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1 An Improbable Challenge 
 
Probability and statistics lie at the heart of the startling claim by James Cameron, Simcha 
Jacobovici, and others that the Talpiot Tomb, discovered twenty-five years ago outside 
Jerusalem, is the tomb of the New Testament Jesus. Specifically, proponents of this view 
have put forward a number—1 in 600—as the probability that the Talpiot Tomb could be 
other than the tomb of Jesus. Thus conversely, it is supposed to be highly probable—with 
probability 599 in 600—that this is Jesus’ tomb. Thus, one is informed on the Jesus 
Family Tomb website: “After listening to filmmaker Simcha Jacobovici explain the so-
called ‘Jesus equation’, you’ll realize just how unlikely it is that this isn’t, in fact, his 
tomb.”1 
 
Readers of Simcha Jacobovici and Charles Pellegrino’s The Jesus Family Tomb: The 
Discovery, the Investigation, and the Evidence That Could Change History and viewers 
of Discovery Channel’s documentary The Lost Tomb of Jesus are given the impression 
that to deny that the Talpiot Tomb is the tomb of Jesus is to renounce the rigors of 
mathematical thinking and to embrace irrationality. Thus Jacobovici writes: “At the end 
of the day, if I were a betting man and you let me be the house, and you could assure me 
that each time a player spun my wheel the odds were 600 to one in my favor, I would not 
hesitate to play.”2  
 
Accordingly, to reject the claim that the Talpiot tomb belongs to the New Testament 
Jesus is like stirring at random a pot containing 599 white balls and one black ball and 
then betting that the selected ball should be black—clearly, the smart money is on white. 
But where does this 1 in 600 probability come from? And how are we to interpret it? 
Because probabilities can be difficult to assign and even more difficult to interpret, 
Simcha Jacobovici, the driving force behind the recent effort to make the Talpiot Tomb 
the greatest archeological find in history, therefore enlisted a professional statistician to 
perform the relevant probability calculations and then to interpret them: University of 
Toronto statistician Andrey Feuerverger.  
 
In this paper, we examine both the logic by which Feuerverger came to his improbability 
of 1 in 600 and then the logic by which Jacobovici et al. concluded that the Talpiot Tomb 
must in all likelihood be Jesus’ tomb. Although Feuerverger’s approach contains some 
valid insights, it also commits some fatal oversights. In cleaning up Feuerverger’s math, 
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we find that the improbabilities are not nearly as bad as he makes out. Indeed, we find 
that a significant number of families in Palestine at the time of Jesus were likely to have 
the pattern of names found in the Talpiot tomb.  
 
A corrected version of Feuerverger’s model using reasonable estimates of the 
probabilities for the New Testament names found in the Talpiot tomb shows that there 
were likely to be as many 154 Jewish families living in Palestine at the time with the 
pattern of names found in the Talpiot tomb. On the “Jesus Family Tomb” people’s 
reckoning, this would yield a probability of 153 in 154 that the Talpiot Tomb is not the 
tomb of Jesus. And even if we go with the “Jesus Family Tomb” people’s smaller 
probability estimates for the New Testament names found in the Talpiot tomb, a Bayesian 
analysis that takes into account additional evidence not considered by Feuerverger 
increases this probability close to one. 
 
In consequence, Jacobovici et al. have no rational basis for identifying the Talpiot Tomb 
with that of Jesus. In fact, the most reasonable inference—leaving aside any 
presuppositions about the infallibility of the Bible or the truth of Christianity—is that this 
most probably is not Jesus’ tomb.  
 
 
2 Reality Check 
 
As professionals in the mathematical and engineering sciences, we had misgivings about 
the “Jesus Family Tomb” story from the start. Investigator bias is always a danger in 
analyzing data. People, and we include ourselves here, are notorious for wanting to see 
their wishes fulfilled. For this reason, science imposes constraints on researchers so that 
their biases do not cloud their conclusions. These constraints take the form of prescribed 
methods for properly conducting research—in other words, they prescribe ways scientists 
are supposed conduct their research to keep them out of trouble. 
 
Take the testing of new drugs. Such studies are supposed to be double-blind, meaning 
that neither the subject receiving the new experimental drug nor the experimenter 
administering it and judging its effectiveness is supposed to know whether the actual 
drug or a placebo was administered. Only then can the drug’s effectiveness be evaluated 
fairly. Otherwise, the patient or experimenter or both, having prior expectations about the 
drug’s effectiveness, may rate the patient’s performance in line with those expectations 
rather than objectively.  Ideally, if proper research methods are employed, it should be 
possible for any outside observer to look at the data and come to roughly the same 
conclusion. 
 
With the “Jesus Family Tomb” people, however, we are dealing with no such controls. 
Here we have a group of people who stand to profit (and indeed have already profited) 
from sensationalizing the Talpiot Tomb as the tomb of Jesus. Moreover, they are eager to 
state and advertise their conclusions before the hard work of properly analyzing the data 
is done. Andrey Feuerverger, on whose probability calculations their case rests, admits 
that this work has yet to be properly done and vetted. On his academic website, addressed 



 3

to “Dear Statistical Colleagues,” he writes: “A detailed paper is being prepared and 
hopefully will undergo timely peer review; if successful in the refereeing process it will 
be made available.”3 Such an admission hardly inspires confidence given the extravagant 
claims being made on the basis of Feuerverger’s work. Not only has the rigorous 
statistical work not been properly vetted; it is still in the process of preparation. 
 
 
3 Why Even Think That This Might Be Jesus’ Tomb? 
 
A Christian who believes that Jesus rose from the dead and therefore has no remains to 
place in a tomb would naturally dismiss the “Jesus Family Tomb” story out of hand. But 
why should anyone without such a prior faith commitment accept the Talpiot Tomb as 
the final resting place of Jesus? The Talpiot Tomb contains ten ossuaries, or chests with 
bones. Such tombs with ossuaries were common in Palestine during about a 100-year 
window, beginning the middle of the first century BC and ending abruptly with the fall of 
Jerusalem in 70 AD.  
 
In the Talpiot Tomb, four ossuaries have no names inscribed on them and two have 
names with no obvious connection to Jesus’ family: Matya (a variant of Matthew) and 
Yehuda bar Yeshua (Judah son of Jesus). Indeed, the Matthew of the New Testament, 
also known as Levi, is never portrayed as part of Jesus’ family. Moreover, the New 
Testament gives no indication that Jesus was married, much less had a son. Accordingly, 
the Jesus Family Tomb people assign no statistical weight to these two names. 
 
That leaves four ossuaries with names corresponding to Jesus’ circle of family and 
friends as given in the New Testament. Of these, the following three were inscribed in the 
Hebrew script:  Yeshua bar Yehosef (Jesus son of Joseph), Marya (a variant of Mary that 
leaves off the traditional “m” ending of the Hebrew Miriam or Mariam), and Yose (a 
short form of Joseph, used in Mark 6:3 to refer to one of Jesus’ brothers). The other 
name, inscribed in Greek, is Mariamne (a Greek variant of Mary, transliterated this way 
by the “Jesus Family Tomb” people 4). The first three names can indisputably be placed 
in Jesus’ family. The Jesus Family Tomb people regard the fourth as signifying Mary 
Magdalene, whom, on the basis of certain apocryphal writings, they think to be the wife 
of Jesus. According to them, these four names are so specific as to leave no option but 
that this is the tomb of the New Testament Jesus.  
 
To see what’s at stake, Simcha Jacobovici asks us to imagine a large football stadium 
containing the inhabitants of Jerusalem at the time of Jesus (Jacobovici estimates that 
there were 80,000 people living in Jerusalem at the time). He then imagines asking those 
present in the stadium to play what may be called a “specification game.” Jacobovici’s 
specification game is similar to the “game of 20 questions,” in which one has up to 20 
questions to narrow a field of possibilities to identify some unknown item of interest.  
 
In Jacobovici’s specification game, we imagine the stadium announcer running through 
the names in the Talpiot tomb that correspond to known names in Jesus’ circle of family 
and friends. The announcer starts by asking all persons named Yeshua bar Yehosef  
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(Jesus son of Joseph) to stand. Next he asks those with a mother named Marya to 
continue standing and the rest to sit down. Next he asks only those with a brother named 
Yose to continue standing. Finally, he asks those with a wife named Mariamne to remain 
standing. As each name is given, it further specifies, and therefore narrows, the number 
of people in the stadium with the given pattern of family names. 
 
In general, when describing an object, one may underspecify, uniquely specify, or 
overspecify it. In underspecifying it, one identifies a class of objects that contains the 
object in question but also contains other objects. For instance, the description “American 
presidents” underspecifies Bill Clinton since the class of objects it identifies contains 
other presidents as well. On the other hand, the description “the 42nd American president” 
uniquely specifies Bill Clinton since it identifies him and only him. Finally, the 
description “the 42nd American president whom Congress did not impeach” is overly 
specific since no object answers to it. 
 
