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Abstract—A method for calibrating a microwave sensor is de-
scribed. The method utilizes an artificial neural network trained
to infer the consistency and conductivity of pulp stock slurry from
the measured output spectrum of a microwave instrument. The
method is both efficient and robust for extracting the multiple
parameter information from the microwave signal output.

Index Terms—Microwave sensor, microwave spectrometry,
neural network, pulp stock.

I. INTRODUCTION

W E PRESENT a method whereby the consistency and
conductivity of pulp stock (paper pulp slurry) are de-

termined in real time from broadband microwave spectrome-
try data using multilayered perceptron neural networks. The
method is illustrated with an offline instrument used to calibrate
inline pulp stock sensors in a paper manufacturing process.
There are a number of commercial microwave sensors that
have found application in the pulp stock industry, employing
a variety of signal extraction methods such as the time of flight
[1], the attenuation and phase shift [2], and the microwave
spectrometer method being used here [3].

While there are numerous methods for calibrating a mi-
crowave sensor, the process can be formidable. A direct ap-
proach is one option, but this process works well only for very
simple measurement situations in which the process material’s
electrical properties are known or can be easily determined.
By using established modeling techniques, it is possible to
determine a microwave circuit’s lumped-element equivalent.
From this equivalent circuit, a sensor’s output can be predicted
and compared to the measured output of the sensing device.
The device’s output is adjusted as required for correction of
measurement errors. Such microwave modeling is an accurate
but complex, time consuming, and costly solution. In the de-
sign of microwave circuits, the modeling problem itself has
been addressed by the application of neural networks [4]. Our
application circumvents the modeling process and deals with
calibrating the instrument against the desired process variable
without the need for precise microwave characterization of the
material under test.
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One simple method using this calibration approach involves
visual inspection of microwave spectrometry waveforms gen-
erated from multiple measurements taken with a microwave
sensor [5]. The observer looks for regions where the curves
indicate a distinct response corresponding to known changes
in the desired output parameter (Fig. 1). Samples of the mea-
sured substance are prepared to known values or analyzed
according to the accepted industry methods and standards, and
these known values are aligned with the values of the sensor’s
output readings as experimentally measured for each sample.
A calibration curve is then generated by performing a simple
linear regression of the known or observed parameter values
versus the measured properties (e.g., slopes and offsets of best-
fit straight lines) of the spectrometry data from only the visually
selected region. This procedure requires that a person select
the region of the waveform that is most representative of the
desired sensor measurement, a judgment call that may yield
a less precise calibration. This method discards spectrometry
data with nonobvious relationship to the desired measurement,
and therefore, valid calibration information about the sample
may be lost, causing measurement inaccuracy. Additionally, it
is possible that no single region of the data exhibits a clear and
distinct response to changes in the desired output parameter.
The neural networks presented here incorporate all spectrome-
try data and therefore do not have these limitations.

A neural network is an adaptive mathematical framework
that can determine nonobvious and nonlinear relationships
among data [6]. The basic framework of an artificial neural
network can be seen in Figs. 2 and 3. This architecture and
workings of such neural networks are well known and are
described in detail elsewhere [6]. The architecture shown in
Fig. 3 feeds an input of 101 inputs into a hidden layer of ten
neurons (or nodes), which, in turn, is broadcast to two neurons
in a second hidden layer. The outputs of these two nodes are
combined into the single output. A “cut-and-try” approach was
used to arrive at the structure. While this approach may not be
particularly satisfying for the purist, the overall performance of
the trained networks provided excellent results for the applica-
tion. The use of the sigmoidal activation function is typically
a default in neural network architectures of the type used and
proved to be successful in the characterization of the data.
The commercially available PC-based software package, i.e.,
QwikNet, was used to design and train the neural networks
reported here [7]. The software allows specification of as many
as five hidden layers, with each having any number of neurons.
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Fig. 1. Visually selected region of 184 microwave spectrometry waveforms used to calibrate an instrument. (Color version available online at http://
ieeexplore.ieee.org).

Fig. 2. Artificial neural network setup.

Fig. 3. Typical node. The nonlinear activation function is yi = f(ui).

The activation function can also be selected from several alter-
natives including sigmoid (logistic), tanh, Gaussian, and linear.

Neural networks are being used increasingly in the field of
microwave engineering. Researchers at the National Institute of
Standards and Technology have used a neural network to obtain
a full open-short-load-through calibration for a vector network
analyzer based on only a few sampled frequency points [8].
One group utilized neural networks in measuring the dielectric
constant of a composite dielectric liquid at a specific frequency

based on capacitive measurement of the sample [9]. Neural net-
works have also been implemented to quickly perform difficult
inversions of Maxwell’s equations so that complex dielectric
characterization of a material can be obtained in real time
[10], [11].

The type of sensor used in our application has been found to
significantly benefit from neural network processing of the raw
output data.

