
Orthogonal Transformation of Output Principal Components For Improved
Tolerance To Error

T.P. Mann, C. Eggen†, W. Fox†, D. Krout, G. Anderson†, M. A. El Sharkawi, R.J. Marks II

Department of Electrical Engineering †Applied Physics Laboratory
Box 352500 1013 NE 40th St

University of Washington University of Washington
Seattle WA 98115 Seattle WA 98112

Abstract – Preprocessing of data to be learned by a neural

network is typically done to improve neural network
performance. Output preprocessing is especially important
since it directly affects the influence of error in the hidden layers
on the error in the neural network output. Principal component
analysis is a commonly used preprocessing method that can
improve network performance by reducing the output
dimensionality and reducing the number of parameters in a
neural network model. Transforming the principal components
of the outputs with an orthonormal matrix prior to scaling can
further improve network performance.

I. INTRODUCTION

Preprocessing the outputs to be learned by a neural

network is an important step prior to network training. If the
outputs have magnitudes that are larger than the range of the
activation function of the output nodes, then the outputs need
to be scaled appropriately for training, and the neural network
outputs must also be unscaled when the neural network is
used. Additionally, principal component analysis [1] is often
used to reduce the dimensionality of the outputs. This is
beneficial since it reduces the number of parameters in a
neural network model, and also eliminates redundancy in the
dataset.

In order to distinguish between output data before and after
preprocessing, unpreprocessed output vectors are referred to
as data, and preprocessed output vectors are referred to as
targets. The preprocessing methods are affine
transformations that map data to targets, and the networks are
then trained on the targets. Data error is used to refer to the
difference between the neural network output and the data
vectors after the preprocessing has been undone, and target
error is used to refer to the difference between raw network
output and target vectors.

The neural networks considered in this paper are multilayer
perceptrons [2] with a linear output layer. The weights of the
linear output layer are algebraically chosen, and then the
network weights that are not in the linear output layer are
chosen by training the neural network using the RPROP [3]
algorithm. The default preprocessing method for vector
valued output data in this paper is mean centering, followed
by principal component analysis and then range scaling. The
range scaling is necessary to match the dynamic range of the
targets and the dynamic range of the nonlinearities of the
sigmoidal activation functions. The principal component

analysis and the range scaling in output preprocessing can
each be expressed as matrix operations, and can be composed
into a single matrix. The entries of this matrix will be used as
weights that determine the node activations in the linear
output layer. An alternative treatment is to further preprocess
the data by taking linear combinations of the principal
components before the range scaling step. This alternative
treatment can improve the network performance in some
cases.

A. Assessing Error in Outputs

When a network is used to compute outputs whose correct

values are known, then the output preprocessing must be
undone to evaluate the data error. There are several reasons
to prefer evaluation of data error to target error. One reason
is that the outputs often have units; for instance, in the sonar
application discussed below, entries in the output data vectors
to be learned have units of decibels, and it is appropriate to
interpret network performance using the units associated with
the data. Another reason is that if a neural network is to be
used as a component in a larger system, then other
components may have requirements for the output vectors
that are incompatible with the raw network output. If this is
the case, then the appropriate error to be analyzed is the error
in vectors that must be used by other components in the
system. Finally, evaluation of the data error makes it simpler
to distinguish between error incurred by the principal
component analysis (due to not spanning all of the variance
with the principal components) and error incurred by faulty
network predictions. The first kind of error can only be
corrected by adjusting the preprocessing steps, but the second
kind of error can be corrected by adjusting weights before the
last hidden layer, e.g., by network training. Examining only
the target error can not yield information about variance in
the data not spanned by the chosen principal components.