According to Jacobovici, with only 80,000 people in the stadium, at most one person 
would likely be left standing at the end of the game, namely, the New Testament Jesus. 
The pattern of names given by the announcer is therefore supposed to uniquely specify 
Jesus. Jacobovici’s point is that just as this specification of names would uniquely 
identify someone in the stadium, so would finding them in a tomb of ossuaries.5  
 
Now, it needs to be admitted from the outset that Jacobovici’s specification game could, 
given enough of the right names, uniquely specify the family of the New Testament 
Jesus. Suppose, for instance, we found a tomb whose ossuaries included the following 
inscriptions (note that the last four are the names of Jesus’ brothers as given in Mark 6:3):  
 

• Jesus son of Joseph and Mary 
• Joseph the father of Jesus 
• Mary the mother of Jesus 
• Mary of Magdala 
• James the brother of Jesus and son of Joseph 
• Joses the brother of Jesus and son of Joseph 
• Juda the brother of Jesus and son of Joseph 
• Simon the brother of Jesus and son of Joseph 

 
In this case, the pattern of inscriptions would uniquely specify the family of the New 
Testament Jesus. Indeed, unless the tomb inscriptions were deliberately faked, it would 
be inescapable that here was the family tomb of the New Testament Jesus.  
 
On the other hand, if we had a tomb whose only inscription was “Jesus the brother of 
Simon,” it would be quite a stretch to claim that here was the family tomb of the New 
Testament Jesus. Jesus and Simon were exceedingly common names in New Testament 
times (Simon was the most common of all the Jewish men’s names at the time, 
accounting for more than ten percent). Thus, there would have been many men in 
Jerusalem, to say nothing of ancient Palestine, named Jesus with a brother named Simon. 
In Jacobovici’s football stadium analogy, if we asked only those persons named Jesus 
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with a brother named Simon to stand, lots of persons in the stadium would be standing. 
The inscription “Jesus the brother of Simon,” would therefore underspecify the family of 
the New Testament Jesus.  
 
The pattern of names in the Talpiot tomb clearly provides more specificity than “Jesus 
the brother of Simon” but less specificity than the combination of eight names given 
above. The key question before us is whether the pattern of names in the Talpiot tomb 
underspecifies or uniquely specifies the family of the New Testament Jesus. Jacobovici 
and his colleagues claim that it uniquely specifies the family of Jesus. To make their case, 
they put forward what they call “the Jesus equation.” We turn to that equation next. 
 
 
4 The Jesus Equation 
 
Even though the “Jesus Family Tomb” people frequently refer to “the Jesus equation,” in 
fact they do not write out an actual equation. What they do is take various probabilities 
and correction factors, and then multiply them together to form the probability that the 
pattern of names “found in the Talpiot tomb could have belonged to a different family 
than the one described in the New Testament.”6 Implicit in this calculation, however, is 
an equation that is easy to reconstruct. Accordingly, if they had written out “the Jesus 
equation,” it would look as follows: 
 

p = p1 x p 2 x p 3 x p 4 x c1 x c 2 x c 3. 
 
Here p is the purported 1-in-600 probability that the Talpiot tomb could by chance be 
other than the tomb of Jesus, p1 to p 4 are probabilities associated with names found in the 
Talpiot tomb, and c1 to c 3 are correction factors that adjust these raw probabilities. 
 
To determine the probabilities p1 to p 4, Andrey Feuerverger, the lead statistician for the 
“Jesus Family Tomb” people, starts with the names mentioned in the Talpiot tomb that 
correspond to New Testament names known or suspected to belong to Jesus’ family. 
These are Yeshua bar Yehosef, Mariamne, Marya, and Yose. Next, they determine the 
relative frequencies of these names in light of Tal Ilan’s Lexicon of Jewish Names in Late 
Antiquity.7 Ilan lists all the occurrences of Jewish names that archeologists and historians 
have discovered and can place around the time of the New Testament. The relative 
frequencies are as follows: 
 

Yeshua: 103/2,509 
Yehosef: 231/2,509 
Mariamne: 1/317 
Marya: 26/317 
Yose: 9/2,509 

 
Note that all the denominators here are either 2,509 or 317. That’s because in Ilan’s 
lexicon, only a total of 2,509 men and 317 women are listed. Note also that all of these 
names are either very common or variants of very common names. Among male names, 
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Yeshua (Jesus) has a freqency of 4 percent. Yehosef (Joseph) has a frequency of 9 
percent. Yose is a variant of Yehosef. The most common male name is Simon/Simeon, 
with a frequency of around 10 percent. Mariamne and Marya are variants of Mary. In 
Ilan’s lexicon, variants of Mary account for a total of 80 out of the 317 female names—
that’s more than 25 percent. 
 
Feuerverger treats these relative frequencies as probabilities, making the following 
adjustments: to get the relative frequency for the compound name Yeshua bar Yehosef 
(Jesus son of Joseph), he multiplies 103/2509 by 231/2509. Moreover, because 
Mariamne’s name appears in the Talpiot tomb with the further designation “e Mara” and 
because Yose admits a variant, he multiplies the relative frequencies next to Mariamne 
and Yose by a “combinatorial factor” of 2. This yields the following probabilities:8 
 

Yeshua bar Yehosef: 103/2,509 x 231/2,509 = p1 
Mariamne: 2 x 1/317 = p2 
Marya: 26/317 = p3 
Yose: 2 x 9/2,509 = p4 

 
Because how one person is named is thought not to affect how another person is named, 
Feuerverger treats these probabilities as independent, which means that the joint 
probability of these names is the product of the individual probabilities (see appendix 
A.6).9 He therefore multiplies these probabilities together, yielding the probability  
 

q = p1 x p 2 x p 3 x p 4, 
 
which is approximately 1 in 71,000,000.  
 
Next, Feuerverger multiplies this number by three correction factors: 
 

• Correction for number of 4-name clusters as “surprising” as this one: 
c1 = 30. 

 
• Correction for names missing from Talpiot tomb expected to be there 

if this truly were the tomb of the New Testament Jesus: c2 = 4. 
 
• Correction for the number of tombs that might have displayed this 

cluster of names: c3 = 1,000 
 
The motivation for these correction factors is as follows: 
 
Regarding c1: Imagine that you are playing poker and win the game by drawing a royal 
flush in the suit of spades. Someone exclaims, “What an incredible hand. The odds 
against getting it by chance are 1 in 2,598,960. You must have been cheating!” In 
response, you point out that the odds really aren’t quite that drastically small. Yes, getting 
a royal flush in the suit of spades has that precise probability, but there are also royal 
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flushes in the suits of clubs, diamonds, and hearts. Presumably, your interlocutor, who 
accused you of cheating for getting a royal flush in the suit of spades, would also have 
accused you of cheating if you had gotten a royal flush in any of these other suits, each of 
these hands being as “surprising” as the one you got. But in that case, the relevant 
probability is not that of getting a royal flush in one particular suit but rather of getting a 
royal flush in any suit. Accordingly, one needs to multiply this 1-in-2,598,960 
improbability by 4, which serves as a correction factor that raises this probability to 1 in 
649,740.  
 
Similarly, Feuerverger multiplies his 1 in 71,000,000 improbability (= q) by a correction 
factor of c1 = 30 to take into account all the other 4-name clusters that match up as 
surprisingly with the family of the New Testament Jesus. Consider, for instance, what 
would have happened if the Talpiot tomb included, as before, the names Yeshua bar 
Yehosef, Marya, and Mariamne, but then substituted Yaakov bar Yehosef (James son of 
Joseph) for Yose. This new pattern of names would constitute as surprising a match-up 
with the family of the New Testament Jesus as the pattern of names actually discovered. 
Just as different ways of obtaining a royal flush need to be factored into assessing the 
improbability of a royal flush, so different patterns of names that are to the same degree 
characteristic of the family of the New Testament Jesus as the one actually discovered 
need to be factored into any assessment of whether the pattern of names actually 
discovered is unlikely to have occurred by chance. Given Feuerverger’s correction factor 
to adjust for “surprisingness,” his improbability of 1 in 71,000,000 now comes down to 1 
in 2,400,000 (= q x c1), a number that appears prominently in the “Jesus Family Tomb” 
literature.  
 
Regarding c2: Imagine that you are a detective trying to uncover a husband-and-wife 
blackmailing team. You don’t have photos of the pair, but you have detailed physical 
descriptions as well as extensive dossiers that describe their personal habits. In particular, 
you have it on good authority that they are virtually inseparable. In your investigation, 
you find a man who matches the physical description of the husband to a tee. But, as you 
track his movements, you never see him with a woman who could in any way be 
construed as a consort. If all you knew about the suspect was that he closely matched the 
physical description of the criminal in question, you would think it highly probable that 
you’ve got the right man. But when you factor in the absence of a woman, who is known 
to be constantly together with the criminal, you are no longer so sure that you’ve got the 
right man. Now the probability of having the wrong man goes up.  
 
