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There is one God, the Father, ever-living, omnipresent,
omniscient, almighty, the maker of heaven and earth, and one
Mediator between God and man, the man Jesus Christ. . .

Isaac Newton [400].

There is a God-shaped vacuum in the heart of every man, which
only God can fill through His Son Jesus Christ.

Blaise Pascal [1098, 1415].

Christ [is] the power of God and the wisdom of God. The
Christian religion is a revelation and that revelation is the Word
of God.

Michael Faraday [1031].

For the invisible things of Him from the creation of the world are
clearly seen, being understood by the things that are made, even
His eternal power and Godhead; so that they are without excuse.

Romans 1:20.

Dedicated to the Christ Jesus who makes things clear.
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Preface

The last thing one knows when writing a book is what to put first.
Blaise Pascal

Someone told me that each equation I included in the book [A Brief History of
Time] would halve its sales.

Stephen Hawking. [585]

Audience

The emphasis of this text is the broad field of Fourier analysis and some of its immediate
outgrowths including convolution, systems theory, Shannon sampling theory and the
modelling of random variables and stochastic processes. The book is written at the level
of the advanced senior or first year graduate student who has an introductory foundation
in Fourier analysis and stochastic processes. Rudimentary familiarity with probability and
image processing is helpful but not necessary.

Exposition Philosophy

There are a number of features that distinguish this book from others [247, 398, 652, 1268,
1402] on the topics of Fourier series [233, 328, 362, 363, 580, 802, 1122, 1368, 1401,
1553, 1563, 1590], Fourier transforms [127, 196, 330, 579, 584, 717, 827, 1200, 1243,
1244, 1295, 1269], or Fourier analysis [153, 386, 454, 627, 631, 760, 767, 1002, 1156,
1157, 1267, 1059, 1382, 1410, 1411, 1457, 1488]. Consistent with goal of a handbook, the
topical content is broad. Yet the presentation format is crafted to allow use as a text. Cross
referencing is extensive, a comprehensive indexed bibliography with over 1500 references
is provided, and over 400 figures illustrate the material.

This book is aimed at practitioners rather than mathematicians. Two classic texts
aimed at practitioners were published in 1965: Athanasios Papoulis’ Probability, Random
Variables, and Stochastic Processes [1075], and Ronald N. Bracewell’s The Fourier
Transform and its Applications [148]. These books popularized a pedagogy that balanced
rigor and intuition. The lucid style pioneered by Papoulis and Bracewell is used in this book.
Doing so allows presentation of concepts without the obfuscation of unnecessary detail. For
example, little attention is given to the status of the Dirac delta as a distribution rather than
a function, or the need for measure theory in the formulation of Hilbert spaces. Likewise,
absolute convergence in infinite sums (integrals) is a requirement for interchanging the order

vi
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PREFACE vii

of summation (integration) but is not invoked in every instance. The question of “When can
we interchange the order of integration?” has herein an answer of “always”. Rigorously,
this is of course not true. However, in the rare cases where such a switch is inappropriately
made, the math, by becoming ludicrous or inconsistent, will often communicate the error.
Although we point to the availability of mathematical rigor in most cases, meticulousness is
not painstakingly applied. Doing so would mask recognition of the beautiful forest with the
distraction of small pesky trees. In cases where a derivation is of monumental importance,
steps can always be retraced with mathematical detail.

Like Papoulis’ books [1074, 1075, 1076, 1077, 1078, 1082, 1087, 1088], this book
cannot be read casually. Illumination, rather, comes through familiarization and rumination.
To assist in this process, solutions to selected exercises are included at the end of each
chapter. The exercises are often not repetitive illustration of chapter contents, but contain
insightful generalizations, alternate viewpoints and even new material. Ancillary problems
on tangential albeit related material with a somewhat recreational bent are occasionally
included. They are marked with a “§”.

Curricular Considerations

This book can effectively serve as either a rich source of material for self study or as the
primary text for at least four courses.

• Introduction to Fourier Analysis [124, 386, 454, 545, 627, 631, 717, 767, 1002,
1157, 1267, 1268, 1269, 1457, 1472]. Cover Chapter 2 on Fundamentals of Fourier
Analysis followed by Chapter 3 on Fourier Analysis in Systems Theory and Chapter 5
on The Sampling Theorem. The first half of the material in Chapter 10 on Signal
Recovery is also appropriate.

• Multidimensional Signal Processing [387, 1239, 1423, 1509]. After review of
Chapter 2, cover Chapter 8 on Multidimensional Signal Analysis1 and Chapter 11
on Signal and Image Synthesis: Alternating Projections Onto Convex Sets [1333].
Section 13.2 provides an application of multidimensional signals and systems to
Fourier Transforms in Optics andWave Propagation. Chapters 9 on Time-Frequency
Representations [312] is also appropriate material.

• Introduction to Shannon Sampling and Interpolation Theory [92, 605, 606, 915,
1577]. First, review Chapter 2. Then cover Chapter 5 on The Sampling Theorem,
Chapter 6 on Generalizations of the Sampling Theorem [957, 916], and Chapter 7
on Noise and Error Effects.2 Chapter 10 on Signal Recovery covers continuous
sampling and the multidimensional sampling theorem is covered in Section 8.9.

• Advanced Topics in Fourier Analysis. After review of Chapter 2, cover Chapter 9
on Time-Frequency Representations [312], Chapter 4 on Fourier Transforms in
Random Variables and Stochastic Processes, Chapter 10 on Signal Recovery, and
Chapter 12 on Mathematical Morphology and Fourier Analysis on Time Scales. The
topics in Section 13.1 on The Wave Equation, its Fourier Solution and Harmony
in Western Music, Section 13.3 on Heisenberg’s Uncertainty Principle, and
Section 13.4 on Elementary Deterministic Finance provide specific applications.

1. Chapter 4 on Fourier Transforms in Probability, Random Variables and Stochastic Processes contains the
required background on stochastic processes.

2. Prerequisite material on stochastic processes in Chapter 4 on Fourier Transforms in Probability, Random
Variables and Stochastic Processes is required here.
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viii PREFACE

Web Site and Errata

The web site www.HandbookOfFourierAnalysis.com contains supplementary material to
this text, including power point presentations, simulations and animations.

Also, the author has taken great pains to keep the book error free, but is aware the goal
has not been achieved. All errors herein are his responsibility. If you find errors in the text,
please e-mail details to HandbookOfFourierAnalysis@gmail.com. Errata will be posted on
www.HandbookOfFourierAnalysis.com.

On the Shoulders of Giants

From Pythagoras to Shannon, accomplishments of the great minds who have contributed
to the foundational material in this book should be held in jaw dropping awe. “The dwarf
sees farther than the giant, when he has the giant’s shoulder to mount on.” Samuel Taylor
Colerage (1772—1834) [311].

Much of the work presented in this volume was performed with friends and val-
ued colleagues whose contributions, directly and indirectly, are gratefully acknowl-
edged. They include Payman Arabshahi, Les E. Atlas, Walter L. Bradley, Kwan Fai
Cheung, Paul S. Cho, Jai J. Choi, John M. Davis, William A. Dembski, Mohamed A.
El-Sharkawi, Warren L.J. Fox, Marc H. Goldburg, Ian A. Gravagne, Marion O. Hagler,
Douglas G. Haldeman, Michael W. Hall, Dmitry Kaplan, E. Lee Kral, Thomas F. Krile,
H.G. Kuterdem, B. Randall Jean, John N. Larson, Loren Laybourn, Shinhak Lee,
Michael J. Meyer, Robert T. Miyamoto, Alan C. Nelson, Seho Oh, Dong Chul Park,
Jiho Park, Hal Philipp, James W. Pitton, Dmitry Radbel, Brian Ricci, Ceon Ramon,
Dennis Sarr, David K. Smith, Michael J. Smith, Benjamin B. Thompson, Shiao-Min Tseng,
John F. Walkup, John L. Whited, Gary L. Wise, Wen–Chung Stewart Wu, Donald C.
Wunsch, and Yunxin Zhao. Thanks also to image models Lenore Marks, Robert (Jack)
Marks, Connie Lynn J. Marks, Ray A. Marks, Jeremiah J. Marks, Joshua J. Marks, and
Marilee M. Marks.
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Acronym List

Acronym

AITS additively idempotent time scales
AM amplitude modulation
a.k.a. also known as
BIBO bounded input–bounded output stability
BE bounded energy signals
BL bandlimited signals
BPF bandpass filter
BS bounded signals
CA constant area
CAT computed axial tomography
CD compact disk
CP constant phase
CRT cathode ray tube
CTFT continuous time Fourier transform
dB decibel
DCT discrete cosine transform
DFT discrete Fourier transform
DSP digital signal processing
DTFT discrete time Fourier transform
DTS discrete time signal
DVD digital versatile disc or digital video disc
FIR finite impulse response
FFT fast Fourier transform
FM frequency modulation
GTFR generalized time-frequency representations
IIR infinite impulse response
IM signals with identical middles
JPEG Joint Photographic Experts Group [702]
JPG variation of JPEG
LED light emitting diode
LPF low pass filter
LPK low passed kernel

ix
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x ACRONYM LIST

LTI system linear time invariant system
LV linear variety
PGA Papoulis-Gerchberg algorithm
PI pseudo-inverse
PIA piecewise invariant approximation
POCS (alternating) projections onto convex sets
PSNR peak signal-to-noise ratio
PSWF prolate spheroidal wave functions
SSSC single side band suppressed carrier
sup supremum. For example, sup(sinc(t)) = 1 and sup

(
1− e−t

)
μ(t) = 1.

TFR time-frequency representations
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Notation

The following is a list of notation and variable used in the book. The most common uses
are listed, but may also be used in different contexts.

Notation

∀ “for all”
� “such that”
∃ “there exists”
:= “equal to by definition”
≡ “is equivalent to”
× Cartesian product. See (6.17).
× multiplication. See (8.25).
× vector curl. See (13.11).
∗ convolution. See Section 2.3.4.5.
◦ opening. See (12.3).
� marks the conclusion of a proof.
|| · || vector norm or signal norm. See (8.2) and (11.3).
• closing. See (12.4).
� deterministic autocorrelation. See Table 2.3.
⊕ dilation or Minkowski addition.
	 Minkowski subtraction.

a� the greatest integer not exceeding a, for example 
6.98� = 6.
� a signal’s phase. In polar coordinates, x(t) = |x(t)|e j � x(t).

§ ancillary problems on tangential albeit related material.
⊥ perpendicular, used to describe null spaces. See Section 11.3.1.3.
� musical notation (sharp). See Section 13.1.
� musical notation (flat). See Section 13.1.
(·)∗ complex conjugation. See the solution to Exercise 3.12.
† Sections that can be skipped. See Section 2.1.
‡ Sections that can be skipped. See Section 2.1.
¶ Sections that can be skipped. See Section 2.1.
↔ Fourier transform pair. See (2.11).
↔
z

z-transform pair. See (2.130).
L∗ convolution on the the time scale L.
ξ∗ convolution with respect to the variable ξ .

xi
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xii NOTATION

ℵN transfinite number of order N . See Exercise 3.32.
A

c set complement - A
c = {a | a /∈ A}.

A./B divide each element in the matrix A. by the corresponding element in B.
A. ∗ B multiply each element in the matrix A by the corresponding element in B.
a := b a is equal to b by definition.
A = {x|x ∈ B} “A is equal to the set of all x such that x is in the set B.” See (11.1).
array(·) the array function. Section 2.3.5.9.
B(b, c) the beta function. See (2.68).
B the bandwidth of a bandlimited signal. See Section 5.1.1.
cas(ζ ) cas(ζ ) = cos(ζ )− sin(ζ ). See (2.126).
comb(t) the comb function. See (2.53).
dp(·) derivative kernel. See (6.67).
δ(t) Dirac delta function. See Section 2.3.5.1.
δ[n] Kronecker delta function. See (2.43).
dp(t) p derivatives of the sinc. See entry in Table 2.4.

d�t multidimensional differential. (8.7).
E [g(X)] the expected value of g(X). See (4.4).
e(t) an even function. See (2.6).
1F1 confluent hypergeometric function of the first kind. See Exercise (4.9).
fX (x) probability density function for a random variable X. See Section 4.2.1.
FX (x) cumulative distribution function for a random variable X. See (4.1).
F Fourier transform operator. See (3.41).
Fa fractional Fourier transform operator. See (3.47).
f frequency variable for discrete time signals. See (2.5).
f focal length of a lens. See Section 13.2.4.
f (·) in some instances such as Exercise (6.12), the “f ” denotes a signal we

wish to find.
g(·) in some instances such as Exercise (6.12), the “g” denotes a signal that is

given.
g(X) alternate notation for E [g(X)]
γ the Euler-Mascheroni constant. See (14.21).
	(z) the gamma function. See (2.64).
H Hilbert or Hankel transform operator. See (2.98).
Hk Hankel transform operator. See (8.41).
Hn(t) Hermite polynomial of order n. See (2.88).
h(·) continuous time impulse response. See (3.13).
h[·] discrete time impulse response. See (3.13).
h̄ Planck’s constant. See Section 13.3.
In(t) modified Bessel function of the first kind. See (2.75).
� the imaginary part of
iff contraction of “if and only if”
i −j
j

√−1
jinc(t) the jinc function. See (2.72).
Jν(·) Bessel function of order ν. See (2.69).
jn(·) spherical Bessel function of order n. See (2.74).
k the magnitude of the propagation vector. See (13.13).
k Boltzmann’s constant. See Section 4.4.3.1.
Kn(t) Hermite-Gaussian function of order n. See (2.92).
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NOTATION xiii

L1 the set of all Lebesgue measurable finite area continuous time signals. See
Footnote 1 in Section 2.2.

L2 the set of all Lebesgue measurable finite energy continuous time signals.
See Footnote 1 in Section 2.2.

L∞ the set of all Lebesgue measurable bounded continuous time signals. See
Footnote 1 in Section 2.2.

�1 the set of all Lebesgue measurable finite area discrete time signals. See
Footnote 1 in Section 2.2.

�2 the set of all Lebesgue measurable finite energy discrete time signals. See
Footnote 1 in Section 2.2.

�∞ the set of all Lebesgue measurable bounded discrete time signals. See
Footnote 1 in Section 2.2.

