
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007 889

Real-Time Neural Network Inversion on the
SRC-6e Reconfigurable Computer

Russell W. Duren, Senior Member, IEEE, Robert J. Marks II, Fellow, IEEE, Paul D. Reynolds, Student Member, IEEE,
and Matthew L. Trumbo, Student Member, IEEE

Abstract—Implementation of real-time neural network inver-
sion on the SRC-6e, a computer that uses multiple field-pro-
grammable gate arrays (FPGAs) as reconfigurable computing
elements, is examined using a sonar application as a specific case
study. A feedforward multilayer perceptron neural network is
used to estimate the performance of the sonar system (Jung et al.,
2001). A particle swarm algorithm uses the trained network to
perform a search for the control parameters required to optimize
the output performance of the sonar system in the presence of
imposed environmental constraints (Fox et al., 2002). The particle
swarm optimization (PSO) requires repetitive queries of the
neural network. Alternatives for implementing neural networks
and particle swarm algorithms in reconfigurable hardware are
contrasted. The final implementation provides nearly two orders
of magnitude of speed increase over a state-of-the-art personal
computer (PC), providing a real-time solution.

Index Terms—Field-programmable gate arrays (FPGAs), in-
verse problems, neural network hardware, particle swarm theory,
real-time systems, reconfigurable architectures, sonar.

I. INTRODUCTION

I NVERSION of large feedforward neural networks [4] has
found application in numerous areas [5], including electro-

magnetic surface design [6], flight control [7], neural network
training [8] assessing the vulnerability of large scale power
systems [9], [10], parameter estimation in remote sensing [11],
acoustic estimation [12], magnetotelluric data analysis [13],
and optimization of sonar performance [9]. For large neural
networks, the computational intensity of inversion can prohibit
real-time application. The speed of field-programmable gate
arrays (FPGAs) can be used to remedy this problem.

Determination of underwater sonar system parameters to pro-
vide the best possible ensonification performance at a given lo-
cation in an environmentally complex water column is a com-
putationally intense inverse problem. Here is the problem we
consider. A surface ship dips a sonar unit into the water like a
teabag. The depth of the sonar unit is an example of a parameter
that can be controlled. The environmental parameters cannot.
These include wind speed (surface roughness), bathymetry (the

Manuscript received May 2, 2006; revised October 30, 2006; accepted
November 4, 2006. A preliminary version of this work was presented at the
IEEE Swarm Intelligence Symposium, Pasadena, CA, June 8–10, 2005.

R. W. Duren and R. J. Marks II are with the Department of Electrical and
Computer Engineering, Baylor University, Waco, TX 76798 USA (e-mail: Rus-
sell_W_Duren@baylor.edu; Rober_Marks@baylor.edu).

P. D. Reynolds is with the Stanford University, Palo Alto, CA 94305 USA
(e-mail: paulr2@stanford.edu).

M. L. Trumbo is with Pelco, Fort Collins, CO 80525 USA (e-mail:
mtrumbo@pelco.com).

Digital Object Identifier 10.1109/TNN.2007.891679

shape of the seafloor), bottom type, and sound velocity as a func-
tion of depth. Both the control and environmental parameters
determine the effectiveness of the sonar.

The performance of sonar at each point in the water column is
determined by the signal-to-interference ratio (SIR) defined as
the ratio, in decibels, between the wanted signal power and the
interference in the channel. We consider the case where ensoni-
fication, measured by the SIR, is evaluated on a sagittal plane in
the water column.1 The SIR is determined on pixels in the plane.
This simple forward problem, when done using an acoustic em-
ulator such as the Applied Physics Laboratory (APL, the Uni-
versity of Washington, Seattle, WA) sonar simulator [5] is it-
self computationally intensive. For this reason, data gathered
over a long period of time from the emulator was successfully
used to train an artificial neural network which, in comparison,
generates the SIR profile almost instantaneously. Details of the
training of the feedforward neural network are available from
[1], [2], [5], and [12]. Our goal is to implement the neural net-
works described in these works, along with a particle swarm op-
timization (PSO), on one or more FPGAs. The PSO is used to
invert the neural network to search for the set of inputs to the net-
work that achieve a desired output. There are other approaches
to perform inversion of a neural network [14], [5]. PSO, how-
ever, has been shown to be a highly effective search algorithm
for a wide class of problems [14] and has worked well for in-
version of neural networks [12].

For an inverse problem, an area in the water column corre-
sponding to a group of joined pixels is chosen. The goal is to
ensonify this region with the highest SIR possible. The inverse
problem is thus to determine a set or subset of input parame-
ters that will yield a high SIR in the target area. Examples of
fitness of the inversion are the sum of the SIR values in the re-
gion of interest and the maximization of the minimum SIR in
the region. Pixels outside the region of interest are assigned a
“don’t care” status and are not included in evaluation of the fit-
ness function. Inversion can be performed across any subset of
parameters—control or environmental. For example, the neural
network can be inverted to find a combination the best sonar
parameters and the best sound speed profile to ensonify a re-
gion of interest. There are other useful variations of the inver-
sion problem in sonar [12]. Further details of the use of the PSO
in the inversion of neural networks are given by Thompson et al.
[12].

The forward sonar problem, when performed using an
acoustic emulator, is slow [5], [9]. The neural network emula-
tion increased the speed of the forward problem considerably.

1To assess volume from a neural network trained only on a single plane, a
plurality of radially spaced planes can be used.

1045-9227/$25.00 © 2007 IEEE

890 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

The inverse problem using a trained neural network can require
numerous queries to the neural network. When implemented
on a dedicated 1.8-GHz personal computer (PC), the inversion
process typically requires two minutes. This is still too slow for
real-time implementation. We have mapped the neural network
to a reconfigurable computer that uses FPGAs as coprocessors.
Using a SRC-6e computer from SRC Computers, Inc., Col-
orado Springs, CO [16], we were able to decrease the time of
the PSO [17], [18] inversion of a trained neural network by two
orders of magnitude, rendering possible real-time applications.

There are numerous issues in the implementation of a
large neural network interacting with a PSO algorithm on
the SRC-6e. Both the neural network sonar emulator and the
particle swarm algorithm used to perform inversion must be
ported to the FPGA coprocessors. Multiple investigators have
implemented neural networks on FPGAs [19]–[24]. To our
knowledge, no one has implemented a network inversion by
PSO on FPGAs. The imported layered perceptrons are trained
offline in software using floating-point arithmetic.2 In order to
achieve maximum execution speed on the FPGAs, a fixed-point
implementation is required. Conversion to fixed-point rep-
resentation and the resulting quantization effects has to be
addressed. A forward pass through the sonar emulator neural
network requires approximately 92 000 multiply–accumulate
operations. The FPGAs used in the SRC-6e can each perform
144 18-b multiplications in parallel [25]. The neural network
must be mapped to this architecture.

