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Outline

• Problem Statement: Minimum-hop multicasting in wireless networks.

• Issues:

– Individual nodes are equipped with limited capacity batteries and there-

fore have a restricted communication radius.

• Results:

– Mixed Integer Linear Programming model of the problem.

– Sub-optimal sequential shortest path heuristic algorithm with “node un-

wrapping” – amenable to distributed implementation.

– Simulation results indicate that reasonably good solutions can be ob-

tained using the proposed heuristic algorithm.
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Introduction

• Establishing a broadcast/multicast tree in such networks often requires co-

operation of intermediate nodes which serve to relay information to the in-

tended destination node(s).

• Minimizing the number of hops in the routing tree is motivated by the need

to conserve bandwidth, minimize end-to-end delays – especially for delay-

critical data packets – and reduce packet error probabilities.

• In certain military applications, employing a low-power multicast tree with

minimum number of transmissions can serve to further reduce the possibility

of detection/interception.

• Individual transmissions in multicast trees in these networks are generally

low-powered.
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Introduction

• A suitable topology control algorithm can be used to ensure a power efficient

topology.

• For example, topologies can be constructed to minimize the maximize trans-

mitter power needed to maintain connectivity [Ramanathan, Infocom 2000]

or the total transmitter power.

• Our focus here is to provide solutions for minimum hop multicasting in power

efficient wireless network topologies.

• Previous work includes a Hopfield neural network based approach and a

couple of heuristics [Pomalaza-Raez et. al., TCC 1996].
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Network Model

• Fixed N -node wireless network with a specified source node and a broad-

cast/multicast application.

• Any node can be used as a relay node to reach other nodes in the network.

• All nodes have omni-directional antennas.

• All nodes have limited capacity batteries which limits the maximum transmit-

ter power and hence the degree of connectivity of a node (number of nodes

which can be reached by a transmitting node using a direct transmission).
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Network Model

• The power matrix, P, is an N × N symmetric matrix, the (i, j)th element

of which represents the power required for node i to transmit to node j:

Pij =
[
(xi − xj)

2 + (yi − yj)
2
]α/2

= dα
ij (1)

where

– {(xi, yi) : 1 ≤ i ≤ N} are node coordinates.

– α (2 ≤ α ≤ 4) is the channel loss exponent.

– dij is the Euclidean distance between nodes i and j.
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Problem Statement

• s is the source node.

• N is the set of all nodes in the network, cardinality N .

• E is the set of all directed edges, cardinality E.

• D ⊆ {N \ s} is the set of destination nodes, cardinality D.

• Denoting the transmitter power threshold of node i by Y max
i , E is given by:

E = {(i → j) | (i, j) ∈ N , i �= j, Pij ≤ Y max
i , j �= s} (2)
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Problem Statement

• {Fij : ∀(i → j) ∈ E} is a set of flow variables.

• {Hi : ∀i ∈ N} is a set of binary variables denoting hop-count.

• For wired networks, the hop-count of any node i, Hi, is the number of links

carrying positive flow out of the node.

• For wireless networks Hi is an indicator variable – equal to 1 if there is at

least one link carrying a positive flow out of node i, and 0 otherwise.

• This definition is due to the fact that multiple nodes can be reached from a

transmitting node using a single transmission to the farthest node.

• Total hop-count is thus the number of transmitting nodes in the multicast tree.

• Minimizing the total hop-count is equivalent to minimizing the number of

transmitting nodes in the tree.
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Problem Statement
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Figure 1: Shaded circles represent the destination nodes. The numbers above

the edges are the flows. For a wired network, the hop-count of node 1 is

2, equal to the number of edges directed out of node 1 carrying a pos-

itive flow. If the network is wireless and if nodes have omni-directional

antennas, the hop-count of node 1 is 1, since it can send a packet to

the farther destination node, which will be picked up by the destination

node closer to it. Thus the total hop-count in a wireless multicast tree

is equal to the number of transmitting nodes in the tree.
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Mathematical Model

The objective function of the minimum-hop multicast problem in wireless net-

works can be written as:

minimize
N∑

i=1

Hi (3)

• This problem can be interpreted as a single-commodity, single-origin multiple-

destination uncapacitated flow problem, with the source having D units of

supply and the destination nodes having one unit of demand each.

• For other nodes, the net in-flow must equal the net out-flow, since they serve

only as relay nodes (note that not all of the relay nodes need to act as such).