λ wavelength. See (13.13).
λn eigenvalues. See Section 10.5.
(t) the triangle function. See (2.57).
M a set of integers. See Section (6.2.2.3).
μ(t) continuous time unit step function. See (2.49).
μ[n] discrete time unit step function. See (2.51).
N natural numbers, {1, 2, 3, · · · }
n! n factorial = n(n− 1)(n− 2)× · · · × 3× 2× 1.
n!! n double factorial = n(n− 2)(n− 4) · · · .
((n))m n mod m. See (12.20).(n

k

)
binomial coefficient, a.k.a. “n choose k” = n!/{k!(n− k)!}. See
Section 14.4.1.

o(t) an odd function. See (2.7).
Pn(t) Legendre polynomial of order n. See (2.81).
�X (u) characteristic function for a random variable X. See (4.6).
�(t) continuous time rectangle function. See (2.45).
�[n] discrete time rectangle function. See (2.46).
�X (u) second characteristic function for a random variable X. See (4.11).
r sampling rate parameter. See (6.3).
RX (t, τ ) the autocorrelation of the continuous time stochastic process X(t). See

(4.60).
Rξ [n] the autocorrelation of the discrete time stochastic process ξ [n]. See (4.70).
R the set of all real numbers.
� the real part of.
sgn(t) the signum function. See (2.47).
S{·} a system operator. See (3.1).
S−1{·} inverse system operator. See Section 3.2.1.9.
Si(·) the sine integral. See (2.77).
Sξ (·) the power spectral density of the stochastic process ξ . See Section 4.4.2.
sinc(t) the sinc function.
sinck(t) generalized sinc function. See (2.44).
σ 2

X the variance of the random variable X. See (4.12).
T the period of a periodic function. See Section 2.3.2.
t time. See Section 2.3.1.
�t a vector. See (6.16) and (8.1).
T time scale or set.
T̂ the negative of a set.



[13:27 7/10/2008 5165-Marks-FM.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: xiv 1–xxvii

xiv NOTATION

Tn(·) Chebyshev polynomial of order n. See (2.84).
u temporal frequency. See Section 2.3.1.
W a frequency interval ≥ a bandlimited signal’s bandwidth, B. See

Section 6.2.1.
x(t) a continuous time signal.
x̂(t) the analytic signal corresponding to x(t). See Exercise 2.14.
x̃(t) convolution of x(t) with a jitter probability density function. See (7.71).
xT (t) a single period of a periodic function. See Section 2.3.2.

x[n] a discrete time signal.
Xhart(u) Hartley transform of x(t). See (2.125).
Xcos(u) cosine transform of x(t). See (2.120).
XL(s) Laplace transform of x(t). See (2.22).
XM (s) Mellin transform of x(t). See (3.60).
Xsin(u) sine transform of x(t). See (2.124).
Xz(z) z transform of x[n]. See (2.129).
Xk the kth moment of the random variable X. See (4.5).
Z the set of integers, {· · · ,−2,−1, 0, 1, 2, · · · }.
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1

Introduction

The profound study of nature is the most fertile source of mathematical discoveries.
Jean Baptiste Joseph Fourier [743]

About Fourier: It was, no doubt, partially because of his very disregard for rigor that he
was able to take conceptual steps which were inherently impossible to men of more

critical genius.
Rudoph E. Langer [354]

Fourier is a mathematical poem.
William Thomson (Lord Kelvin), (1824–1907) [1392]

1.1 Ubiquitous Fourier Analysis

Jean Baptiste Joseph Fourier’s powerful idea of decomposition of a signal into sinusoidal
components has found application in almost every engineering and science field. An
incomplete list includes acoustics [1497], array imaging [1304], audio [1290], biology
[826], biomedical engineering [1109], chemistry [438, 925], chromatography [1481],
communications engineering [968], control theory [764], crystallography [316, 498,
499, 716], electromagnetics [250], imaging [151], image processing [1239] including
segmentation [1448], nuclear magnetic resonance (NMR) [436, 1009], optics [492, 514,
517, 1344], polymer characterization [647], physics [262], radar [154, 1510], remote sensing
[84], signal processing [41, 154], structural analysis [384], spectroscopy [84, 267, 724,
1220, 1293, 1481, 1496], time series [124], velocity measurement [1448], tomography
[93, 1241, 1242, 1327, 1330, 1325, 1331], weather analysis [456], and X-ray diffraction
[1378], Jean Baptiste Joseph Fourier’s last name has become an adjective in the terms
like Fourier series [395], Fourier transform [41, 51, 149, 154, 160, 437, 447, 926, 968,
1009, 1496], Fourier analysis [151, 379, 606, 796, 1472, 1591], Fourier theory [1485],
the Fourier integral [395, 187, 1399], Fourier inversion [1325], Fourier descriptors [826],
Fourier coefficients [134], Fourier spectra [624, 625] Fourier reconstruction [1330], Fourier
spectrometry [84, 355], Fourier spectroscopy [1220, 1293, 1438], Fourier array imaging
[1304], Fourier transform nuclear magnetic resonance (NMR) [429, 1004], Fourier vision
[1448], Fourier optics [419, 517, 1343], and Fourier acoustics [1496].

Applied Fourier analysis is ubiquitous simply because of the utility of its descriptive
power. It is second only to the differential equation in the modelling of physical phenomena.
In contrast with other linear transforms, the Fourier transform has a number of physical
manifestations. Here is a short list of everyday occurrences as seen through the lens of the
Fourier paradigm.

3
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• Diffracting coherent waves in sonar and optics in the far field1 are given by the
two dimensional Fourier transform of the diffracting aperture.2 Remarkably, in free
space, the physics of spreading light naturally forms a two dimensional Fourier
transform.

• The sampling theorem,3 born of Fourier analysis, tells us how fast to sample an
audio waveform to make a discrete time CD or an image to make a DVD.

• Some audio equipment contains a number of adjacent vertical bars of LED’s that,
like the level in a mercury thermometer, bounce up and down in illumination as the
audio is playing. The vertical bars on the left correspond to low frequencies and the
bars on the right to high. The bars are capturing a spectrogram-like time-frequency
representations. 4

• Likewise, musical scores can be construed as notation for spectrogram-like time-
frequency representations. The musical score tells the musician what note, i.e.,
frequency, to play at what time.

• The eyes decompose a portion of electromagnetic frequencies into a Fourier
spectrum of color.

• When the neighbor has the stereo volume too loud, the throbbing bass notes come
through the wall better than the high notes. We are experiencing a mechanical low
pass filter as modelled by Fourier analysis.

• Our ear’s cochlea is designed to decompose incident acoustic waves into its Fourier
spectrum. We can therefore differentiate frequencies and enjoy music.

• Backwards rotating wagon wheels on old western movies are an example of
temporal aliasing described through spectral overlap in the temporal Fourier
transform.

• In low resolution television, the large floating patterns on a shirt with a fine structured
pattern is an example of spatial aliasing characterized by the spectral overlap in the
spatial Fourier transform.

• JPEG image encoding, used to reduce the file size of an image, is based of the
discrete cosine transform (DCT)—a close relative of the Fourier transform.

The Fourier transform in everyday occurrences is ubiquitous.

1.2 Jean Baptiste Joseph Fourier

Fourier analysis has its foundation in the paper On the Propagation of Heat in Solid Bodies
[455]. Jean Baptiste Joseph Fourier (1768–1830) read it to the Paris Institute on 21 December
1807. Fourier’s work is still in print [455].

Here are highlights of Fourier’s life.5

• Fourier was born on March 21, 1768 in Auxurre, France. He was the ninth child of
Joseph Fourier, a tailer. Fourier’s mother, Edmie Fourier, was the second wife of
Joseph Senior.

1. Also known as the Fraunhofer diffraction region.
2. See Section 13.2 on Fourier Transforms in Optics and Wave Propagation.
3. See Chapter 5 on The Sampling Theorem.
4. See Chapter 9 on Time-Frequency Representations.
5. For the interested reader, numerous books [24, 547, 595] and articles [327, 546, 594, 1274, 1374, 1420, 1548]

have been written on the life of Fourier.
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FIGURE 1.1. Jean Baptiste Joseph Fourier. (“Portraits et Histoire des Hommes Utiles, Collection de
Cinquante Portraits,” Societe Montyon et Franklin, 1839–1840.)

• Fourier, named after Saint Joseph and John the Baptist, initially trained for
the priesthood at the Benedictine abbey of Saint Benoît-sur-Loire. His love of
mathematics, however, led him to abandon his plans to take religious vows. Fourier
graduated with honors from the military school in Auxerre. He joined the staff
of the École Normale and then the École Polytechnique in Paris. Fourier was
recommended to the Bishop of Auxerre and, as a result of this introduction, was
educated by the Benvenistes.

• In 1793, Fourier was attracted to politics and joined a local revolutionary committee.
His political passion resulted in his arrest, imprisonment and release in 1794.

• In 1797, Fourier succeeded J.L. Lagrange in appointment to the École Polytech-
nique.

• In 1798, Fourier travelled to Egypt with Napoleon, who made him Governor of
Lower Egypt. Fourier returned to France in 1801 and returned to his post at
the École Polytechnique. In 1807, Fourier completed his landmark work On the
Propagation of Heat in Solid Bodies. The committee for his reading on December 21,
1807 consisted of esteemed mathematicians J.L. Lagrange, P.S. Laplace, Gaspard
Monge and Sylvestre Lacroix. Fourier’s presentation was received with skepticism.
Both Laplace and Lagrange objected to Fourier’s expansions of functions as
trigonometrical series, what we now call Fourier series. They were skeptical the
smooth sinusiod could be used to represent function discontinuities. They were
wrong.

• Fourier was made a baron by Napoleon in 1808.
• Fourier was a major contributor to the 21 volumes of Description de l’Egypte

written from 1808 to 1825. The work contained the cultural and scientific results
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of Napoleon’s Egypt invasion. Description de l’Egypte established Egyptology as
a discipline.

• Fourier died in Paris in 1830.

Fourier has another scientific claim to fame. He was the first to identify the greenhouse
effect. Fourier wondered how the Earth stays warm. He hypothesized energy from the sun
is trapped between the Earth’s surface and the blanket of atmospheric gases.

In engineering, science and mathematics, Fourier will always be remembered as the first
to represent temporal signals as superposition of sinusoids in the frequency domain.

1.3 This Book

No single volume can present all of the applications for Fourier’s theory. The material, like a
collection of the theory and applications of differential equations, is simply too voluminous.
This book is written largely from the perspective of the engineer and the scientist with and
an eye towards application.

1.3.1 Surveying the Contents

Chapter 1 contains a brief biographical sketch of Jean Baptiste Joseph Fourier, the transform
that bears his name, and examples of the enormous impact of Fourier analysis in the fields
of physics, medicine, engineering, finance, and music.

The foundations of Fourier analysis are recounted in Chapter 2 at a level appropriate for
a review at an advanced level. Emphasis is placed on Fourier analysis, including to higher
transcendental functions. Relationships between transforms of discrete and continuous
time signals are firmly established. Some of the material in this chapter, as discussed in
Section 2.1, can be skipped on a first reading.

Chapter 3 deals with application of Fourier analysis to system modelling. Systems
are characterized as the response of a black box to a stimuli. For mathematical traction,
constraints must be placed on the black box system. Examples include causality, stability,
linearity and time invariance. Fractional Fourier transforms, Goertzel’s algorithm, and
amplitude modulation are presented in Chapter 3 as examples of linear systems.

Use of the Fourier transform in probability, random variables and stochastic processes is
the topic of Chapter 4. Emphasis on the utility of characteristic functions to define random
variables is made as is use of the Fourier transform in establishing the central limit theorem.
Foundational material on Fourier treatment of stochastic processes is also presented. A type
of stochastic resonance is used to illustrate the weak law of large numbers. Foundational
concepts of the modelling of stochastic processes are also introduced.

Shannon sampling and interpolation theory is among the most well developed topics
in this book. Some of this material was contained in the author’s previous book [915] on
sampling theory. Included in Chapter 5 are foundational proofs and interpretation of the
sampling theorem. Generalizations of the sampling theorem, including those of Papoulis,
Kramer, and Lagrange, are the topic of Chapter 6. The consequences of noise on restoration
from samples is analyzed in Chapter 7.

Chapter 8 contains an exposition on Fourier analysis of multidimensional signals
including images. Emphasis is placed on multidimensional Fourier analysis that is not a
straightforward extension of the one-dimensional counterpart. This includes the operations
of separability, rotation, and multidimensional symmetry.Applications of multidimensional
Fourier analysis include use of the discrete cosine transform for image compression,
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characterizations of signals from their tomographic projections, McClellan transformation
for multidimensional filter design, restoring lost samples, and raster sampling. The
multidimensional extension of the Shannon sampling theorem and its generalizations are
also presented.

The most familiar example of the time-frequency representations, the topic of Chapter 9,
is the musical score. Time flows from measure to measure. At each point in time, the
musician is asked to play a certain note or, for our purposes, frequency. The musical
score therefore contains a temporal sequence of frequency. The challenge of the time-
frequency representation is the transformation of a temporal signal into a time-frequency
representation, or musical score. The classic approach is generation of a spectrogram. This
approach, though, suffers from a time versus frequency resolution tradeoff. This problem
is addressed, in part, by Cohen’s generalized time frequency representation (GTFR).
Properties and implementations of the GTFR are developed in Chapter 9.

Fourier analysis has a strong role in signal recovery. This is the topic of Chapter 10.
Attention is restricted to restoration of continuously sampled signals and the Papoulis-
Gerchberg algorithm. Likewise, Chapter 11 introduces the alternating projection onto
convex sets, or POCS paradigm. Many important synthesis and recovery problems can
be placed in the POCS rubric including solution of simultaneous equations, associative
memory formation, recovery of lost blocks in JPG images, subpixel resolution, tomography,
correcting quantization error, synthesizing time-frequency representations, and conformal
radiotherapy.

Times scales is a theory which bridges continuous and discrete time signals and
systems models. Continuous and discrete time are both special cases of time scales. After
establishing foundational properties of mathematical morphology, an introduction to time
scales is presented in Chapter 12. The relationship between time scale Fourier analysis,
multidimensional convolution and certain operations in mathematical morphology is also
established.

