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Abstract—An unsupervised learning system, implemented as an
autonomous agent is presented. A simulation of a challenging path-
planning problem is used to illustrate the agent design and demon-
strate its problem solving ability. The agent, dubbed the ORG, em-
ploys fuzzy logic and clustering techniques to efficiently represent
and retrieve knowledge and uses innovative sensor modeling and
attention focus to process a large number of stimuli. Simple initial
fuzzy rules (instincts) are used to influence behavior and commu-
nicate intent to the agent. Self-reflection is utilized so the agent can
learn from its environmental constraints and modify its own state.
Speculation is utilized in the simulated environment, to produce
new rules and fine-tune performance and internal parameters. The
ORG is released in a simulated shallow water environment where
its mission is to dynamically and continuously plan a path to ef-
fectively cover a specified region in minimal time while simulta-
neously learning from its environment. Several paths of the agent
design are shown, and desirable emergent behavior properties of
the agent design are discussed.

Index Terms—Autonomous control, clustering, emergent be-
havior, fuzzy agents, self-reflection, unsupervised learning.

I. INTRODUCTION

AN unsupervised problem solver is presented, imple-
mented as an autonomous agent. The agent is a software

algorithm with an advanced sensory interface, learning facility,
speculation abilities and self-reflection capabilities. It is applied
to a path-planning problem in a simulated environment. The
agent algorithm, dubbed the ORG (for organism), was designed
to address specific existing agent architecture limitations. An
overview of autonomous agents is given followed by the design
objectives used for the ORG architecture.

A. Review of Prior Research

Agents are complete systems that integrate sensors, per-
ception, knowledge, and learning modules to achieve broad
goals. All these components operate together and have a simple
communication mechanism. An agent is situated in time and
space. It deals with problems in an incremental, real-time
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iterative fashion. Environmental constraints are exploited in
agent design and environment features can aid the agent in
achieving its goals. For example, if an agent is restricted to
move on a two-dimensional surface, it can customize its sensor
interface to use the horizon as a reference point.

Side effects arising from the agent’s interaction with the
environment and from the interaction of its internal modules
are often desired and help the system achieve complex goals
without complicated heuristics and explicit hard rules. Previous
work [1], [2], [4], [9], [10], [12] provides an extensive set of
autonomous agent architectures. A good overview of agent
architectures, limitations and the fundamental differences
among traditional artificial intellignece (AI) approaches is
found in [3], [6], and [13].

Any autonomous learning system has to deal with a number
of issues, some of which are mentioned here.

1) Action Selection: What should the agent perform, from
a potentially large set of possible actions to optimize the
achievement of its goals? With unsupervised agents this
is especially difficult since the goals themselves can be
time varying or ill-defined in terms of a single iteration
step

2) Learning from Experience: The agent should become
better at achieving goals with experience.

3) Scaling to larger problems: An agent should be able
to handle increasingly complex problems that demand
a greater amount of knowledge, and to process an in-
creasing amount of sensory information.

4) Attention focus (reactivity): In a rich environment, a large
amount of sensory information needs to be processed.
The agent should be able to focus its attention on a
small number of relevant stimuli so it reacts in real time
and makes an optimal action selection based on the few
stimuli that were chosen.

5) Modularity: Software engineering dictates functional de-
composition: components should be designed according
to their function, leading to a system easier to build and
maintain.

Problems one, two and three are tackled through the simplicity
and inherent explanation facility of the fuzzy system used by the
ORG (Sections III, V, and VI). The sensor architecture of com-
bining adjustable virtual and real sensor ranges provides a tun-
able solution for tackling large amounts of stimuli and addresses
issues one, four and five (Section IV). Finally, the ORG software
design coupled with a new symbol system provides a portable,
modular architecture addressing issue five (Section III).

1063-6706/04$20.00 © 2004 IEEE
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B. Multiagent Systems

Agents can exist in a cooperative society of similar agents.
Since they are independent they can be assigned different tasks
and concurrently tackle different aspects of a problem. Sharing
information is an option.

In [10], the authors present a software system for defining
multi-agent missions. The work in [10] presents a software
environment using object-oriented techniques to define agent
behavior and situate the agents in an environment. Rules
and module interconnection are defined in computer code a
priori and then compiled to produce the robotic agent. The
ORG instead chooses a flexible representation system based
on a combination of fuzzy logic and software data objects.
Fuzzy rules and a fuzzy logic inference already provide well
established mathematical means for combining multiple human
readable rules and dealing with partial or inaccurate sensory
information (the fuzzy inference and defuzzification proce-
dures employed by the ORG are described in Appendix A,
Section A). Software engineering is utilized to make the agent
modular, portable and easier to maintain.

Another approach, used to compose heterogeneous agent im-
plementations and coordinate planning between them is found
[16], [17]. The MPA work builds significant infrastructure to
support multiple cooperating agents that distribute the planning
process. An evolution of a hierarchical task network (the survey
in [17] mentions in more detail the planning systems used in
distributed planning) is employed as the multiagent planning
facility. In [17], the case is made for agents that continually
alter their plan due to the dynamic nature of their environment.
The ORG architecture presents a single agent interacting with
its environment, and with the inclusion of “instincts” and long
term goals, with its human operators. A dynamic environment
is taken into count with the creation of reactive short terms rules
and by incorporating environment feedback in new rules. Unlike
the MPA work, however, communication and distributed plan-
ning is not addressed in this work. Given the limited scope of
this project, the focus has been on the features listed in the fol-
lowing section.