B. Multilayer Perceptrons

The notation used in this paper to express the function

computed by a multilayer perceptron is as follows. Let xj be
a vector whose entries are the activations of the nodes in the
jth hidden layer of a multilayer perceptron. The vector of
input node activations to a multilayer perceptron is
represented by i, and the vector of output node activations is

0-7803-7898-9/03/$17.00 ©2003 IEEE 1290

represented by o. The sigmoidal activation function is
written with the symbol ‘σ’. The weights of the connections
used to determine the activations of nodes in layer j are
denoted by a matrix Mj-1, that represents connections between
node in layer j and nodes in layer j-1, and a vector bj-1, that
represents the biases for nodes in layer j. The output of a
multilayer perceptron with a linear output layer and L hidden
layers is defined with the following recursive equations:

()
)3(.

)2(,0,
)1(,

0

111

ix

jbxMx
bxMo

jjjj

LLL

=

>+σ=
+=

−−−

The entries of the matrix ML and the vector bL are

explicitly chosen by the output preprocessing steps, and the
other weights are chosen by neural network training on the
vectors after preprocessing.

II. PREPROCESSING AND ERROR

Output preprocessing has an intrinsic effect on the

tolerance to error of the multilayer perceptron. This is due to
the interaction of the scaling of the outputs and the
nonlinearity of the sigmoidal activation function. The
sigmoidal activation function can be used to increase the
tolerance of a multilayer perceptron to error. If a scalar target
is in the nonlinear region of the sigmoid, then the error will
be less for a given error δ in a prediction before the sigmoid
is applied than if the target is in the linear region of the
sigmoid. For vectors, the error is generally less if the vector
has a large norm than a small norm for this reason.

The default output preprocessing method is principal
component analysis followed by range scaling of the outputs.
The alternative method is to compute an orthogonal
transformation of the principal components before range
scaling. The matrix ML is then used to undo the
preprocessing and transform the last layer of hidden node
activations into the final prediction of the output vector. For
both the default preprocessing method and the alternative
method, the matrix ML will have orthogonal columns, and is
the product of an orthonormal matrix O and a scaling matrix
S-: For the default preprocessing method, O will consist of the
principal components of the data, and for the alternative
method, O will be a matrix of linear combinations of the
principal components. For ML to undo the preprocessing, it
must first undo the range scaling and then the orthogonal
transformation of the preprocessing:

1−= SOM T

L . (4)

The values of the vector of node activations in the last

hidden layer, , which yield the optimal approximation to a
data vector d is

*
Lx

(LL bdSOx −=*) . (5)

In general, there is a prediction error that causes the actual
node activations in the hidden layer before the last hidden
layer to deviate from the optimal node activations by an error
vector ε:

ε+= *

LL xx . (6)

The entries of ε are constrained, since the entries of xL
must lie in the range of the sigmoidal activation function, and
any ε which causes the entries of xL to exceed that range can
not be the result of network error. However, for each
admissible ε, there is a corresponding vector δ, which
represents error in the layer L-1:

()()*1*

LL xx −σ+δσ=ε+ . (7)

The vector δ represents error after transformation of the

vector xL-1 by the matrix ML-1 and vector bL-1, and not error in
the vector xL-1 of node activations. Since the error vector δ is
applied before the sigmoidal activation function is used to
determine the activations of the nodes in layer L, all vectors
are admissible as error vectors if applied before the sigmoid
activation function.

A. Tolerance To Error

The tolerance to error, T(ML,,D) [4], can be estimated as a

function of output matrix ML, and output dataset D. Suppose
that D has n data vectors, each vector written as di, and for
each data vector di there is an error vector δi. For notational
convenience, the data set D is assumed to have vectors with
zero mean, and the bias vector bL is consequently the zero
vector. Then the tolerance to error is computed:

()()∑
=

+− −σ+δσ=
n

i
iiLiLL ddMM

n
DMT

1

11),(. (8)

Here ML

+
 is the pseudoinverse of ML [5]. This quantity

varies for different choices of ML, for the same dataset, due to
the nonlinearity of the sigmoidal activation function.
Additionally, the geometrical properties of the output dataset
will play a role and determine choices of weights for the
matrix ML that lead to small values of T(ML,D).