Chapter 13 contains discourses on applications of Fourier analysis to a plurality of
selected disciplines. These include

• The role of the Fourier series in solution of boundary value problems and the
establishment of the tempered scale and western music (Section 13.1).

• The natural occurrence of the two-dimensional Fourier transform in diffraction
phenomena (Section 13.2).

• The role of the Fourier transform in establishment of Heisenberg’s uncertainty
principle (Section 13.3).

• Convolution applications in elementary deterministic finance (Section 13.4.)

Other applications are sprinkled throughout the text. Here is a partial list.

• Stochastic resonance wherein either too much or too little noise renders a process
impotent (Section 4.2.4.1).

• Lost sample restoration (See Sections 6.2.2 for the one dimensional and 8.10 for
the multi-dimensional case).

• Use of DCT’s in image compression (Section 8.7).
• Foundations of reconstruction of multidimensional signals from their projections,

i.e., tomography (Sections 8.5, 8.5, and 11.4.8).
• Subpixel resolution (Section 11.4.7).
• McClellan transform methods for the design of multidimensional digital filters

(Section 8.8).
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• Restoration of linear motion blur (Exercise 3.25).
• Correcting quantization error (Section 11.4.9).
• Beam synthesis in conformal radiotherapy (Section 11.4.11).
• Modulation (Section 3.4).
• Beamforming (Section 13.2.5).

For the book browser, here is a list of some of the more fascinating material covered in this
volume.

• The phase of a signal’s Fourier transform is generally more important than its
magnitude. See Section 8.6.3.2.

• High resolution pictures can be synthesized from images from a low resolution
camera. See Section 11.4.7.

• The central limit theorem says convolution of a number of functions, under loose
conditions, approaches a Gaussian. See Section 4.2.5.

• The Fourier transform is not only a useful tool in signal analysis, it occurs naturally
in nature. Coherent waves, for example, take on the form of the Fourier transform
of the source in the far field. See Section 13.2.

• Western music’s chromatic scale is a compromise between maintaining the integer
ratios of Fourier harmonics and the ability to change keys. See Section 13.

• Fractional derivatives, such as
(

d
dt

)1/2
x(t), are well defined and arise in the

modelling of the restoration of images from their projections. See Exercise 8.19.
• There are also fractional Fourier transforms. See Section 3.6.
• There is a unification theory, dubbed time scales, that include both the discrete and

continuous time Fourier transforms as special cases. See Section 12.3.
• A bandlimited signal’s samples can be connected by lines and placed through a filter

to restore the original bandlimited signal. See Section 6.2.3.1.
• Heisenberg’s uncertainty principle is expressed using Fourier analysis. See

Section 13.3
• Simple personal finance equations, including mortgage payments, savings accrual

and amortization schedules, can be derived using the solution to a simple first order
difference equation. See Section 13.4.

• For example: (a) At 12% interest, a monthly penny deposit will accumulate to a
million dollars in 116 years. See Exercise 13.10. (b) The monthly mortgage payment
of a 5% interest mortgage over 100 years is reduced by less that one percent when
paid over a period of 1000 years. The monthly payment over 10,000 years is, to the
penny, the same as for 1000 years. See Section 13.4.4.3.

• In the absence of noise, knowledge of an arbitrarily short section of a bandlimited
signal is sufficient to specify the signal everywhere. Presence of noise or other
uncertainty, however, renders this extrapolation ill-posed. See Section 10.2.

• In the absence of noise, if a signal is sampled in excess of the Nyquist rate, an
arbitrarily large but finite number of lost samples can be regained from those
remaining. See Section 6.2.2.

• If a bandlimited signal is oversampled, the sinc is a viable interpolation function.
So is the difference between two sinc2 functions. See, e.g., Exercise 6.2. So are a
plethora of other functions. See Section 6.2.2.5.

• The real and imaginary parts of the Fourier transform of a causal signal are Hilbert
transform pairs. See (2.99).
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• If the integral over all time of a signal is finite, then the integral over all time of its
derivative is zero. See (2.94).

• For continuously sampled signals, aliased data can be restored without ambiguity.
See Section 10.2.

• The Fourier transform of Legendre polynomials are spherical Bessel functions. See
(2.82).

• Weighed Hermite polynomials are their own Fourier transforms. See (2.90).
• The Fourier series and the sampling theorem are Fourier duals of each other. See

Section 5.3.2.
• The coefficients of a Fourier series can be obtained by sampling the Fourier

transform of a single period of the periodic function. See (2.17).
• If functions vary slowly enough, samples of position and velocity taken simulta-

neously at a fast enough rate can be used to restore both the continuous position
and velocity as a function of time. If, though, the samples are taken alternately, the
continuous functions can’t be reconstructed. See Section 6.3.3.

• Shifted sinc functions form an orthogonal basis function for bandlimited signals.
See (2.110).

• Sampling densities can lie below the Nyquist density in higher dimensions without
imposing irreversible aliasing. The original multidimensional function can be
recovered from the aliased samples. See Section 8.11.

• Sampling continuous white noise does not result in discrete white noise. See 4.4.3.
• n! ends in about 5n−1

4 zeros. See Exercise 2.7 in Chapter 2.
• No one has yet defined a real system that is additive but not homogeneous. No one

has identified a homogeneous system that is not additive. See Sections 3.2.1.1 and
3.2.1.2 and Exercise 3.12.

• For Gibb’s phenomenon in the Fourier series, the overshoot becomes smaller and
smaller but never disappears. See Exercise 2.51 in Section 2.8.

• The geometric series gives rise to interesting repunit and Mersenne numbers. See
Appendix 14.4.2.

• Dividing a uniform random variable by a second independent uniform random
variable results in a random variable for whom all moments, including the mean,
are infinite. See Appendix 14.6.11.

Two topics not covered in this book are

(1) fast Fourier transforms (FFT’s), [160, 161, 322, 323, 625, 1111], and
(2) wavelets [93, 296, 318, 347, 520, 1249, 1362, 1459, 1468, 1517, 1591], except for

filter banks [451, 805, 977, 1348, 1429, 1430] in Section 9.3.
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Fundamentals of Fourier Analysis

I have tried, with little success, to get some of my friends to understand my amazement
that the abstraction of integers for counting is both possible and useful. Is it not

remarkable that 6 sheep plus 7 sheep makes 13 sheep; that 6 stones plus 7 stones make
13 stones? Is it not a miracle that the universe is so constructed that such a simple

abstraction as a number is possible? To me this is one of the strongest examples of the
unreasonable effectiveness of mathematics. Indeed, I find it both strange and

unexplainable.
Richard W. Hamming (1915–1998) [573]

To the extent that there is some correspondence between [the natural world and its
mathematical modelling] … we have the miracle of modem science - the deepening

understanding of our universe, and the bounty and ease of the technological society in
which we live. A second-order miracle, little recognized or appreciated, is that this first

miracle could arise from such a really ragged fit between the [natural world and its
mathematical modeling].

David Slepian [1283]

Finally, two days ago, I succeeded - not on account of my hard efforts, but by the grace
of the Lord. Like a sudden flash of lightning, the riddle was solved. I am unable to say

what was the conducting thread that connected what I previously knew with what
made my success possible.

Karl Friedrich Gauss (1777–1855) [422]

One cannot escape the feeling that these mathematical formulas have an independent
existence and an intelligence of their own, that they are wiser than we are, wiser even

than their discoverers, that we get more out of them than was originally put into them.
Heinrich Hertz (1857–1894) [89]

2.1 Introduction

This chapter contains foundational material for modelling of signals and systems. Section 2.2
introduces classes of functions useful in signal processing and analysis. The Fourier
transform, in Section 2.3, begins with the Fourier integral and develops the Fourier series,
the discrete time Fourier transform and the discrete Fourier transform as special cases.

The following material in this chapter can be skipped on a first reading.

† denotes material relevant to multidimensional signals in Chapters 8 and 11.
‡ denotes material relevant to probability and stochastic processes in Chapter 4.
¶ denotes material used in continuous sampling in Chapter 10.

10
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2.2 Signal Classes

There are a number of signal classes to which we will make common reference. Continuous
time signals are denoted with their arguments in parentheses, e.g., x(t). Discrete time signals
will be bracketed, e.g., x[n].

(a) Periodic Signals
A continuous time signal, x(t), is periodic if there exists a T such that

x(t) = x(t − T )

for all t. The function x(t) = constant is periodic.
A discrete time signal, x[n], is periodic if there exists a positive integer N
such that

x[n] = x[n− N]

for all n. The function x[n] = constant is periodic.
(b) Finite Energy Signals1

If

E =
∫ ∞
−∞
|x(t)|2 dt <∞, (2.1)

then the continuous time signal, x(t), is said to have finite energy,2 E. A discrete
time signal, x[n], has finite energy if

E =
∞∑

n=−∞
|x[n]|2 <∞. (2.2)

(c) Finite Area Signals3

If

A =
∫ ∞
−∞
|x(t)| dt < ∞, (2.3)

then the continuous time signal x(t) is said to have finite area A. For discrete time
signals, x[n] has finite area if

A =
∞∑
−∞
|x[n]| < ∞.

1. The classes of continuous time, finite energy, finite area, and bounded signals, when Lebesgue measurable,
are recognized respectively as L2, L1 and L∞ signals.

Likewise, the respective discrete time signals are �2, �1 and �∞ signals [854, 1020].
2. Why is this quantity referred to as an energy? For a one ohm resister, the instantaneous dissipated power

is |x(t)|2 if x(t) is either a voltage or a current. The total energy used by the resistor is the integral of the power
and is given by (2.1). There is no analogous interpretation for the discrete time finite energy signal. Dubbing (2.2)
energy is a simple carryover from the continuous case.

3. See Footnote 1.
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(d) Bounded Signals4

If, for C a constant,

|x(t)| ≤ C <∞, (2.4)

then the continuous time signal, x(t), is said to be bounded. A discrete time signal,
x[n], is bounded if

|x[n]| ≤ C <∞.
(e) Bandlimited Signals

If there exists a finite bandwidth, B, such that
∫ ∞
−∞

x(t)e−j2πut dt = 0 ; |u| > B,

then the continuous time signal, x(t), is said to be bandlimited in the low pass sense.5

A discrete time signal is bandlimited if there is a B < 1
2 such that

∞∑
n=−∞

x[n]e−j2π fn = 0 ; B < |f | ≤ 1

2
. (2.5)

For continuous time signals, where t has units of time, the bandwidth, B, has units of
Hertz or, equivalently, cycles per second. For discrete time signals, the bandwidth
B is unitless.

(f) Analytic Signals
If, for every finite complex number ϕ, we have equality in the Taylor series

x(z) =
∞∑

n=0

x(n)(ϕ) (z − ϕ)n

n!

where the signal’s nth derivative is

x(n)(z) =
(

d

dz

)n

x(z)

then x(z) is said to be analytic everywhere in the closed z plane. Such signals are
also called entire.

(g) Causal Signals
A signal is causal if it is identically zero for negative argument. Thus, x(t) is causal
if x(t) = 0 for all t < 0.

(h) Symmetric Signals
By symmetric signals, we mean signals that are either even or odd. A signal, e(t), is
even if

e(t) = e(−t) (2.6)

4. See Footnote 1.
5. In disciplines such as circuit design, the bandwidth is alternately defined as the frequency interval over

which the magnitude of the signal’s spectrum exceeds 1/
√

2, or 3 dB, of its maximum value. Our definition here
is different.
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TABLE 2.1. A summary of the properties of continuous and discrete time even and odd functions.
The asterisk, ∗, denotes either continuous or discrete time convolution. (See entries in Tables 2.3
and 2.6 for convolution definitions.) The double arrow,↔ denotes either continuous or discrete time
Fourier transformation. (See (2.11) and (2.112).) For proofs of these properties, see Exercise 2.21
and its solution.

(a) e+ e = e (k)
∫ T
−T o dt = 0

(b) o+ o = o (l)
∑n

0 o = o

(c) e× e = e (m)
∑n

0 e = e

(d) o× o = e (n)
∑N
−N e = e[0] + 2

∑N
n=1 e[n]

(e) o× e = o (o)
∑N
−N o = 0

(f) d
dt e = o (p) e ∗ e = e

(g) d
dt o = e (q) o ∗ o = e

(h)
∫ t

0 o dτ = e (r) e ∗ o = o

(i)
∫ t

0 e dτ = o (s) e ↔ e

(j)
∫ T
−T e dt = 2

∫ T
t=0 e(t) dt (t) o ↔ j o

and o(t) is odd if

o(t) = −o(−t). (2.7)

Every signal, c(t), can be expressed as the sum of an even and odd function.

c(t) = e(t)+ o(t).

The even component is

e(t) = 1

2
(c(t)+ c(−t)) (2.8)

and the odd component is

o(t) = 1

2
(c(t)− c(−t)) . (2.9)

A summary of properties of even and odd functions is in Table 2.1.

2.3 The Fourier Transform

In this section, as listed in Table 2.2, we review the basic properties of continuous time
Fourier transforms (CTFT), the Fourier series, the discrete time Fourier transform (DTFT),
and the discrete Fourier transform (DFT).

TABLE 2.2. Fourier transform types and their mappings. The entries are for (a) CTFT=
continuous time Fourier transform, (b) the Fourier series, (c) the DTFT= discrete time Fourier
transform, and (d) DFT= the discrete Fourier transform.