C. ORG Design Features

The main ORG features are summarized as follows.

1) Simple interface for adding heuristics, explanation fa-
cility: Stimuli, rules and acquired experience is repre-
sented as a collection of software objects. Fuzzy logic
methods are used to manipulate them, providing an easy
methodology for adding domain knowledge and inter-
preting what the agent has learned at any time during its
operation.

2) Attention focus mechanism that can deal with large
number of stimuli: A fuzzy-logic based stimulus ranking
technique (Section VI-B), combined with a range de-
pendent sensory model, enables the ORG to focus its
attention to a small number of stimuli (from a large pool
of candidates). Range dependent modeling uses two
distance thresholds to determine if stimuli should be
evaluated (Section IV-A).

3) Reactive and long-term behavior use: The agent com-
bines the reaction to multiple stimuli in its immediate en-
vironment with the reaction to long term goals defined
either before the ORG comes online or during its opera-
tion.

4) Self-Reflection ability: The ORGs internal state is rep-
resented by the same symbols used to describe external
stimuli. This allows the ORG to generate a reaction to its
current or future state and affect its next state transition.

5) Platform and application independent interfaces: The
ORG is implemented in a system of software modules
that abstract their functions and hide problem or platform
specific details. This makes the agent reusable and
portable.

6) Large problem scalability: The application chosen
demonstrates the scaling ability of the ORG since it
requires hundreds of stimuli to be evaluated before a
reactive decision is made. It also presents unique diffi-
culties since stimulus properties change depending on
their relative position to the ORG. The ORG performs
well in this scenario and even in its current form meets
real time constraints.

II. APPLICATION AND SIMULATION ENVIRONMENT

DESCRIPTION

To better illustrate the ORG architecture, the simulation of
a challenging real world problem is described and used as a
running example throughout this work. A description of the
problem is given as follows.

A vessel carrying a sonar/hydrophone array needs to ef-
fectively search a large volume of ocean water in order to
detect underwater targets. Acoustic models are used to gen-
erate sonar performance predictions, which then are used
to calculate probabilities of detection for a finite number
of points in the ocean.

The ORG is generating the vessel path that meets the physical
constraints of the vessel, the time constraints of the task and
minimizes the probability a target went undetected. Note that if
the environment is known, the ORG simulation can be run be-
fore a real vessel goes to sea or it can be run concurrently, taking
into account sampled environmental values and other changing
parameters.

A. Simulation Environment

A three-dimensional virtual environment represents a
16 000X16000X200 m water volume. A grid point is placed
every 1 km in the XY plane and every 15 meters in the Z plane
(depth). Fig. 1 is a graphical representation of the simulation
environment.

Fig. 1 illustrates the virtual targets in the simulated environ-
ment with the ORG path overlaid at the surface. The virtual tar-
gets are colored according to the sonar performance at the tar-
gets location. The ORG trajectory is colored to illustrate incre-
menting iteration numbers.

Each grid point is modeled as a static external stimulus and is
sensed if it falls within the agent’s sensory range. Each stimulus
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Fig. 1. ORG virtual environment.

has a number of dynamic properties that change depending on
its position relative to the agent and the number and duration of
prior encounters. Table I lists these properties.

The signal excess property above reflects the sonar perfor-
mance prediction. This value (and the associated probability of
no detection) changes for each stimulus depending on the ORGs
distance and orientation. This adds a challenge to the path-plan-
ning problem since the agent’s perception of the environment
changes as it moves. For example the same grid locations (and
the stimuli representing them) will look entirely different to the
ORG if it approaches them from two different angles.

B. Application Parameters

The agent assumes the role of the surface vessel searching
the simulated environment, carrying a sonar/hydrophone array
through a large water volume. The task is to form a path that
minimizes the probability of a target being present and unde-
tected for all grid points. The constraints can be sum-
marized as follows:

1) arbitrary velocity changes are not allowed and are con-
strained by physics;

2) the simulation objective must be achieved within a certain
time.

III. OVERVIEW OF INTERNAL ARCHITECTURE

A. Algorithm Flow

The ORG is implemented as an object oriented program with
a primary iteration loop. A single iteration step is illustrated
in Fig. 2. The action selection module at the bottom of Fig. 2
performs the last step in the iteration. The next iteration starts
after the ORG collects environment information and passes the
environment data to the sensor module at the top.

The bidirectional arrows indicate that even if the ORG archi-
tecture is generally a feed forward loop, there exist mini-loops
that feed back information. The core module is invoked multiple
times from within other modules and there is no strict hierarchy
among components (i.e., this is a flat network).

B. Internal Representation and the ORG Symbol System

Before the sensory module and the learning mechanism is
presented, the manner by which the ORG stores information in-
ternally is explained. This section introduces the software sym-
bols utilized to create internal representations of stimuli and the
ORG itself.

The physical symbol system hypothesis [11] proposes that a
physical symbol system has the necessary and sufficient means
for general intelligence. Newell differentiates between the sym-
bols (the abstraction of physical phenomena) and tokens (the
physical instantiations). A symbol system has the following [3]:

• Memory: to store the symbol information;
• Symbols: to provide a pattern to match or index remote

token information;
• Operators: to manipulate symbols;
• Interpretation: to derive operations from the symbols.
• Capacities for:

1) sufficient memory,
2) composability (the operators may make any symbol

structure),
3) interpretability (the symbol structures be able to en-

code any meaningful arrangement of operations).

