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Abstract. The traditional iris recognition systems require equal high quality human iris images. A cheap image
acquisition system has difficulty in capturing equal high quality iris images. This paper describes a new feature
representation method for iris recognition robust to noises. The disc-shaped iris image is first convolved with a
low pass filter along the radial direction. Then, the radially smoothed iris image is decomposed in the angular
direction using a one-dimensional continuous wavelet transform. Each decomposed one-dimensional waveform is
approximated by an optimal piecewise linear curve connecting a small set of node points. The set of node points
is used as a feature vector. The optimal approximation procedure reduces the feature vector size while maintaining
recognition accuracy. The similarity between two iris images is measured by the normalized cross-correlation
coefficients between optimal curves. The similarity between two iris images is estimated using mid-frequency bands.
The rotation of one-dimensional signals due to the head tilt is estimated using the lowest frequency component.
Experimentally we show the proposed method produces superb performance in iris recognition.
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1. Introduction

The human iris, visible through the clean cornea as
the colored disc inside the eye, is a thin contractile
diaphragm composed mostly of connective tissue and
smooth muscle fibers. It is attached to the eye’s ciliary
body and open to the pupil. Human iris patterns are
highly distinctive to an individual and the image of
an eye can be taken at a distance [1]. The automatic
verification of an individual based on the human iris
has developed in the last decade [2].

Various iris recognition methods have been proposed
for automatic personal identification and verification.
Daugman [3] first presented a prototype system for iris
recognition. For the feature representation, it makes
use of a decomposition derived from the application of
a two-dimensional Gabor filter to the iris image pat-

tern. Quantized local phase angles yield the final rep-
resentation. The similarity measure for feature classi-
fication is the Hamming distance between the acquired
and data base representations. It reported good perfor-
mance on a diverse database. Wildes et al. [2] presented
another iris recognition system. It decomposes the iris
pattern into the multiresolution pyramid layers using a
wavelet transform. The quantized differences between
adjacent resolution levels yield the final representation.
The similarity measure is the normalized correlation
between two representations. It reported as good per-
formance as the system of Daugman. Both systems of
Daugman and Wildes employ carefully designed im-
age acquisition devices to get equal high quality iris
images [2, 4, 5]. The devices minimize the deforma-
tion of the iris pattern and acquire the sharp and glare-
free iris images under fixed illumination. However,
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these demands are not easily satisfied in many field
applications.

Cho et al. [6] presented a method using a wavelet
sub-image at a low-resolution pyramid level. The neu-
ral network is used to classify the extracted feature.
However, the sub-image is sensitive to a small shift of
a full-resolution iris image in the space domain [7, 8].
Zhu et al. [5] presented a shift-invariant method, which
decomposes the iris pattern into multiple bands using
a two-dimensional Gabor transform or a wavelet trans-
form. The means and variances of all bands are used
for the shift-invariant feature representation. However,
the means and variances do not contain much infor-
mation on the spatial characteristics of the iris tex-
ture. This restriction limits the performance. Mallat [9]
built a translation-invariant representation from zero-
crossings of the full-density wavelet subbands. Boles
et al. [10] decompose one-dimensional intensity signals
computed on circles in the iris and use zero-crossings
of the decomposed signals for the feature representa-
tion. This method is reported to be robust to the ad-
ditive white Gaussian noise. However, the number of
zero-crossings can differ among iris image samples of
an identical iris due to noises. This method was im-
proved by Roche et al. [4], which assumes that if two
samples are acquired from an identical iris, the dis-
tances between corresponding pairs of zero-crossing
in one sample and another are less than given threshold
value. Based on this assumption, the similarity mea-
sure is the summation of the binary Hamming distances
between corresponding pairs. However, the spurious
zero-crossing points can degrade the performance.

A cheap image acquisition system using a fixed fo-
cus camera has difficulty in capturing equal high quality
iris images. This requires new iris recognition methods
robust to noises. In general, a high level of detail is sen-
sitive to noises, while a low level of detail is less sensi-
tive. Some wavelet components of the disc-shaped iris
texture, the low frequencies in the radial direction and
the low-mid frequencies in the angular direction, con-
tain rich information for iris recognition and in addition
are robust to noises. This paper describes a new feature
representation method based on these components.