Transform Time → Frequency

CTFT continuous → continuous
Fourier Series continuous → discrete
DTFT discrete → continuous
DFT discrete → discrete
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2.3.1 The Continuous Time Fourier Transform

The CTFT of a continuous time signal, x(t), is6

X(u) :=
∫ ∞
−∞

x(t) e−j2πut dt. (2.10)

where the notation “:=” is read “is equal to by definition.” CTFT pairs will be denoted by7

x(t)←→ X(u). (2.11)

The inverse Fourier transform is8

x(t) =
∫ ∞
−∞

X(u) e j2πut du. (2.12)

2.3.2 The Fourier Series

Periodic functions with period T can be expressed as a Fourier series,

x(t) =
∞∑

n=−∞
cn e j2πnt/T , (2.13)

where the Fourier series coefficients are

cn = 1

T

∫
T

x(t) e−j2πnt/T dt, (2.14)

and integration is over any arbitrary single period. That is, for an arbitrary τ , we define

∫
T
:=

∫ τ+T

t=τ
. (2.15)

6. When t has units of seconds, the frequency variable, u, has units of Hertz. The frequency variable u is used
in this book over the more conventional ω = 2πu for the following reasons. (1) ω has units of radians-per-second
and, relative to u, is opaque to interpretation, e.g., what is the physical meaning ofω = 377 radians-per-second? One
typically divides by 2π to obtain u = 60 Hertz which is a more straightforward and meaningful measure. (2) When
using ω, dual Fourier transform theorems typically require correct placement of a factor of 2π . For example,
the Fourier transform, X(ω) = ∫

t x(t) exp(−jωt)dt has as its (dual) inversion x(t) = 1
2π

∫
ω

X(ω) exp(jωt)dω.
Using u, on the other hand, results in the transform in (2.10) and its inversion in (2.12). There is no troublesome
placing of 2π . The same 2π trouble free expressions are manifest in numerous other Fourier transform theorem
duals thereby reducing needless bookkeeping overhead in the manipulation of equations. The primary reasons
for the continuing use of ω are (a) historical inertia, and (b) the less effort and space required to write ω
than 2πu.

7. Fourier transform pairs are unique at all points of continuity. A finite or countable infinite number of
displaced points does not effect a transform. For example, if x(t) = �(t) for t 	= 3 and x(3) = 100, then the
Fourier transform of f (t) is still sinc(u). Inverting sinc(u) gives �(t) and the isolated displaced point is removed.

8. Points of discontinuity are inverse transformed to the arithmetic mean. For example, the function y(t)=�(t)
for t 	= 1/2 and y

( 1
2

) = 100, when transformed and inverse transformed, will result in �(t) where the originally
displaced point reemerges at the arithmetic mean. �

( 1
2

) = 1
2 �

( 1
2 +

) + �
( 1

2 −
) = 1

2 [1+ 0] = 1
2 . For

this reason, we choose to define functions with discontinuities, such as the unit step in (2.49), the sgn function in
(2.47) and the rectangle function in (2.45) using the arithmetic mean at points of discontinuity. The same property
applies for the Fourier series. (See Problem 2.40.)
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TABLE 2.3. Continuous time Fourier transform (CTFT) theorems. The Fourier
transform, typically complex, can be expressed in rectangular (Cartesian)

coordinates as X(u) = R(u)+ jI(u), or in polar coordinates, X(u) = |X(u)|e j 	 X(u).
Convolution is defined by x(t) ∗ h(t) = ∫∞

−∞ x(τ ) h(t − τ ) dτ . The deterministic
correlation integral is x(t) � h(t) = ∫∞

−∞ x(τ )h∗(τ − t)dτ = x(t) ∗ h∗(−t).When
x = h, this operation is deterministic autocorrelation.

Transform x(t) ↔ X(u)

scaling x(at) ↔ 1
|a|X

( u
a

)

shift x(t − τ ) ↔ X(u)e−j2πuτ

modulation x(t)e j2πvt ↔ X(u− v)

scale then shift x
( t−τ

a

) ↔ 1
|a|X

( u
a

)
e−j2πuτ

shift then scale x
( t

a − b
) ↔ 1

|a|X
( u

a

)
e−j2πuab

derivative
( d

dt

)n
x(t) ↔ (j2πu)nX(u)

integral
∫ t
−∞ x(τ )dτ ↔ X(u)

j2πu + 1
2 X(0)δ(u)

conjugate x∗(t) ↔ X∗(−u)

transpose x(−t) ↔ X(−u)

inversion
∫∞
−∞ X(u)e j2πutdu ↔ X(u)

duality X(t) ↔ x(−u)

linearity ax1(t)+ bx2(t) ↔ aX1(u)+ bX2(u)

convolution x(t) ∗ h(t) ↔ X(u)H(u)

correlation x(t) � h(t) ↔ X(u)H∗(u)

real signals if x(t) is real ↔ X(u) = X∗(−u),

⇒ R(u) = R(−u), I(u) = −I(−u)

|X(u)| = |X(−u)|, 	 {X(u)} = −	 {X(−u)}.
causal signals x(t) = x(t)μ(t) ↔ X(u) = −j

πu ∗ X(u)

⇒ I(u) = −1
πu ∗ R(u), R(u) = 1

πu ∗ I(u)

Fourier series
∑

n cne j2πnt/T ↔∑
n cnδ

(
u− n

T

)

sampling theorem
∑

n xnsinc(2Bt − n) ↔∑
n xne−jπu/B �

( u
2B

)

We can use the arbitrary integration over a period in (2.14) for the following
reason. For any periodic function, y(t), with period T , the integral

∫ τ+T
t=τ y(t)dt is

independent of τ . For any τ , the result is simply the area of a single period. The
product of two periodic functions with period T results in a periodic function with
period T . Since x(t) has period T and e−j2πnt/T has period T , the product, y(t) =
x(t)e−j2πnt/T , has a period of T . Thus, integration over any period, independent of
where the integration begins, gives the same value. The integration notation in (2.14)
follows.

If we define xT (t) to be any single period of x(t):

xT (t) =
{

x(t) ; τ < t ≤ τ + T
0 ; otherwise

(2.16)
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(τ is arbitrary), then (2.14) can be written

cn = 1

T

∫ ∞
−∞

xT (t) e−j2πnt/T dt

= 1

T
XT

( n

T

)
. (2.17)

where

xT (t)←→ XT (u). (2.18)

The Fourier coefficients can thus be determined by sampling the CTFT of any period of the
periodic function.

2.3.2.1 Parseval’s Theorem for the Fourier Series

The energy in a single period of a periodic function is related to its Fourier coefficients via
Parseval’s theorem for the Fourier series.

∫
T
|x(t)|2dt = T

∞∑
n=−∞

|cn|2. (2.19)

Proof .
∫

T
|x(t)|2dt =

∫
T

x(t)x∗(t)dt

=
∫

T

[ ∞∑
n=−∞

cne j2πnt/T
∞∑

m=−∞
c∗me−j2πmt/T

]
dt

=
∞∑

n=−∞

∞∑
m=−∞

cnc∗m
[∫

T
e j2π (n−m)t/T dt

]

=
∞∑

n=−∞

∞∑
m=−∞

cnc∗m [T δ[n− m]]

= T
∞∑

n=−∞
|cn|2

2.3.2.2 Convergence

The partial Fourier series sum is

xN (t) =
N∑

n=−N

cn e j2πnt/T . (2.20)

A single period of a truncated Fourier series with unit period is shown in Figure 2.1. On
the interval [− 1

2 ,
1
2 ], the signal is one for |t| ≤ 1

3 and zero otherwise. As the number

of terms increases with N , the overshoot at discontinuity gets smaller and smaller but,
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1
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FIGURE 2.1. A truncated Fourier series in (2.20) for a square wave equal to one for t ≤ 0.2. The
coefficients are cn = α sinc(αn) for α = 0.4. Plots are shown for N = 10, 25, 50 and 100.

in the limit, does not disappear.9 (See Exercise 2.51.) This property, dubbed the Gibb’s
phenomenon, reveals that the Fourier series does not converge uniformly at every point. It,
rather, converges in the mean square sense. Equation (2.13) is thus better written as

lim
N→∞

∫
T
|x(t)− xN (t)|2 dt = 0 (2.21)

Dirichlet Conditions. The Dirichlet conditions10 specify three sufficient conditions for
a periodic function to have a Fourier series representation. They are

(a) x(t) must have a finite number of extrema on the interval 0 ≤ t < T . An example
of a violating function is x(t) = sin(1/t).

(b) x(t) must have a finite number of discontinuities. Violating functions include (1)
x(t) = 1 when t is rational and zero otherwise and (2) x(t) = sgn (sin(1/t)).

(c) x(t) must have a finite area on the interval 0 ≤ t < T . The function x(t) = 1/t
violates this.

The functions that fail the Dirchlet conditions are largely pathological.

9. Albert Michelson is most often associated with the 1881 Michelson-Morley experiment proving light
travels at a constant speed in all inertial systems of reference. Michelson also designed a mechanical apparatus
in 1898 to compute Fourier series. It performed well except when there were discontinuities. J. Willard Gibb’s
first explained the Gibb’s phenomenon in 1899. As the Michelson-Morley experiment proved foundational to
Einstein’s development of relativity, Michelson’s Fourier series machine motivated the theoretical establishment
of the Gibb’s phenomenon.

10. Named for Johann Peter Gustav Lejeune Dirichlet (1805–1859), a contemporary of Fourier’s.
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2.3.3 Relationship Between Fourier and
Laplace Transforms

A wealth of Fourier transform pairs can be obtained from Laplace transforms [5, 544]. The
(unilateral) Laplace transform is defined as

XL(s) :=
∫ ∞

0
x(t)e−stdt ; s = σ + j2πu. (2.22)

If

(1) x(t) is causal ( i.e., x(t) = x(t)μ(t)), and
(2) XL(s) converges for σ = 0,

then the Laplace transform evaluated at σ = 0 is the Fourier transform of x(t). That is,

XL(j2πu) = X(u). (2.23)

A sufficient condition for the second criterion is for x(t) to have finite area.

A =
∫ ∞
−∞
|x(t)| dt <∞.

This follows from the inequality
∣∣∣∣
∫ ∞
−∞

y(t)dt

∣∣∣∣ ≤
∫ ∞
−∞
|y(t)|dt (2.24)

which, when applied to the Laplace transform in (2.22) yields

|XL(j2πu)| =
∣∣∣∣
∫ ∞
−∞

x(t)e−j2πutdt

∣∣∣∣ ≤
∫ ∞
−∞
|x(t)|dt <∞.

2.3.4 Some Continuous Time Fourier
Transform Theorems

Here are some useful Fourier transform theorems.

2.3.4.1 The Derivative Theorem

Performing a derivative in time corresponds to multiplying the Fourier transform by j2πu.
More generally

(
d

dt

)n

x(t)←→ (j2πu)nX(u)e j2πut .

Proof .

(
d

dt

)n

x(t) =
∫ ∞
−∞

X(u)

(
d

dt

)n

e j2πutdu

=
∫ ∞
−∞

(j2πu)nX(u)e j2πutdu.
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Thus (
d

dt

)n

x(t)←→ (j2πu)nX(u).

2.3.4.2 The Convolution Theorem

Convolution in time corresponds to multiplication in the frequency domain.

x(t) ∗ h(t)←→ X(u)H(u).

Proof . Convolution of the continuous time functions x(t) and h(t) is defined as

x(t) ∗ h(t) :=
∫ ∞
−∞

x(τ ) h(t − τ ) dτ. (2.25)

Thus

x(t) ∗ h(t)←→
∫ ∞
−∞

[∫ ∞
−∞

x(τ )h(t − τ )dτ

]
e−j2πutdt.

Reverse integration orders and applying the shift theorem gives

x(t) ∗ h(t)←→ H(u)
∫ ∞
−∞

x(t)e−j2πutdt

or, finally

x(t) ∗ h(t)←→ X(u)H(u). (2.26)

2.3.4.3 The Inversion Theorem

To invert from the Fourier transform domain to the time domain, the inverse Fourier
transform in (2.12) is used.

Proof .
∫ ∞
−∞

X(v)e j2πvtdv←→
∫ ∞
−∞

[∫ ∞
−∞

X(v)e j2πvtdv

]
e−j2πutdu.

Reverse integration order and note
∫ ∞
−∞

e j2πξ tdt = δ(ξ ).

The proof concludes after application of the sifting property.

2.3.4.4 The Duality Theorem

The forward and inverse Fourier transforms in (2.10) and (2.12) differ only in the sign of
the exponential. This similarity leads to the duality theorem.

{x(t)↔ X(u)} → {X(t)↔ x(−u)}.
Proof .

X(t)←→
∫ ∞
−∞

X(t)e j2π (−u)tdt

= x(−u).
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2.3.4.5 The Scaling Theorem

Stretching a signal in the time domain corresponds to a reciprocal shrinking in the frequency
domain.

x(at)←→ 1

|a|X
(u

a

)
.

Proof .

x(at)←→
∫ ∞
−∞

x(at̂)e−j2πut̂dt̂

=

⎧⎪⎪⎨
⎪⎪⎩

1

a

∫ ∞
−∞

x(t)e−j2πut/adt; a > 0

1

a

∫ −∞
∞

x(t)e−j2πut/adt; a < 0

= 1

|a|
∫ ∞
−∞

x(t)e−j2π u
a tdt.

= 1

|a|X
(u

a

)
.

2.3.5 Some Continuous Time Fourier Transform Pairs

A list of CTFT pairs is in Table 2.4.

2.3.5.1 The Dirac Delta Function

For continuous time, the Dirac delta function,11 also called an impulse, denotes an infinite
energy, unit area event of infinitesimal duration. It can be defined by its sifting property.
If x(t) is continuous at τ = t, then12

x(t) = x(t) ∗ δ(t) =
∫ ∞
−∞

x(τ )δ(t − τ ) dτ. (2.27)

(a) Fourier transform
From (2.27), the Fourier transform of a Dirac delta is

δ(t)←→
∫ ∞
−∞

δ(t)e−j2π tudt

= e−j2π tu
∣∣∣
t=0

=1.

11. Rigorously, the Dirac delta, δ(t), is a distribution [158, 240, 620, 1159, 1582] and not a function.
12. Use of Dirac deltas in engineering math is typically trouble free. An exception is when the Dirac delta sits

on the end point of an interval. For example, the integral
∫ 1

0 δ(t)dt simply has no answer. Is δ(t) included in the
interval, excluded, or partially included? There is no answer. The question must be answered either in context to
the problem, or implied notation. The 0− in the notation

∫ 1
0− δ(t)dt indicates, for example, inclusion of the delta

in the interval of integration.
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(b) Dirac delta area
The area of a Dirac delta can be found from the sifting property by setting x(τ ) = 1
and t = 0. Recognizing further that δ(t) = 0 except at the origin leads us to conclude
that for any ε > 0

∫ ε

−ε
δ(τ ) dτ = 1. (2.28)

The Dirac delta’s area is thus one.
(c) As a limit

The Dirac delta can be viewed as the limit of any one of a number of unit area
functions which approach zero width and infinite height at the origin. For example,
as illustrated in Figure 2.2,

δ(t) = lim
A→∞A �(At). (2.29)

where the rectangle function is defined in (2.45). Alternately, using the definition of
the sinc in (2.41)

δ(t) = lim
A→∞A sinc(At).