A versatile symbol system and symbolic architecture that min-
imizes memory utilization and allows for efficient lookup of
knowledge is proposed here. The ORG defines data structures
to represent stimuli, fuzzy rules and its own internal state. The
data objects and the methods used to manipulate them create
the ORG symbol system. The code implementation is the fixed
symbolic architecture

The ORG software architecture defines a set of data struc-
ture objects used as primitives for information exchange and
knowledge acquisition. The primitives are used as flexible con-
tainers capable of representing a wide range of objects with
varying numbers of properties. Fig. 3 shows the object hier-
archy. Here is a sample C language declaration of the object
types (the ORG code is implemented in MATLAB 5 m-file lan-
guage but C equivalent code is used here for clarity).

typedef struct _PROPERTY_OBJECT {
DWORD ObjectType;
BYTE Index [MAX_PROPERTIES];
BYTE PropertyValues [MAX_PROPER-

TIES][MAX_SIZE];
} PROPERTY_OBJECT;

typedef struct _MEMORY_OBJECT {
PROPERTY_OBJECT ConditionObject;
PROPERTY_OBJECT EffectObject;
BYTE MergeCount;
BYTE LastIterationUpdated;

} MEMORY_OBJECT;

The matrix contains the
values for each property vector (row N, for property N). Each
property can optionally have an associated time derivative,
which is treated as a separate property and assigned an index
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TABLE I
LIST OF PROPERTIES IN EACH STIMULUS

Fig. 2. Single iteration step of the ORG loop.

number of in . (N is the
column index assigned to the original property, is the
column index of its first derivative). Derivative properties used
for the application described are ,
(speed) and (velocity). A property is considered
active if is set to one, where N
is the assigned property number. The properties active in the
internal representation correspond to the physical properties
present in the stimulus. The same symbol (
in this case) can thus be used to describe different types of
stimuli, with different physical properties.

C. Representation of Stimuli and the ORG State

A stimulus is represented using a . The in-
ternal ORG state is also represented using the same object but
its field is different (see Table II) and has a dif-
ferent set of active properties. This allows the core module (Sec-
tion VI) to filter learned associations intended for self-reflection
(Section Section VII-B) and not use them to generate reactions
to stimuli.

Sample “C” code for defining the internal ORG state is given
as follows:

Fig. 3. Symbol hierarchies.

An external stimulus (the virtual targets in each grid point) is
defined as

IV. SENSOR MODULE

Information about the environment gathered from various
sensors flows first through the ORG sensory module. Separate
functions within the module process raw information and create
standard data structures (Section III-B) to represent discrete
stimuli. A stimulus can appear discrete under a low-resolution
sensor and appear as multiple interconnected objects under a
more advanced sensor. In the simulation discussed here, all
external objects are discrete with a fixed number of observable
properties (Table I).

Whenever the ORG encounters a stimulus it creates an
internal representation of that object using the PROP-
ERTY_OBJECT structure. Due to learned experience or prior
knowledge in the form of initial rules, the ORG might have a
reaction to that representation. The reaction (described in Sec-
tion VI-B) is the effect the stimulus will have on the next ORG
state. That effect is also modeled using a
and associated with the internal representation of the stimulus
using a . The combined reaction to all stimuli
forms the state transition from the current ORG state to the
next.

A. Stimulus Filtering

The distance property is compared to a threshold to determine
if the object is sensed in the current iteration and if its internal
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TABLE II
INTERNAL REPRESENTATIONS OF OBJECTS

TABLE III
EXPLANATION OF RANGE DEPENDENT SENSOR BEHAVIOR

representation will be made available to the ORG. For this sim-
ulation the distance property has an infinite range, which means
that no matter how far away an object is its distance can be de-
termined. As the ORG encounters stimuli it creates data objects
to represent them internally. In the simulation presented here,
each stimulus is a virtual target placed at a fixed location on a
grid. When the object falls within range, its internal represen-
tation becomes part of an internal map of the environment. Not
all properties active in the representation of the stimuli, (
is one example), have a physical equivalent. They are, instead,
virtual properties that are only present in the data object used for
the internal representation of the stimulus. This is an application
dependent behavior and, in the current simulation, is needed to
keep track of the cumulative associated with all virtual tar-
gets the ORG encounters.

The ORG employs two sensor thresholds to distinguish be-
tween the actual sensor limitations and when
to make the internal representation of a stimulus “available”

. Internal representation properties are updated
only for stimuli that are within a close range .
In a real environment (vs. the simulation discussed here)

is reduced to the physical limit of the particular
sensor, or even smaller (here, it is set to 6 km). This sensor
modeling is summarized in Table III and utilizes spatial locality
to select a small number of relevant stimuli.

The ORG is capable of creating internal representation of
stimuli from the following two sources:

1) the environment—with sensors providing the data de-
scribing each object;

2) a model—with a preinitialized environment filled with
virtual objects, as in a simulation.

In the simulation discussed here, if the human designer has
model-supplied data or prior knowledge of the area being

searched, he/she can preinitialize a virtual environment with
objects so that the ORG can sense and create internal repre-
sentations. Then the ORG merges both the virtual environment
with the real world representations to make decisions. This
approach works for the specific application and might not
be possible with other applications due to the frame problem
discussed in [3] (section on architecture issues). The frame
problem arises when the agent cannot easily associate an
internal representation of an external object either because the
object is moving or because the sensor information is not suf-
ficient to distinguish it from others. In the simulation the static
virtual targets are placed on a regular grid pattern, allowing the
ORG to associate internal representations of stimuli created at
some point in the past, with currently observable virtual targets.
In [9], multiple agents pursue each other but the frame problem
is also addressed in the simulation by assigning unique color
to each agent.