The outputs of the internal nodes of the network are passed
through a nonlinear squashing function. The implementation
of the squashing function requires careful selection to keep
the number of operations and latency low. Hikawa analyzed
the performance of a piecewise linear representation of the
squashing function [26]. Tommiska provided an extensive com-
parison of various representations of the squashing function.
These included four piecewise linear representations, a piece-
wise second-order representation, and a combinational method
[27]. Martincigh and Abromo developed a voting circuit that
approximates a sigmoid function for pulse-mode neurons [28].
All of these methods are optimized for implementation without
multipliers or large memories. As both multipliers and block
random access memory (RAM) components are in abundant
supply on newer FPGAs, this paper evaluates sigmoid approxi-
mations that take advantage of these components. The particle
swarm algorithm requires similar care. Classical particle swarm
claims better performance when a small random component is
added into the update equations for the particle swarm. Several
methods of implementing the random component are analyzed.
For particle swarm inversion of the sonar neural network, we
found no random components are needed.

The neural network and PSO were implemented on an
SRC-6e reconfigurable computer. The SRC-6e is a commercial
reconfigurable computer developed by SRC Computers, Inc., a
company established by S. Cray. It has previously been used by

2The sonar neural network we use for this emulation was trained at the APL.
Discussion on the method of training and the degree of accuracy of the training
is discussed elsewhere [1], [2], [5], [12]. The details of the success of the neural
network emulator are discussed in these references. Insofar as the neural net-
work, our goal is to reduce it to operational practice on the FPGA.

researchers at George Mason University, Fairfax, VA, George
Washington University, Washington, DC, and the Naval Post-
graduate School, Monterey, CA, to implement various signal
processing and cryptographic algorithms [29]–[31].

The final implementation of the sonar neural network par-
titions the problem into two FPGAs. One FPGA is used to
calculate the output of the neural network. This FPGA is
pipelined so that one neuron output is computed every clock
cycle. The weights and inputs for the network are represented
as 16-b fixed-point numbers. A piecewise Taylor series ap-
proximation is chosen to implement the nonlinear squashing
function. The second FPGA is used to implement the particle
swarm algorithm. The resulting architecture solves the sonar
inversion problem in less than 2 s.

Implementing inversion of a large neural network trained on
sonar data, although dealing with the acceleration of a specific
application, also addresses the more general topics of effective
implementation of neural networks, a class of nonlinearities,
PSO, and random numbers on an FPGA.

II. BACKGROUND

A. Neural Network

The feedforward neural network used to predict the acous-
tical performance has a 27-40-50-70-1200 architecture, with 27
inputs corresponding to sonar system and environmental param-
eters and 1200 outputs corresponding to the SIR, in decibels, of
an area of water at points on an 80 15 grid. The outputs of the
nodes in the three hidden layers are processed with a sigmoid
squashing function.

B. Neural Network Inversion

The inversion of the neural network consists of (1) identifica-
tion of the set of pixels over which SIR is to be maximized, and
(2) identifying each input parameter as “clamped” or “floating”
[32]. Clamped input parameters are set to specific values. Typi-
cally, the environmental parameters are clamped, although there
are important cases where they float [12]. The floating input pa-
rameters are those that are adjusted to give the maximum SIR
output over a region of interest. Optimization is performed in the
space of the floating parameters. Each point in this space is as-
signed a fitness equal to the sum of errors between the SIR target
pixel values and the SIR values achieved by the floating inputs.
The smaller this error is, the better the fitness. The optimization
space can be viewed as being implicitly parameterized by the
clamped input parameters since changing a clamped input will
change the optimization space landscape, and therefore, the lo-
cation of the optimal solution in the search space.

To determine the fitness of a set of floating parameters, the
trained neural network is provided with the values of the floating
inputs to be evaluated. In conjunction with the clamped inputs,
the SIR at all pixels is determined by a single forward pass
through the trained neural network. The SIR in the region of in-
terest is used to compute the fitness of the floating inputs. Pixels
outside the region of interest are ignored.

To achieve the maximum SIR in a specified region, the SIR
targets of the pixels are all placed at high unachievable values.

DUREN et al.: REAL-TIME NEURAL NETWORK INVERSION ON THE SRC-6E RECONFIGURABLE COMPUTER 891

The search, in attempting to reach these values, will achieve the
best fitness allowable by the system.

C. PSO

Searches through the optimization space of floating parame-
ters can be performed by many different search algorithms. PSO
has been shown to be a robust and easily implemented search al-
gorithm that works well in problems of the type considered [12],
[14]. We will also show that PSO is relatively straightforward to
implement on an FPGA.

PSO uses several agents exploring a search space to find the
best possible fitness. As the agents traverse the space, they have
tendencies to return to their own previous best locations as well
as to the overall best global location of the group. The tendency
is based on the distance from the best locations and a random
component. The update equations used for each agent are

(1)

(2)

The next location and next velocity are de-
termined using the following: as the current location,
as the current velocity, and as bias coefficients, as
uniform random variables between 0 and 1, as the personal
best fitness location, as the group best fitness location, and
an optional parameter that has been added to the traditional
update equations, providing an additional update constant con-
trolling the resolution of movement.

Frequently used limits are also applied to the particle swarm.
Velocity is limited to help keep particle swarm from exploding.
The range is also limited to keep particles from using search
time to look in impossible areas.

D. SRC-6e Hardware Architecture

The version of the SRC-6e used for this work contains
two Pentium 3 microprocessors running at 1 GHz and three
Xilinx XC2V6000 FPGAs running at 100 MHz. Two of the
three FPGAs are available to the user as reconfigurable com-
puting elements. Each XC2V6000 contains 144 18-b multiplier
blocks, 144 18-kb blocks of SelectRAM and approximately
six million logic gates [26]. Twenty-four megabytes of static
RAM, referred to as onboard memory (OBM), is connected
to the FPGAs and partitioned into six individually accessible
banks. Data can be transferred between each OBM bank and
either of the FPGAs at a rate of 800 MB/s. The two FPGAs are
able to communicate with each other through three 64-b ports.
If both FPGAs are utilized, they use a master–slave relationship
with one controlling the other [33].

III. IMPLEMENTATION OF THE FEEDFORWARD NETWORK

The trained neural network sonar emulation was implemented
in one of the two FPGAs available on the SRC-6e. The PSO is
implemented in the second FPGA. A master–slave relationship
is used between the two FPGAs with the PSO acting as master
and the neural network acting as slave. In this relationship, the
particle swarm generates the inputs to the neural network and

the neural network provides a fitness function for the particle
swarm.

If a neural network is originally designed to be implemented
and trained on an FPGA, the implementation may be opti-
mized for the FPGA prior to training. Examples of this include
using weights that are powers of two and using a lookup
table squashing function [30]. The training of the network
should compensate for the limited precision of the network.
However, the sonar implementation problem involves porting
a network that was originally designed and trained offline
using floating-point math and a sigmoid squashing function
with essentially unlimited precision, to a limited-precision
implementation.3 The impact of finite precision for the weights,
the multiplications, and the squashing function must therefore
be investigated.