(d) Dirac delta scaling
From the Dirac delta characterization in (2.29), the area of δ(at)= limA→∞ A�(aAt)
is 1/|a|. This is also the area of δ(t)/|a|. We therefore infer the scaling property of
the Dirac delta function.

δ(t) = |a| δ(at).

(e) Duality
From duality and the modulation theorem,

exp(j2πξ t)←→ δ(u− ξ ). (2.30)

From (2.13), we conclude that the spectrum of a periodic signal can be written as a
string of weighted Dirac deltas.

X(u) =
∞∑

n=−∞
cn δ

(
u− n

T

)
.

2.3.5.2 Trigonometric Functions

Euler’s formula is

e jθ = cos(θ )+ j sin(θ ). (2.31)

The even and odd components, from (2.8) and (2.9), are

cos(θ ) = 1

2

(
e jθ + e−jθ ) , (2.32)

and

j sin(θ ) = 1

2

(
e jθ − e−jθ ) . (2.33)
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TABLE 2.4. Some Fourier transform pairs. Additional Fourier transform pairs are
in Tables 2.5, 4.1, 4.2 and 4.3. (Continued on the next page.)

x(t) ←→ X(u)

δ(t) ←→ 1

exp(j2π t) ←→ δ(u− 1)

cos(2π t) ←→ 1
2 [δ(u+ 1)+ δ(u− 1)]

sin(2π t) ←→ j
2 [δ(u+ 1)− δ(u− 1)]

�(t) ←→ sinc(t)

exp(−t)μ(t) ←→ (1+ j2πu)−1

cos(π t)�(t) ←→ 1
2

(
sinc

(
u+ 1

2

)+ sinc
(
u− 1

2

))

sinck(t) ←→ �(u)/sinck(u)

sinc(t) sgn(t) ←→ − j
π

log

∣∣∣∣ u+ 1
2

u− 1
2

∣∣∣∣
dp(t) := ( d

dt

)p
sinc(t) ←→ (j2πu)p �(u)

sinc(t)μ(t) ←→ 1
2�(u)− j

2π log

∣∣∣∣ u+ 1
2

u− 1
2

∣∣∣∣
�(t) ←→ sinc2(u)

�(t) sgn(t) ←→ −j
2πu (1− sinc(2u))

sgn(t) ←→ −j/(πu)

1
t ←→ −jπ sgn(u)

1
t �

( t
2

) ←→ −j2 Si(2πu)

|t|−1/2 ←→ −|u|−1/2

|t|−1/2 sgn(t) ←→ −j|u|−1/2sgn(u)

t−1/2 μ(t) ←→ (−j2u)1/2

μ(t) ←→ 1
2

(
δ(u)− j

πu

)

e−|t| ←→ 2
(
1+ (2πu)2

)−1

e−|t|sgn(t) ←→ −j4πu
(
1+ (2πu)2

)−1

e−π |t|sinc(t) ←→ 1
π

arctan
(

1
2u2

)

|t|e−a|t| ←→
√

2

π

a2 − (2πu)2

(a2 + (2πu)2)2

Equations (2.32) and (2.33) also follow immediately from adding and subtracting the
conjugate of e jθ from e jθ in (2.31) respectively.

(a) Taylor series characterization
To show Euler’s formula in (2.31), consider the Taylor series

ez =
∞∑

n=0

zn

n! . (2.34)



[12:22 15/10/2008 5165-marks-ch02.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 23 10–103

FUNDAMENTALS OF FOURIER ANALYSIS 23

TABLE 2.5. Some Fourier transform pairs. (Continued from Table 2.4.)

x(t) ←→ X(u)

Si(π t) ←→ �(u)

j2u

cos(π t)/(π t) ←→ jμ
(−u− 1

2

)− jμ
(
u− 1

2

)

J0(2π t) ←→ �
( u

2

)
/
√

1− u2

J0(2π t)sgn(t) ←→ j

π
√

u2 − 1

(
�
( u

2

)− 1
)

sgn(u)

jinc(t) ←→ √
1− u2 �

( u
2

)

Jν (2π t)

(2t)ν
; ν > −1

2
←→ (π/2)ν√

π�(ν + 1
2 )

(1− u2)ν−
1
2�

( u
2

)

comb(t) ←→ comb(u)
∑∞

n=0 δ(t − n) ←→ 1
2 (1− j cotan(πu))

∑N
n=−N δ(t − n) ←→ (2N + 1) array2N+1(u)

exp(−π t2) ←→ exp(−πu2)

exp( jat2) ←→ √
jπ/a exp(−j(πu)2/a)

sech(π t) ←→ sech(πu)

sech(π t) tanh(π t) ←→ −jπu sech(πu)

sech2(π t) ←→ 2u cosech(πu)

tanh(π t) ←→ −j cosech(πu)

tk−1e−atμ(t); a > 0 ←→ �(k)

(a+ j2πu)k

Jn(2π t) ←→ 1

π

j−n

√
1− u2

Tn(u)�
( u

2

)

jn(2π t) ←→ 1
2 j−nPn(u)� (u/2)

e−π t2
Hn(
√

2π t) ←→ j−ne−πu2
Hn(
√

2π u)

FIGURE 2.2. The limit of this rectangle function as A→∞ is a Dirac delta function with zero width,
infinite height and unit area.
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Expand e jθ in (2.31). All of the even terms (n = 2k) in this series are real.13

The sum of the real components of the expansion is recognized as the Taylor
series

cos(θ ) =
∞∑

k=0

(−1)kθ2k

(2k)! (2.35)

while the imaginary odd components (n = 2k + 1) sum to the Taylor series

sin(θ ) =
∞∑

k=0

(−1)kθ2k+1

(2k + 1)! . (2.36)

Equation (2.31) follows as a consequence.

(b) Fourier transforms of trigonometric functions
For the Fourier transform of cos(2π t), we apply Euler’s formula in (2.32) and apply
the Fourier transform in (2.30) to obtain

cos(t)←→ 1

2
(δ(t − 1)+ δ(t + 1)) .

Similarly

sin(t)←→ 1

j2
(δ(t − 1)− δ(t + 1)) .

(c) Hyperbolic trig functions
The hyperbolic cosine, sine, and tangent are

cosh(z) := cos( jz)

= 1

2

(
ez + e−z) ,

sinh(z) := j sin(−jz)

= 1

2

(
ez − e−z) ,

and

tanh(z) := sinh(z)

cosh(z)

= e2z − 1

e2z + 1
.

,

The hyperbolic secant and cosecant are

sech(x) := 1

cosh(x)
,

13. See Exercise 2.5 for a condition required for this discussion: absolute convergence.
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and

cosech(x) := 1

sinh(x)
.

A useful series is

sech(x) = π
∞∑

k=0

(−1)k(2k + 1)

π2
(
k + 1

2

)2 + x2
. (2.37)

Linear and logarithmic plots of the hyperbolic functions are shown in Figures 2.3
and 2.4.

(d) Fourier transforms of some hyperbolic trig functions
The hyperbolic secant is even and has a Fourier transform of

sech(π t)←→
∫ ∞
−∞

sech(π t)e−j2πutdt

=
∫ ∞
−∞

sech(π t) cos(2πut)dt

=2
∫ ∞

0
sech(π t) cos(2πut)dt

=�
(

2
∫ ∞

0
sech(π t)e j2πutdt

)

(2.38)

where � denotes “the real part of”. Note that, for t > 0,

sech(π t) = 2

eπ t + e−π t

= 2e−π t

1+ e−2π t

FIGURE 2.3. Plots of hyperbolic trig functions.
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cotanh(t )

102

10−2

1

tanh(t )

cosh(t )

sech(t )

0 1 2

exp(t )

exp(−t)

sinh(t )

cosech(t )

FIGURE 2.4. Logarithmic plots of hyperbolic trig functions.

= 2e−π t lim
α→1−

(
1

1+ αe−2π t

)

= 2e−π t lim
α→1−

( ∞∑
k=0

(−1)kαne−2kπ t

)

where, in the last step, we have used a convergence factor, α, and a geometric
series.14 The notation “limα→1−” means α approaches 1 from the the left, e.g., as
0→ 1. Substituting into (2.38) gives

sech(π t)←→ 4 lim
α→1−

[ ∞∑
k=0

(−1)kαn�
(∫ ∞

0
e−π (2k+1)t

)
e j2πutdt

]

= 4
∞∑

n=0

�
[

lim
α→1−

(
αn(2n+ 1)

π
[
(2n+ 1)2 + (2u)2

]
)]

= π
∞∑

k=0

(−1)k(2k + 1)

π2
(
k + 1

2

)2 + (πu)2
.

Comparing this with the series for the hyperbolic secant in (2.37) gives the result
listed in Table 2.5.

sech(π t)←→ sech(πu). (2.39)

14. See Appendix 14.4.2.
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Since

d

dt
sech(t) = −sech(t)tanh(t), (2.40)

the Fourier transform entry for sech(π t)tanh(π t) in Table 2.5 immediately follows.

2.3.5.3 The Sinc and Related Functions

We define the sinc function by

sinc(t) := sin(π t)

π t
. (2.41)

One advantage of this notation is that, for n an integer,

sinc(n) = δ[n], (2.42)

where the Kronecker delta is

δ[n] :=
{

1 ; n = 0
0 ; n 	= 0.

(2.43)

The sinc function is the k = 0 plot in Figure 2.5. For inverse filtering applications, we
will find useful the following generalization of the sinc.

sinck(t) := 2
∫ 1

2

0

cos(2πut)

sinck(t)
dt. (2.44)

Note that

sinck(t)←→ 1

sinck(u)
�(u).

FIGURE 2.5. Plots of �(u)/sinck(u) for k = 0, 1, 2, 3. The Fourier transforms of these functions are
sinck(t) shown in Figure 2.6.
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FIGURE 2.6. Plots of sinck(t) for k = 0, 1, 2, 3. For k = 0, sinck(t) = sinc(t).

Plots are in Figures 2.5 and 2.6. The sinc is a special case since

sinc0(t) = sinc(t).

2.3.5.4 The Rectangle Function

For continuous time,

�(t) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 ; |t| < 1
2

0 ; |t| > 1
2

1
2 ; |t| = 1

2 .

(2.45)

The Fourier transform of the rectangle function is

�(t)←→
∫ 1

2

t=− 1
2

e−j2πutdt

= 1

−j2πu
e−j2πut

∣∣∣
1
2

− 1
2

.

= sinc(u)

For discrete time, we adopt the definition

�
[ n

2L

]
:=

{
1 ; |n| ≤ L

0 ; otherwise.
(2.46)

L need not be an integer.
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2.3.5.5 The Signum Function

The function

sgn(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 ; t < 0

0 ; t = 0

1 ; t > 0

(2.47)

is denoted by a contraction of the word sign and is pronounced signum to avoid confusion
with the trigonometric sin.

(a) Fourier transform of sgn(t)
As shown in Figure 2.7, the function sgn(t) can be written as

sgn(t) = lim
α→0

sgn(t)e−α|t|.

Discarding the odd component of the Fourier transform integral of sgn(t)e−a|t| gives

sgn(t)e−α|t| ↔ −j
∫ ∞
−∞

sgn(t)e−α|t| sin(2πut) dt

where we have expanded the exponential via Euler’s formula and have recognized
the odd component of the integrand integrates to zero. The evenness of the remaining
integrand can be exploited to write

sgn(t)e−α|t| ↔ −j2
∫ ∞

0
sin(2πut) e−αt dt

= −j2�
[ ∫ ∞

0
e j2πut e−αt dt

]

= −j2�
[

1

α − j2πu

]

FIGURE 2.7. Plots of sgn(t)e−α|t| for various values of α. For α = 0, the function is sgn(t). To evaluate
the Fourier transform of sgn(t), we evaluate the Fourier transform of sgn(t)e−α|t| and take the limit
as α→ 0.
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where � denotes the imaginary component operation. Evaluating in the limit as
a→ 0 gives the desired result.

sgn(t)↔ 1

jπu
. (2.48)

(b) The Unit Step Function
Note that the unit step function can be written for continuous time as

μ(t) := 1

2
(sgn(t)+ 1). (2.49)

Its Fourier transform is thus

μ(t) = 1

2
(sgn(t)+ 1)↔ 1

2

(
δ(t)− j

πu

)
. (2.50)

For discrete time, the unit step is

μ[n] :=
{

1 ; n ≥ 0

0 ; otherwise.
(2.51)

2.3.5.6 The Gaussian

The Gaussian function, shown in Figure 2.8, is its own Fourier transform.

Proof . Differentiating the expression for the Fourier transform of the Gaussian, x(t) =
exp(−π t2), gives

dX(u)

du
=
∫ ∞
−∞

(−j2π t) exp[−π (t2 + j2ut)] dt

= −j
∫ ∞
−∞

π (2t + j2u) exp
(
−π (t2 + j2ut)

)
dt − 2πuX(u).

The resulting integral can be evaluated in closed form.

dX(u)

du
= j exp

(
−π (t2 + j2ut)

)∣∣∣∞−∞ − 2πuX(u) = −2πuX(u)

or

dX(u)

X(u)
= −2πu du.

Integrating both sides gives

ln (X(u)) = −πu2.

After exponentiation, we obtain the Fourier transform of the Gaussian.15

e−π t2 ←→ e−πu2
. (2.52)

15. An alternate derivation is in Exercise 4.5.
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FIGURE 2.8. The Gaussian function, e−π t2
, for t ≥ 0.