V. INSTINCTS

Instincts are abstract rules that influence ORG behavior
throughout the simulation. In this application instincts instruct
the ORG how to react to external stimuli and long-term
goals. The human designer forms instincts by specifying a

and then invoking the Core module in order
for the ORG to learn the new association. The learning function
is described in the following section. Once an instinct becomes
part of the ORG, it can be modified during the simulation, just
like other knowledge. The representing the
instinct translates to a fuzzy linguistic rule. The antecedents
refer to properties in the internal representation of a stimulus,
the consequents describe the effect that sensing this stimulus
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will have on the ORG state. One of the instincts used in this
simulation is described as follows.

IF is VERY LARGE and Induced change in ORG
direction (dTHETA/dt) due to this stimulus is VERY
SMALL and distance to stimulus is SMALL THEN
attempt LARGE DECREASE in distance to stimulus with
the intent of LARGE DECREASE in in the location
of the stimulus.

Instincts can provide a performance indicator and the notion of
intent if they specify the derivative of an internal ORG property
and the desirable change direction (negative or positive). The
intent property must be part of the Effect portion of the instinct
and must not map to a motor function. This is how the ORG
discovers intent properties. In this context, “intent” is a vague
effect property that helps the ORG determine the motivation
behind the instinct.

The use of instincts highlights one desirable feature of lazy
learning methods (see [7, p. 245]): Vague rules representing
prior knowledge of the problem domain are utilized to sustain
performance when available training instances are scarce or
not available. An example of an instinct is given as follows in
MATLAB5 script language.

%
% Define condition property object
% Active properties we look for in the
stimulus are
% 1) its current probability of detec-
tion
% 2) the deviation it would cause to
our current velocity
% 3) its distance from the ORG
% The variables are defined as fol-
lows:
% PROB = probability of target present

% THETA = angle between the ORG ve-
locity vector and the
% direction vector to the stimulus
(THETA+1 is the first
% time derivative)
% DIST = Euclidean distance to the
stimulus
% FUZZY_SET_xxxx = Fuzzy set support
(center) number. It
% characterizes the fuzzy set
to use. This can
% be used if a crisp number
is not desired.
% pI is a variable of type PROP-
ERTY_OBJECT used to specify the
% condition portion of the instinct
% pO is a variable of the same type,
used to define the effect
% portion of the instinct. The in-
stinct is then defined by
% variable m, of type MEMORY_OBJECT.

pI = PROPERTY_OBJECT;

pI.Index(1,[PROB THETA+1 DIST ]) = [1
1 1];
pI.Type = bitor (STIMULUS_EX-
TERNAL,STIM_RT);

pI.Values(PROB) = FUZZY_SET_LARGE_POS-
ITIVE;
pI.Values(THETA+1) = FUZZY_SET_ZERO;
pI.Values(DIST) = ORG.Con-
straints.NearSensorRange;
%
% Define the effect property object.
% Only one motor action is defined:
Decrease distance
% One intent property is defined: De-
crease probability target is
% present
%
pO = PROPERTY_OBJECT;
pO.Index(1,DIST+1 PROB+1]) = [ 1 1];
pO.Values(DIST+1,1) =
FUZZY_SET_LARGE_NEGATIVE
SIM.ORG.PropertyObject.RangeHi

(DIST+1);
pO.Values(PROB+1,1) = SET_LARGE_NEGA-
TIVE;

% Create rule association in the form
of a MEMORY_OBJECT

m = MEMORY_OBJECT;

m.P = pI;
m.Effect = pO;

% Call the CORE_LEARN function to
cluster the memory object to
% the ORG’s existing knowledge

Core(CORE_LEARN,m);

VI. CORE FUZZY SYSTEM

The core fuzzy system is a variable-input–variable-output
fuzzy engine that uses the data structures defined above to
determine the relevant information content to be used from
each learned fuzzy association. A fuzzy association is a rule
comprising of an input and output pair. The rule is in human
readable form since it can be translated to a linguistic rule in the
form described in Section V. A clustering algorithm is used to
compress information and merge similar pairs with each other.
ORG modules invoke the core fuzzy module (central block in
Fig. 1) in the following modes of operation.

1) CORE_LEARN—The caller module supplies a
with a condition and effect object.
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The core learns this new association through fuzzy
clustering

2) CORE_REACT—The caller module supplies a
with only a condition object (the

effect is left empty). In response the core generates
a reaction to this condition using all relevant existing
associations. The reaction is returned in the form of
an effect . If there are no relevant
associations in the ORG’s memory, an empty (null)
reaction is generated and the ORG does not modify its
behavior due to this condition object.

3) CORE_RECALL—The caller module supplies a
with only a condition object (the effect

is left empty). The core will attempt to find all similar
condition objects and return them in a list, using a fuzzy
membership indicator (discussed in Section B) to rank
them in descending order

Note that the Core module could potentially use a different algo-
rithm for learning and later recall condition/effect pairs. Fuzzy
logic is used because it provides an explanation facility. Learned
rules are in human readable form and for each input presented
to the core fuzzy engine, the human designer can trace which
rules, and to what extent they contributed to the output ([14]
and [15] are highly recommended for readers not familiar with
fuzzy logic).