Likewise, with the Talpiot tomb, not only are certain New Testament names conspicuous 
by their presence, but others are conspicuous by their absence. Jesus the son of Joseph 
has to be there. But what about James the son of Joseph, the brother of Jesus (Mark 6:3)? 
In his letter to the Galatians (regarded by many scholars as the earliest writing in the New 
Testament—ca. 49 AD), Paul refers to James as a “pillar” of the church (Gal. 2:9). 
According to the book of Acts, James was an important leader in the Jerusalem church. 
As a prominent member of Jesus’ family who was also active in Jerusalem (and thus near 
the Talpiot tomb), why does he not merit an ossuary displaying his name in that tomb if it 
is indeed the family tomb of the New Testament Jesus? In 2002, an ossuary was 
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discovered that bears just such an inscription (i.e., “James son of Joseph, brother of 
Jesus”). But its provenance is uncertain and it is widely suspected to be a forgery. And 
although the “Jesus Family Tomb” people have suggested that the “James ossuary” 
originally belonged to the Talpiot tomb,10 their chief statistician Andrey Feuerverger 
takes the absence of James’s name (and that of others in Jesus’ family, such as Joseph 
himself and Judah the brother of Jesus, both of whom are absent from the tomb) as reason 
to attenuate the probability that the Talpiot tomb belongs to Jesus’ family. Feuerverger 
therefore multiplies the probability of 1 in 2,400,000 (= q x c1) by c2 = 4, yielding a 
probability of 1 in 600,000 (= q x c1 x c2) “in favor of the tomb belonging to the family of 
Jesus of Nazareth.”11 
 
Regarding c3: Imagine that your daughter comes up to you claiming that she just tossed 
ten heads in a row with a penny. That’s quite a remarkable repetition of heads, you think. 
You examine the penny, and it appears to be a fair coin (i.e., a rigid homogeneous flat, 
rather than warped, disk with distinguishable sides). Moreover, when you question your 
daughter, she assures you that she really gave the coin a good jolt each time—these were 
not phony flips. Yet before you accept that this succession of heads was a remarkable 
coincidence (the improbability of tossing a coin ten times and getting ten heads in a row 
is about 1 in 1,000, and therefore is more extreme than the 1 in 600 put forward by the 
“Jesus Family Tomb” people), you have one more question for your daughter: how many 
times did she toss the coin before coming to you and reporting this remarkable succession 
of heads. As it turns out, she was tossing the coin all afternoon. You do a quick 
calculation and determine that she tossed the coin two- to three-thousand times. With that 
many tosses, it becomes highly likely that she would witness a run of ten heads. When 
she finally did, she reported it to you.  
 
At issue in this example is what statisticians call the file-drawer effect. The file-drawer 
effect refers to events that end up in a “file-drawer” unreported before an event of interest 
finally is reported. The file-drawer acts as a trash can that relegates to oblivion results we 
would rather ignore and forget. Thus, in determining whether and to what extent an event 
is improbable, we need to factor in what ended up in the file-drawer. Specifically, we 
need to factor in how many opportunities there were for the event in question to happen 
(such opportunities are called probabilistic resources—see appendix A.9). Only then 
does it become clear whether an event is truly improbable. To fail to factor in what’s in 
the file drawer is to commit the file-drawer fallacy. Thus, in the case of the Talpiot tomb, 
it is not enough merely to consider how improbable it was for the pattern of names 
observed there to occur by chance. That same pattern of names could also have occurred 
in other tombs. Feuerverger therefore introduced the correction factor c3 = 1,000 as “the 
maximum number of tombs that might have once existed in Jerusalem, dating to the first 
century.”12 By multiplying the probability of 1 in 600,000 (= q x c1 x c2) by c3, 
Feuerverger obtained a probability of 1 in 600 (= q x c1 x c2 x c3).  
 
Here, then, is how the “Jesus Family Tomb” people arrived at their improbability of 1 in 
600. Since q = p1 x p 2 x p 3 x p 4, the Jesus equation may therefore be rewritten as  
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600
1   =  p1 x p 2 x p 3 x p 4 x c1 x c 2 x c 3, 

 
where p1 = 103/2,509 x 231/2,509 (the Yeshua-bar-Yehosef probability), p2 = 2 x 1/317 
(the Mariamne probability), p3 = 26/317 (the Marya probability), p4 = 2 x 9/2,509 (the 
Yose probability), c1 = 30 (correcting for equally surprising patterns of names), c2 = 4 
(correcting for absence of expected names), c3 = 1,000 (correcting for the chance of 
seeing the same pattern of names in other tombs).  
 
Can this equation statistically justify that the Talpiot tomb is the family tomb of the New 
Testament Jesus? There are too many problems with this equation for it to accomplish 
this task. We turn to these problems next.  
 
 
5 Problems with the Jesus Equation 
 

5.1 Incorrect Calculation of Basic Probabilities 
 
Let E denote the event of a Jewish person around the time of Jesus being named Joseph 
and F the event of a Jewish person around the time of Jesus being named Mary. Based on 
Tal Ilan’s Lexicon of Jewish Names in Late Antiquity, the “Jesus Family Tomb” people 
assigned a probability of 231/2,509 to E and a probability of 80/317 to F. But this 
assignment is incorrect. These probabilities are conditional on the gender of the person 
named (out of the 2,509 men’s names in the lexicon, 231 were some variant of Joseph; 
out of the 317 women’s names, 80 were some variant of Mary). Since E denotes the 
naming of a male and F the naming of a female, P(E) = P(E & Person-Named-Is-Male) = 
P(E | Person-Named-Is-Male) x P(Person-Named-Is-Male) = 231/2,509 x 1/2 and  P(F) = 
P(F & Person-Named-Is-Female) = P(F | Person-Named-Is-Female) x P(Person-Named-
Is-Female) = 80/317 x 1/2. (For the relevant math, see appendices A.4 and A.5.)  
 
Note that the probability of 1/2 here corresponds to the roughly equal proportion of males 
and females (i.e., P(Person-Named-Is-Male) = P(Person-Named-Is-Female = 1/2). Note 
also that P(E | Person-Named-Is-Male) and not P(E) is the probability that is properly 
assigned 231/2,509 and likewise P(F | Person-Named-Is-Female) and not P(F) is the 
probability that is properly assigned 80/317. In consequence, to legitimately multiply the 
probabilities in the Jesus equation, each of them must first be multiplied by a factor of 1/2 
(or else by the probability of the relevant gender if it differs from 1/2). Otherwise, 
multiplying these probabilities is like combining apples and oranges. This additional 
factor of 1/2 for each of the probabilities in the Jesus equation seems, at first blush, to 
intensify the statistical challenge posed by the “Jesus Family Tomb” people, rendering it 
even more improbable that the Talpiot tomb could by chance be other than the tomb of 
Jesus. Other things being equal, that would be the case. But other things are not equal, as 
we show next. 
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5.2 Fallacy of Over-Specification  
 
In the New Testament, written in Greek, Mary the mother of Jesus as well as Mary 
Magdalene are always referred to with the commonest Greek forms of the name Mary: 
Μαρία and Μαρίαμ (i.e., Maria and Mariam).13 To find less common variants of the name 
in the Talpiot tomb and then use the probabilities of these less common variants to 
calculate the probability of the pattern of New Testament names in the tomb is to commit 
a fallacy of over-specification, narrowing the range of the target in question more than is 
warranted. To see what’s at stake in this fallacy, imagine that you reside in Chicago, a 
city of approximately 3,000,000. As you’re riding the subway one day, you overhear two 
people raving about a certain Susan Smith, who they claim is the best masseuse in 
Chicago. Your neck is killing you, and you think, “Wouldn’t it be nice if I could meet 
this woman some time and have her give my neck a massage.” A week later, you’re 
flying from Chicago to New York, and seated next to you is a woman. Attached to her 
carry-on bag is an address label. As you glance at it, you notice that it reads “Suzanne 
Smythe, Chicago, Illinois.”  
 
Those two chaps on the subway never spelled the name, and for all you know there could 
be hundreds of Susan Smiths (with the usual spelling) in the Chicago area. But “Suzanne 
Smythe” is an unusual spelling. You think it’s unlikely that there are any other in the 
Chicago area. Just to make sure, you ask this person about the spelling of her name and 
its pronunciation. She admits that it is an unusual spelling (she’s the only one in the 
phone book) and notes that it is pronounced just the same as “Susan Smith.” At this point, 
do you reason that because the spelling of this name is so improbable, the person seated 
next to you must be the masseuse described by the two subway riders on whom you were 
eavesdropping? Without further information, do you ask, “Hey, how about giving me a 
massage?” Of course not. And yet that is essentially what the “Jesus Family Tomb” 
people are doing when they use the improbability of variant spellings of Mary to claim 
that the Talpiot tomb is the family tomb of the New Testament Jesus.  
 