A. Conversion from Floating-Point to Fixed-Point
Representations

In order to minimize chip space and computation time, short
fixed-point representations of numbers are desired. The FPGAs
in the SRC-6e are connected to the onboard memory through six
64-b wide buses. The 64 b can be easily divided into two 32-b
numbers or four 16-b numbers. The XC2V6000 FPGAs contain
embedded 18-b multipliers. Together, these factors make the use
of a 16-b representation desirable. To define the representation,
two parameters must be specified, the length of the integer bits
and the length of the fractional bits. Computer simulations of
the neural network were used to study the impact of converting
to fixed-point representation and to select the optimum repre-
sentations for various parameters.

While all other calculations were performed at maximum ac-
curacy, the bit accuracy of the output of the squashing function
was varied. Fig. 1 shows four different gray level maps of the
SIR distribution as a function of the accuracy of the squashing
function. The vertical direction depicts water depth with the
water surface at the top. The horizontal direction depicts range.
Each representation corresponds to a maximum depth of 180 m
and a range of 6 km.

Fig. 2 shows the SIR distribution resulting from changing the
bit accuracy of weights while performing all other calculations
at maximum accuracy. Fig. 3 shows the combined effect of lim-
iting the accuracy of the weights and the squashing function.
The results in Fig. 3 represent the averaging 100 test cases. Ad-
ditional simulations reveal the values presented to the input of
the squashing function range from 50 to 85. This range re-
quires a minimum of eight bits: one sign bit and seven magni-
tude bits. The inputs and outputs are a few orders of magnitude
greater than the network calculations. However, the inputs and
outputs have consistent orders of magnitudes among themselves
and can also be stored in a fixed-point representation. The cor-
responding input and output weights can be scaled to account
for the difference, making all layer calculations appear to be of
the same order of magnitude.

3To alleviate this problem, the neural network trained offline could be con-
strained to have weights of limited precision. Details of doing so, including
training algorithms (generic error backpropagation requires floating-point pre-
cision and cannot be used) and even the ability to train such a network with the
sonar data is not considered here.

892 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Fig. 1. Example accuracy for squashing function of different precisions. Using
one of the sonar problem’s inputs, the image map output was calculated using a
neural network with a squashing function rounded to various levels of accuracy.
The input and weights were kept at complete accuracy. The precision is shown
under each image. The four outputs use, from left to right, full accuracy, eight,
six, and four fractional bits for the squash output. The grayscale range is in
decibels.

Fig. 2. Accuracy sweep of weights of different precisions. Using one set of
sonar inputs, the image map output is calculated using weights rounded to var-
ious levels of accuracy. The input and squashing function maintained complete
accuracy. The precision is shown under each image. The four outputs use, from
left to right, full accuracy, eight, six, and four fractional bits for weights. The
grayscale range is in decibels.

The result of simulations confirm that 16 b provide sufficient
accuracy, allowing representation with one sign bit, seven
integer bits, and eight fractional bits. Computer simulations
confirm that this representation results in an average error of
0.866 dB per pixel. Since typical pixel values are on the order
of magnitude of 100 dB, the error is less than one percent.

B. Implementation of the Squashing Function

The squashing function is used 160 times4 per neural network
evaluation. A small, quick, and accurate implementation is de-
sired. The familiar sigmoid, or logistic function, is used as a

4These are the number of hidden neurons; 160 = 40 + 50 + 70. The
inputs are not subjected to any nonlinearity. Neither are the output neurons.

Fig. 3. Accuracy sweep of fractional bits. Using one hundred sets of inputs,
the average error per pixel in decibels is calculated using a neural network with
all numbers rounded to various levels of bit accuracy. The error decreases log-
arithmically as the number of fractional bits increases.

squashing function by the nodes in the three hidden layers of the
network [4]. The equation defining the sigmoid function is

(3)

The sigmoid can be found using high-precision methods,
such as a lookup table or a coordinate rotation digital computer
(CORDIC) function [35]. Another common method is to use
a simple piecewise linear approximation implemented with a
shift–add approach [36]. However, each of these methods has
undesirable aspects. In order to keep the entire network internal
to one chip, a lookup table is undesirable. A CORDIC function
gains accuracy at the cost of latency, where latency is defined
as the number of clock cycles required from the start of the
calculation until the resulting data is ready. Each additional
stage in the CORDIC calculation increases the accuracy, but
it also increases the time required to complete the calculation
by one or more clock cycles. Within a particular layer all
calculations are pipelined, so the latency penalty is incurred
only once per layer. The piecewise linear approximation, while
small in area and quick in execution, is not smooth. A smooth
squashing function approximation that can approximate a
sigmoid to arbitrary accuracy is desired. A piecewise Taylor
series approximation proved best. Details follow.

1) Lookup Table Implementation: The simplest sigmoid im-
plementation is use of a lookup table. In order to make a lookup
table, a limited operating range must be determined. The sig-
moid squashing function has a nearly odd property

(4)

The size of the lookup table can be, therefore, decreased to half
the desired range. Since the sigmoid is nearly 1 for and
0 for , the nonsaturation range is between 8 and 8 and
the lookup table only needs to operate between 0 and 8. This

DUREN et al.: REAL-TIME NEURAL NETWORK INVERSION ON THE SRC-6E RECONFIGURABLE COMPUTER 893

requires three integer bits and all eight fractional bits to be used
as address bits. Any numbers not in that range are considered to
be in saturation and are assigned an output value of 1. The re-
sulting table has 11 address bits selecting the eight bit fractional
portion, using 2 kB of memory. This fits nicely into one 18-kb
block RAM in the FPGA. The lookup table implementation of
a sigmoid has a latency of three clock cycles.

Calculations show that the maximum error of the lookup
table is 0.005 out of 1. This results in an average pixel error of
0.4015 dB per pixel in simulations. The lookup table is the best
choice if sufficient block RAMs are available. For this applica-
tion, all of the block RAMs are used for storage of weights and
variables. Therefore, a different method is required.

2) CORDIC Implementation: A second method to calculate
the sigmoid uses the CORDIC algorithm to calculate the hyper-
bolic sine and cosine followed by division to get the hyperbolic
tangent [35]. The tangent can then be used in the sigmoid equiv-
alent

(5)

The CORDIC algorithm works by rotating a vector by known
angles until the sum of the angles is equivalent to the desired
angle. For this application, the CORDIC uses the properties

(6)
With a small amount of algebra, this becomes

(7)

(8)

(9)

By starting with the hyperbolic sine and cosine of known angle
, and rotating the angle forward or backward by known an-

gles , a desired hyperbolic sine and cosine can be calculated
by applying (7) and (8). If the known angle is greater than the
desired one, the next rotation is backward; if it is less than the
desired one, the next rotation is forward. The equations can be
applied repeatedly with other known s until the proper sum is
reached. By choosing to be negative powers of 2, such
as , etc., all the multiplications can be executed as
shifts.