A. Learning New Associations (CORE_LEARN)

This function is used to add a new to
the existing rule base. It uses the clustering procedure de-
scribed in Appendix A to add a new condition/effect pair

. New clusters are created or old ones absorb
the new MEMORY_OBJECT as needed in order to fit the finite
memory implementation of the ORG. Learning is described in
more detail in Section VII.

B. Reacting to a Stimulus

The sensor module (top block in Fig. 1) creates a condition
object for each stimulus within , invoking the core
(module B) for a fuzzy reaction to this condition. A fuzzy reac-
tion is the output produced by evaluating the input through (2)
in Appendix A for each rule in the fuzzy rule base. The core
then returns a fuzzy output object [Appendix A, (3)], which
is combined to form a condition/effect pair in the form of a

. Each pair is then ranked in descending order
based on the total fuzzy membership value its condition gener-
ated when compared to all existing rules. That value is called the
fuzzy rule base membership indicator and is calculated using
standard fuzzy logic inference techniques [Appendix A, (2)].

High membership indicators indicate that the particular stim-
ulus matched well to the already learned associations (such as
instincts) in the core. The effect objects of the highest ranked
N pairs are then averaged together and used as the combined
reaction to the environment for this iteration. N is a tunable
parameter in the ORG state and is usually a small percentage
of the number of stimuli within . Using the fuzzy
membership indicator of how relevant existing rules are to the
current stimulus, combined with range dependent filtering, de-

Fig. 4. Process of self-reflection.

Fig. 5. Speculation process.

scribed in Section IV-A, comprises the ORG attention focusing
mechanism.

C. Long-Term Goals

Long-term goals motivate the ORG to escape local minima
and provide the means for human objectives to be incorporated
into decision-making. A long-term goal is defined by the fol-
lowing.

1) A describing the long-term stimulus.
This can describe an object, physical or virtual, with any
number of active properties. It can also be a desired future
internal ORG state

2) A fuzzy association between a condition and an effect (a
) that tells the ORG how to react to the

object in 1).
During ORG initialization (before the iteration loop starts) a list
of all known long-term objectives is created and used during
the iteration loop to generate a cumulative long-term reaction.
The aggregation of ORG reactions to each long-term stimulus
is done in the same fashion as with the sensory stimuli, but with
no ranking. This means all long-term objectives are considered.

1) Dynamic Long Term Goal Generation Utilizing Sensed
Stimuli: The highest ranked internal representation of a stim-
ulus with a distance to the ORG, which satisfies the inequality

is added to the long-term list. The process of adding internal
representations of desirable stimuli, that satisfy the above
inequality, to a volatile list for future evaluation, is the ORGs
dynamic long-term generation facility. In this simulation, “de-
sirable” are stimuli with a high property, due to the instincts
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Fig. 6. Translation of a stimulus reaction, to an ORG state transition.

used. The list of stimuli is used to keep the ORG reacting to
some input in situations when no desirable stimulus is within
sensor range. This reduces the chance the ORG stagnates (no
longer moves or moves in circles). Objects that have come
within close range in the past will stop being considered in the
long-term list because the ORG can affect their values
making them less relevant to one of the current instincts. This
eliminates the need of keeping track when a goal generated
with this means has been “achieved.”

D. Clustering Algorithm

A variant of the sequential fuzzy c-means algorithm [5],
with no predetermined number of clusters, is used to classify
rules based on their condition (input) .
Each cluster is the association of an input
(for example, a stimulus) to an output
(the effect the stimulus has on the ORG). The input object is
condition portion and the output object is the effect object.
The fuzzy membership of the input condition to the condi-
tion object of the cluster is used as the clustering threshold.
Clusters are represented by and are created
dynamically based on a global expansion threshold [defined
in Appendix A, (1)]. A maximum number of clusters can
optionally be specified to force any new associations to merge
with an existing cluster. The clustering method (described in
Appendix A) is a data driven approach with certain thresholds
determining the maximum number of clusters after instances
are classified.

VII. LEARNING

The ORG can learn by

1) observing the changes imposed by the environmental
filter and learning environmental constraints;

2) speculation and experimentation.

A. Environment Filter

As mentioned earlier (Section IV-A), the combined reaction
to external stimuli is used to generate an effect on the ORGs cur-

rent state. The effect object contains the state transition matrix
for the ORGs motor functions. Motor functions are described
by properties only active in the ORG internal state. The state
transition matrix is comprised of derivative properties that ex-
press the transition of each property from its current state to the
next (note that state changes only between iterations). Before the
state transition matrix is applied to the current ORG state, the
simulation code ensures that the transition will not violate phys-
ical laws and constraints of the vessel the ORG is emulating. To
guarantee this, each state transition is filtered through an envi-
ronment filter module.

The filter module emulates the natural world. It uses phys-
ical models and modifies the state transition matrix to fit the
constraints of the environment and of the vessel the ORG is
controlling. The modified state transition is called the filtered
state transition and is compared with the original state transi-
tion. If they differ, a condition/effect association is created in
the form of a with the intended state transi-
tion associated with the filtered state transition. By repeatedly
learning similar cause and effect relationships the ORG can use
the learned fuzzy associations to predict environmental con-
straints and self-reflect (see following section) on its intended
state transition.

B. Self Reflection

The ORG makes decisions based on the following input:

1) sensory information from its current environment (Sec-
tion IV-A);

2) long-term objectives (Section VI-C);
3) its own internal state.