To know whether the Suzanne Smythe you met on the plane is the masseuse described on 
the subway, you need additional relevant information. If you learn that she is a masseuse, 
that will be reason (though not conclusive reason) to think that she is the same person as 
described on the subway. If you learn that the names of her friends correspond to those 
described by the chaps on the subway, that will also be reason (though not conclusive 
reason) to think she is the same person. Now, the “Jesus Family Tomb” people claim to 
have such additional information. In our analogy, overhearing the subway talkers 
describe Susan Smith is like reading the New Testament account of Mary Magdalene. 
Coming across an ossuary with the name Mariamne is like bumping into Suzanne Smythe 
on the airplane. But, the “Jesus Family Tomb” people would add, the analogy now 
becomes imperfect because there’s additional evidence that Mary Magdalene was 
referred to as Mariamne, and this strongly suggests that the Mariamne in the Talpiot tomb 
is indeed Mary Magdalene.  
 
But what is this evidence? Principally it derives from a fourth century apocryphal book 
known as the Acts of Philip, which refers to a Mariamne who is the sister of Philip. This 
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book describes Mariamne and Philip’s missionary journeys after Jesus ascends to heaven. 
The book gives no indication that this Mariamne is Mary Magdalene, much less that she 
was married to Jesus.14 For a text suggesting that Jesus was married to Mary Magdalene, 
the closest one can find is the apocryphal Gospel of Philip, which depicts Mary 
Magdalene as Jesus’ favorite disciple, but gives no indication that they were married. 
Moreover, in that text, she is referred to as Mary, not as Mariamne.15 In any case, 
François Bovon, the leading authority on the Acts of Philip, writes, 
 

As I was interviewed for the Discovery Channel’s program The Lost Tomb 
of Jesus, I would like to express my opinion here. . . . [H]aving watched 
the film, in listening to it, I hear two voices, a kind of double discours. On 
one hand there is the wish to open a scholarly discussion; on the other 
there is the wish to push a personal agenda. I must say that the reconstruc-
tions of Jesus’ marriage with Mary Magdalene and the birth of a child 
belong for me to science fiction. . . . I do not believe that Mariamne is the 
real name of Mary of Magdalene. Mariamne is, besides Maria or Mariam, 
a possible Greek equivalent, attested by Josephus, Origen, and the Acts of 
Philip, for the Semitic Myriam.16  

 
Return to our Susan Smith analogy: imagine while riding on the Chicago subway that you 
heard about a wonder-masseuse with a name that sounds like Susan Smith (this 
corresponds, in the analogy, to reading about Mary Magadalene in the New Testament) 
and then sat next to Suzanne Smythe on an airplane, learning only the spelling of name 
(this corresponds to finding the ossuary inscribed Mariamne in the Talpiot tomb). On 
reading a vast literature in which a wonder-masseuse from Chicago is consistently 
referred to as “Susan Smith” (this corresponds to reading the vast literature of Church 
Fathers and New Testament apocrypha that consistently refers to Mary Magdalene as 
“Mary”), you find that a few passages in this vast literature refer to a “Suzanne Smythe,” 
though it’s not at all clear from these passages that this is the Chicago masseuse (this 
corresponds to the reference to Mariamne in the Acts of Philip). In that case, there’s no 
more reason to think that the Suzanne Smythe you met on the airplane is the wonder-
masseuse from Chicago than to think that the bones of the Mariamne found in the Talpiot 
tomb are those of Mary Magdalene. Here, “Suzanne Smythe” is no more characteristic of 
Chicago’s wonder-masseuse than “Susan Smith”; likewise, “Mariamne” is no more 
characteristic of the New Testament woman from Magdala than plain-old “Mary.”  
 
It follows that in assessing the probability that chance could produce the pattern of New 
Testament names found in the Talpiot tomb, the relevant probability for Mariamne is not 
the low probability of that particular name but the high probability of the generic form of 
Mary. Exactly the same reasoning applies to the other Mary in that tomb, referred to by 
the “Jesus Family Tomb” people as Marya and thought by them to be the mother of 
Jesus. The probability associated with her name needs likewise to be the high probability 
of the generic form of Mary.  
 
That leaves the names Yeshua bar Yehosef and Yose. The probability that the “Jesus 
Family Tomb” people associate with Yeshua bar Yehosef seems right, save for the factor 
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of 1/2 by which the name needs to be made conditional on this person being male (see the 
previous subsection). As for the probability they associate with Yose, it, as with the two 
Marys, is too small. A case can be made that the “Jesus Family Tomb” people were guilty 
of a fallacy of over-specification here as well since Yose is just a short form of Joseph, 
and even though a brother of Jesus is referred to as Yose in Mark 6:3, that same brother is 
referred to by the unshortened form of Joseph in Matthew 13:55. But since Yose is 
distinguished from another Joseph in the Talpiot tomb (namely, the father of Jesus), a 
case can also be made that the pattern of New Testament names in the Talpiot specifies 
Yose and not merely the generic Joseph. If we do that, we get a probability for Yose that 
is less than that for a generic Joseph. Even so, we don’t get a probability as small as the 
one calculated by the “Jesus Family Tomb” people. The problem is that there were 
several written variants of Yose that sound alike (compare Cathy with Kathy and Kathie). 
In a largely oral culture in which spelling was often up for grabs (there were no 
dictionaries or spell checkers), these alternate spelling must be factored into any 
specification of Yose. Richard Bauckham counts 34 such instances in Tal Ilan’s lexicon, 
up from the 9 used by the “Jesus Family Tomb” people.17  
 
Given the considerations adduced in this and the last subsection, we submit that the basic 
probabilities associated with the New Testament names found in the Talpiot tomb need to 
be recalculated as follows (note the factors of 1/2 per subsection 5.1): 
 

p1 = 1/2 x 103/2,509 x 231/2,509 ≈ .00189 (Yeshua bar Yehosef) 
p2 = 1/2 x 80/317 ≈ .126 (Mariamne and Marya both treated as Mary) 
p3 = 1/2 x 34/2,509 ≈ .00678 (Yose) 

 
 5.3 Unjustified Correction Factors 
 
Correction factor c1 (= 30; see section 4) takes into account patterns of New Testament 
names as surprising as the one discovered at the Talpiot tomb that would likewise have 
implicated the family of the New Testament Jesus. Conversely, correction factor c2 (= 4; 
see section 4) takes into account the absence of certain New Testament names from the 
Talpiot tomb that would have been expected to be there if this really were the family 
tomb of the New Testament Jesus. Both these factors, considered on general statistical 
grounds, seem relevant to assessing the probability that the Talpiot tomb could by chance 
have matched up to the degree that it did with names in Jesus’ family. Note, however, 
that the principles of statistical rationality underlying these correction factors are quite 
different and would need to be mixed carefully. With the correction factor c1, the mode of 
probabilistic reasoning is Fisherian (i.e., finding a suitable rejection region for testing the 
statistical significance of a hypothesis—see appendix A.8). With the correction factor c2, 
the mode of probabilistic reasoning is Bayesian (i.e., updating one’s probability in light 
of supporting or countervailing evidence—see appendix A.10). The “Jesus Family 
Tomb” people never make clear how these approaches can be mixed, nor do they offer 
any argument or justification for how the actual numbers they assigned to these 
correction factors were calculated. Perhaps Andrey Feuerverger will produce such a 
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justification in the paper he is preparing for peer-review. But for now the actual numbers 
assigned to these correction factors appear taken out of a hat.  
 

5.4 Wrong Reference Population 
 
Unlike correction factors c1 and c2, the “Jesus Family Tomb” people do offer a 
justification for how they arrived at the number they assigned to the correction factor c3. 
This number, set at 1,000, estimates “the maximum number of tombs that might have 
once existed in Jerusalem, dating to the first century.”18 This correction factor, as we 
pointed out in section 4, attempts to circumvent a file-drawer fallacy in which one 
calculates the probability that the pattern of New Testament names discovered in the 
Talpiot tomb could by chance have occurred just there. The problem with tying such a 
probability calculation to a single tomb is that it fails to take into account the 
opportunities for this same pattern of names to occur in other tombs from that time and in 
that locale. Any of these other tombs might also have been a “Jesus Family Tomb.” 
Given enough tombs, it becomes extremely likely that not just one but numerous tombs 
would display this pattern of New Testament names. By disregarding these other tombs 
and thus placing them, as it were, in a file-drawer, one fails to assess the true probability 
of witnessing this patterns of names by chance. Accordingly, the probability we assign to 
the Talpiot tomb belonging to the New Testament Jesus must factor in these additional 
tombs. 
 