• This model can also be viewed as a token allocation scheme where the

source node generates as many tokens as there are destination nodes and

distributes them along the “most efficient” (in terms of number of hops) tree

such that each destination node gets to keep one token each.
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Mathematical Model

This problem can be solved using the usual conservation of flow constraints:

N∑
j=1

Fij = D; i = s, (i → j) ∈ E (4)

N∑
j=1

Fji −
N∑

j=1

Fij = 1; ∀i ∈ D, (i → j) ∈ E (5)

N∑
j=1

Fji −
N∑

j=1

Fij = 0; ∀i �∈ {D ∪ s}, (i → j) ∈ E (6)
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Mathematical Model

Constraints linking the flow variables to the hop-count variables are given by

D · Hi −
N∑

j=1

Fij ≥ 0; ∀i ∈ N , (i → j) ∈ E (7)

• Eq. (7) says that “the hop-count of a node is equal to 1 if there is a positive

flow in at least one link directed away from the node, and 0 otherwise”.

• The coefficient of Hi above comes about since the maximum flow out of a

node is equal to the number of destination nodes.
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Mathematical Model

• The final set of constraints express the integrality of the Hi variables and

non-negativity of the Fij variables.

Hi ∈ {0, 1}; ∀i ∈ N (8)

Fij ≥ 0; ∀(i → j) ∈ E (9)

• In summary, the objective function in Eq. (3) subject constraints in Eqs. (4) to

(9) solves the minimum-hop multicast problem in wireless networks.

• There are E + N variables (the number of flow variables in the formulation

is equal to E, and the number of hop-count variables is equal to N .

• Strictly speaking, however, the number of hop-count variables is equal to

N − 1 since the multicast tree must include a transmission from the source

and hence Hi must be equal to 1 for i = source.
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Discussion

• The routing tree is constructed by identifying the transmitting nodes and their

farthest neighbors for which there is an outward positive flow.

• Let node 1 be the source and the destination nodes be 2, 5, 7, 9 and 10.

Figure 2: Example 10-node network with node degree of connectivity = 3.
14



Discussion

• The solid lines represent the actual transmissions in the multicast tree. The

dotted lines represent implicit transmissions; i.e., the associated recipient

nodes pick up the transmissions by virtue of their being closer to the

• The flow variables and their optimal values are shown below:

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1 3 − − − − − 1 −
− − 0 − − − − − 0 −
− 0 − 0 − 3 − − − −
− − 0 − 0 0 − − − −
− − 0 0 − 0 − − − −
− − 0 − 1 − 2 − − −
− − − − − 0 − 0 − 1

− − − − − − 0 − 0 0

− 0 − − − − − 0 − −
− − − − − − 0 0 0 −

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)
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• The first column in the flow matrix, F, is empty since node 1 is the source

and reflects the condition j �= source in Eq. (2).

• Diagonal elements of F are empty because of the condition i �= j in Eq. (2).

• Whether flow variables corresponding to the rest of the indices exist or not is

dictated by the maximum power constraint on the transmitters.

• Examining the first row of the optimal flow values in Eq. (10), we see that

there are non-zero flows from node 1 to nodes 2, 3 and 9, of which node 3 is

the farthest.

• This is shown as a solid line from node 1 to 3 in Figure 2.

• The dotted lines to nodes 2 and 9 represent that these nodes pick up the

transmission by virtue of their being closer to node 1 than 3.

• The actual sequence of transmissions is therefore:

{1 → 3, 3 → 6, 6 → 5, 7 → 10}.
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Discussion

• The above MILP model can also be used for obtaining maximum power con-

strained minimum hop multicast trees.

• In [Das. et. al., Globecom 2003], a polynomial time optimal algorithm was

presented for obtaining multicast trees which maximize minimum node life-

time, or alternately, as a special case, minimize the maximum transmit power.

• Let Ŷ be the optimal maximum transmit power obtained after solving the

minimax problem. Redefining the set of valid edges as:

E = {(i → j) | (i, j) ∈ N , i �= j, Pij ≤ Ŷ , j �= s} (11)

in place of Eq. (2) and solving the MILP model will yield a minimum hop

multicast tree such that the maximum transmit power is not greater than Ŷ .
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LP-relaxation

• Such relaxations usually form the basis of approximation algorithms.

• Given an MILP problem P and an instance of the problem, I , we denote the

LP-relaxation of the instance by LP (I).

• If the optimal solution of LP (I) is integral, the problem is solved.

• Otherwise, the fractional optimal solution, which is a lower bound on the opti-

mal solution of I , is usually rounded (which can be deterministic or random-

ized) to provide a feasible integral solution.

• (There exists other methods for converting the fractional solution to an inte-

gral solution, e.g., the primal-dual scheme).