Each state transition generated by the core fuzzy module
should adhere to physical constraints. The ORG addresses this
by learning prior modifications to its state transition, imposed
by the environment filter, and then utilizes that knowledge
each time it attempts to modify its state. That process is called
self-reflection since the ORG generates a reaction to the
internal representation of its proposed next state. That reaction
is then applied to modify the proposed state change before it is
translated to motor functions (Fig. 4).
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The self-reflection feedback loop is run only once per itera-
tion.

C. Speculation and Experimentation Facility

Speculation is part of the learning process and is used to eval-
uate new rules and determine appropriate motor function map-
pings for reactions generated by the core module. The ORG
starts the speculation procedure by creating one or more alter-
nate versions of itself through experimentation. It then runs the
alternate version(s) for N iteration steps, reacting to a snapshot
of the environment and performing N “soft” state-transitions,
predicting the sensory input at each step. At the end of the spec-
ulation run, the ORG compares the performance of the alterna-
tive ORG(s) with the original ORG (which also run for N time
steps in parallel) and chooses the one that performed better, ac-
cording to the instincts of the original ORG (Fig. 5). The simula-
tion environment makes speculation feasible since its possible
to predict sensory input as the ORG moves in the simulation
space.

This strategy differs from those presented in [2] since it
compares the alternative system as a whole, not just the new
rules created by experimentation. Emergent properties that
arise during the N iteration steps can then be observed and
utilized in determining the usefulness of the experiment.

D. Experimentation Strategy

The ORG experiments in the beginning of speculation by cre-
ating new condition/effect associations or by slightly modifying
existing knowledge. Each new fuzzy association (represented by
a ) is then presented to the core fuzzy module,
operating in the CORE_REACT mode. If a similar association
exists in the core, a high fuzzy membership indicator will be re-
turned and the new fuzzy association will be discarded. If the
new fuzzy rule is kept however, the ORG is cloned (see Fig. 5)
creating an exact replica of itself. The clone then adds the new
rule to its fuzzy rule base (see Appendix A, Section B for the
process of clustering a new rule) and the clone is evaluated as a
whole for N iteration steps.

VIII. ACTION SELECTION

The sensor module invokes the core module to generate a re-
action using all the learned associations and instincts within the
fuzzy rule base. The reaction is an effect data object. The prop-
erties present in the effect might not map exactly to ORG motor
functions since they were generated by using a number of vague
rules (instincts) and acquired knowledge. Thus, an application
specific function is called to perform a translation (translation
module in Fig. 6). If the agent is not given, the motor function
to action mapping, it can learn how to create that mapping by
experimentation. The instincts provide the means to determine
which coordinated motor action is required, given a vague effect
property.

While experimenting, the ORG can determine which motor
function resulted in the desired effect described by the instinct.
For example, the instinct in Section V calls for the ORG to
decrease distance to a stimulus. If the ORG creates a velocity

Fig. 7. Tendency to cover new area.

vector that brings it closer to the stimulus (during experimenta-
tion), this motor action will then be associated with the effect
property in the instinct.

IX. DISCUSSION OF RESULTS

The ORG produced several paths through the simulated en-
vironment that met the constraints. Different environment sizes,
starting positions and initial instincts were tried. Also, different
features and capabilities of the ORG were modified to observe
the effect they had on the ORG path.

A. Side-Effects Resulting in Emergent Behavior

By utilizing different instincts and by modifying the values
for and , interesting side effects
emerged. The side effects described in the following sections
emerged because of the interaction of the ORG with the specific
simulation environment described in Section II.

Three different instincts were used (in descending order of
complexity) in the simulations described in the following sec-
tions.

1) IF is VERY LARGE, THEN attempt LARGE
DECREASE in distance to stimulus with the intent of
LARGE DECREASE in in the location of the
stimulus.

2) IF is VERY LARGE and Induced change in ORG
direction (dTHETA/dt) due to this stimulus is VERY
SMALL, THEN attempt LARGE DECREASE in dis-
tance to stimulus with the intent of LARGE DECREASE
in in the location of the stimulus.

3) IF is VERY LARGE and Induced change in ORG
direction (dTHETA/dt) due to this stimulus is VERY
SMALL and distance to stimulus is SMALL, THEN
attempt LARGE DECREASE in distance to stimulus
with the intent of LARGE DECREASE in in the
location of the stimulus.

1) Motivation to Always Keep Moving Toward Unvisited
Areas: In the discussion of the sensory interface we men-
tioned that the virtual properties of only the stimuli within

are changed. In this simulation this translates to
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Fig. 8. ORG run with instinct 1 and with T = 5000 m, T = 8000 m.

the probability values being reduced since they came within
close range of the ORG. Those stimuli thus become “un-attrac-
tive” (dashed objects in Fig. 7) and cease to influence the ORG,
effectively pushing the agent toward any unaffected objects
that lie in the area between and
(objects with solid gray or black colors). Due to inertia a further
bias exists that pushes the ORG toward the objects that lie in
its current direction of movement (solid black objects). This
behavior resulted with any of the three instincts due to one
common condition found in all of them: decrease distance to
stimulus based on probability.