This paper is organized as follows: Section 2
briefly addresses the iris localization and normaliza-
tion. Section 3 presents a new feature representation
method for the iris recognition. Section 4 describes the
similarity measure and the classification method used
for the iris recognition. Section 5 discusses the com-
parison of the proposed method with two conventional

methods. Section 6 provides the experimental results.
Finally, we conclude in Section 7 with a summary of
the proposed method.

2. Iris Localization and Normalization

Iris recognition methods require accurate iris localiza-
tion for successful processing. The visual surface of
the iris lies outside the pupil and inside the limbus, the
border between the sclera and the iris. In this paper, the
acquired image is first segmented into a set of compo-
nents: pupil, eyelashes, eye, face, and light reflection.
Then, the iris boundaries are accurately detected using
this information and a well-known parametric shape
estimation method [2, 5].

2.1. Eye Segmentation

In the iris image acquisition system using infrared
LEDs (light emitting diode), the captured images
have an intensity distribution typical of that shown in
Fig. 1(a). This intensity distribution can be well rep-
resented by a mixture of three Gaussian distribution
components: dark, intermediate and bright. The dark
component contains the portion of the image corre-
sponding to the pupil and the eyelashes. The interme-
diate component contains the eye regions including the
iris. The bright component contains the face and the
light reflection. The density function is expressed as

p(x) =
3∑

k=1

ωk f (x | mk, σk), (1)

where x denotes an observation of the data,
f (x | mk, σk) denotes the Gaussian density function,
(mk, σk) denote the model parameters, and ωk de-
notes the mixing parameters. One common method
for solving Gaussian mixture models (GMM) is an
expectation-maximization (EM) algorithm [11]. EM is
an effective procedure for estimating model parameters
when data is incomplete. In the E-step of the EM pro-
cess, the posterior distribution for the hidden variables
is evaluated in order to indicate to which component an
observation x belongs. In the M-step, the model param-
eters, (mk, σk), and the mixing parameters, ωk , are com-
puted. When the histogram of an image deviates sig-
nificantly from typical due to glasses and non-uniform
illumination, the segmentation based on the estimated
parameter can result in poor performance. To alleviate
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Figure 1. Segmentation results: (a) A typical intensity distribution and its estimation using EM, (b) three segmentation regions processed by
a morphological operation with a 5 × 5 window, (c) eyelashes detected with five directional windows and (d) the detected pupillary and limbic
boundaries. The pupillary boundary is indicated by a white dotted line and the limbic boundary is indicated by a black dotted line.

this problem, we project the estimated parameters onto
a predefined solution space. The segmentation based
on the Gaussian mixture model has segmentation error
like a speckle noise because the intensity distributions
of three components are overlapped. Such segmenta-
tion error is filtered by a morphological operation with
a large square window [12]. Since the morphological
operation with a large square window filters out the
eyelashes, the eyelashes are separately detected using
a set of directional long narrow windows. The seg-
mentation results are shown in Fig. 1(b) and (c). Once
the iris image is segmented, the iris boundaries are de-
tected using a well-known parametric shape modeling
method [2, 5]. The detected iris boundaries are shown
in Fig. 1(d).

2.2. Preprocessing

Since the acquired iris images have different contrast,
the images are enhanced using histogram equaliza-
tion. The variation of the illumination causes the iris
to shrink or to expand. For the iris recognition, it is
necessary to compensate the variation of the iris size in
the radius direction. A common method is to map the

disk-shaped iris to a rectangle block of a fixed size [2].
The rectangle-shaped image, f (i, j), are generated as
follows:

f (i, j) = f [r j cos(θi ), r j sin(θi )],

i = 1, . . . , N1, j = 1, . . . , N2, (2a)

θi = i · (θ2 − θ1)/N1, (2b)

r j = j · �R(θi ), (2c)

�R(θi ) = ‖l(θi ) − p(θi )‖/N2, (2d)

where f (i, j) denotes a two-dimensional intensity sig-
nal, θi is over [θ1, θ2], l(θi ) denotes a point on the
limbus, p(θi ) denotes a point on the pupil contour.
Figure 2 illustrates trajectories on which f (i, j) is
generated.