• An approximation guarantee can then be obtained by comparing the costs of

the fractional solution and the integral solution.
18



LP-relaxation

• LP-relaxation of our model is obtained by replacing constraints in Eq. (8) with:

0 ≤ Hi ≤ 1; ∀i ∈ N (12)

• From Eq. (7), we see that Hi will be set equal to
∑

j Fij/D in the optimal so-

lution of the relaxed model since the objective function involves minimization

of the sum of all Hi’s.

• Note that 0 ≤ ∑
j Fij/D ≤ 1 since the maximum flow out of any node is

equal to D and the minimum is 0.

• Therefore, the upper bound on Hi in (12) is redundant and the variables

{Hi} can simply be declared to be non-negative, as shown below:

Hi ≥ 0; ∀i ∈ N (13)
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LP-relaxation

• If there is zero flow out of node i, Hi will be equal to 0 in the optimal solution;

i.e., Hi = 0 if
∑

j Fij = 0, j �= i.

• No rounding is therefore required in this case for Hi.

• Since net flow out of the source node is always equal to D, Hsource will be

equal to 1 in the optimal relaxed solution and will not require any rounding.

• For any node i �= source, if the total outflow is non-zero and the ratio∑
j Fij/D is fractional (i.e., 0 <

∑
j Fij < D), the cost associated with

rounding up Hi to the nearest integral value is 1 − ∑
j Fij/D.

• The round-up cost associated with the node Hi decreases as
∑

j Fij → D.

• Maximum round-up cost occurs when
∑

j Fij = 1.
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LP-relaxation

We now construct a problem instance for which the optimal relaxed solution will

incur the maximum round-up cost. The round-up cost will be maximum if the

following conditions are satisfied:

(a) The optimal minimum-hop multicast tree comprises of node-disjoint (except

at the source node) paths to each of the destination nodes,

(b) All nodes other than source and destinations are used as relays and carry

unit flow each This must be satisfied since the paths to the destinations are

node-disjoint, except at the source.

(c) All destination nodes are leaves in the optimal tree and are farthest from the

source (in terms of number of hops). For odd N (N ≥ 5), this condition can

be met if the number of destination nodes is given by D = (N − 1)1/2.
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Figure 3: A 9-node, 2-destination problem for which the round-up cost incurred

in converting the optimal fractional solution to an integral solution is the

maximum.
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LP-relaxation

• The darkly shaded nodes are the destinations and the dotted circles repre-

sent the communication range of each node.

• The optimal solution for this problem instance involves 7 hops, as shown.

• If the LP-relaxation of this problem is solved, all directed links will be assigned

unit flow as shown.

• Correspondingly, the optimal cost of the relaxation is equal to 1 + 6 ×
(1/2) = 4, since the hop-count of the source is equal to

∑
j Fij/D =

2/2 = 1 and that of all relay nodes (shown lightly shaded) is equal to∑
j Fij/D = 1/2. The round up cost is 7 (7 transmit nodes), which is

equal to the number of hops.

• If the above conditions are satisfied, it can be shown that the ratio of the

optimal solution to its LP -relaxation is given by D(N−D)/(N−1) ≤ D.
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Sequential Shortest Path heuristic

• A sub-optimal sequential shortest path heuristic for solving the MILP prob-

lem.

• Let πD be any ordering of the destination nodes with respect to the source.

• For example, they can be ordered with respect to increasing or decreasing

Euclidean distance from the source, or order the destination nodes on the

basis of a shortest path (in terms of number of hops) tree to the source.

• The MILP problem is solved by computing a series of shortest paths in the

sequence given by πD.
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Sequential Shortest Path Heuristic

• Let W(1) be the initial weight matrix used for computing the shortest path

between the source and πD(1), the first node in πD.

• The (i, j)th element of W(1) is given by:

W
(1)
ij =

⎧⎪⎨
⎪⎩

1, if (i → j) ∈ E
0, otherwise

(14)

where E is the initial set of edges defined in Eq. (2).
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Sequential Shortest Path Heuristic

• The minimum hop multicast problem in wireless networks with omni-directional

antennas can be viewed as a minimization of the number of transmitting

nodes.

• Consequently, if �tr1 is the set of transmitting nodes in the shortest path ob-

tained after the first iteration, using these nodes as relays in subsequent

iterations would not incur any additional cost.

• Thus, the weight matrix for the second iteration can be modified as follows:

W
(2)
ij =

⎧⎪⎨
⎪⎩

0, if i ∈ �tr1

W
(1)
ij , otherwise

(15)
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Sequential Shortest Path Heuristic

• We refer to the weight modification procedure after each iteration as node

unwrapping.

• Using W(2), a shortest path is computed between the source and πD(2),

the second node in πD.