As Fig. 7 illustrates, the ORG has a bias toward stimuli that
lie in its current path where distance satisfies the inequality is

.
2) Rapid Probability Reduction Versus Exhaustive, Longer

Path: A side effect of the attention-focusing scheme employed
by the agent was that the ORG moved fast through the entire area
(thus reducing rapidly the total probability a target was present
and un-detected). However a very small portion of the search
area was not covered. This is a typical result present in all sim-
ulation runs and is illustrated in Fig. 8, where only the upper
right corner still has a large average probability for that depth
column.

Fig. 9. Rapid probability reduction.

The position of the ORG during each iteration step is repre-
sented by a point in the path overlaid on top of each mesh in
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Fig. 10. Results when instinct 2 was used.

Fig. 5. Each iteration corresponds to 30 seconds of real time,
with a constant ORG speed of 10 knots. The ORG starts on the
bottom left corner of the first snapshot and then follows a di-
agonal path through the search area turning left when it reaches
the upper right corner. The path is color-coded to reflect the time
progression. The three dimensional colored mesh under the path
represents the average probability of target present per
depth column. The thin lines connect points in the ORG path
to the centroid of the ten most attractive stimuli at each iteration
step. The last plot in in Fig. 8 illustrates the diminished returns
after iteration 250: the ORG has already reduced the overall
probability and is focusing in the lower right corner (red loop
in the path) in an effort of diminished returns.

Fig. 9 is plot of the total probability reduction vs. iteration for
the path in Fig. 8. In the first 50 iterations, the ORG had reduced
the overall probability by more than 80% of its initial value.

3) Dependency on and the Number of Stimuli
Chosen Per Ranking: The ORG employs two sensor thresh-
olds (Section IV) to distinguish between the actual sensor lim-
itations and when the internal representation
of a stimulus should become available . If the

is expanded to a number close to the size of the
simulated environment, the ORG sees all grid points from any
position and hundreds of stimuli get processed during each it-
eration step. This is desirable if the human designer wants the
ORG to take advantage of prior knowledge of the entire envi-
ronment, while at the same time reacting to stimuli within close
range.

Instinct 1 gives no preference to distance or angle from the
current ORG path, evaluating stimuli only based on their current
probability. This creates erratic paths since stimuli far apart (and
ranked high enough to be chosen with the top N stimuli) gen-
erate conflicting reactions from the ORG. Even when instinct 2
is used, unsatisfactory results are obtained (Fig. 10). Note that
for the path in Fig. 10 each iteration step represents 90 s (pre-
vious paths used 30 s) so this path is especially time consuming.

Fig. 10. is from an ORG simulation with
and instinct 2 utilized. Fig. 11 is the resulting ORG

path when instinct 3 was utilized and ,
. With all other parameters remaining

the same the resulting path was much shorter and smoother.

The attention focusing mechanism depends highly on the
fuzzy membership indicator computed for each stimulus in the
sensor module. Utilizing an instinct with more input condition
properties (instinct 3) makes the fuzzy membership indicator
sensitive to more information per stimulus. Stimuli that looked
“desirable” with instinct 1, now ranked very differently, helping
the ORG focus better. These results strongly suggest that the
complexity of the instinct must increase with the amount of
stimuli being processed.

B. Effects of Learning on the ORG Path

In the previous section, we presented the ORG behavior that
emerged out of the simple instincts and the ORG architecture.
Environment constraint learning and speculation were not en-
abled. In this section we will discuss the resulting ORG paths
when learning is utilized during the simulation.

When learning was enabled the attempted ORG state tran-
sitions adhered more to the physical constraints, reducing the
changes imposed by the environment filter. The information
contained in the ORG core memory module reflected which
type of fuzzy associations the ORG had learned at the end of the
simulation. Since the ORG memory has a finite size, when the
memory limit was reached, the clustering algorithm would ei-
ther replace fuzzy associations entirely or modify existing ones.
Fig. 12 shows the number of clusters in the ORG core memory,
updated or replaced during the simulation. If a cluster was re-
placed, this shows when the replacement took place. Note that
cluster 1 is occupied by the instinct, and it’s the only one that
did not get replaced by the fuzzy associations produced from
learning.

Fig. 12 shows the iterations during which the core clusters
were last updated for the simulation in Fig. 15. Fig. 13 and
Fig. 14 contrast the ORG path between simulations with
learning external constraints enabled and one with learning
disabled. All other simulation parameters were identical.
Utilizing learning to alter the next state transition produced a
smoother, shorter path as illustrated by Fig. 14. The probability
reduction was nearly identical between the two runs. Each
ORG path missed stimuli on one of the corners primarily due to
the very short physical range (3 km). Fig. 15 is the simulation
result when the physical range was set to 6 km and physical
constraint learning was enabled. The entire space was covered
and the total average probability was reduced to near zero.

Fig. 13 is the resulting ORG path with
, and with instinct 3 utilized.

Learning from constraints disabled.
The ORG path with same simulation parameters as Fig. 13

but with learning from external constraints enabled produces a
smoother and shorter path (Fig. 14.)

Fig. 15 is another illustration of the posistive effects
of learning. For this ORG path ,

and instinct 3 was used.

C. Robustness

The outcome of many simulation runs revealed that the ORG
produced desirable paths independent of its starting position and
orientation. The simulation run of Fig. 16 has the same param-
eters as that of Fig. 15 except the ORG starting position. The
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Fig. 11. Resulting path when instinct 3 used.

Fig. 12. Clustering results with learning enabled.

ORG starts in position (1000,1000,0) instead of (8000,800,0).
The path is different form compared to the path in Fig. 15 but
the two paths took approximately the same time (103 iterations
versus 111 in Fig. 15) and the final overall probability was near
zero in both cases.