For empirical study of the role of the matrix ML in network
error, error vectors δi are treated as random variables that are
drawn from a multivariate Gaussian distribution with zero
mean and uncorrelated entries with the same standard
deviation. The probability density function for each of the
error vectors δ is

1291

()
()

δΣδ− −

Σπ
=δ

1

2
1

2/12/2

1 T

ep
d

. (9)

In a multilayer perceptron, the error vectors for a particular

data matrix are fixed once the weights are chosen, and are not
random variables. However, treating the errors as random
variables allows the error properties of the weight matrices S
and O in the last layer of weights to be empirically studied
without training many independent neural networks for a
particular set of output weights.

III. WHEN TO ROTATE PRINCIPAL COMPONENTS

The tolerance to error of the default preprocessing method

for a dataset D is T(PTSP
-1,D), where P is the matrix of

principal components and Sp is a scaling matrix. Some
datasets will be sensitive to a set of orthonormal matrices
such that for an orthonormal matrix O in that set, the value of
T(PTOTSOP

-1,D) is less than T(PTSP
-1,D). These datasets are

characterized by a distortion in their spatial distribution when
the range scaling is applied after rotation of principal
components. Some datasets are relatively insensitive to
choice of O, and the tolerance to error will not change
significantly as O varies. For instance, rotation of a disk or
ellipse does not change the tolerance to error. Rotation of a
multivariate Gaussian has an effect on the tolerance to error,
primarily due to the outliers that will always be part of a large
sample of vectors drawn from a Gaussian distribution. Fig. 1
shows a dataset that has been selected to illustrate conditions
where the choice of O is important.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 1. A range normalized dataset (plotted with dots) chosen for its

sensitivity to rotation, and that dataset rotated 45 degrees (plotted with ‘x’
symbols) before range normalization

Fig. 2. Comparison of tolerance to error of rotated sensitive dataset

(plotted with circles) and unrotated sensitive dataset (plotted with ‘.’
symbols). The points were generated in pairs, with the same noise matrix

applied to the rotated and unrotated dataset for each pair.

Fig. 1 shows the dataset after it has been range normalized

after two treatments. The first treatment is principal
component analysis, and the second treatment is principal
component analysis followed by rotation by 45 degrees.

Fig. 2 shows a comparison of T(PTSP
-1,D) and T(PTOTSOP

-1,
D) for a set of 2 by 2 orthogonal rotation matrices. The
points in fig. 2 were generated in pairs as follows. For each
rotation angle θ sampled between 0 and 360 degrees, a noise
matrix was generated whose columns were distributed as in
(9). A 2 by 2 rotation matrix O was generated which rotated
the vectors in D in the plane by θ degrees. Then T(PTSP

-1,D)
and T(PTOTSOP

-1,D) were evaluated and plotted for the noise
matrix generated. This procedure was repeated several times
for each angle, to show the variability in tolerance to error for
different random noise matrices. Notice the periodic
symmetry in fig. 2. In fig. 3, a different dataset is displayed

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. A dataset chosen for its insensitivity to rotation.

1292

Fig. 4. Tolerance to error for dataset that is insensitive to rotation.

that has been chosen to have little sensitivity to rotation. As
shown in fig. 4, rotating this dataset does not increase
tolerance to error, and the geometrical properties of this
dataset after range scaling are not strongly influenced by
rotation angle. The dataset used for experimental results
below is sensitive to rotation, and rotation of principal
components can be expected to improve network
performance.

IV. EXPERIMENTAL RESULTS

A. Problem Domain: Predicting Sonar Reverberation

 The objective for the problem domain is to train a

multilayer perceptron so that it can predict the reverberation
of a sonar signal in a marine environment. The reverberation
time series is a measure of the intensity of sound that is
reflected back to the sound source via many paths as a
function of time, and is caused by an inhomogeneous marine
environment. The inputs to the network are the sonar
transducer parameters and a description of the salient features
of the marine environment, such as the sound speed profile as
a function of the depth and composition of the sea floor. The
output units are decibels as a function of time, and the data
has a large dynamic range. The data used for training was
simulated by a physics based sonar simulation software
package. Fig. 5 is a plot of the first two principal components
of the data. This dataset has strong assymetry, and the
tolerance to error is sensitive to rotation.