3. Feature Extraction

In this section, we present a new feature representation
method for the iris recognition. The feature representa-
tion should have information enough to classify various
irises and be less sensitive to noises. In general, a high
level of detail of the iris texture is sensitive to noises,
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Figure 2. Mapping of the disc-shaped iris to a rectangle block.

while a low level of detail is less sensitive. We have
experimentally found that some wavelet components
of the iris, the low frequencies in the radial direction
and the low-mid frequencies in the angular direction,
have rich information for iris recognition and robust to
noises.

3.1. Wavelet Decomposition

To extract features from these components, the nor-
malized iris image, f (i, j), is first convolved with a
Gaussian low-pass filter along the radial direction, j .
The radially smoothed iris image, g(i, j), is decom-
posed in the angular direction, i , using differences of
Gaussian (DoG) like wavelets, the difference of dilated

Figure 3. Overall block diagram: (a) The low-pass filtering in the radial direction and (b) wavelet decomposition in the angular direction and
the generation of simplified curve.

B-splines, ϕs(k)(i), such that

ϕs(k)(i) = 1

s(k)
ϕ

(
i

s(k)

)
. (3)

The smoothing and decomposition procedure is
illustrated in Fig. 3. Given a smoothed signal, g(i, j), a
set of low-pass filtered signals, Ls(k) ∗ g(i, ·), is yielded
by convolving g(i, ·) with Ls(k)(i). The difference be-
tween two adjacent smoothed signals, Ls(k) ∗g(i, ·) and
Ls(k−1) ∗ g(i, ·), forms the k-th band as follows:

Wk = Ls(k) ∗ g(i, ·) − Ls(k−1) ∗ g(i, ·), (4)

where s(k) and s(k − 1) are experimentally chosen.

3.2. Generation of the Optimal Piecewise
Linear Curve

Once signals are decomposed into multiple bands, each
band is approximated by a piecewise linear curve con-
necting a set of node points. The initial node points
correspond to local maximum or minimum points of
the band. The initial node points are merged to a small
set of node points by iteratively merging two adjacent
nodes to the new node point that minimizes the sig-
nal distortion. Figure 4 shows that two node points, vk

and vk+1, are merged to the new node point, vnew, and
the piecewise linear curve connecting four node points,
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Figure 4. Curve simplification: Two node points vk and vk+1, are
merged to the new node point vnew, and the piecewise linear curve
connecting four node points vk−1,vk ,vk+1, and vk+2, is simplified to
the curve connecting three node points vk−1, vnew, and vk+2.

vk−1, vk, vk+1, and vk+2, is simplified to the curve con-
necting three node points, vk−1, vnew, and vk+2. In the
merging operation, the signal distortion is expressed by
three triangles, �(vk−1, vk,vnew), �(vk, vk+1,vnew), and
�(vk+1, vk+2,vnew). If we define the energy of a signal
u as

∫
u2(x)dx , the energy variation of the signal by

one triangle, �(vk, vk+1,vnew), is expressed as

1

3
dk |nk · vnew + ck |2 , (5)

where nk denotes the normal direction of a line, lk , con-
necting two nodes, vk and vk+1, dk denotes the length
of the line segment, vk, vk+1, and |nk · vnew + ck | rep-
resents the distance from the optimal target point vnew

to the line, lk . The optimal target, which minimizes the
energy variation due to the merging operation, is de-
fined as the point that minimize the normalized sum of
three energy variation terms:

1

3E total

1∑
i=−1

dk+i |nk+i · vnew + ck+i |2. (6)

The total signal energy Etotal is used to normalize the
signal distortion. The optimization procedure is per-
formed as follows:

1. Select all node pairs and compute (a) the optimal
target for each pair and (b) the cost.

2. Merge the node pair of the least cost to its optimal
target.

3. Once a pair is removed, then update the costs of all
pairs involving the target of the pair.

4. If the normalized least cost is less than given thresh-
old value, stop the simplification procedure. Other-
wise, go to the Step 2.

Figure 5 shows that the simplified curve well ap-
proximate the waveform of the signal. The number of
the node points of the simplified curve is 20.

4. Classification

4.1. Similarity Measure

The similarity measure for classification is the normal-
ized cross-correlation coefficients between two sim-
plified piecewise linear curves. Each curve is recon-
structed using the linear interpolation of a set of node
points. The normalized correlation coefficient is given
as

〈ωũ1, ũ2〉 = 〈ωũ1 · ũ2〉
σ (ωũ1)σ (ũ2)

, (7a)

〈ωũ1 · ũ2〉 = 1

N

N∑
i=1

ω(i)ũ1(i)ũ2(i), (7b)

where ũ1, ũ2 are the zero mean signal, 〈·〉 is the inner
product operator, σ is the standard deviation, and N is
the number of points used for computing the correlation
coefficient.

