities of the 
sigmoidal activation functions.  The principal component 

analysis and the range scaling in output preprocessing can 
each be expressed as matrix operations, and can be composed 
into a single matrix.  The entries of this matrix will be used as 
weights that determine the node activations in the linear 
output layer.  An alternative treatment is to further preprocess 
the data by taking linear combinations of the principal 
components before the range scaling step.  This alternative 
treatment can improve the network performance in some 
cases. 

 
A.  Assessing Error in Outputs  
 
When a network is used to compute outputs whose correct 

values are known, then the output preprocessing must be 
undone to evaluate the data error.  There are several reasons 
to prefer evaluation of data error to target error.  One reason 
is that the outputs often have units; for instance, in the sonar 
application discussed below, entries in the output data vectors 
to be learned have units of decibels, and it is appropriate to 
interpret network performance using the units associated with 
the data.  Another reason is that if a neural network is to be 
used as a component in a larger system, then other 
components may have requirements for the output vectors 
that are incompatible with the raw network output.  If this is 
the case, then the appropriate error to be analyzed is the error 
in vectors that must be used by other components in the 
system.  Finally, evaluation of the data error makes it simpler 
to distinguish between error incurred by the principal 
component analysis (due to not spanning all of the variance 
with the principal components) and error incurred by faulty 
network predictions.  The first kind of error can only be 
corrected by adjusting the preprocessing steps, but the second 
kind of error can be corrected by adjusting weights before the 
last hidden layer, e.g., by network training.  Examining only 
the target error can not yield information about variance in 
the data not spanned by the chosen principal components. 

 
B.  Multilayer Perceptrons 
 
The notation used in this paper to express the function 

computed by a multilayer perceptron is as follows.  Let xj be 
a vector whose entries are the activations of the nodes in the 
jth hidden layer of a multilayer perceptron.  The vector of 
input node activations to a multilayer perceptron is 
represented by i, and the vector of output node activations is 
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represented by o.  The sigmoidal activation function is 
written with the symbol ‘σ’.  The weights of the connections 
used to determine the activations of nodes in layer j are 
denoted by a matrix Mj-1, that represents connections between 
node in layer j and nodes in layer j-1, and a vector bj-1, that 
represents the biases for nodes in layer j.  The output of a 
multilayer perceptron with a linear output layer and L hidden 
layers is defined with the following recursive equations: 
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The entries of the matrix ML and the vector bL are 

explicitly chosen by the output preprocessing steps, and the 
other weights are chosen by neural network training on the 
vectors after preprocessing.   

 
II.  PREPROCESSING AND ERROR 

 
Output preprocessing has an intrinsic effect on the 

tolerance to error of the multilayer perceptron.  This is due to 
the interaction of the scaling of the outputs and the 
nonlinearity of the sigmoidal activation function.  The 
sigmoidal activation function can be used to increase the 
tolerance of a multilayer perceptron to error.  If a scalar target 
is in the nonlinear region of the sigmoid, then the error will 
be less for a given error δ in a prediction before the sigmoid 
is applied than if the target is in the linear region of the 
sigmoid.  For vectors, the error is generally less if the vector 
has a large norm than a small norm for this reason.   

The default output preprocessing method is principal 
component analysis followed by range scaling of the outputs.  
The alternative method is to compute an orthogonal 
transformation of the principal components before range 
scaling.  The matrix ML is then used to undo the 
preprocessing and transform the last layer of hidden node 
activations into the final prediction of the output vector.  For 
both the default preprocessing method and the alternative 
method, the matrix ML will have orthogonal columns, and is 
the product of an orthonormal matrix O and a scaling matrix 
S-: For the default preprocessing method, O will consist of the 
principal components of the data, and for the alternative 
method, O will be a matrix of linear combinations of the 
principal components.  For ML to undo the preprocessing, it 
must first undo the range scaling and then the orthogonal 
transformation of the preprocessing: 
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The values of the vector of node activations in the last 

hidden layer, , which yield the optimal approximation to a 
data vector d is 

*
Lx

( LL bdSOx −=* ) .                                                             (5) 
 

In general, there is a prediction error that causes the actual 
node activations in the hidden layer before the last hidden 
layer to deviate from the optimal node activations by an error 
vector ε: 
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The entries of ε are constrained, since the entries of xL 
must lie in the range of the sigmoidal activation function, and 
any ε which causes the entries of xL to exceed that range can 
not be the result of network error.  However, for each 
admissible ε, there is a corresponding vector δ, which 
represents error in the layer L-1: 
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The vector δ represents error after transformation of the 

vector xL-1 by the matrix ML-1 and vector bL-1, and not error in 
the vector xL-1 of node activations.  Since the error vector δ is 
applied before the sigmoidal activation function is used to 
determine the activations of the nodes in layer L, all vectors 
are admissible as error vectors if applied before the sigmoid 
activation function.   