2.3.5.7 The Comb Function

We define

comb(t) =
∞∑

n=−∞
δ(t − n). (2.53)

(a) Use in characterization of periodic functions
Any periodic function can be written as

x(t) = xT (t) ∗ 1

T
comb

(
t

T

)
(2.54)

where xT (t) is any period of x(t).
(b) The comb function’s Fourier series and Fourier transform

Since comb(t) is periodic, it can be expressed in terms of a Fourier series in (2.13).
From the expression for Fourier series coefficients in (2.14) and the sifting property
of the Dirac delta, the coefficients are cn = 1 for all n. Thus

comb(t) =
∞∑

n=−∞
e j2πnt . (2.55)

Since, from (2.30), the Fourier transform of a complex sinusoid is a shifted Dirac
delta, we obtain the Fourier transform pair

comb(t)←→
∞∑

n=−∞
δ(u− n) = comb(u).
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(c) The causal comb
The causal comb is a string of integer spaced Dirac deltas for nonnegative time and
is written

∑∞
n=0 δ(t− n). The causal comb’s Fourier transform can be derived using

the following steps.

∞∑
n=0

δ(t − n)

↔
∞∑

n=0

e−j2πnu ; Fourier transform

= lim
α→0

[ ∞∑
n=0

e−αne−j2πnu

]
; convergence factor

= lim
α→0

[
1− e−αe−j2πu

]−1 ; geometric series

= 1

1− e−j2πu
; set α = 0 (2.56)

= e jπu

e jπu − e−jπu
; factor

= 1

j2

cos(πu)+ j sin(πu)

sin(πu)
; Euler’s formula

= 1

2
(1− j cotan(πu))

2.3.5.8 The Triangle Function

Define the triangle function as

�(t) := (1− |t|) �
(

t

2

)
. (2.57)

Note that, using the convolution theorem,

�(t) = �(t) ∗�(t)←→ sinc2(u). (2.58)

2.3.5.9 The Array Function

As illustrated in Figure 2.9, the array function of order M is defined by

arrayM (t) := sin(πMt)

M sin(π t)
. (2.59)

(a) Periodicity
The function arrayM (t) is periodic. When M is odd, its period is one. If M is even,
its period is two.
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FIGURE 2.9. Plots of arrayM (t).

Proof . From the definition,

arrayM (t + 1) = sin (πM(t + 1))

M sin (π (t + 1))

= (−1)M−1arrayM (t).

(b) Maximum values
The maximum of |arrayM (t)| is 1 and occur at integer arguments.

arrayM (n) = (−1)(M+1)n. (2.60)

Proof . The proof follows from application of L’Hopital’s rule to (2.59).

Note that, for odd indices, we have array2N+1(n) = 1.
(c) Zero crossings

The array function in (2.59) is zero for all t = n/M when n/M is not an integer.
This occurs when the numerator in (2.59) is zero and the denominator isn’t.

(d) Relation to the sinc function
In the limit, the array function approaches a sinc function.

lim
M→∞ arrayM

(
t

M

)
= sinc(t). (2.61)

Proof . We note, from the definition in (2.59), that

arrayM

(
t

M

)
= sin(π t)

M sin
(
π t
M

) .
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40

20

0
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FIGURE 2.10. A plot of array55(55u), as predicted by (2.63), approaches comb(u).

Equation (2.61) immediately follows after recognizing

lim
θ→0

sin(θ ) = θ.

Equation (2.61) is illustrated in Figure 2.10.
(e) The Fourier transform of the array function

Using a geometric series,16 we can generate the following Fourier transform pair.

N∑
n=−N

δ(t − n)←→
N∑

n=−N

(∫ ∞
−∞

δ(t − n)e−j2πutdt

)

=
N∑

n=−N

e−j2πnt (2.62)

=
N∑

n=−N

(
e−j2π t

)n

=(2N + 1)array2N+1(u)

(f) Relation to the comb function
In the limit,

lim
N→∞(2N + 1)× array2N+1(u) = comb(u). (2.63)

16. See (14.8) in Appendix 14.4.2.
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0

1

tM = 2

sinc(t )

FIGURE 2.11. Plots of arrayM
( t

M

)
that, according to (2.61), approaches sinc(t).

Proof . The proof follows directly from (2.62) and the Fourier transform pair
comb(t)↔ comb(u).

An illustration is in Figure 2.11.

2.3.5.10 The Gamma Function†‡

The gamma function for real positive argument can be defined as

�(ξ ) :=
∫ ∞

0
τ ξ−1 e−τ dτ ; �ξ > 0. (2.64)

The gamma function can be extended to include negative and complex arguments [544].
When ξ = n is a non-negative integer, �(n+ 1) = n!. When ξ = n+ 1

2 ,

�

(
n+ 1

2

)
= (2n− 1)!! √π

2n
(2.65)

where the double factorial is defined as17

m!! :=
∏

{k|k≥0,m−2k>0}
(m − 2k). (2.66)

For example 7 double factorial = 7!! = 7 · 5 · 3 · 1. Every other integer is skipped.
Equation (2.65) can be derived from the property

�(ξ + 1) = ξ �(ξ ) (2.67)

and�( 1
2 ) =√π . Linear and semi-log plots of the gamma function are shown in Figures 2.12

and 2.13.

17. See Exercise 2.8 for an alternate definition.
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FIGURE 2.12. The gamma function, �(ν), as defined by (2.65). The gamma function is also defined
for negative and complex arguments [5].
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FIGURE 2.13. A semi-log plot of the gamma function, �(ν) as defined by (2.65).

2.3.5.11 The Beta Function‡

The beta function illustrated in Figure 2.14, is

B(b, c) := �(b)�(c)

�(b+ c)
. (2.68)

The beta function can be viewed as a continuous version of the binomial coefficient
(

n

k

)
:= n!

k!(n− k)! .

Indeed,

1

B(k + 1, n− k + 1)
= �(n+ 2)

�(k + 1)�(n− k + 1)

= (n+ 1)!
k!(n− k)! = (n+ 1)

(
n

k

)
.
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FIGURE 2.14. A semi-log plot of the beta function, B(b, c). Since �(0+) =∞, all of these curves peak
to∞ as c→ 0.

2.3.5.12 Bessel Functions†‡

For ν > − 1
2 , Bessel functions of the first kind can be defined by the integral [5]

Jν(z) := 2( z
2 )ν√

π �(ν + 1
2 )

∫ 1

0
(1− u2)ν−

1
2 cos(zu) du. (2.69)

Example plots are shown in Figure 2.15.

(a) Fourier transforms of Bessel functions
From Exercise 2.41, we have the transform pair

Jν(2π t)

(2t)ν
←→ (π/2)ν√

π�(ν + 1
2 )

(1− u2)ν−
1
2�(u/2). (2.70)

The functions J0(2π t) for ν = 0 and jinc(t) for ν = 1 are special cases. A plot is in
Figure 2.16. For ν = 0, (2.69) becomes

J0(2π t) = 2

π

∫ 1

0

cos(2πut)√
1− u2

du. (2.71)

A plot is shown in Figure 2.16.
(b) The jinc function

We define [149]

jinc(t) := J1(2π t)

2t
. (2.72)

Using (2.69) with ν = 1 gives

jinc(t) = 2
∫ 1

0

√
1− u2 cos(2πut) du.
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FIGURE 2.15. Plots of Jν (t) for ν = 1 through 8.
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1

0

Jn (2pt )/(2t)n

FIGURE 2.16. Plots of Jν (2π t)/(2t)ν for ν = 0, 1, 2, 3. The ν = 1 plot is of jinc(t) and ν = 0 corresponds
to J0(2π t).

Since

2
∫ √

1− u2 du = u
√

1− u2 + arcsin(u), (2.73)

it follows that

jinc(0) = π

2
.

The zero crossings of the jinc are identical to the well tabulated t 	= 0 zero crossings
of J1(2π t).
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FIGURE 2.17. Jn(2π t) for n = 0, 1, 2, 3, 4.

(c) Spherical Bessel functions
Spherical Bessel functions of the first kind are Bessel functions with half integer
argument.18

jn(z) :=
√
π

2z
Jn+ 1

2
(z). (2.74)

Plots are shown in Figure 2.17. Spherical Bessel functions are finite energy
bandlimited functions.

(d) Modified Bessel functions
An nth order modified Bessel function of the first kind, as illustrated in Figure 2.18,
can be defined as [5, 544]

In(z) = 1

π

∫ π

0
ez cos(θ ) cos(nθ )dθ. (2.75)

Modified Bessel functions obey

In(t) := j−nJn( jt). (2.76)

2.3.5.13 The Sine Integral

The sine integral function is

Si(t) :=
∫ t

0

sin(z)

z
dz. (2.77)

Equivalently

Si(π t) = π
∫ t

0
sinc(τ )dτ. (2.78)

18. The Fourier transform of the spherical Bessel function is in (2.82).
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FIGURE 2.18. Modified Bessel functions of the first kind as defined in (2.75).

FIGURE 2.19. Plot of Si(π t). As t becomes large, Si(π t)↔ π
2 . Also, Si(π ) = 1.851937.

A plot of Si(π t) is shown in Figure 2.19.

2.3.5.14 Orthogonal Polynomials¶

There exist numerous classes of orthogonal polynomials [5, 651, 544]. Here are three of
them.

1. Legendre polynomials
Legendre polynomials on the interval [−1,1] can be defined by

Pn(t) := 1

2nn!
(

d

dt

)n

(t2 − 1)n. (2.79)
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(a) Properties
With initializations P0(t) =� ( t

2

)
and P1(t) = t�

( t
2

)
, Legendre polynomials

obey the recursion relationship

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t)− nPn−1(t). (2.80)

The Lengendre polynomials are orthogonal.

∫ 1

t=−1
Pn(t)Pm(t) = 2

2n+ 1
δ[n− m]. (2.81)

A plot of the first few Legendre polynomials are in Figure 2.20. The functions
become more oscillatory with increasing index.

(b) The Fourier transform of the Legendre polynomial
Legendre polynomials and spherical Bessel functions are Fourier transform
pairs.

Proof . Using the definition of the spherical Bessel function in (2.74), the
definition of the Bessel function in (2.69) and the definition of the Legendre
polynomial in (2.79), we have

jn(2π t) = 1

2
√

t
Jn+ 1

2
(2π t)

= 1

2
√

t

[(
j

π

)n

(2t)
1
2 (−j2π t)n

Jn+ 1
2
(2π t)

(2t)n+ 1
2

]

= 1√
2

(
j

π

)n
[

(−j2π t)n
Jn+ 1

2
(2π t)

(2t)n+ 1
2

]

1

P2(t )

P4(t )

P5(t )

P3(t )

P1(t )

0

−1
−1 0 1

t

FIGURE 2.20. The first few Lengendre polynomials.
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←→ 1√
2

(
j

π

)n ( d

du

)n
[

(π/2)n+ 1
2√

πn!
(

1− u2
)n
]
� (u/2)

= 1

2n!
(−j

2

)n ( d

du

)n [(
u2 − 1

)n]
� (u/2) (2.82)

=1

2
j−nPn(u)� (u/2) .

Thus,

jk(2π t)↔ 1

2
j−kPk(u)�

(u

2

)
. (2.83)

2. Chebyshev polynomials
Chebyshev polynomials of the first kind on the interval [−1,1] are defined by

Tn(cos θ ) := cos nθ. (2.84)

The first few are shown in Figure 2.21.
(a) Recursion relationship. Chebyshev polynomials obey the recurrence rela-

tionship

Tn+1(t) = 2tTn(t)− Tn−1(t). (2.85)

The polynomials can then be generated by this recursion initiated, from (2.84),
T0(t) = � ( t

2

)
and T1(t) = t �

( t
2

)
.

To show (2.85), we will assume it true and show it reduces to an identity.
Applying (2.84) to (2.85) asks the question

is [cos(n+ 1)θ = 2 cos θ cos nθ − cos(n− 1)θ ] ?

The affirmative answer follows immediately from recognizing the equation
is the real part of

e j(n+1)θ = 2 cos θ e jnθ − e j(n−1)θ

which, when simplified, reduces to Euler’s formula.

1
T5(t)

T4(t)

T3(t)

T2(t)

T1(t)

0

−1
−1 0 1

FIGURE 2.21. The first few Chebyshev polynomials, Tn(t).
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(b) Orthogonality. Chebyshev polynomials are orthogonal with respect to the
weighting function, (1− t2)−1/2.

∫ 1

t=−1

Tn(t)Tm(t)√
1− t2

dt =
⎧⎨
⎩

1
2 m δ[n− m] ; n 	= 0 and m 	= 0

m ; n = m = 0
(2.86)

(c) Fourier transform. The Fourier transform of a Chebyshev polynomials on
[−1,1] is an nth order Bessel function

Jn(2π t)←→ 1

π

(−j)n

√
1− u2

Tn(u)�
(u

2

)
. (2.87)

3. Hermite polynomials
Hermite polynomials can be defined by

Hn(t) := (−1)net2
(

d

dt

)n

e−t2
(2.88)

The first few Hermite polynomials are shown in Figure 2.22.
(a) Recursion relationship. Hermite polynomials obey the recursion relationship

Hn+1(t) = 2tHn(t)− 2nHn−1(t) (2.89)

with initialization H0(t) = 1 and H1(t) = 2t.
(b) Orthogonality. Hermite polynomials are orthogonal on the real line with

respect to the weighting function, e−t2
.

∫ ∞
−∞

Hn(t)Hm(t)e−t2
dt = 2n n! √π δ[n− m].

(c) Fourier transform. Weighted Hermite polynomials, called Hermite-Gaussian
functions, are their own Fourier transforms.

e−π t2
Hn(
√

2π t)←→ (−j)ne−πu2
Hn(
√

2π u). (2.90)

H2(t)

H0(t)
H1(t)

H3(t)

20

10

0

−10

−20

−2 −1 0 1 2

FIGURE 2.22. The first few Hermite polynomials, Hn(t).
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Equivalently,

Kn(t)←→ (−j)nKn(u). (2.91)

where the Hermite-Gaussian function is

Kn(t) := e−π t2
Hn(
√

2π u). (2.92)

The Fourier transform of the Gaussian in (2.52) is a special case corre-
sponding to K0(t). Plots of Kn(t) are in Figures 2.23 and 2.24.
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FIGURE 2.23. Hermite-Gaussian functions, Kn(t), are their own Fourier transforms. See (2.91).
Additional plots are in Figure 2.24.
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FIGURE 2.24. Hermite-Gaussian functions, Kn(t), are their own Fourier transforms. See (2.91). These
plots are linear for the range (−1,1) and are, otherwise, logarithmic.
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2.3.6 Other Properties of the Continuous Time
Fourier Transform

2.3.6.1 The Signal Integral Property

A useful property emerges from evaluating the inverse Fourier transform in (2.10) at u = 0.