We have just summarized Andrey Feuerverger’s justification for setting c3 equal to 1,000. 
In thereby attempting to circumvent a file-drawer fallacy, he rightly underscored an 
important statistical principle, namely, the need to factor in the opportunities for an event 
to occur (known formally as its probabilistic resources—see appendix A.8) in assessing 
whether the event may rightly be regarded as improbable. Unfortunately, though aware of 
the principle’s importance, Feuerverger also misapplied it, focusing too narrowly to the 
actual number of tombs near Jerusalem. There are two problems with this:  
 

(1) In determining whether some family or other around Jerusalem might 
by chance exhibit some pattern of names, what’s crucial is how many such 
families there were and not how many of them could additionally have 
afforded a tomb with ossuaries. The correction factor c3 therefore should 
not have been set to the maximum number of actual tombs in the 
Jerusalem area around the time of Jesus but to the total number of relevant 
families in the area—regardless of whether they had the financial 
resources to own a tomb. Most families in the time of Jesus were too poor 
to afford such tombs. In particular, because Joseph, Jesus’ legal father, 
was a carpenter and because carpentry was not a lucrative profession, 
Jesus’ family seems not to have been an ideal candidate for having a 
family tomb. Accordingly, what’s crucial in assessing the probability that 
the Talpiot tomb was the family tomb of Jesus is not the actual number of 
family tombs but the actual number of families living at that time and in 
that area.  
 



 14

(2) The second problem is that Feuerverger focuses unduly on Jerusalem 
and its immediate surroundings. Yes, the Talpiot tomb is just a few miles 
from Jerusalem and, yes, Jesus’ brother James was active in Jerusalem. If 
we knew nothing else, we might therefore think it likely that James should 
be buried in the immediate vicinity of Jerusalem (though the evidence is 
against his having an ossuary in the Talpiot tomb). But we know a lot 
more. We know that Jesus and his family throughout his life was based 65 
miles north of Jerusalem in the town of Nazareth—in fact he is often 
called “Jesus of Nazareth.” Moreover, Magdala, the town from which 
Mary Magdalene hails, is fifteen miles still further north. Thus the number 
of families in the immediate vicinity of Jerusalem in the period of ossuary 
use underestimates the number of relevant families to deciding whether 
the Talpiot tomb is, on probabilistic grounds, the tomb of Jesus.19 In 
calculating this number of families, we need to consider a radius of at least 
80 miles around Jerusalem. In other words, we need to consider all Jewish 
families living in ancient Palestine during the time that ossuaries were 
popular.  

 
How many such families lived in Palestine during that time? To answer this question, 
let’s start with a simpler question: How many Jewish people as such lived in Palestine 
during the period of ossuary use? A conservative lower-bound estimate is 500,000 on the 
number of Jewish people living in Palestine at any one point in time during that period.20 
Moreover, the period of ossuary use spans 100-years.21 Given that the average lifespan 
during that period was well under 50 years, a conservative lower-bound estimate on the 
number of Jewish people living in Palestine during that entire period is twice 500,000, or 
1,000,000. Given an average of 10 people per family, as in the Talpiot tomb, that would 
leave 100,000 families as the right reference population for any probability calculations 
used to infer that the Talpiot tomb is the final resting place of Jesus.   
 
 
6 The New and Improved Jesus Equation  
 
In the previous section we analyzed the problems with Andrey Feuerverger’s Jesus 
equation. This analysis now suggests a new and improved Jesus equation. Given an 
arbitrary family of size n and given k distinct names, if in the wider population the first 
name has probability p1, the second p2, and so on through k, then the probability p that 
this family will by chance have at least m1 family members with the first name, at least 
m2 with the second, and so on through k, where each mi (1 ≤ i ≤ k) is at least 1, is 
governed by the multinomial distribution and has the following value:22 
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This, then, is the new and improved Jesus equation. Even though it looks complicated, 
summing over these multinomial terms on the right to evaluate p is standard fare in 
introductory probability and statistics courses. The calculation is tedious but conceptually 
straightforward. Note that pk+1 is the probability that none of the k names in question are 
selected at random; hence pk+1 = 1 – (p1 + p2 + … + pk). Note also that all the 
probabilities pi (1 ≤ i ≤ k+1) are strictly positive (i.e., none of them is a zero probability). 
Note lastly that factorials in this equation (e.g., n! = 1 x 2 x … x n) take into account 
combinatorial possibilities that were mistakenly ignored the original Jesus equation. 
These combinatorial terms make the probability that the Talpiot tomb by chance acquired 
its pattern of New Testament names much larger than the 1 in 600 value computed by the 
“Jesus Family Tomb” people.  
 
Two additional numbers, derived from p, are going to be crucial in assessing whether 
probabilities support the hypothesis that the Talpiot tomb is the final resting place of 
Jesus. To calculate these numbers, we first need an estimate for the number of Jewish 
people living in ancient Palestine while ossuaries were in use. Let us call this number N. 
As we saw in subsection 5.4, a conservative estimate for this number is 1,000,000. By 
contrast, the “Jesus Family Tomb” people were in fact willing to countenance 5,000,000 
as an estimate for N.23 In the sequel we therefore take N to be 1,000,000. With N in hand, 
the fraction N/n estimates the number of families of size n during that time. Granted, this 
estimate is somewhat rough in that it treats families as having the same size and as 
constituting non-overlapping units, which strictly speaking they do not. But, this 
assumption seems unproblematic since variability of family size and overlap among 
families will tend to push up the number of families and therefore the opportunities for 
families to exhibit the pattern of New Testament names found in the Talpiot tomb. In any 
case, given N and N/n, we now define the following two numbers: 
 

p* = 1 – (1 – p)N/n,  
 
M = (N/n) x p. 

 
p* is the probability that at least one out of N/n families exhibits the pattern of names in 
question if the probability that a single family exhibits that pattern of names is p. The 
underlying assumption here is that naming across different families is probabilistically 
independent (i.e., how one family names its children does not affect the probabilities of 
how other families name their children). Accordingly, the probability that no family of 
size n has this pattern of names is (1 – p)N/n (here 1 – p is the probability that a particular 
family of size n does not have that pattern of names, which then, by the independence 
assumption, gets multiplied by itself N/n times). It follows in turn that the complementary 
event (i.e., that at least one family of size n has this pattern of names) is therefore 1 – (1 – 
p)N/n.24 Note that the independence assumption seems approximately true, especially 
since most families have contact with only a few other families and thus cannot name 
their children by consciously copying how most other families, with which they are not in 
contact, name their children. Note that p* corresponds to the p-value calculated by the 
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“Jesus Family Tomb” people’s Jesus equation, gauging the likelihood that the Talpiot 
tomb is the last resting place of the New Testament Jesus. 
 
As for M, it gives the expected number of Jesus families (i.e., families with the pattern of 
New Testament names observed in the Talpiot tomb) living in Palestine during the period 
of ossuary use. To see that M = (N/n) x p does indeed give the expected number of Jesus 
families, treat each Jewish family living in Palestine during that period as a Bernoulli trial 
(i.e., as a binary, success-failure trial) with probability p of successfully obtaining the 
pattern of names observed in the Talpiot tomb. Then the number of families exhibiting 
this pattern follows a binomial distribution with probability p of success on any 
individual trial and with total number of trials N/n.25 The “Jesus Family Tomb” people 
suggest that any reasonable way of calculating the expected number of Jesus families will 
never yield a number greater than 1. But they are mistaken, as we see next by calculating 
p, p*, and M for four instructive cases: 
 
Case 1: 
 

n = 10; N = 1,000,000; m1 = m2 = m3 = m4 = 1 
p1 = 1/2 x 103/2,509 x 231/2,509 (Yeshua bar Yehosef) 
p2 = 1/2 x 2 x 1/317 (Mariamne) 
p3 = 1/2 x 26/317 (Marya) 
p4 = 1/2 x 2 x 9/2,509 (Yose) 
_____________________________________________ 
p = 1.9154 x 10–6; p* = .1743; M = .1915 

 
 
Case 2: 
 

n = 20; N = 1,000,000; m1 = m2 = m3 = m4 = 1 
p1 = 1/2 x 103/2,509 x 231/2,509 (Yeshua bar Yehosef) 
p2 = 1/2 x 2 x 1/317 (Mariamne) 
p3 = 1/2 x 26/317 (Marya) 
p4 = 1/2 x 2 x 9/2,509 (Yose) 
_____________________________________________ 
p = 3.5229 x 10–5; p* = .8282; M = 1.7615 

 
 
Case 3:  
 

n = 10; N = 1,000,000; m1 = m3 = 1; m2 = 2 
p1 = 1/2 x 103/2,509 x 231/2,509 ≈ .00189 (Yeshua bar Yehosef) 
p2 = 1/2 x 80/317 ≈ .126 (Mariamne and Marya both treated as Mary) 
p3 = 1/2 x 34/2,509 ≈ .00678 (Yose) 
________________________________________________________ 
p = 2.9960 x 10–4; p* = 1 – 9.6959 x 10–14 ≈ 1; M = 30 
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Case 4: 
 

n = 20; N = 1,000,000; m1 = m3 = 1; m2 = 2 
p1 = 1/2 x 103/2,509 x 231/2,509 ≈ .00189 (Yeshua bar Yehosef) 
p2 = 1/2 x 80/317 ≈ .126 (Mariamne and Marya both treated as Mary) 
p3 = 1/2 x 34/2,509 ≈ .00678 (Yose) 
________________________________________________________ 
p = 3.0838 x 10–3; p* = 1 – 8.5639 x 10–68 ≈ 1; M = 154 

 
 
In cases 1 and 3, we equate family size n with 10. This seems a low-end estimate of 
family size. From the New Testament, we know that Jesus had Joseph and Mary as legal 
parents, four brothers, and at least two sisters (see Mark 6). That makes at least 9 family 
members right there in but two generations, excluding spouses. In the Talpiot tomb, 
which may span three or more generations, we find 10 ossuaries, and some of them may 
contain the bones of more than one person. Indeed, given the size of families back then 
and naturalness of including three generations (grandparents, parents, and children) in a 
family unit, equating family size n with 20 seems more in keeping with the average size 
of families back then. Hence, the value of n in cases 2 and 4.  
 