 
A.  Tolerance To Error 
 
The tolerance to error, T(ML,,D)  [4], can be estimated as a 

function of output matrix ML, and output dataset D.  Suppose 
that D has n data vectors, each vector written as di, and for 
each data vector di there is an error vector δi.  For notational 
convenience, the data set D is assumed to have vectors with 
zero mean, and the bias vector bL is consequently the zero 
vector.  Then the tolerance to error is computed: 
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Here ML

+
 is the pseudoinverse of ML [5].  This quantity 

varies for different choices of ML, for the same dataset, due to 
the nonlinearity of the sigmoidal activation function.  
Additionally, the geometrical properties of the output dataset 
will play a role and determine choices of weights for the 
matrix ML that lead to small values of T(ML,D). 

For empirical study of the role of the matrix ML in network 
error, error vectors δi are treated as random variables that are 
drawn from a multivariate Gaussian distribution with zero 
mean and uncorrelated entries with the same standard 
deviation.  The probability density function for each of the 
error vectors δ is 
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In a multilayer perceptron, the error vectors for a particular 

data matrix are fixed once the weights are chosen, and are not 
random variables.  However, treating the errors as random 
variables allows the error properties of the weight matrices S 
and O in the last layer of weights to be empirically studied 
without training many independent neural networks for a 
particular set of output weights. 

 
III.  WHEN TO ROTATE PRINCIPAL COMPONENTS 

 
The tolerance to error of the default preprocessing method 

for a dataset D is T(PTSP
-1,D), where P is the matrix of 

principal components and Sp is a scaling matrix.  Some 
datasets will be sensitive to a set of orthonormal matrices 
such that for an orthonormal matrix O in that set, the value of 
T(PTOTSOP

-1,D) is less than T(PTSP
-1,D).  These datasets are 

characterized by a distortion in their spatial distribution when 
the range scaling is applied after rotation of principal 
components.  Some datasets are relatively insensitive to 
choice of O, and the tolerance to error will not change 
significantly as O varies.  For instance, rotation of a disk or 
ellipse does not change the tolerance to error.  Rotation of a 
multivariate Gaussian has an effect on the tolerance to error, 
primarily due to the outliers that will always be part of a large 
sample of vectors drawn from a Gaussian distribution.  Fig. 1 
shows a dataset that has been selected to illustrate conditions 
where the choice of O is important.   
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Fig.  1.  A range normalized dataset (plotted with dots) chosen for its 

sensitivity to rotation, and that dataset rotated 45 degrees (plotted with ‘x’ 
symbols) before range normalization 

 
Fig.  2.  Comparison of tolerance to error of rotated sensitive dataset  

(plotted with circles) and unrotated sensitive dataset (plotted with ‘.’ 
symbols).  The points were generated in pairs, with the same noise matrix 

applied to the rotated and unrotated dataset for each pair. 
 
Fig. 1 shows the dataset after it has been range normalized 

after two treatments.  The first treatment is principal 
component analysis, and the second treatment is principal 
component analysis followed by rotation by 45 degrees.   