II. MATERIALS AND METHODS

Data used to illustrate neural network microwave sensor
calibration are from prepared samples of pulp stock typical of
that used in paper production. The medium in which the pulp
stock is suspended can be water or a filtrate; thus, samples of
both were used. Sample preparation involved weighing strips of
dried pulp having known antecedent moisture content, adding
the strips to a known weight of water or solute, and blending
the mixture to separate the pulp fibers and distribute them
uniformly within the liquid. The samples were subsequently
agitated by a small stirring propeller inside the sample chamber
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Fig. 4. Microwave spectrometry data for consistency of 0.648% and conduc-
tivity of 200 µS/cm.

immediately prior to the signal collection operation to help
offset any settling effects that may have occurred. The samples
were also pressurized to about 2 kg/cm to force any air bubbles
in the pulp samples into suspension. Multiple readings were
averaged in both time and spectral domains to reduce errors
due to any nonhomogeneous distribution of the pulp or due to
electronic noise.

The sample chamber was essentially a section of circular
waveguide approximately 7.62 cm in diameter × 30.38 cm in
length. The microwave signal was communicated to the pulp
sample by means of coupling loop antennas arranged on one
side of the waveguide, mounted in ceramic dielectric seals,
and spaced about 10 cm apart. The data consist of samples of
the log magnitude transmission spectrum from the microwave
sensor at 100 equally spaced frequencies from dc to about
1.2 GHz. The temperature of each sample was also recorded.
The pulp stock samples were carefully prepared in the labora-
tory to assure precise control of their conductivity and consis-
tency and to span the range of conditions that the sensor will
encounter for an offline calibration application. Consistency
values ranged from 0% to 1.5%. Consistency is defined as the
weight of the dry fiber divided by the total weight of the fiber
and solute, expressed as a percentage. The conductivity values
covered the span from about 0 to 2000 µS/cm. A representative
example of the spectrometry data for a consistency of 0.648%
and a conductivity of 200 µS/cm at 21.4 ◦C can be seen
in Fig. 4.

After normalizing the data discussed above, two neural
networks are trained with temperature and spectrometry data
inputs and conductivity and consistency outputs. The networks
are identical in structure, consisting of 101 input nodes, two
hidden layers of ten and two nodes, respectively, and one output
node (Fig. 2). The activation function of the hidden layers is
logistic, and the activation function of the output layer is linear.
The conductivity and consistency networks were trained using
the online backpropagation algorithm [6]. Two independent
networks were used rather than a single network having two
outputs, simply to make observing the dynamics of the training
process for each output easier.

III. RESULTS AND DISCUSSION

The results of the neural network processing of the data
are shown in Figs. 5 and 6. Both of the networks show
excellent performance. The performance on conductivity was

Fig. 5. Graph of the output of the conductivity neural network versus the
target data.

Fig. 6. Graph of the output of the consistency neural network versus the
target data.

anticipated since earlier work with these data yielded excellent
results with a simple line-fit calibration procedure detailed in
[5]. The performance on consistency, however, represented a
substantial improvement over the earlier calibration method.
Without the benefit of the neural network, the earlier calibration
routine required knowing (measuring) conductivity first and
then selecting conductivity-specific calibration coefficients for
producing the consistency output. This two-step process gave
good performance but was labor intensive in its development;
in addition, the segmented calibration profile left open the
possibility of large errors for intermediate values of conductiv-
ity, i.e., for values between the actual calibration points. The
neural network calibration of consistency considered all the
conductivity values at one time while still producing superior
measurement results.

Analysis on the output of test data conductivity neural net-
work showed a correlation coefficient of 0.9983 and a standard
error of 25.10 µS/cm over the conductivity span of 1800 µS/cm
or 1.25% full-scale error (Fig. 5). Test data are representative
data that are submitted to a trained neural network to determine
the response to data the network has not seen before. This
process, called cross validation, is a standard testing of the ac-
curacy of a trained neural network’s performance [6]. Similarly,
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an analysis on the output of the consistency neural network
showed a correlation coefficient of 0.9837 and a standard error
of 0.0403% over the consistency span of 1.00173% or 3.22%
full-scale error (Fig. 6). As a means for comparison, a multiple
linear regression procedure operating on a visually selected
region of the waveform, as described above, was performed on
the same set of data. The initial correlation coefficient from that
procedure was 0.8804 with a standard error of 0.104%. Later
attempts with the linear regression method gave somewhat
improved results but did not match the performance of the
neural network.

IV. CONCLUSION

The successful application of microwave sensors to a variety
of industrial measurement problems often involves dealing with
measurement situations that are not well controlled. Extracting
the parameter of interest from a given sensor’s output often
requires considerable experience and tenacity in sifting through
large amounts of data. Through its ability to recognize patterns,
an artificial neural network is able to automatically sort be-
tween needed versus useless data and to obtain a meaningful
result without requiring the input of an experienced expert.
This characteristic of a neural network makes it particularly
useful in the interpretation and analysis of microwave spec-
trometry data and greatly simplifies the application of this
measurement tool.
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