X(0) =
∫ ∞

t=−∞
x(t)dt. (2.93)

The Fourier transform evaluated at the origin is equal to the definite integral over all time
of the transformed signal.

Definite integration of derivatives property. The signal integral property can be used
to show that, if the integral in (2.93) is finite, then

∫ ∞
t=−∞

(
d

dt
x(t)

)
dt = 0. (2.94)

Proof . Let y(t) = d
dt x(t). Then, according to the derivative theorem

y(t)←→ Y (u) = ( j2πu)X(u). (2.95)

According to the signal integral property in (2.93),
∫ ∞
−∞

y(t)dt = Y (0) = ( j2πu)X(u)|u=0.

Thus, assuming X(0) < 0, (2.94) follows.

2.3.6.2 Conjugate Symmetry of a Real Signal’s Spectrum

The continuous time Fourier transform of a real function is conjugately symmetric, (or
Hermetian). That is, if x(t) is real, then

X(u) = X∗(−u). (2.96)

Proof . From the Fourier transform in (2.10), we write

X(−u) =
∫ ∞
−∞

x(t) e j2πut dt.

Conjugating both sides and, recognizing a real x(t) dictates x(t) = x∗(t), reduces this
equation to the Fourier transform in (2.10).

The spectrum can be separated into its real and imaginary components.

X(u) = R(u)+ jI(u). (2.97)

Equating the real and imaginary components of the Fourier transform of a real signal in
(2.96) reveals the real part of the transform is an even function

R(u) = R(−u),

and the imaginary part is an odd function.

I(u) = −I(−u).
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Similarly, the spectrum can be expressed in polar form as

X(u) = |X(u)|e j 	 X(u).

Using (2.96) and equating the magnitude reveals the magnitude of the Fourier transform is
an even function.

|X(u)| = |X(−u)|,
whereas equating the argument gives an odd phase.

	 X(u) = −	 X(−u).

2.3.6.3 The Hilbert Transform

The Hilbert transform of a signal z(t) is the convolution −1
π t ∗ z(t). Since19 −1

π t ←→ j sgn(u),
the Fourier transform of the Hilbert transform is

Hz(t) = −1

π t
∗ z(t)←→ j sgn(u) Z(u). (2.98)

where H is the Hilbert transform operator.

2.3.6.4 Hilbert Transform Relationships Within a Causal
Signal’s Spectrum

If a signal is causal, the real and imaginary components of its spectrum are Hilbert transform
pairs. Specifically

I(u) = HR(u) = −1

πu
∗ R(u). (2.99)

Proof . We start with the property of a causal signal

x(t) = x(t)μ(t).

Since μ(t)←→ 1
2

(
δ(u)− j

πu

)
, Fourier transforming both sides gives

X(u) = 1

2
X(u)− j

2πu
∗ X(u),

or

X(u) = − j

πu
∗ X(u).

Substituting the real and imaginary component equation for the spectrum in (2.97) and
equating the imaginary portions of both sides gives the promised result in (2.99).

Likewise, equating the real parts gives the inverse Hilbert transform relation

R(u) = 1

πu
∗ I(u). (2.100)

19. See, e.g., Table 2.4.
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2.3.6.5 The Power Theorem

The power theorem states that the inner product of two functions in time is equal to the
inner product of their Fourier transforms in frequency.

∫ ∞
−∞

x(t)y∗(t)dt =
∫ ∞
−∞

X(u)Y∗(u)du. (2.101)

An important special case is Parseval’s theorem20 that states the energy of a signal in time
is equal to the energy of its Fourier transform in frequency.

∫ ∞
−∞
|x(t)|2dt =

∫ ∞
−∞
|X(u)|2du.

Proof . Using the definition of the inverse Fourier transform, we write
∫ ∞
−∞

x(t)y∗(t)dt =
∫ ∞
−∞

[∫ ∞
−∞

X(u)e j2πutdu

]
y∗(t)dt.

Reversing integration order and recognizing the resulting transform completes the proof.

2.3.6.6 The Poisson Sum Formula

The Poisson sum formula is

T
∞∑

n=−∞
x(t − nT ) =

∞∑
n=−∞

X
( n

T

)
e j2πnt/T . (2.102)

The left side of (2.102) is periodic with period T , although x(t) need not be a period. The
right hand side is the Fourier series of this periodic function.

Proof .

∞∑
n=−∞

x(t − nT ) = x(t) ∗ 1

T
comb

(
t

T

)

= x(t) ∗ 1

T

∞∑
n=−∞

e j2πnt/T

where we have used (2.55). Recognizing

x(t) ∗ e j2πνt = X(ν)e j2πνt (2.103)

completes the proof.

Note that, for t = 0, the Poisson sum formula directly relates the sum of the signal and
spectral samples.

T
∞∑

n=−∞
x(nT ) =

∞∑
n=−∞

X
( n

T

)
. (2.104)

20. When applied to the Fourier transform, Parseval’s theorem is also referred to as Rayleigh’s theorem
[149, 1162].
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2.4 Orthogonal Basis Functions¶

The Fourier series is a special case of an orthogonal basis function expansion [854, 1020].
For a given interval, I , functions x(t) and y(t) are said to be orthogonal if

∫
I

x(t) y∗(t)dt = 0. (2.105)

The functions are said to be orthonormal if both x(t) and y(t) have unit energy on the
interval I .

Each element in an orthonormal basis set, {ϕn(t)| − ∞ < n < ∞; t ∈ I}, 21 has unit
energy on the interval I and is orthogonal to every other element in the set.

∫
I
ϕn(t) ϕ∗m(t)dt = δ[n− m]. (2.106)

Corresponding to a given signal class, C, of finite energy functions, a basis set is said to
be complete if, for every x(t) ∈ C, we can write

x(t) =
∞∑

n=−∞
αn ϕn(t) ; t ∈ I (2.107)

where equality is at least in the mean square sense.

lim
N→∞

∫
I

∣∣∣∣∣x(t)−
N∑

n=−N

αnϕn(t)

∣∣∣∣∣
2

dt = 0. (2.108)

The expansion coefficients, αn, can be found by multiplying both sides of (2.107) by ϕ∗m(t)
and integrating over I . Using (2.106), we find that

αn =
∫

I
x(t)ϕ∗n (t)dt. (2.109)

2.4.1 Parseval’s Theorem for an Orthonormal Basis¶

Parseval’s theorem for a complete set of orthonormal basis functions relates the signal’s
energy to its expansion coefficients.

∫
I
|x(t)|2dt =

∑
n

|αn|2.

Proof .
∫

I
|x(t)|2dt =

∫
I

x(t)x∗(t)dt

=
∫

I

[∑
n

αnϕn(t)
∑

m

α∗mϕ∗n (t)

]
dt

21. For certain orthogonal basis sets such as the prolate spheroidal wave functions the index n runs from 0
to∞. See Section 10.5.
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=
∑

n

αn

∑
m

α∗m
∫

I

[
ϕn(t)ϕ∗n (t)

]
dt

=
∑

n

αn

∑
m

α∗m δ[n− m]

=
∑

n

|αn|2

Parseval’s theorem for the Fourier series in (2.19) and the sampling theorem in (5.34) are
special cases.

2.4.2 Examples¶

In each of the following examples, C is subsumed in the class of finite energy (L2) functions.

2.4.2.1 The Cardinal Series¶

The cardinal series, the topic of Chapter 5, is an orthonormal expansion for all signals whose
Fourier transforms are bandlimited with bandwidth B. For

I = { t | −∞ < t <∞},
the orthonormal basis functions are

ϕn(t) = √2B sinc(2Bt − n). (2.110)

Note, then, that22

αn = 1√
2B

x
( n

2B

)
. (2.111)

As we will see in Chapter 5, the cardinal series displays uniform convergence which is
stronger than that the mean square convergence in (2.108).

2.4.2.2 The Fourier Series¶

The Fourier series is an orthonormal expansion for signals over the interval

I =
{

t

∣∣∣∣ −
T

2
< t <

T

2

}
.

The orthonormal basis functions here are:

ϕn(t) = 1√
T

exp

(
j2πnt

T

)
; t ∈ I.

It follows that αn = 1√
T

XT ( n
T ).

2.4.2.3 Prolate Spheroidal Wave Functions¶

The prolate spheroidal wave functions in Section 10.5 can be used to represent bandlimited
functions.

22. See Exercise 2.50 for details.
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2.4.2.4 Complex Walsh Functions§

Complex Walsh functions in Exercise 6.27 are also examples of orthogonal basis sets on a
finite interval. Such sets will later prove useful in the understanding of interpolation from
continuous samples and Kramer’s generalization of the sampling theorem.

2.4.2.5 Orthogonal Polynomials¶

Orthogonal polynomials, including the Legendre in (2.79), the Chebyshev in (2.86) and the
Hermite in (2.88), are, as indicated by the name, orthogonal.

2.4.2.6 Fourier Transforms of Orthonormal Functions
are Orthonormal¶

If the set of functions, {xn(t) | 0 ≤ n <∞}, are orthonormal, then the Fourier transforms
of these functions, { Xn(u) | 0 ≤ n <∞ }, are also orthonormal. The orthonormality of the
functions can be expressed as

∫ ∞
−∞

xn(t)x∗m(t)dt = δ[n− m].

From the power theorem in (2.101),

∫ ∞
−∞

xn(t)x∗m(t)dt =
∫ ∞
−∞

Xn(u)X∗m(u)du.

Therefore, orthonormality in t dictates orthonormality in u.

2.5 The Discrete Time Fourier Transform

The discrete time Fourier transform (DTFT) of a discrete time sequence, x[n], is

XD(f ) :=
∞∑

n=−∞
x[n]e−j2πnf . (2.112)

The frequency variable, f , is unitless. The DTFT is recognized as a Fourier series in f with
unit period and Fourier coefficients cn = x[n]. The inversion is therefore

x[n] =
∫

1
XD(f )e j2πnf df (2.113)

where
∫

1 denotes integration over any unit interval.
Properties of the DTFT are listed in Table 2.6.

2.5.1 Relation of the DFT to the Continuous Time
Fourier Transform

To relate discrete time Fourier transform to the continuous time Fourier transform, let the
sequence x[n] be the samples of a continuous time signal, x(t) at intervals of T .

x[n] = x(nT ).
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TABLE 2.6. Discrete time Fourier transform (DTFT) theorems. Discrete time convolution
is defined by x[n] ∗ h[n] =∑∞

m=−∞ x[m] h[n− m]. Correlation is x[n] � h[n] =∑∞
m=−∞ x[m] h∗[n− m] = x[n] ∗ h∗[−n]. The notation “

∫
1” means integration over any unit

interval.

Transform x[n] ↔ XD(f ) =∑∞
n=−∞ x[n]e−j2πnf

periodicity = XD(f − p); p = 0,±1,±2, . . .

shift x[n− k] ↔ XD(f )e−j2πkf

modulation x[n]e j2πnv ↔ XD(f − v)

cumulative sum
∑n

0 x[k]; x[n] is causal ↔ XD(u)
e j2π f−1

conjugate x∗[n] ↔ X∗D(−f )

transpose x[−n] ↔ XD(−f )

inversion x[n] = ∫
1 X(f )e j2πnf df ↔ XD(f )

linearity ax[n] + by[n] ↔ aXD(f )+ bYD(f )

convolution x[n] ∗ h[n] ↔ XD(f )HD(f )

circular convolution x[n]h[n] ↔ ∫∞
−∞ XD(ν)�(ν)HD(f − ν)dν

= ∫
1 XD(ν)HD(f − ν)dν

correlation x(t) � h(t) ↔ XD(u)H∗D(u)

Define the signal of samples as

s(t) =
∞∑

n=−∞
x[n] δ (t − nT ) .

Note that

s(t) = x(t)
∞∑

n=−∞
δ (t − nT )

= x(t)
1

T
comb

(
t

T

)
. (2.114)

Using the Fourier transform for the comb in Table 2.4 and the convolution property23 reveals
that sampling replicates the spectrum.

s(t)←→ S(u) = X(u) ∗ comb(Tu)

= X(u) ∗ 1

T

∞∑
n=−∞

δ
(

u− n

T

)

= 1

T

∞∑
n=−∞

X
(

u− n

T

)
.

This replication, pictured in Figure 2.25, is periodic in the frequency domain with a period
of 1

T . The Fourier series of this periodic function is obtained from the Fourier transform

23. See Table 2.3.
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S(u)

XD(f )

X(u)/T

u
2/T

−2/T
1/T

−1/T
0

−2 −1 0 1 2
f

FIGURE 2.25. Replication of a spectrum when a signal is sampled.

of (2.114). Equating gives

S(u) =
∞∑

n=−∞
x(nT )e−j2πnTu = 1

T

∞∑
n=−∞

X
(

u− n

T

)
.

This is the Fourier dual of the Poisson sum formula in (2.102). Comparing to the DTFT
in (2.112) gives the relation between the spectrum of the signal, x(t), and the DTFT of its
samples.

XD(f ) = S

(
f

T

)
=

∞∑
n=−∞

X

(
f − n

T

)
.

If X(u) is zero for u > 1
2T , the spectra do not overlap and x(t) can uniquely be reconstructed

from S(u) and therefore from XD(f ).

2.6 The Discrete Fourier Transform

The discrete Fourier transform (DFT) [159, 1367] is ubiquitous in digital signal processing.
The fast Fourier transform (FFT) is a computationally efficient algorithm to compute the
DFT [160, 322, 323, 1595]. Goertzel’s algorithm24 can also be used.

24. See Section 3.5.
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The DFT is a special case of the sampled DTFT. The samples in the frequency domain
need not be uniform [41]. Let x[n] be defined only on the interval 0 ≤ n < N and sample
the frequency at locations fk where k is the index of the sample. Then the sampled DTFT
in (2.112) becomes

XD(fk) =
N−1∑
n=0

x[n]e−j2πnfk . (2.115)

If, for example, a logarithmic plot of the spectrum is desired with 100 points per decade25

we would use, for an appropriate range of k’s,

fk = f010
k

100 .

where f0 is a reference frequency. If the range of k is finite, the sampled DTFT in (2.115)
can be evaluated using a matrix vector multiplication.