N, the number of Jews living in Palestine during the period of ossuary use, is set 
conservatively at 1,000,000, and is constant in all four cases. As we noted in subsection 
5.4, this reference class for the tomb probabilities is more appropriate than estimates for 
the population size of Jerusalem since Jesus and his family were based 65 miles north of 
Jerusalem in Nazareth and around the sea of Galilee.  In cases 1 and 2, we go with the 
probability of individual names as assigned by the “Jesus Family Tomb” people (see the 
probabilities section 4, though these have to be multiplied additionally by a factor 1/2 to 
take into account gender differences—see subsection 5.1). This takes the probabilities of 
Mariamne, Marya, and Yose way down. In cases 3 and 4, by contrast, we go with the 
more realistic estimates of probabilities for these names as given and justified in 
subsection 5.2 (this collapses Mariamne and Marya into a generic Mary).  
 
In cases and 1 and 2, p* is the number of interest and corresponds to the probability of at 
least one Jewish family in Palestine while ossuaries were in use having the pattern of 
New Testament names observed in the Talpiot tomb. As such, it corresponds to the p-
value calculated by Andrey Feuerverger and used to assess the probability that this could 
be Jesus family tomb. But even though we use the same probabilities for individual 
Jewish names as used by the “Jesus Family Tomb” people, we don’t get anywhere near as 
“impressive” results as they did. In place of 1 in 600 for this pattern of names occurring 
by chance as in the original Jesus equation, with the new and improved Jesus equation, 
we find that for family size n = 10 the probability rises to better than 1 in 6 (.1743) and 
for n = 20 the probability rises even more dramatically to better than 4 in 5 (.8282).26 No 
statistical theory regards these numbers as remarkable or even statistically significant.  
 
In cases 3 and 4, M is the number of interest and corresponds to the number of Jewish 
families of a given size n we could expect to see exhibit the pattern of New Testament 
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names found in the Talpiot tomb. Given realistic naming probabilities, we find that for 
small families of size 10 we would expect to see 30 of them exhibit the Talpiot pattern of 
New Testament of names and for medium families of size 20 we would expect to see 154 
of them exhibit this pattern of names. Even in case 2, taking family size at 20, we are 
more likely to see 2 rather than 1 family with the more restrictive name set and lowered 
probabilities promoted by the “Jesus Family Tomb” people.  
 
Bottom line: when the math is done correctly, probabilities that might be cited in 
evidence for the Talpiot tomb being the final resting place of the New Testament Jesus 
are not very impressive and would not even achieve a minimal level of significance as 
gauged by conventional statistical theory.   
 
 
7 Eliminating Reasonable Doubt 
 
To an outsider coming to this debate over probabilities connected with the pattern of New 
Testament names found in the Talpiot tomb, it may seem that the “Jesus Family Tomb” 
people still have a point. Granted, the probabilities are not nearly as bad as they make out 
(see the previous section). But by going with their numbers, it would seem that at most 
one or two Jewish families around the time of Jesus might have exhibited this pattern of 
names. And by going with our numbers, it would seem that at least thirty Jewish families 
around the time of Jesus would have exhibited this pattern of names. An outsider with no 
stake in this debate might therefore conclude that a handful (say five or so) Jewish 
families around the time of Jesus are likely to have exhibited this pattern of names. But in 
that case, it would seem that the Talpiot tomb might still have a good shot at being the 
family tomb of the New Testament Jesus. To be sure, the probabilities would suggest that 
this is not Jesus’ tomb. But, at the same time, they would leave a reasonable doubt that it 
is. 
 
We want in this section to close off this loophole. To do so, we employ a consequence of 
Bayes’s theorem (see appendices A.9 and A.10). Bayes’s theorem may be thought of as a 
way to update probabilities in light of additional information or evidence. The 
probabilities we assign are always subject to change in light of additional information or 
evidence. To illustrate this fact about probabilities, take the case of someone we’ll call 
George. For the last five years George has religiously worked out at the health club 
Mondays, Wednesdays, and Fridays at 7:00pm. He hasn’t missed a workout for five 
years. Today is Monday. What is the probability that George will work out today at 
7:00pm? Given the information just presented, you would rightly assign a high 
probability to this event. But suppose next you learn that George has just been in a 
terrible car accident and is on life support. What is the probability that George will be 
working out tonight? Given this additional information, the probability goes way down. 
But suppose next you learn that George’s buddies can’t stand to see their friend miss a 
workout and so are planning to sneak into the hospital and remove George, taking him to 
the health club and putting him on the workout machines, forcing his shattered body to go 
through exercise motions. Now the probability goes up. By adding still further 
information, the probability can continue to go down and up. 
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To see how this updating of probability works in the case of the Talpiot tomb, let J 
denote the hypothesis that this tomb is the final resting place of the New Testament Jesus 
and let ~J denote the negation of this hypothesis (see appendix A.4). Then, if the 
expected number of Jesus families, denoted by M, is at least two, one can rationalize 
assigning a probability of 1/M to J and (M – 1)/M to ~J, in other words, P(J) = 1/M and 
P(~J) = (M – 1)/M. Moreover, if M is not even 1, one can rationalize assigning a 
probability of p* to ~J and 1 – p* to J, in other words, P(J) = 1 – p* and P(~J) = p*. 
Given that p* corresponds to the p-value calculated by the “Jesus Family Tomb” people, 
this is in fact how the “Jesus Family Tomb” people interpret P(J) and P(~J).27  
 
Suppose now we go with the worst-case probabilistic scenario from the vantage of those 
who think, as we do, that ~J rather than J is true—in other words, we go with case 1 in 
section 6. Here P(~J) = .1743, or approximately 1 in 6, thus making P(J) approximately 5 
in 6. If you were a betting man, it would seem that you should therefore bet that the 
Talpiot tomb is in fact the final resting place of Jesus even if it doesn’t quite make the 
grade that statisticians would regard as significant. And even if these numbers were 
reversed (i.e., P(J) equals 1 in 6 and P(~J) equals 5 in 6), one would still, if one had no 
other information, be in one’s rights to suspect that the Talpiot tomb might indeed be the 
final resting place of Jesus. But there is other information, and its inclusion radically 
revises the probabilities P(J) and P(~J), even in the worst-case scenario where P(~J) = 
.1743.  
 
The point is that we know a lot about Jesus that undercuts the probability of his being 
buried in the Talpiot tomb. Consider the following items of information: 
 

• The New Testament evidence that Jesus and his family was of modest 
means and therefore would be unlikely to be able to afford a tomb. 

 
• The fact that Jesus and his family hailed from Nazareth, which was 

sixty-five miles north of Jerusalem, and that his supposed wife, as 
conjectured by the “Jesus Family Tomb” people (i.e., Mary 
Magdalene), was from the town of Magdala even further north of 
Jerusalem.  

 
• The uniform witness of the best attested historical sources that Jesus 

was unmarried, to say nothing of his not being married to Mary 
Magdalene. 

 
• The widespread perception shortly after Jesus’ crucifixion that he had 

been resurrected (Paul, writing in Galatians, which both liberal and 
conservative scholars date around 50 AD, demonstrates a clearly 
developed understanding of Jesus’ resurrection). Regardless of 
whether Jesus actually did resurrect, the perception early on among his 
followers that he did and the interest of his followers in denying that 
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there was any tomb that housed his bones would have tended to 
preclude any tomb that purported to hold his remains. 