Fig. 2 shows a comparison of T(PTSP
-1,D) and T(PTOTSOP

-1, 
D) for a set of 2 by 2 orthogonal rotation matrices.  The 
points in fig. 2 were generated in pairs as follows.  For each 
rotation angle θ sampled between 0 and 360 degrees, a noise 
matrix was generated whose columns were distributed as in 
(9).  A 2 by 2 rotation matrix O was generated which rotated 
the vectors in D in the plane by θ degrees.  Then T(PTSP

-1,D) 
and T(PTOTSOP

-1,D) were evaluated and plotted for the noise 
matrix generated.  This procedure was repeated several times 
for each angle, to show the variability in tolerance to error for 
different random noise matrices.  Notice the periodic 
symmetry in fig. 2.  In fig. 3, a different dataset is displayed 
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Fig.  3.  A dataset chosen for its insensitivity to rotation. 
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Fig.  4.  Tolerance to error for dataset that is insensitive to rotation. 

 
that has been chosen to have little sensitivity to rotation.  As 
shown in fig. 4, rotating this dataset does not increase 
tolerance to error, and the geometrical properties of this 
dataset after range scaling are not strongly influenced by 
rotation angle.  The dataset used for experimental results 
below is sensitive to rotation, and rotation of principal 
components can be expected to improve network 
performance. 

 
IV.  EXPERIMENTAL RESULTS 

 
A.  Problem Domain: Predicting Sonar Reverberation 
 
 The objective for the problem domain is to train a 

multilayer perceptron so that it can predict the reverberation 
of a sonar signal in a marine environment.  The reverberation 
time series is a measure of the intensity of sound that is 
reflected back to the sound source via many paths as a 
function of time, and is caused by an inhomogeneous marine 
environment. The inputs to the network are the sonar 
transducer parameters and a description of the salient features 
of the marine environment, such as the sound speed profile as 
a function of the depth and composition of the sea floor.  The 
output units are decibels as a function of time, and the data 
has a large dynamic range.  The data used for training was 
simulated by a physics based sonar simulation software 
package.  Fig. 5 is a plot of the first two principal components 
of the data.  This dataset has strong assymetry, and the 
tolerance to error is sensitive to rotation. 

 
B.  Comparison of Performance of Output Preprocessing 

Methods 
 
In order to evaluate this method, networks were trained  
 

 
Fig.  5.  First two principal components of output data. 

 
according to different normalization schemes and then their 
performance was evaluated on 10000 points of testing data.  
First, an explicit optimization was undertaken using genetic 
algorithms, and an orthonormal matrix OOptimized was found 
which had a high tolerance to error when error was simulated 
as in (8).  Secondly, a random orthonormal matrix ORandom 
was determined by computing the singular value 
decomposition of a matrix whose entries were i.i.d. normal 
random variables with zero mean and unit variance.  Principal 
component analysis was used for all three networks to reduce 
the dimensionality of the outputs from 600 elements to 50 
elements; inspection of the singular values revealed that 50 
principal components were sufficient to span the data with 
very little error.  For each method, seven networks were 
trained starting with independent random initializations of 
weights.  The networks were trained on 20000 datapoints for 
10000 epochs.  The networks all had the same topology of 30 
inputs, 40 nodes in the first hidden layer, and 50 nodes in the 
last hidden layer.  One group of networks was trained on the 
range scaled principal components, one group of networks 
was trained on the range scaled principal components after 
rotation by the randomly generated orthonormal matrix, and 
one group of networks was trained on the range scaled 
principal components after rotation by the optimized 
orthonormal matrix.  Table 1 shows the 95 percent 
confidence interval for the mean RMS error for each group of 
networks for the testing set.  As can be seen from Table 1, the 
randomly chosen matrix did the best when the neural 
networks were actually trained.  Although it had inferior 
performance when the networks were trained, the optimized 
matrix had superior performance when simulated with (8). 

 
Table 1.  95 percent confidence interval for mean RMS testing error of 

networks after training 
ML Mean RMS Testing Error  
PTSP

-1 (6.57,7.01) 
PTOT

RandomSOP
-1 (5.44,5.57) 

PTOT
OptimizedSOP

-1 (6.00,6.45) 
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V.  CONCLUSIONS 

The output data can play a crucial role in a proper choice 
of output matrices that transform the vector of node 
activations in the last hidden layer into the networks 
prediction of output data.  Although rotation improved 
network performance, there are several possible reasons why 
the optimized matrix yielded inferior performance to the 
randomly chosen network.  One possibility is that the genetic 
algorithms got stuck in one of the many local minima in the 
optimization surface.  Another possibility is that the structure 
of network error must be taken into account when choosing 
the output matrix, and that treating error as a random variable 
led to an inappropriate optimization function.  Nevertheless, 
both rotations yielded superior performance to the networks 
trained on the principal components, and this technique 
should prove useful on many datasets. 
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