In a frequency band Wk , an eyelash is convolved with
the wavelet ϕs(k)(i) − ϕs(k−1)(i), which has large value
at i = 0 and decreases as |i | become large. Based on
this fact, the weighting value ω(i) is defined as

ω(i) = 1 − ϕs(k)(i − c) − ϕs(k−1)(i − c), i ∈ nbhd(c)

where c denotes a detected iris location and nbhd(c) is
the neighborhood of the location, c. To reduce the com-
putation time, the weighting values in a small window
are precomputed offline.

4.2. Separate Estimation of Signal Rotation
Due to Head Tilt

Each one-dimensional intensity signal in the angular
direction rotates due to head tilt. Since the rotation
value is unknown, we compute the normalized cross-
correlation coefficient between two signals by shifting
one signal pixel by pixel and choose the shift value
that yields the largest cross-correlation coefficient. This
method compute the similarity correctly, but makes the
similarity between different irises increase.

In the proposed method, we separately estimate the
shift amount using the signal at the level zero that is
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Figure 5. One-dimensional signal in a wavelet domain Wk and the approximated piecewise linear curve.

not used for the similarity measure. This method does
not increase the similarity between samples of differ-
ent irises. The estimated shift value is used in the com-
putation of the cross-correlation coefficients between
components at higher levels as follows:

〈u1,ŝ, u2〉 = 〈u1,ŝ · u2〉 − 〈u1〉〈u2〉
σ (u1)σ (u2)

where
(8)

〈u1,ŝ · u2〉 = 1

N

N∑
i=1

u1(i + ŝ)u2(i).

In (8), ŝ is the estimated rotation value.

4.3. Classification

We choose the well-known 1-nearest neighbor (1-NN)
classification algorithm. Given a training set T and
an unknown pattern yq , 1-NN assigns yq to the class,
which the pattern yp ∈ T such that

yp = arg max
yq∈T

sd(yp, yq ), (9)

belongs to. In (9), sd(yp, yq ) is the similarity between
two samples yq and yp.

5. Comparison with Conventional Methods

5.1. Comparison with a Zero-Crossing Method

Zero-crossing points [4, 10] keep information about
location of the local maximum and minimum points
of each lowpass signal and its local variation. Similar-
ity measures between two corresponding zero-crossing
points are robust to a white Gaussian noise. The pri-
mary problem of the zero-crossing method is the fact
that two representations to be compared can have differ-
ent numbers of zero-crossings, and some zero-crossing
pairs used in computing the similarity may not be
corresponding pairs in practical applications. To cir-
cumvent the problem, Roche et al. [4] use a binary
Hamming distance between two nearest zero-crossing
points under the assumption that if two samples are
acquired from an identical iris, the distances between
corresponding pairs of zero-crossing in one sample
and another are less than given threshold value. How-
ever, the spurious zero-crossing points can degrade the
performance.

In this paper, each decomposed signal is approxi-
mated by the optimal piecewise linear curve, and the
similarity measure is the normalized cross-correlation
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coefficient between the optimally approximated
curves. This method makes the iris recognition robust
to the spurious zero-crossing points because of two rea-
sons: First, the optimal curve simplification preserves
dominant waveform of the signal and filters out a fine
details including zero-crossing points. Second, the nor-
malized cross-correlation is less sensitive to the spuri-
ous signal variation.

The code size of the two methods are similar be-
cause the number of node points is equal to the number
of dominant local maximum or minimum points. As for
the computation time, the presented method takes less
computation times than the zero-crossing method us-
ing binary Hamming distance measure. The proposed
method requires linear interpolation operations and the
zero-crossing method of Roche et al. requires search
operations.

5.2. Comparison with the Method Proposed
by Wildes et al.

In the method of Wildes et al. [2], a Laplacian pyra-
mid [13] is first constructed. Differences between con-
secutive resolution levels of the Laplacian pyramid
serve as the basis for subsequent processing. This
method effectively extracts dominant waveform varia-
tion in the radial and angular directions. Since two-
dimensional bands are used, coarse quantization is
required for a compact code size. Similarity measure-
ments in four frequency bands are effectively combined
using Fisher’s linear discriminant. The highest resolu-
tion band is sensitive to noise. The lowest resolution
band can be sensitive to head tilt because difference
between consecutive levels of the Laplacian pyramid
is not translation-invariant [7, 8].