The commonly used initial argument is zero, with the
starting vector as . However, the range of
the CORDIC algorithm starting at this vector is limited to the
sums of the known s. When using as only powers of
2, the radius of convergence is slightly greater than 1.13. This
creates a problem with the sigmoid implementation. Using the
almost odd property, the desired sigmoid range is from 0 to 8.
Since the argument is divided by two, the necessary range of
the hyperbolic tangent is 0–4, which is out of the convergence
range. In order to get the necessary range to converge, the
desired range is divided into segments the same size as the
standard range. In this case, two segments were used, 0–2 and
2–4. Then, when a tangent needs to be found, the initial vector

Fig. 4. VHDL approximation of CORDIC sigmoid function. (a) Output of the
VHDL implementation of the CORDIC squash. (b) CORDIC approximation
error.

is chosen based on the argument. If bigger range is necessary,
more segments can be used. If a more accurate result is desired,
more CORDIC rotations can be used.

Once the hyperbolic cosine and sine are found, the tangent is
found by division. A standard Xilinx core is used for division. A
shift of 1 b is used to divide the tangent by two. Then, one half
is added to the result. The 11-stage CORDIC algorithm and di-
vide implementation fits into a pipeline that has a latency of 50.
The performance of the CORDIC algorithm is shown in Fig. 4.
The approximation of the sigmoid remains within 0.005 for the
entire range. Fig. 5 shows the result of using the CORDIC algo-
rithm in the neural network. The average error resulting from the
CORDIC implementation in hardware is 0.4279 dB per pixel.

3) Shift–Add Implementation: Another common implemen-
tation of the sigmoid function is a piecewise linear approxima-
tion with many segments of the form

(10)

If the segments are chosen wisely, the sigmoid can be calcu-
lated using only bit shifts and additions [36]. However, the bit
shift method has a limited accuracy, with no possibility for im-
provement. At its worst, the approximation is nearly 0.025 off
the actual value of the sigmoid.

Another problem is that the piecewise linear approximation is
not very smooth. In computer simulations, even when a network
is trained using the piecewise approximation of the sigmoid,
the output demonstrates a piecewise character. The error per-
formance of the shift–add implementation are shown in Figs. 6
and 7. The shift–add implementation of the sigmoid has a la-
tency of five.

4) Piecewise Taylor Series Approximation: The fourth ap-
proximation examined uses a Taylor series around 0. When one
approximation is used for the entire range of 0 to 8, many terms
are needed for a suitable approximation. To avoid this problem,
several second-order segments of Taylor series about different
points are used, with a general formula of

(11)

894 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Fig. 5. Comparison of CORDIC FPGA output and the full-precision output.
The map on the left shows a comparison of the full-precision image and that
produced by the FPGA when a CORDEC implementation of the sigmoid is
used. The absolute difference of the two images is shown in the map on the
right.

Fig. 6. VHDL approximation of shift–add sigmoid function. (a) Output of the
VHDL implementation of the shift–add squash. (b) Shift–add approximation
error. The shift–add approximation of the sigmoid is nearly 3% off from the
actual at its worst.

Then, given the argument, the proper offset and coefficients are
chosen. The accuracy of the approximation can be improved
by increasing the number of segments used in the approxima-
tion. This implementation uses three multipliers, three adders,
three multiplexers, and a number of comparators equivalent to
the number of segments. Five segments are used for the final
implementation. The input bounds for these segments and the
resulting Taylor series coefficients are shown in Table I.

The approximation is pipelined to obtain maximum
throughput. A block diagram of the pipeline is shown in
Fig. 8. One might expect this pipeline would have a latency of
eight. However, the multipliers on the XC2V6000 require reg-
istering to operate at 100 MHz, resulting in a latency of two for

Fig. 7. Comparison of shift–add FPGA output with full-precision output. The
map on the left shows a comparison of the full-precision image and that pro-
duced by the FPGA in comparison to the result using a shift–add approximation
of the sigmoids. The absolute difference of the two images in SIR decibels is
shown in the map on the right.

TABLE I
TAYLOR SERIES COEFFICIENTS

each multiplier stage. Since there are two stages of multipliers,
the total latency is, therefore, ten. The error performance of the
Taylor series implementation is shown in Figs. 9 and 10.

5) Comparison of Squashing Function Implementations:
Table II shows a comparison of the different squashing function
implementations. The table lists the FPGA resources used, the
latency, and the average pixel error for each approximation.
The average pixel error was found using computer simulations
while holding all other calculations at maximum accuracy.

The lookup table approximation uses the fewest logic slices,
has the lowest latency, and the lowest average error. Under most
circumstances, it would be the best solution. Unfortunately, all
144 of the block RAM memories are required for storage of the
weights in the neural network implementation. This eliminates
the lookup table approach.

The shift–add implementation is small with a low latency and
uses no block RAMs or multipliers for its implementation. How-
ever, it has the worst error, three times that of any other imple-
mentation. It also has no method for error improvement.

The CORDIC version has the second lowest error, though
is significantly larger in chip area than the other four versions.

DUREN et al.: REAL-TIME NEURAL NETWORK INVERSION ON THE SRC-6E RECONFIGURABLE COMPUTER 895

Fig. 8. Block diagram for a Taylor series implementation of the sigmoid.

Fig. 9. VHDL approximation of the Taylor series sigmoid. (a) Output of VHDL
implementation of the Taylor series squash. (b) Taylor series approximation
error. The approximation of the sigmoid remains within an error of 0.005 for
the entire range.

This version also has the longest latency, which, in a four-layer
network, would add 200 clock cycles versus the next slowest 40.
However, error improvement is easily achieved by adding more
stages as long as chip area is available.

Fig. 10. Example of the comparison of FPGA output with full-precision output.
The image map on the left was produced by the FPGA using a Taylor series
approximation of the sigmoid function and the image map on the right was
produced by the original neural network. The map on the far right is the cor-
responding absolute error between the maps.

896 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

TABLE II
COMPARISON OF SIGMOID APPROXIMATIONS

Fig. 11. Simplified block diagram of the node implementation. The node im-
plementation uses 71 multipliers in parallel and one squashing function to output
the results of one node every clock.

The Taylor series approximation has the third lowest error
of four implementations, though it is not much worse than the
smallest error. The small improvement in latency gained by
using the shift–add implementation is outweighed by the in-
crease in error of the shift–add approximation. The desire for
speed and smaller circuit area provided by the Taylor series ap-
proximation also outweighs the small error improvement that
would be gained by switching to a CORDIC implementation.
The Taylor series approximation was selected for use in the
FPGA neural network implementation.

C. Network Architecture Implementation

The main objective of the neural network implementation is,
for an acceptable accuracy level, minimization of the time re-
quired to calculate a forward pass through the network. A for-
ward pass through the sonar neural network requires 91 940
multiply–accumulate operations. Each FPGA contains 144 18-b
multipliers. This does not support calculating an entire layer at
a time. The output neurons required the largest number of mul-
tiplications for any individual neuron: 71 multiplications corre-
sponding to the outputs of the previous layer and one additional
accumulation for the bias weight. A pipelined network that al-
lowed the calculation of one neuron per clock cycle was, there-
fore, chosen.