 
Let us now denote the conjunction of these items of information by E. In consequence of 
Bayes’s theorem, we can now update the probabilities P(J) and P(~J) as follows. 
Because we have this additional information E in hand, we would like to form P(J | E) 
and P(~J | E), but to do so, we must go through Bayes’s theorem. As long as P(J) and 
P(~J) fail to take into account E, P(J) is about 5 times as large as P(~J). To compare 
these two quantities, Bayesian probabilists often form their ratio: P(~J)/P(J). Because 
this fraction is about 1/5, the preponderance of probability here favors J. Yet by Bayes’s 
theorem, this ratio, when updated by E to form P(~J | E)/P(J | E), results from 
multiplying P(~J)/P(J) by the factor P(E | ~J)/ P(E | J) (see appendix A.10). In other 
words, 
 

 )(
 )(

 )|(
 ) |(

 )|(
 )|(

JP
J~P

JP
J~P

JP
J~P

×=
E

E
E
E  

 
Even though P(~J)/P(J) is about 1/5, there’s every reason to think that P(E | ~J)/ P(E | J) 
is huge and will swamp the previous factor, thereby rendering P(~J | E)/P(J | E) huge. To 
see this consider that the items of information in E are well attested and, on the 
hypothesis that that the Talpiot tomb is not the final resting place of Jesus, have 
probability close to 1. This is because the probability of E is unaffected if the Talpiot 
tomb is just another tomb unrelated to Jesus’ family. On the other hand, if the Talpiot 
tomb is indeed the final resting place of Jesus, E becomes highly unlikely, taking P(E | J) 
close to zero. Indeed, E is deeply inconsistent with J. Accordingly, the ratio P(E | ~J)/ 
P(E | J) skyrockets, and the same happens to P(~J | E)/P(J | E), urging that ~J is far 
better attested than J. Thus, even though J, simply in light of the pattern of New 
Testament names found in the Talpiot tomb may be the preferred hypothesis, once E is 
factored in, ~J becomes strongly preferred. Note that we’ve taken the worst-case 
scenario. More realistic numbers suggest that ~J is to be preferred over J simply in light 
of the Talpiot, leaving aside independent evidence (i.e., E) against this being the tomb of 
the New Testament Jesus, which then, as in the worst-case scenario, eliminates 
reasonable doubt about this still possibly being Jesus’ final resting place.  
 
If the preceding discussion seems handwaving, welcome to the world of Bayesian 
probability. Often Bayesian arguments are more qualitative than strictly quantitative, 
suggesting ways that probabilities may radically change in light of novel information and 
evidence rather than providing precise calculations with well-defined numbers. It will 
therefore help to have an instance in mind where the calculations are precise and the 
numbers well-defined. Suppose you are confronted with a white ball that you’ve just 
chosen at random from one of two urns. The urn on the left contains a million black balls 
and one white ball whereas the urn on the right contains a million white balls and one 
black ball. In determining from which urn you drew your ball, someone besides yourself 
rolled a die and gave you the left urn if it came up 1 through 5 and the right urn if it came 
up 6. As with J and ~J in the worst case scenario (case 1 of section 6), it is more likely, 
with odds of 5 to 1, that the die roll came up between 1 and 5 rather than that it came up 
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6. Without additional information you would therefore think that the die roll came up 
other than 6. But because a white ball was selected, and white balls are so much more 
likely to be chosen at random from the right urn than from the left urn, in fact it is far 
more likely that the die roll came up 6 than that it came up between 1 and 5.  
 
This line of reasoning can be made precise. Indeed, the probabilities in this example can 
be calculated exactly. Let L and R denote respectively whether the left urn or the right urn 
was sampled (which depends respectively on whether a die roll came up between 1 and 5 
or came up 6). Let B and W denote respectively whether in the process of sampling a 
black or white ball was selected. Then 
 

P(L) = 5/6 
P(R) = 1/6 
P(L | W) = 1/200,001 
P(R | W) = 200,000/200,001. 

 
The last two probabilities here follow from Bayes’s theorem (see appendix A.9). Thus, 
even though L (like J) is improbable in the absence of additional information, R (like ~J) 
becomes overwhelmingly probable given that additional information. That additional 
information removes all reasonable doubt that the Talpiot tomb might, after all, be the 
family tomb of the New Testament Jesus. The statistical evidence rules decisively against 
this hypothesis.  
 
 
8 Conclusion 
 
The mathematics needed to determine the probability that the Talpiot tomb could by 
chance have exhibited the pattern of New Testament names found inscribed on its 
ossuaries was entirely elementary, something a bright undergraduate with a semester of 
probability theory could in principle have figured out. Yet University of Toronto 
mathematician Andrey Feuerverger, acting as the statistical expert for the “Jesus Family 
Tomb” people, failed to figure it out. His math was not only wrong but also inadequately 
developed, leaving crucial elements unjustified (e.g., his first two correction factors). In 
consequence, the use that the “Jesus Family Tomb” people made of his work was 
irresponsible. They confidently proclaimed that the Talpiot tomb was the final resting 
place of the New Testament Jesus when a correct, detailed, properly vetted treatment of 
the underlying mathematics remained to be done. We believe we have provided such a 
treatment in this paper. Despite bending over backwards to concede to the “Jesus Family 
Tomb” people all the small probabilities they ever wanted, our numbers still indicate that 
nothing statistically significant is going on inside the Talpiot tomb and that, in fact, the 
relevant statistics strongly suggest that this is not Jesus’ final resting place. But don’t take 
our word for it. Run the numbers yourself by visiting our website at 
www.jesustombmath.org.  
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APPENDIX: A Primer on Probability 
 
 
A.1 Distinction between Outcomes and Events 
 
Probabilities are numbers between 0 and 1 that are assigned to events (and by extension 
to objects, patterns, information, and even hypotheses). Events always occur with respect 
to a reference class of possibilities. Consider a die with faces 1 through 6. The reference 
class of possibilities in this case can be represented by the set {1, 2, 3, 4, 5, 6}. Any 
subset of this reference class then represents an event. For instance, the event Eodd, 
namely, “an odd number was tossed,” corresponds to {1, 3, 5}. Such an event is said 
occur if any one of its outcomes occurs—in other words, if either a 1 is tossed or a 3 or a 
5. An outcome is any particular thing that could happen. Outcomes can therefore be 
represented as singleton sets, which are sets with only one element. Thus, the outcomes 
associated with Eodd = {1, 3, 5} are E1 = {1}, E3 = {3}, and E5 = {5}. Outcomes are 
sometimes also called elementary events. Events include not only outcomes but also 
composite events such as Eodd, which includes more than one outcome. 
 
 
A.2 The Axioms of Probability 
 
Probabilities obey the following axioms: (1) The impossible event (i.e., an event that 
entails a physical or logical impossibility) is represented by the empty set and has 
probability zero. (2) The necessary event (i.e., an event that is guaranteed to happen) is 
represented by the entire reference class of possibilities and has probability one (e.g., 
with the die example, Enec = {1, 2, 3, 4, 5, 6} has probability one). Events that are 
mutually exclusive have probabilities that sum together. Thus, in the previous example, 
P(Eodd) = P(E1) + P(E3) + P(E5) (i.e., P({1, 3, 5}) = P({1}) + P({3}) + P({5}). Important: 
mutually exclusive and exhaustive events always sum to one. 
 
 
A.3 Interpretation of Probability 
 
Probabilities are interpreted in three principal ways: (1) Frequentist approach—
probability is a relative frequency (i.e., the number of occurrences of an event divided by 
the number of observed opportunities for the event to occur; relative frequencies are also 
called empirical probabilities). (2) Theoretical approach—probability derives from 
properties of the system generating the events (e.g., dies are rigid, homogeneous cubes 
whose symmetry confers probability 1/6 on each face; quantum mechanical systems have 
probabilities derived from eigenvalues associated with the eigenstates of an observable). 
(3) Degree of belief—probability measures strength of belief that an event will occur. 
The “Jesus Family Tomb” people focus mainly on the first of these interpretations. 
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A.4 Conjunction, Disjunction, and Negation 
 
Events can form new events via conjunction, disjunction, and negation. E & F is the 
conjunction (or intersection, also written E ∩ F) of E and F and denotes the event such 
that both E and F occur. E v F is the disjunction (or union, also written E ∪ F) of E and F 
and denotes the event such that either E or F or both occur. ~E is the negation (or 
complement, also written Ec) of E and denotes the event that excludes E’s occurrence. In 
pictures: 
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A.5 Conditional Probability 
 
Suppose event F is known to have occurred and we then ask what is the probability of E. 
In that case, the reference class of possibilities contracts to F, and the probability of E is 
no longer simply P(E) (i.e., the probability of E within the original reference class), but 
the probability of that portion of E that resides within the new reference class F. This 
probability is called the conditional probability of E given F and is written P(E|F). This 
probability is defined as 
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Graphically, this probability can be represented as follows: 
 

 
 
In assessing whether the Talpiot tomb is the tomb of the New Testament Jesus, it is 
critical to determine how many Jewish families in ancient Palestine might have exhibited 
the pattern of names associated with Jesus’ family as found in that tomb. Those families 
constitute the reference class (i.e., F) in light of which the discovery of the pattern of 
names in the Talpiot tomb (i.e., E) need to be assessed. That assessment is carried out in 
section 6 and indicates that considerably more than one such family exhibited that pattern 
of names.  
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A.6 Probabilistic Independence 
 
As we have seen, for mutually exclusive events probabilities add. Specifically, the 
probability of a disjunction of mutually exclusive events is the sum of the probabilities of 
the disjuncts. Thus, if E1, E2, …, En are mutually exclusive, P(E1 v E2 v … v En) = P(E1) + 
P(E2) + … + P(En). Does a corresponding relationship hold for conjunction? For E1, E2, 
…, En arbitrary events such that no conjunction of them has zero probability, it follows 
from the definition of conditional probability that 
 
P(E1 & E2 & … & En) = P(E1) x P(E2| E1) x P(E3| E1 & E2) x … x P(En| E1 & E2 & … & En–1). 
 