B. Comparison of Performance of Output Preprocessing

Methods

In order to evaluate this method, networks were trained

Fig. 5. First two principal components of output data.

according to different normalization schemes and then their
performance was evaluated on 10000 points of testing data.
First, an explicit optimization was undertaken using genetic
algorithms, and an orthonormal matrix OOptimized was found
which had a high tolerance to error when error was simulated
as in (8). Secondly, a random orthonormal matrix ORandom
was determined by computing the singular value
decomposition of a matrix whose entries were i.i.d. normal
random variables with zero mean and unit variance. Principal
component analysis was used for all three networks to reduce
the dimensionality of the outputs from 600 elements to 50
elements; inspection of the singular values revealed that 50
principal components were sufficient to span the data with
very little error. For each method, seven networks were
trained starting with independent random initializations of
weights. The networks were trained on 20000 datapoints for
10000 epochs. The networks all had the same topology of 30
inputs, 40 nodes in the first hidden layer, and 50 nodes in the
last hidden layer. One group of networks was trained on the
range scaled principal components, one group of networks
was trained on the range scaled principal components after
rotation by the randomly generated orthonormal matrix, and
one group of networks was trained on the range scaled
principal components after rotation by the optimized
orthonormal matrix. Table 1 shows the 95 percent
confidence interval for the mean RMS error for each group of
networks for the testing set. As can be seen from Table 1, the
randomly chosen matrix did the best when the neural
networks were actually trained. Although it had inferior
performance when the networks were trained, the optimized
matrix had superior performance when simulated with (8).

Table 1. 95 percent confidence interval for mean RMS testing error of

networks after training
ML Mean RMS Testing Error
PTSP

-1 (6.57,7.01)
PTOT

RandomSOP
-1 (5.44,5.57)

PTOT
OptimizedSOP

-1 (6.00,6.45)

1293

V. CONCLUSIONS

The output data can play a crucial role in a proper choice
of output matrices that transform the vector of node
activations in the last hidden layer into the networks
prediction of output data. Although rotation improved
network performance, there are several possible reasons why
the optimized matrix yielded inferior performance to the
randomly chosen network. One possibility is that the genetic
algorithms got stuck in one of the many local minima in the
optimization surface. Another possibility is that the structure
of network error must be taken into account when choosing
the output matrix, and that treating error as a random variable
led to an inappropriate optimization function. Nevertheless,
both rotations yielded superior performance to the networks
trained on the principal components, and this technique
should prove useful on many datasets.

ACKNOWLEDGEMENTS
This work was supported by the Office of Naval Research.
T.P.M. wishes to thank Charla Lambert for helpful comments
on the manuscript.

REFERENCES

[1] I. T. Jolliffe, Principal Component Analysis. New York:
Springer-Verlag, 1986.
[2] S. Haykin, Neural Networks: A Comprehensive
Foundation. New York: Macmillan College Publishing
Company, 1994.
[3] M. Riedmiller, and H. Braun, “A direct adaptive method
for faster backpropagation learning: The RPROP algorithm,”
Proceedings of the IEEE International Conference on Neural
Networks, 1993.
[4] T. Mann, “Affine transformations and fan-out neural
networks,” M.S. thesis, University of Washington, Seattle,
WA, USA, 2002.
[5] G. H. Golub, C. F. Van Loan, Matrix Computations.
Baltimore: Johns Hopkins University Press, 1989.

1294

	MAIN MENU
	CONFERENCE PROGRAM
	AUTHOR INDEX

	Search CD-ROM
	Search Results
	Print

	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document

	IJCNN CD-ROM Help