The neural network implementation performs all multiplica-
tions for the calculation of one node during one clock cycle.
A block diagram of the node parallel calculation is shown in
Fig. 11. The weights are stored in the FPGA in block RAM. The

block RAMs are configured such that 70 weights and one bias
term can be accessed simultaneously. Due to restrictions on par-
titioning the block RAM components in the Virtex FPGAs and
limitations of the SRC-6e development environment, storage of
the weights requires all of the available 144 block RAM com-
ponents within the FPGA. The inputs and outputs are held in
registers. This structure allows multiple weights and the entire
layer of inputs to be accessed concurrently. When a layer is com-
plete, the outputs write over the inputs for calculation of the next
layer. The previous layer’s outputs are multiplied by the corre-
sponding weights for the current node. While the products are
being summed, the next node’s weights are multiplied by the
same set of outputs, creating an efficient pipeline. Since all the
node outputs are required for calculations in the next layer, the
pipeline must wait several clock cycles for the previous layer to
finish before continuing with the next. In order to simplify the
weight storage of the network, all layers are considered to be
the same size as the largest, in this case, 70 nodes. Weights not
needed by the smaller layers are set to zero. However, calcula-
tion of all 70 nodes for each layer is not required, so the number
of nodes calculated per layer is controlled in order to save clock
cycles. The pseudocode shown later describes the calculation of
the output for one node.

Multiply all inputs by all current weights

Sum all the products

If not in the output layer

Squash the sum

Save the squashed sum in output memory

Increment weight counter

Increment output counter

If output counter equal number of next
layer nodes

Reset the output counter

Write output memory over input memory

Increment layer counter

This design takes 1465 clocks to complete one network eval-
uation. Given the 100-MHz clock on the SRC-6e, this translates
to 14.65 s per forward calculation. This allows the network to
be evaluated more than 60 000 times per second. A Pentium 4
running at 1.8 GHz can theoretically perform the forward calcu-
lation in 0.116 ms if it performs one calculation per clock. How-
ever, due to memory access time and a nondedicated processor,
the actual forward calculation time is 0.28 ms. This means the
FPGA implementation provides a gain of 19 over the Pentium
4 for the forward pass through the network.

IV. IMPLEMENTATION OF THE PARTICLE SWARM INVERSION

The PSO update equations consist of simple multiplications
and additions, easily implemented on an XC2V6000. Setting the
bias coefficients to powers of two and using shifts in place of
multiplications further simplifies the implementation. For this
implementation, the value of was set to and the value
of was set to . These values represent negative powers

DUREN et al.: REAL-TIME NEURAL NETWORK INVERSION ON THE SRC-6E RECONFIGURABLE COMPUTER 897

of two, corresponding to right shifts of 3- and 4-b positions,
respectively. These values were found to work well in repeated
experiments.

The PSO algorithm is implemented with ten particles. The de-
fault search space is over all 27 possible inputs to the neural net-
work. The search space is constrained by providing minimum
and maximum values for each input dimension. The maximum
particle velocity in each dimension is also constrained to be less
than a predetermined maximum value. The starting positions
and velocities of all ten particles are set to pseudorandom values
within the input space.

For most practical applications of the system, some of the
27 inputs would be set to constant values and the system
would optimize the remaining inputs. With this implementation,
constant inputs can be implemented by setting the minimum
and maximum values to the same number. Alternatively, if
there is a small uncertainty in the some of the constant inputs,
the uncertainty can be bounded by the minimum and maximum
values.

The large neural network serves as the fitness function for
each particle. The output values of the neural network are cal-
culated in one of the two FPGAs available for user logic in the
SRC-6e computer. The remaining particle swarm calculations
are implemented in the second FPGA. This allows the position
and velocity of one particle to be updated while the fitness of
another particle is being calculated.

The generic PSO algorithm requires generation of random
numbers. We examined three different implementations. The
first implementation did not add any random component to
the updates. The other two implementations used two different
methods to generate random variables.

A. Deterministic Particle Swarm

The first method is to simply ignore the random component
of the PSO. The random component was previously removed
successfully to prove the stability of the algorithm [36]. Re-
moving the random component simplifies the implementation of
the particle swarm update equations, but can also degrade PSO
performance. In order to estimate the effectiveness of such an
implementation, the nonrandom or deterministic particle swarm
inversion was simulated on a conventional computer. The bias
coefficients were decreased so that the average bias would be
the same. In the inverse accuracy test, input is used to com-
pute output . The network is inverted using with a result of .
For 100 such trials of the deterministic particle swarm, the av-
erage error was 2.3587 dB per pixel. For com-
parison, a standard particle swarm inversion incorporating uni-
form random variables was also run on a conventional computer.
Using the same inverse accuracy test for 100 trials, the average
error for the standard particle swarm was 1.9385 dB per pixel.
Next, both the random and the deterministic particle swarms
were run for 10 000 iterations for 30 searches. The global best
fitness was plotted for each run as well as the average of all
swarms. This plot is shown in Fig. 12.

For our problem, including the random component enhances
swarm performance by, on average, approximately 1 dB. The
deterministic particle swarm was implemented in the FPGA.

Fig. 12. PSO with and without random noise. Random and deterministic PSO
were run for 10 000 iterations 30 times. All the results are shown here. The
crosses are the global best results from the deterministic particle swarm and
the top line is the average. The circles are the global best results from the par-
ticle swarm with randomness and the bottom line the average. The lower sto-
chastic PSO line performs approximately 1 dB better than the deterministic
PSO. The deterministic PSO, however, is more straightforwardly implemented
on the FPGA. In practice, the tradeoff between the simplicity and speed of im-
plementation must be weighed against the lower accuracy.

Fig. 13. Deterministic particle swarm block diagram. The deterministic par-
ticle swarm implementation performs both the velocity and position updates in
parallel and has a latency of three clock cycles.

The deterministic particle swarm update equations lend them-
selves to a parallel hardware implementation since velocity and
position can be calculated at the same time. The update equa-
tions are implemented in a pipeline and one dimension can be
updated on every clock cycle.5 The pipeline has a latency of

5The stochastic nature of PSO, and indeed, of many optimization algorithms,
improves performance. For the specific case of the neural network inversion,
however, the stochastic component of PSO can be sacrificed at the cost of de-
graded performance. All optimization is faced with tradeoffs between imple-
mentation constraints and accuracy. For the inversion problem, we could, in
principle, perform an exhaustive search and find a solution better than that found
using a stochastic PSO, but the time constraint prohibits us from doing so. The
choice of a deterministic PSO buys faster implementation speed. As with any
optimization, if the resulting accuracy is not acceptable, alternate methods must
be investigated with a probable sacrifice in implementation properties.