To see this in the case of E1 and E2, note that 
 
 P(E1 & E2)  = 1 x P (E1 & E2)  

  = [P(E1)/ P(E1)] x P(E1 & E2) 

  = P(E1) x [P (E1 & E2) / P(E1)] 

  = P(E1) x P(E2| E1) 
 
If, now, P(E2| E1) = P(E2), it follows that  
 
 P(E1 & E2)  = P(E1) x P(E2)  
 
In that case, we say that E1 and E2 are probabilistically (or stochastically) independent. In 
general, we say that events E1, E2, …, En are independent if for all distinct events taken 
from this class, i.e., Ei1, Ei2, …, Eik, 1 ≤ k ≤ n,  
 

P(Ei1 & Ei2 & … & Eik) = P(Ei1) x P(Ei2) x … x P(Eik). 
 
Events are probabilistically independent if they derive from causally independent 
processes. The converse, however, is not be true -- events can be probabilistically 
independent without being causally independent.  
 
 
A.7 Equiprobability and Uniform Probability 
 
In many situations, individual outcomes (elementary events) each have the same 
probability. In that case, if there are N possible outcomes, each outcome has probability 
1/N. Equiprobability in this sense is a special case of uniform probability in which 
isomorphic events under some equivalence relation have identical probability (see my 
1990 article on uniform probability at http://www.designinference.com/documents 
/2004.12.Uniform_Probability.pdf). 
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A.8 The Fisherian Approach to Statistical Inferences 
 
In Ronald Fisher’s approach to hypothesis testing, one is justified in rejecting a chance 
hypothesis (cf. the hypothesis that the New Testament names found in the Talpiot tomb 
are likely to have occurred by chance) provided that a sample falls within a prespecified 
rejection region (also known as a critical region).28 For example, suppose one’s chance 
hypothesis is that a coin is fair. To test whether the coin is biased in favor of heads, and 
thus not fair, one can set a rejection region of ten heads in a row and then flip the coin ten 
times. In Fisher’s approach, if the coin lands ten heads in a row, then one is justified 
rejecting the chance hypothesis. 
 
Fisher’s approach to hypothesis testing is the one most widely used in the applied 
statistics literature and the first one taught in introductory statistics courses. It was also 
the one used by the “Jesus Family Tomb” people. Nevertheless, in its original 
formulation, Fisher’s approach is problematic: for a rejection region to warrant rejecting 
a chance hypothesis, the rejection region must have a small enough probability. The 
“Jesus Family Tomb” people, for instance, thought 1 in 600 was small enough. But why?  
 
Given a chance hypothesis and a rejection region, how small does the probability of the 
rejection region have to be so that if a sample falls within it, then the chance hypothesis 
can legitimately be rejected? Fisher never answered this question. The problem here is to 
justify what is called a significance level such that whenever the sample falls within the 
rejection region and the probability of the rejection region given the chance hypothesis is 
less than the significance level, then the chance hypothesis can be legitimately rejected. 
 
More formally, the problem is to justify a significance level α (always a positive real 
number less than one) such that whenever the sample (an event we will call E) falls 
within the rejection region (call it T) and the probability of the rejection region given the 
chance hypothesis (call it H) is less than α (i.e., P(T|H) < α), then the chance hypothesis 
H can be rejected as the explanation of the sample. In the applied statistics literature, it is 
common to see significance levels of .05 and .01. The problem to date has been that any 
such proposed significance levels have seemed arbitrary, lacking “a rational 
foundation.”29 
 
In The Design Inference, one of us (WmAD) shows that significance levels cannot be set 
in isolation but must always be set in relation to the probabilistic resources relevant to an 
event’s occurrence.30 In the context of Fisherian significance testing, probabilistic 
resources refer to the number opportunities for an event to occur. The more opportunities 
there are for an event to occur, the more possibilities there are for it to land in the 
rejection region. And this in turn means that there is a greater likelihood that the chance 
hypothesis under consideration will be rejected. It follows that a seemingly improbable 
event can become quite probable once enough probabilistic resources are factored in. In 
the case of the Talpiot tomb, the relevant probabilistic resources are the number of Jews 
living in Palestine around the time of Jesus—the greater this number, the more likely that 
the pattern of New Testament names found in that tomb could have arisen by chance.  
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A.9 Bayes’s Theorem 
 
Given an event E and chance hypotheses H1, H2, …, Hn that are mutually exclusive and 
exhaustive, the probability of any one of these hypotheses Hi given E is  
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This is the simple form of Bayes’s theorem (named after Thomas Bayes). Since H1, H2, 
…, Hn are mutually exclusive and exhaustive, it follows that the denominator here can be 
rewritten as  
 

P(E)  =   P([E & H1] v [E & H2] v … v [E & Hn]) 

 =   P(E & H1) + P(E & H2) + … + P(E & Hn) 

 =   P(E|H1)P(H1) + P(E|H2) P(H2) + … + P(E|Hn) P(Hn) 
 
These equalities follow simply from unpacking the axioms of probability and the 
definition of conditional probability. Substituting this last expression for the denominator 
in the simple form of Bayes’s theorem now yields the standard form of Bayes’s theorem: 
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A.10 The Bayesian Approach to Statistical Inferences 
 
In Bayesian statistical inference, one considers an event E and two competing hypotheses 
H1 and H2. Think of H1 as the hypothesis that the Talpiot tomb belonged to the New 
Testament Jesus and H2 as the hypothesis that the pattern of New Testament names in the 
Talpiot tomb occurred by chance. Moreover, think of the event E as evidence for either of 
these hypotheses. To decide whether the evidence E better supports either H1 or H2 
therefore amounts to comparing the probabilities P(H1|E) and P(H2|E) and determining 
which is bigger. These probabilities are known as posterior probabilities and measure the 
probability of a hypothesis given the event/evidence/data E.  
 
Posterior probabilities cannot be calculated directly but must rather be calculated on the 
basis of Bayes’s theorem. Using the simple form of Bayes’s theorem, we find that the 
posterior probability P(Hi|E) (i = 1 or 2) is expressed in terms of P(E|Hi), known as the 
likelihood of Hi given E, and P(Hi), known as the prior probability of Hi. Often prior 
probabilities cannot be calculated directly. Moreover, in calculating the posterior 
probability, we still need to compute the denominator in the simple form of Bayes’s 
theorem, namely, P(E).  
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Fortunately, this last term does not need to be calculated. Because the aim is to determine 
which of these hypotheses is better supported by the evidence E, it is enough to form the 
ratio of posterior probabilities 
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and determine whether it is greater than or less than 1. If this ratio is greater than 1, it 
supports the hypothesis in the numerator (H1, which we are treating as the “Talpiot equals 
Jesus tomb” hypothesis). If it is less than 1, it supports the hypothesis in the denominator 
(H2, which we are treating as the “Talpiot names occurred by chance” hypothesis). 
 
This ratio, using the simple form of Bayes’s theorem, can now be rewritten as follows 
(note that the denominator in Bayes’s theorem simply cancels out): 
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The first factor on the right side of the equation is known as the likelihood ratio; the 
second is the ratio of priors, which measures our relative degree of belief in these two 
hypotheses before E entered the picture. Since the ratio on the left side of this equation 
represents the relative degree of belief in these two hypotheses once E is taken into 
account, this equation shows that updating our prior relative degree of belief in these 
hypotheses (i.e., before the evidence E was factored in) is simply a matter of multiplying 
the ratio of prior probabilities times the likelihood ratio.  
 
In this way, the likelihood ratio, i.e.,  
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is said to measure the strength of evidence that E provides for H1 in relation to H2. Thus, 
since we are treating H1 as the “Talpiot equals Jesus tomb” hypothesis and H2 as the 
“Talpiot names occurred by chance” hypothesis, if this ratio is bigger than 1, E favors the 
former hypothesis and supports that the New Testament Jesus really was buried in the 
Talpiot tomb. On the other hand, if this ratio is less than 1, it favors the latter hypothesis 
and therefore supports that someone else is buried there. 
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