• This procedure is repeated till all destination nodes are reached and the final

multicast tree is obtained by concatenating the shortest paths obtained at

each iteration.
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Sequential Shortest Path Heuristic

1. Let πD be any ordering of the destination nodes with respect to the source.

2. Let k be the iteration index.

3. Let path(k) be the shortest path obtained at iteration k.

4. Set k = 1 ;

5. Compute the initial weight matrix W(k) (see eqn. 14).

6. Find the shortest path between the source and the node πD(k), path(k).

7. while(not all destination nodes reached)

• Increment k = k + 1;

• Compute the new weight matrix W(k) (see eqn. 15).

• Find the shortest path between the source and πD(k).

end while
8. Concatenate the set of shortest paths {path(k)} to obtain the multicast tree.

Figure 4: High level description of the sequential shortest path algorithm.
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Sequential Shortest Path Heuristic

• Since distributed algorithms (such as distributed Bellman-Ford) exist for the

shortest path problem, the heuristic is amenable to distributed implemen-

tation provided the multicast group members are aware of their Euclidean

distance (or, any other criterion used to sort the destination nodes) from the

source.

• The algorithm can also be used for maximum power constrained minimum

hop multicasting if the set of directed edges in the underlying graph is defined

as in Eq. (11).

• The above procedure would take D shortest path iterations to terminate, one

iteration for every destination.
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Sequential Shortest Path Heuristic

• However, because of node unwrapping, it may be possible to reach additional

destination nodes without any additional cost, as illustrated below.
 

E 

D 

C 

B A 

          (a)      (b) 

E 

D 

C 

B A 

Figure 5: (a) Shortest path at current iteration, A → B → C → D, before

node-unwrapping. (b) Node E can be reached simply by unwrapping

node C . No additional iteration is required.
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Sequential Shortest Path Heuristic

• A simple modification to the algorithm in Figure 4 can be made to check

whether additional destination nodes can be reached by node unwrapping.

• If so, those destination nodes that have not yet been reached after unwrap-

ping can be reordered and the first node in the reordered set chosen as the

destination for the next shortest path iteration.

• Experimental results suggest that ordering the destination nodes with respect

to decreasing Euclidean distance from the source (i.e., the farthest node is

the destination for the first iteration) usually results in the fewest number of

iterations than if they are ordered with respect to increasing Euclidean dis-

tance, with no appreciable difference in solution quality.

• As implemented, if there are multiple shortest paths at any iteration with the

same hop count, any one is chosen arbitrarily.
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Simulation Results

• Studied different multicast group sizes in 20, 30, 40 and 50-node networks.

• Networks and destination sets were chosen so that a feasible solution ex-

ists (i.e., a solution where all destination nodes can be reached, given the

transmitter power constraints.)

• Transmitter power constraints were set so that each node was connected to

its 4 nearest neighbors.

• LPSOLVE which uses a branch and brand algorithm to solve MILP problems,

was used to compute the optimal solutions.
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Simulation Results

• The sequential shortest path algorithm was implemented by ordering the

destination nodes with respect to decreasing Euclidean distance from the

source.

• The performance measures for comparing the optimal and heuristic solutions

are the mean (PM1), max (PM2) and standard deviation (PM3) of the

ratio of the sequential shortest path heuristic to the optimal, over 50 randomly

generated instances.

• Table 1 provides a statistical summary of the simulation results for multicast

group sizes 5, 10 and 15.

• The heuristic performs quite reasonably on average, being within 110% of

optimal in all cases. Worst performance is for 20-node networks and multi-

cast group size = 5, where the heuristic hop count is 140% of the optimal hop

count.
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Table 1: Simulation results.

N Multicast Size PM1 PM2 PM3

5 1.06 1.40 0.12

20 10 1.05 1.25 0.08

15 1.09 1.30 0.10

5 1.04 1.38 0.09

30 10 1.05 1.20 0.06

15 1.05 1.22 0.06

5 1.04 1.25 0.07

40 10 1.04 1.20 0.06

15 1.07 1.20 0.06

5 1.03 1.22 0.06

50 10 1.06 1.27 0.08

15 1.09 1.31 0.08
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Conclusion

• We have presented a mixed integer linear programming model and a sub-

optimal sequential shortest path heuristic for solving the minimum-hop multi-

cast problem in wireless networks with omni-directional antennas.

• We have also showed that a simple redefinition of the set of directed edges

in the network graph allows for the solution of the minimum hop multicast

problem subject to a maximum transmitter power constraint.

• The heuristic algorithm has been shown to perform reasonably well in sim-

ulations conducted on different multicast group sizes in small and medium

scale networks.

• We are currently working on incorporating QoS (bounded delay and minimum

SINR) guarantees in the MILP model.
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