898 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

Fig. 14. PSO inversion for SIR maximization in a specified area. (a) Outputs from the solution found by the particle swarm, where lighter areas represent higher
SIRs. (b) White areas show the desired maximization areas.

three clock cycles, so all 27 dimensions can be updated in a total
of 29 clock cycles, three clock cycles for the first dimension and
one clock cycle for each of the remaining 26 dimensions. This
results in a particle update time of 290 ns. The block diagram
for the pipelined hardware implementation is shown in Fig. 13.

B. Particle Swarm With Randomization

In order to implement random numbers for the PSO, a func-
tion was implemented that generated two pseudorandom num-
bers per clock. Two stages were added to the update pipeline
to multiply the personal bias and global bias by the generated
random numbers.

1) Linear Feedback Shift Register: The first method for gen-
erating pseudorandom numbers uses a linear feedback shift reg-
ister (LFSR). This method is typically used in testing digital
logic designs. The LFSR uses a shift register where the next bit
shifted in is determined by a logical combination of the bits in
the previous number [37]. For a 16-b random number, the last

16 b were taken from a 20-b LFSR. Using the inverse accuracy
test over 100 trials, the average error for the hardware PSO with
LFSR randomness was 2.3522 dB per pixel.

2) Modulus Implementation: A second method of generating
pseudorandom numbers is based on a common software imple-
mentation [38]. In this implementation, the next number in a
sequence of random numbers is found by taking the previous
number multiplied by a constant added to offset modulus .
The modulus implementation used is very similar, choosing the
next number in the sequence by using the fractional portion of
the square of the previous number added to a constant . Using
the fractional portion is equivalent to modulus one. The squaring
operation is similar to the multiplier and constant . In the hard-
ware implementation, 18-b fixed-point numbers were used.

C. Comparison of Particle Swarm Implementations

In the hardware implementation, the average pixel error for
the deterministic swarm over one hundred trials is 2.36 dB per

DUREN et al.: REAL-TIME NEURAL NETWORK INVERSION ON THE SRC-6E RECONFIGURABLE COMPUTER 899

pixel. The particle swarm with an LFSR generating random
numbers has an average pixel error of 2.35 dB. The particle
swarm using the modulus implementation had an average pixel
error of 2.37 dB. When searching for known achievable sets, all
three fixed-point implementations produce approximately the
same level of output error. Due to its simplicity, this makes the
deterministic method most desirable for the problem at hand.
Note, interestingly, that the deterministic method introduces a
small amount of randomness due to truncation caused by the
fixed-point calculations. None of the hardware implementations
are as accurate as the conventional computer average error of
1.94 dB per pixel. In order to account for this increase, note
that the hardware implementation uses fixed-point math, while
the conventional computer uses floating-point math. The final
conclusion is, on the average, that the deterministic FPGA im-
plementation introduces an additional error of about 0.4 dB per
pixel.

V. PERFORMANCE OF THE COMPLETE IMPLEMENTATION

The output from the hardware particle swarm inversion has an
average per pixel difference of 2.54 dB from a known achievable
desired output or an average difference of 1.53%. This low error
implies that the particle swarm inversion will be able to find a
set of inputs that produces outputs closest or near-closest to a
desired output set. This error is 0.42 dB per pixel greater than
the error obtained using a conventional Pentium processor with
floating-point math.

Fig. 14 shows two sets of outputs from inputs found with the
goal of maximizing a specific area. The images on the right show
the desired areas for maximization. All other areas were ignored
for calculation of fitness. Localized maximization is equivalent
to attempting to find infinite signal to interference ratio, which,
of course, is outside the achievable set.

It was determined that 100 000 particle updates provide a
satisfactory solution, so the circuit is set to report results after
100 000 updates. The fitness function requires 14.65 s to cal-
culate, or 1.465 s for 100 000 updates. Particle updates require
290 ns to calculate, but this time is hidden in the fitness function
update time as the particle updates are performed in parallel on a
second FPGA. The total computation time for the hardware PSO
requires less than 1.8 s. The additional 0.335 s is attributed to
communication overhead between the two FPGAs and between
the FPGAs and the Pentium processor on the SRC-6e that pro-
vides the user interface to the program.

The time to complete the same 100 000 iteration PSO on a
conventional PC using only a 1.8-MHz Pentium 4 processor is
nearly 2 min. At 100 MHz, the two-chip hardware implemen-
tation takes under 1.8 s to complete, approximately 65 times
faster. We developed several additional implementations of the
neural network. Details are in [39].

VI. CONCLUSION

We have described a real-time implementation of a particle
swarm neural network inversion for calculation of sonar oper-
ating parameters. The neural network was implemented on the
SRC-6e reconfigurable computer. A speedup of a factor of 65

was obtained because of the careful design and the use of two
Virtex 2 FPGAs.

Several interesting conclusions can be developed concerning
the details of implementing such an algorithm in FPGAs. For
the problem considered, these include the following.

1) A simple lookup table provides the best implementation of
a sigmoid squashing function when sufficient block RAM
components are available. When these components are not
available, a piecewise Taylor series approximation works
best. Both techniques offer the combined benefits of the
use of minimal hardware, low latency, and high accuracy
when compared to the other methods that were considered.

2) The addition of a random component to the swarm
update equations resulted in better performance for a
floating-point solution on a conventional computer, but
not for the fixed-point implementation on the reconfig-
urable computer. It is thought that the noise added by
conversion to fixed-point math, coupled with the relatively
smooth fitness function, effectively eliminated the need
for the intentional addition of random noise.

3) Conversion from a network originally trained using a con-
vention computer with floating-point math to a reconfig-
urable computer using fixed-point math resulted in a sig-
nificant speedup without a significant change in accuracy.
In should be noted that these points may be specific to the
problem considered.

The reconfigurable computer implementation of the neural
network inversion effectively reduced computation time to near
real-time levels. The 100 000 evaluations in a conventional com-
puter particle swarm take nearly 2 min to complete. The same
inversion can be performed in the current SRC-6e-based imple-
mentation in about 1.8 s. Such a calculation rate is sufficient
for most real-time applications. The current particle swarm im-
plementation uses two identical Virtex 2 FPGAs operating at
100 MHz and containing 144 multipliers. The latest generation
of Xilinx Virtex 4 FPGAs operates at 500 MHz and contains
512 multipliers. Utilizing these chips, the clock speed increase
alone would allow the inversion time to decrease from 1.8 to
0.36 s. The additional multipliers could be used to perform fit-
ness evaluations of several agents at the same time or to improve
the speed of a single fitness evaluation. Predicted speedup based
on the increase in multipliers is about seven. This combined with
the faster chip speed would allow nearly 20 network inversions
to be performed every second.

ACKNOWLEDGMENT

The authors would like to thank Prof. D. Fouts and the U.S.
Naval Postgraduate School for providing access to the SRC-6e
computer located at the school. They would also like to thank
Dr. W. J. Fox at the Applied Physics Laboratory for providing
the weights of the trained neural network sonar emulator.