In this paper, the wavelet components of the two-
dimensional iris image, robust to noises and contain-
ing rich information for iris recognition, are extracted
using a continuous wavelet transform that is transla-
tion invariant. Since the wavelet components are the
low frequencies in the radial direction and the low-
mid frequencies in the angular direction, the disc-
shaped iris image is first convolved with a low pass
filter along the radial direction. Then, the smoothed
iris image is decomposed in the angular direction us-
ing a one-dimensional continuous wavelet transform.
Finally, the optimal approximation procedure reduces
the feature vector size while maintaining recognition
accuracy.

6. Experiment Results

6.1. Segmentation Results

A typical intensity distribution and its estimation us-
ing EM are shown in Fig. 1(a). Three segmentation
regions processed by a morphological operation with a
5 × 5 window is shown in Fig. 1(b). The eyelashes,
detected using five directional windows, are shown
in Fig. 1(c). The segmented pupillary boundary has
some error due to the eyelashes. This error is corrected
by using the well-known parametric shape modeling
method. Figure 1(d) shows the detected pupillary and
limbic boundaries.

6.2. Verification and Classification Results

As for feature extraction, each signal is analyzed into
two components: the lowest resolution level, Ls(0) ∗
g(i, ·), and the next band, W1. In our experiments, the
lowest level is used for estimating the shift amount of
the signal due to the head tilt and the next level is used
for computing the normalized correlation coefficients.
Since iris images used in the experiments are corrupted
by noises, the use of high frequency components does
not improve performance.

Finally, we compared the presented iris recogni-
tion method with the pyramid decomposition method
of Wildes et al. [2] and the zero-crossing method
of Martin-Roche et al. [4]. In the implementa-
tion of the zero-crossing method, we experimentally
found the best threshold value for computing the
Hamming distance. In the implementation of the
Laplacian pyramid method, we experimentally found
the set of resolution levels that yields the best perfor-
mance because the highest resolution level is sensitive
to noises.

The iris database used in the experiments con-
sists of 40 different eyes and, 3 photos per each
eye. The photographs were taken in different con-
ditions. Distribution of similarity measures, com-
puted with three different methods, from all possi-
ble 14400 comparisons between different pairs of
irises in the database are shown in Fig. 6. The
distributions of similarity measures between sam-
ples of identical irises are illustrated with black
bars. The distributions of similarity degrees be-
tween samples of different irises are illustrated
with gray bars. For the successful verification, the
similarity measures between samples of identical
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Figure 6. Similarity measures between samples of identical irises and similarity measures between samples of different irises: (a) The zero-
crossing method, (b) the pyramid decomposition method and (c) the proposed method. For the illustration, the black bars are at five times the
scale of the light bars.
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Table 1. Classification accuracies of three methods.

Method Classification accuracy

Zero-crossing 98.3

Pyramid decomposition 99.4%

The proposed method 100%

irises should be overlapped as less as possible
with those between samples of different irises.
Figure 6(a) shows the results of the zero-crossing
method. Two distributions overlapped by 2.5%.
Figure 6(b) shows the results of the pyramid wavelet
decomposition method. Two distributions overlapped
by 1.0%. Figure 6(c) is the result of the proposed
method. Two distributions are separated by a large
margin. Table 1 shows the classification accuracies of
three different methods. All methods use the 1-NN
classification. The proposed method yields the best
classification accuracy. The experimental results show
that the proposed method outperforms the conventional
methods.

7. Conclusion

We have presented a new feature representation method
for the iris recognition, which is robust to noises. The
disc-shaped iris is first localized. The localized image
is convolved with a low pass filter along the radial di-
rection. The radially smoothed iris image is decom-
posed in the angular direction using a one-dimensional
continuous wavelet transform. Each decomposed one-
dimensional waveform in the angular direction is repre-
sented by an optimal piecewise linear curve connecting
a small set of node points. The set of node points is a
feature vector to be stored. Experimentally we showed
that the proposed method produces superb performance
in iris recognition.
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