X. CONCLUSION

An unsupervised problem solver implemented as an au-
tonomous agent has been proposed in this paper. Utilizing data
objects for flexible knowledge representation and fuzzy logic
for storing and retrieving information, the agent provides a
new physical symbol system. Abstract initial rules shape the
agents behavior and provide the means to discover global intent
behind the human supplied heuristics.

By implementing the core learning system using fuzzy logic,
the issues of action selection, knowledge representation and at-

tention focusing are addressed with simple and proven means.
Fuzzy membership indicators are used to optimize learning and
focus the agent’s reaction when dealing with large numbers of
external stimuli. Sensor modeling based on two different range
thresholds merges internal representations of stimuli with the
actual sensor data allowing for hybrid model/real world envi-
ronments. By observing the modifications imposed by the en-
vironment on the agents suggested state transitions, the ORG
can learn physical constraints and adapt its behavior to comply
with the constraints. Speculation and experimentation is used to
expand the ORGs abilities and fine-tune its performance. Ex-
perimentation allows the ORG to gradually map vague fuzzy
reactions to motor functions.

Several simulation results are presented that illustrate typical
ORG behavior. Side effects of the instincts and ORG architec-
ture are discussed in detail demonstrating that complex and de-
sirable (for the specific application) behavior emerges out of
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Fig. 13. Results with learning disabled.

Fig. 14. Results with learning enabled.

Fig. 15. Learning enabled, larger sensor range.
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Fig. 16. ORG path with starting position at (1000,1000,0).

simple heuristics and a flexible architecture. The effect of ex-
ternal constraints learning on the simulation results is discussed,
demonstrating the subtle and positive influence of learning by
self reflection.

APPENDIX A

The following sections describe in detail the procedure used
to cluster new associations of condition/effect objects. The
terms “cluster centroid” and MEMORY_OBJECT are used
interchangeably.

I. STEP 1: INITIALIZE THRESHOLDS

A global expansion threshold (1) is used to determine
when a new input condition object should become its own
cluster. This controls how easily new clusters are created. The
threshold is usually initialized to a value close to 1 (e.g. 0.9).
A high value makes cluster creation easier since even slightly
dissimilar objects will generate a new cluster. The expansion
threshold is adjusted each time a new cluster is created or a
cluster is replaced. The adjustment is done as follows:

(1)

where is the expansion threshold, (1, number of
existing clusters) and is the expansion decay. This is set to a
small number in the order of .

A maximum number of clusters can also be optionally set.
This number, MaxClusters, determines when new clusters can
not be added. Instead old clusters get replaced when a new input
requires its own cluster. Clusters get replaced using the rele-
vance value, for cluster :

where N is the number of active input properties, Cluster.It-
eration is the iteration this cluster was last modified at and

Cluster.MergeCount is the number of elements this cluster
has. The Boolean variable is set to one if the particular
MEMORY_OBJECT has an Effect PROPERTY_OBJECT,
zero otherwise. The Boolean variable is set to one if
Cluster.Cnd.Type = InputCnd.Type. The smaller the , the
more eligible cluster becomes for replacement. Justification
for this equation was influenced by the task at hand and comes
from the following reasoning:

If a cluster has been used recently it is considered rele-
vant to the current environment. Thus the last update iter-
ation is used. If new associations have been merged sev-
eral times this cluster, its considered “heavier” and it has
a larger “inertia.” Thus, it becomes much harder for new
knowledge to affect it unless its very similar to it. This jus-
tifies the MergeCount variable.

II. STEP 2: CLUSTER NEW MEMORY OBJECT M

When an input , referred to as , is pre-
sented to the CORE_LEARN function, the clustering algorithm
uses the input condition value matrix ( ) to
calculate a membership function to each existing cluster condi-
tion object.

The input matrix is represented as ma-
trix . Matrix is of size ,where

• M is the maximum number of properties that can be con-
currently sensed in a single stimulus;

• K is the number of elements in the largest vector property.
The cluster matrix Cluster(j).Cnd.Values is represented as

. Using fuzzy inference the membership value of for
each cluster is calculated as follows:

(2)

where

• is the range for element of property vector ;
• N is the number of properties common between the Cluster

condition and the input condition;
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• M is the number of properties in the Cluster condition.
Always ;

• is the Partial Information multiplier described in the
following.

Note that the cluster condition property vector is used to
define the support for the membership function for each input
property .

The crisp output value matrix is generated using

(3)

is the matrix formed from the active property row
vectors, from the array of
cluster j.

Since the clustering algorithm has to account for variable
length input vectors, only the same properties active in both the
input condition and the cluster condition are compared. When
objects of different information content are compared to each
other, , a fuzzy value is calculated to adjust the mem-
bership

This equation assigns equal weight to all properties. Optionally
the weight can be adjusted by determining the relevance of each
observed property.

III. CLUSTER EXPANSION/CREATION

The decision to merge the new input with an existing cluster
or create a new cluster is done as follows.

IF AND
THEN
Create new cluster

ELSE IF AND

Replace cluster , with new
.

ELSE
Add new , to

cluster j, where .

When adding matrix to cluster j, Cluster (j).Cnd and
Cluster(j).Effect property value matrices are adjusted to reflect
the information content of the new member. The adjustment for-
mula for value matrix U is given as follows:

where is the combined membership value of to
cluster .
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