REFERENCES

[1] J.-B. Jung, M. A. El-Sharkawi, R. J. Marks II, R. T. Miyamoto, W. L.
J. Fox, G. M. Anderson, and C. J. Eggen, “Neural network training for
varying output node dimension,” in Proc. Int. Joint Conf. Neural Netw.,
Washington, D.C., 2001, pp. 1733–1738.

900 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 18, NO. 3, MAY 2007

[2] W. L. J. Fox, R. J. Marks, M. U. Hazen, C. J. Eggen, and M.
A. El-Sharkawi, “Environmentally adaptive sonar control in a
tactical setting,” Impact Environ. Variability Acoustic Predic-
tions Sonar Performance pp. 595–602, 2002 [Online]. Available:
http://www.ecs.baylor.edu/faculty/marks/REPRINTS/2002_Environ-
mentallyAdaptiveSonar.pdf

[3] P. D. Reynolds, R. W. Duren, M. L. Trumbo, and R. J. Marks II, “FPGA
implementation of particle swarm optimization for inversion of large
neural networks,” in Proc. 2005 IEEE Swarm Intell. Symp., Pasadena,
CA, Jun. 8–10, 2005, pp. 389–392.

[4] R. D. Reed and R. J. Marks II, Neural Smithing: Supervised Learning
in Feedforward Artificial Neural Networks. Cambridge, MA: MIT
Press, 1999.

[5] C. A. Jensen, R. D. Reed, R. J. Marks, M. A. El-Sharkawi, J. Jung, R.
T. Miyamoto, G. M. Anderson, and C. J. Eggen, “Inversion of feedfor-
ward neural networks: Algorithms and applications,” Proc. IEEE, vol.
87, no. 9, pp. 1536–1549, Sep. 1999.

[6] J. N. Hwang, C. H. Chan, and R. J. Marks II, “Frequency selective
surface design based on iterative inversion of neural networks,” in Proc.
Int. Joint Conf. Neural Netw., San Diego, CA, Jun. 17–21, 1990, vol.
I, pp. I39–I44.

[7] B. S. Kim and A. J. Calise, “Nonlinear flight control using neural net-
works,” J. Guid. Control Dyn., vol. 20, no. 1, pp. 26–33, 1997.

[8] R. D. Reed and R. J. Marks II, “An evolutionary algorithm for func-
tion inversion and boundary marking,” in Proc. IEEE Int. Conf. Evol.
Comput., Nov. 26–30, 1995, pp. 794–797.

[9] C. A. Jensen, M. A. El-Sharkawi, and R. J. Marks II, “Power security
boundary enhancement using evolutionary-based query learning,” Eng.
Intell. Syst., vol. 7, no. 9, pp. 215–218, Dec. 1999.

[10] I. N. Kassabalidis, M. El Sharkawi, and R. J. Marks II, “Border iden-
tification for power system security assessment using neural network
inversion: An overview,” in Congr. Evol. Comput./IEEE World Congr.
Comput. Intell., Honolulu, HI, May 12–17, 2002, pp. 1075–1079.

[11] L. Tsang, Z. Chen, S. Oh, R. J. Marks II, and A. T. C. Chang, “Inversion
of snow parameters from passive microwave remote sensing measure-
ments by a neural network trained with a multiple scattering model,”
IEEE Trans. Geosci. Remote Sens., vol. 30, no. 5, pp. 1015–1024, Sep.
1992.

[12] B. B. Thompson, R. J. Marks, M. A. El-Sharkawi, W. J. Fox, and
R. T. Miyamoto, “Inversion of neural network underwater acoustic
model for estimation of bottom parameters using modified particle
swarm optimizers,” in Proc. Int. Joint Conf. Neural Netw., 2003,
pp. 1301–1306 [Online]. Available: http://www.ecs.baylor.edu/fac-
ulty/marks/REPRINTS/2003-07_InversionOfNeuralNetworkUnder-
water.pdf

[13] V. Spichak and I. Popova, “Artificial neural network inversion of mag-
netotelluric data in terms of three-dimensional earth macroparameters,”
Int. Geophys. J., vol. 142, no. 1, pp. 15–26, Jul. 2000.

[14] J. N. Hwang, J. J. Choi, S. Oh, and R. J. Marks II, “Query based
learning applied to partially trained multilayer perceptrons,” IEEE
Trans. Neural Netw., vol. 2, no. 1, pp. 131–136, Jan. 1991.

[15] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence. San
Mateo, CA: Morgan Kaufmann, 2001.

[16] SRC Computers, Inc., Colorado Springs, CO [Online]. Available:
http://www.srccomputers.com

[17] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Machine Human Sci., Oct. 1995,
pp. 39–43.

[18] R. Eberhart and J. Kennedy, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., Nov. 27–Dec. 1 1995, vol. 4, pp.
1942–1948.

[19] E. Ros, E. M. Ortigosa, R. Agis, R. Carrillo, and M. Arnold, “Real-
time computing platform for spiking neurons (RT-spike),” IEEE Trans.
Neural Netw., vol. 17, no. 4, pp. 1050–1063, Jul. 2006.

[20] Y. Maeda and M. Wakamura, “Simultaneous perturbation learning rule
for recurrent neural networks and its FPGA implementation,” IEEE
Trans. Neural Netw., vol. 16, no. 6, pp. 1664–1672, Nov. 2005.

[21] N. Mtetwa and L. S. Smith, “Precision constrained stochastic resonance
in a feedforward neural network,” IEEE Trans. Neural Netw., vol. 16,
no. 1, pp. 250–262, Jan. 2005.

[22] D. Anguita, A. Boni, and S. Ridella, “A digital architecture for support
vector machines: theory, algorithm, and FPGA implementation,” IEEE
Trans. Neural Netw., vol. 14, no. 5, pp. 993–1009, Sep. 2003.

[23] M. Bracco, S. Ridella, and R. Zunino, “Digital implementation of hi-
erarchical vector quantization,” IEEE Trans. Neural Netw., vol. 14, no.
5, pp. 1072–1084, Sep. 2003.

[24] Z. Nagy and P. Szolgay, “Configurable multilayer CNN-UM emulator
on FPGA,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 50, no. 6, pp.
774–778, Jun. 2003.

[25] Xilinx, Inc., “Virtex-II platform FPGAs: Complete data sheet,”
San Jose, CA, 2005 [Online]. Available: http://www.xilinx.com/bv-
docs/publications/ds031.pdf

[26] H. Hikawa, “A digital hardware pulse-mode neuron with piecewise
linear activation function,” IEEE Trans. Neural Netw., vol. 14, no. 5,
pp. 1028–1037, Sep. 2003.

[27] M. T. Tommiska, “Efficient digital implementation of the sigmoid
function for reprogrammable logic,” in Inst. Electr. Eng. Proc.
Comput. Digit. Tech., Nov. 2003, vol. 150, no. 6, pp. 403–411.

[28] M. Martincigh and A. Abramo, “A new architecture for digital sto-
chastic pulse-mode neurons based on the voting circuit,” IEEE Trans.
Neural Netw., vol. 16, no. 6, pp. 1685–1693, Nov. 2005.

[29] R. Duren, D. Fouts, and D. Zulaica, “Performance comparison
CORDIC implementations on the SRC-6E reconfigurable com-
puter,” presented at the 2003 MAPLD Int. Conf., Washington, D.C.,
Sep. 9–11, 2003 [Online]. Available: http://www.klabs.org/richcon-
tent/MAPLDCon03/MAPLDCon03.html, unpublished

[30] R. Duren, D. Fouts, and D. Zulaica, “Algorithm and programming
considerations for embedded reconfigurable computers,” presented
at the 2003 7th Annu. Workshop High Performance Embedded
Comput., Lexington, MA, Sep. 23–25, 2003 [Online]. Available:
http://www.ll.mit.edu/HPEC/pdfs/cfp03.pdf, unpublished

[31] H. Diab, M. Huang, K. Gaj, T. El-Ghazawi, and N. Alexandridis, “An
automated pipeline balancing in the SRC reconfigurable computer
and its application to the RC5 cipher breaking,” presented at the 2004
MAPLD Int. Conf., Washington, D.C., Sep. 8–10, 2004 [Online].
Available: http://www.klabs.org/mapld04/index.html, unpublished

[32] R. J. Marks II, S. Oh, and L. E. Atlas, “Alternating projection neural
networks,” IEEE Trans. Circuits Syst., vol. 36, no. 6, pp. 846–857, Jun.
1989.

[33] SRC-6 C Programming Environment ver. v1.7 Guide, SRC Computers,
Inc., Colorado Springs, CO, 2004.

[34] H. Hahn, D. Timmermann, B. J. Hosticka, and B. Rix, “A unified and
division-free CORDIC argument reduction method with unlimited con-
vergence domain including inverse hyperbolic functions,” IEEE Trans.
Comput., vol. 43, no. 11, pp. 1339–1344, Nov. 1994.

[35] J. Zhu and P. Sutton, “FPGA implementation of neural networks—A
survey of a decade of progress,” in Proc. 13th Int. Conf. Field-Pro-
grammable Logic Appl., 2003, pp. 1062–1066 [Online]. Available:
http://eprint.uq.edu.au/archive/00000827/

[36] M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability
and convergence in a multidimensional complex space,” IEEE Trans.
Evol. Comput., vol. 6, no. 1, pp. 58–73, Feb. 2002.

[37] J. F. Wakerly, Digital Design Principles and Practices, 3rd ed. En-
glewood Cliffs, NJ: Prentice-Hall, 2000, pp. 730–733.

[38] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes in C. Cambridge, U.K.: Cambridge Univ. Press,
1992, pp. 274–300.

[39] P. D. Reynolds, “Algorithm implementation in FPGAs demonstrated
through neural network inversion on the SRC-6e,” M.S. Thesis, Dept.
Eng., Baylor University, Waco, TX, May 2005.

Russell W. Duren (S’76–M’78–SM’96) received
the B.S. degree in electrical engineering from the
University of Oklahoma, Norman, in 1978 and the
M.S. and Ph.D. degrees in electrical engineering
from Southern Methodist University, Dallas, TX, in
1985 and 1991, respectively.

He spent 17 years in industry. The majority of this
time was spent designing avionics at the Lockheed
Martin Aeronautics Company, Fort Worth, TX. After
that, he spent seven years teaching and performing
research in the fields of avionics and reconfigurable

computing at the Naval Postgraduate School, Monterey, CA. Currently, he is an
Associate Professor in the Department of Electrical and Computer Engineering,
Baylor University, Waco, TX. He is the author of over 30 publications. His re-
search interests include avionics, embedded systems, FPGA digital design, and
reconfigurable computing.

Dr. Duren is the recipient of the 1991 Frederick E. Terman Award for
Outstanding Electrical Engineering Graduate Student from Southern Methodist
University, the 1991 Myril B. Reed Outstanding Paper Award from the 34th
IEEE Midwest Symposium on Circuits and Systems, and the 2002 Naval
Postgraduate School Award for Outstanding Instructional Performance.

DUREN et al.: REAL-TIME NEURAL NETWORK INVERSION ON THE SRC-6E RECONFIGURABLE COMPUTER 901

Robert J. Marks II (S’71–M’72–SM’83–F’94)
is the Distinguished Professor of Engineering at
the Department of Engineering, Baylor University,
Waco, TX. He is a founding Member of the Uni-
versity of Washington’s Christian Faculty Network.
He is an Associate Member of Christian Leadership
Ministries and served as the faculty advisor to the
University of Washington’s chapter of Campus
Crusade for Christ. He has over 300 publications.
Some of them are very good. Seven of his papers
have been reproduced in volumes of collections of

outstanding papers. He has three U.S. patents in the field of artificial neural
networks and signal processing. He’s also written some books.

Dr. Marks is Fellow of The Optical Society of America. He was awarded
the Outstanding Branch Councilor award by IEEE and was presented with the
IEEE Centennial Medal. He was named a Distinguished Young Alumnus of
Rose-Hulman Institute of Technology and is an inductee into the Texas Tech
Electrical Engineering Academy. In 2000, he was awarded the Golden Jubilee
Award by the IEEE Circuits and Systems Society. He is also the first recipient
of the IEEE Neural Networks Society Meritorious Service Award and the
first honorary member of the Puget Sound Section of the Optical Society of
America. He was also corecipient of a NASA Tech Brief Award for the paper
“Minimum Power Broadcast Trees for Wireless Networks,” and the Judith Stitt
Award for best paper at the American Brachytherapy Society 23rd Annual
Meeting. He served as a Distinguished Lecturer for the IEEE Computational
Intelligence Society. He served a six-year stint of the Editor-in-Chief of the
IEEE TRANSACTIONS ON NEURAL NETWORKS.

Paul D. Reynolds (S’00) received the B.S. and M.S.
degrees in electrical and computer engineering from
Baylor University, Waco, TX, in 2004 and 2005,
respectively. Currently, he is working towards the
Ph.D. degree in electrical engineering at Stanford
University, Palo Alto, CA.

He worked as a Co-Op Engineer for L-3 Commu-
nications, Waco, TX, in 2003 and 2005, as a Research
Assistant to Dr. R. W. Duren from 2004 to 2005,
and, most recently, as a Design Engineer for Rosedale
Medical, Inc., Cupertino, CA, designing a glucose

meter.

Matthew L. Trumbo (S’02) received the B.S. and
M.S. degrees in electrical and computer engineering
from Baylor University, Waco, TX , in 2004 and
2006, respectively.

Currently, he is an Image Analytics Specialist
within the Image Architecture Team, Pelco, Inc.,
Fort Collins, CO. He continues to be enthralled by
topics within the computational intelligence field
and image processing advances.