The DFT with uniform spacing is a special case of the sampled DTFT where fk = k
N .

Using the notation

X[k] = XD

(
k

N

)
,

the DFT of a sequence of N values, { x[n] | n = 0, 1, 2, . . . ,N − 1 }, is

X[k] =
N−1∑
n=0

x[n]e−j2πnk/N . (2.116)

Since X[k] = X[k + N], the DFT is periodic with period N . Thus, only the first N
samples require computing. The principle values for {k = 0, 1, 2, . . . ,N − 1} are normally
used. We will likewise assume the sequence x[n] is periodic with period N . Unless
otherwise specified, the DFT is assumed to be uniformly sampled in the frequency
domain.

The inverse DFT is

x[n] = 1

N

N−1∑
k=0

X[k]e j2πnk/N . (2.117)

2.6.1 Circular Convolution

Let

Y [k] = X[k]H[k] (2.118)

where X[k] and H[k] are DFT’s of signals x[n] and h[n] both of which are periodic with
period N . Then the inverse DFT of Y [k] is given by the circular convolution

y[n] =
N−1∑
m=0

x[m]h[n− m]. (2.119)

25. The frequency one decade above f0 is 10f0.
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Proof . Using the inverse DFT in (2.117) for y[n] and (2.118) gives.

y[n] = 1

N

N−1∑
k=0

X[k]H[k]e j2πnk/N .

Using the DFT expression in (2.116),

y[n] = 1

N

N−1∑
k=0

[
N−1∑
m=0

x[m]e−j2πmk/N

]
H[k]e j2πnk/N

or, rearranging summation order

y[n] =
N−1∑
m=0

x[m]
[

1

N

N−1∑
k=0

H[k]e j2π (n−m)k/N

]
.

Applying the inverse DFT formula in (2.117) gives the promised circular convolution in
(2.119).

The mechanics of circular convolution are treated in Section 3.3.3.3.

2.6.2 Relation to the Continuous Time
Fourier Transform

We explain the DFT’s relationship to the continuous time Fourier transform using
Figure 2.26. On the left are functions of time and, on the right, their Fourier transforms. On
the top row, we are reminded that the Fourier transform of a periodic signal is a string of
Dirac delta functions in the frequency domain. The second row shows the Fourier dual. The
Fourier transform of a string of equally spaced Dirac deltas has, as a Fourier transform, a
periodic function. Indeed, when couched in discrete time, (T = 1), this is the discrete time
Fourier transform. The discrete time Fourier transform has a spectrum that is periodic with
a period of one.

The last row illustrates the DFT and makes use of the properties of the first two rows. The
Fourier transform of a periodic string of Dirac deltas is a periodic string of Dirac deltas. Fur-
thermore, the number of Dirac deltas in a period in both the time and frequency domains is N .

In the time domain, if the first N values are x[n], then the first N samples in the frequency
domain are X[k]/(NT ) where X[k] is given by the DFT in (2.116).

To show this from the perspective of continuous time in Figure 2.26, recall, using (2.17),
that the Fourier transform of a periodic function with period NT is

x(t)↔ 1

NT

∞∑
k=−∞

XNT

(
k

NT

)
δ

(
u− k

NT

)

where XNT (u) is the Fourier transform of x(t) over any single period. In our case, the duration
of a temporal period is NT . For the periodic sequence of Dirac deltas,

XNT (u) =
∫ ∞
−∞

[
N−1∑
n=0

x[n]δ(t − nT )

]
e−j2πutdt

=
N−1∑
n=0

x[n]e−j2πunT
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FIGURE 2.26. Top row: The Fourier transform of a periodic function is a sequence of Dirac deltas.
Middle row: The Fourier transform of a string of Dirac deltas is a periodic function. This is the Fourier
dual of the property of the property shown in the top row. Bottom row: If a function is both (a) periodic
and (b) an equally spaced sequence of Dirac deltas, then its Fourier transform will be (a) an equally
spaced sequence of Dirac deltas that is (b) periodic. The period in each domain consists of N Dirac
deltas. The relation between the samples in each of the two domains is the DFT.

and

XNT

(
k

NT

)
=

N−1∑
n=0

x[n]e−j2πkn/N := X[k].

Thus

x(t)↔ 1

NT

∞∑
k=−∞

X[k]δ
(

u− k

NT

)
.

Therefore, in continuous time, a periodic replication of N samples riding on a string of
Dirac delta functions has a Fourier transform of a periodic replication of N values also riding
on a string of Dirac deltas. The relationship between the N samples in the time domain and
the N samples in the frequency domain is the DFT.

2.6.3 DFT Leakage

The DFT reproduces the DTFT at the frequencies f = k
2N . At intermediate frequencies,

however, there is leakage due to aliasing.26 This is illustrated in Figure 2.27 where the

26. See Section 5.3.1.1.
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FIGURE 2.27. Illustration of leakage in a DFT.

magnitude of an N = 8 DFT is shown for x[n] = exp(−j2πη/N) is shown for 7 ≤ η ≤ 8.
Points are linearly connected. At η = 7, the DFT gives a value at k = 7 and zero
otherwise. As η is increased towards 8, the values of the DFT spread to adjacent bins.
This is leakage. At η = 8, the DFT again returns to a single value for k = 8 and zero
otherwise. A common approach to address leakage is the use of windows. The DFT for27

x[n] = sin2(πk/N) exp(−j2πη/N) for the same range of η is shown in Figure 2.28. Use of
the window diminishes the nonuniformity of the leakage as the cost of greater spread at the
DFT points.

2.7 Related Transforms

There are many transforms closely related to the Fourier transform. In the introductory
material to follow, transforms will be subscripted according to type. In later applications,
the subscripts will be dropped and the transform type will be clear in the context of its use.

2.7.1 The Cosine Transform†

The unilateral cosine transform, in continuous time, is28

Xcos(u) := 2
∫ ∞

0
x(t) cos(2πut)dt. (2.120)

The discrete cosine transform (DCT) [116, 929, 1158] is

Xcos[k] := C[k]
2

N−1∑
n=0

x[n] cos

(
π (2n+ 1)k

2N

)
(2.121)

27. This is a Hanning window. Other commonly used windows are in Table 9.1.
28. See Exercise 2.22 for the inverse.
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FIGURE 2.28. Illustration of leakage in a windowed DFT.

where

C[k] =
{

2− 1
2 ; k = 0

1 ; otherwise
(2.122)

The DCT is used in JPEG image compression.29

The inverse DCT is

x[n] =
N−1∑
k=0

C[k]
2

Xcos[k] cos

(
π (2n+ 1)k

2N

)
. (2.123)

2.7.2 The Sine Transform†

The unilateral sine transform, in continuous time, is30

Xsin(u) :=
∫ ∞

0
x(t) sin(2πut)dt. (2.124)

2.7.3 The Hartley Transform

The Hartley transform [150] of a signal is

Xhart(u) :=
∫ ∞
−∞

x(t)cas(2πut)dt (2.125)

where

cas(ζ ) = cos(ζ )− sin(ζ ). (2.126)

29. See Section 8.7.
30. See Exercise 2.22 for the inverse.
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Note that

e−jζ = cos(ζ )− j sin(ζ )

so the Hartley transform is closely related to the Fourier transform. Indeed, for the Fourier
transform pair x(t)↔ X(u) = �X(u)+ j�X(u), we have, when x(t) is real,

Xhart(u) = �X(u)+ �X(u). (2.127)

The Hartley transform has the property that X(u) is real when x(t) is real. Its inverse is

x(t) =
∫ ∞
−∞

Xhart(u)cas(2πut)du. (2.128)

2.7.4 The z Transforms

The unilateral z-transform of a sequence x[n] is31

Xz(z) :=
∞∑

n=0

x[n] z−n. (2.129)

The transform pair can be written in short hand as

x[n]←→
z

Xz(z). (2.130)

For example32

anμ[n]←→
z

1

1− az−1
(2.131)

where μ[n] = 1 for n ≥ 0 and zero otherwise is the unit step.
The shift theorem for the unilateral z transform is

x[n+ 1]←→
z

zXz(z)− z x[0] (2.132)

To prove this, we write

∞∑
k=0

x[k + 1] z−k = z

{
−x[0] +

∞∑
n=0

x[n] z−n

}

where we have made the variable substitution n = k − 1. Equation 2.132 follows.
When the Laplace transform in (2.22) converges on the imaginary axis of the s plane,

the slice of the Laplace transform along the imaginary axis is the Fourier transform (see
(2.23)). Similarly, if the z transform converges on the unit circle, z = e j2π f , then the slice

31. When the n summation is over the interval (−∞,∞), the z transform is said to be bilateral.
32. In some applications, the region of convergence of the z transform is of significance. In (2.131), the region

of convergence is for |z| > |a|.
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of the z transform along the circle is the DTFT of the discrete time signal. Specifically,
from (2.129),

Xz

(
e j2π f

)
=
∞∑

n=0

x[n] e j2πnf (2.133)

From (2.112), we clearly have Xz
(
e j2π f

) = XD(f ).
The z transform is useful in the characterization of finite impulse response (FIR) filters

and infinite impulse response (IIR) filters.33 FIR filters contain no feedback, are always
stable and have an impulse response equal to zero after some finite time interval. IIR filters
have feedback and generally have impulse responses that last forever. The FIR and IIR
filters can be represented via the difference equation

N∑
p=0

bpy[n− p] =
N∑

q=0

aqx[n− q] (2.134)

where x is the input and y the output. By convention, we set b0 = 1. Then, equivalently, we
can write

y[n] =
N∑

q=0

aqx[n− q] −
N∑

p=1

bpy[n− p]. (2.135)

The order of the filter is N . The bp’s are the coefficients of feedback for previous outputs
contributing to the current output. If {bp = 0 | 1 ≤ p ≤ N}, there is no feedback and the
filter is FIR. Otherwise, the filter is IIR. A standard implementation of (2.135) is shown in
Figure 2.29 [511, 1053, 1054].

FIGURE 2.29. An implementation of the IIR filter of the difference equation in (2.135). If all of the
bn’s are zero, the filter is FIR. The graph is read as follows. A branch labelled as function of n, such
as the input, x[n], or output, y[n], denotes the signal flowing on that branch. Branches labelled z−1

denote a unit delay. Other labelled branches, such as a1 and−bN , correspond to signal multiplies. An
unlabelled branch corresponds to a unit multiply. When two branches merge, the signals are added.
When a branch splits, duplicate versions of the signal are sent down each branch.

33. See, for example, Section 9.3.4.2.
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With zero initial conditions, the z transform of (2.134) is

Yz(z)
N∑

p=0

bpz−p = Xz(z)
N∑

q=0

aqz−q.

The corresponding transfer function of the filter, Hz(z) = Yz(z)/Xz(z), is

Hz(z) =
∑N

q=0 aqz−q

∑N
p=0 bpz−p

. (2.136)

The frequency response of the filter follows as

Hz

(
e j2π f

)
=
∑N

q=0 aqe j2π fq

∑N
p=0 bpe j2π fq

.

Application of the z transform to a simple difference equation in some elementary
deterministic problems in finance is in Section 13.4.

2.8 Exercises

2.1. Let the units of x(t) be volts. Let x[n] = x(nT ). What are the units of
(a) the CTFT, X(u), in (2.10)?

(b) the Fourier series coefficients, cn, in (2.13)?

(c) the DTFT transform, XD(f ), in (2.112)?

(d) the DFT, X[k], in (2.116)?

(e) the Hilbert transform of x(t) using (2.98)?

2.2. For the signals in Section 2.2, specify any signal classes that are subsumed in any
other signal class.

2.3. § Consider the following “proof” that n = 2n. Clearly

d

dn
n2 = 2n.

Also

d

dn
n2 = d

dn
n× n

= d

dn
(n+ n+ · · · n)

= d

dn
(1+ 1+ · · · 1)

= n.

Equating gives n = 2n.
Specifically identify what is incorrect in this derivation of a nonsensical result.
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2.4. Absolutely convergent sums I. A series

∞∑
m=0

am

is said to be absolutely convergent if the sum

S =
∞∑

m=0

|am|

is finite. The terms in an absolutely convergent series can be arbitrarily rearranged
without affecting the sum. The Taylor series expansion of x(t) about the (real)
number τ is

x(t) =
∞∑

m=0

(t − τ )m

m! x(m)(τ ).

Show that if x(t) has finite energy and is bandlimited, then this series is absolutely
convergent for all |t| <∞.

Hint: Show that

S(t) <
√

2BEe2πB|t−τ |.

2.5. § Absolutely convergent sums II. For z = e jθ , Euler’s formula uses the even
and odd terms in (2.34) to generate the Taylor series for the cosine in (2.35) and
the sine in (2.36). Consider doing a similar decomposition for the Taylor series
expansion

ln(2) =
∞∑

n=1

(−1)n

n
. (2.137)

Expanding and rearranging gives

ln(2) = 1− 1

2
+ 1

3
− 1

4
+ 1

5
− 1

6
+ 1

7
− · · ·

=
(

1+ 1

3
+ 1

5
+ 1

7
+ · · ·

)
−
(

1

2
+ 1

4
+ 1

6
+ 1

8
· · ·

)

=
(

1+ 1

3
+ 1

5
+ 1

7
+ · · ·

)
+
(

1

2
+ 1

4
+ 1

6
+ 1

8
· · ·

)

− 2

(
1

2
+ 1

4
+ 1

6
+ 1

8
· · ·

)
.
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Adding the first two series gives

ln(2) =
(

1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ · · ·

)

− 2

(
1

2
+ 1

4
+ 1

6
+ 1

8
· · ·

)

=
(

1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ · · ·

)

−
(

1+ 1

2
+ 1

3
+ 1

4
+ 1

5
+ 1

6
+ · · ·

)

= 0.

We therefore have the obviously incorrect result that ln(2)=0. The reason is that, in
order to rearrange the elements of an infinite summation without changing the sum,
such as

∑∞
n=0 an, the sum must be absolutely convergent.

∞∑
n=0

|an| <∞.

(a) Show that the Taylor series in (2.34) is absolutely convergent, therefore
allowing the decomposition into the cosine and sine components in (2.35)
and (2.36).

(b) Show that the Taylor series in (2.137) is not absolutely convergent.

2.6. § The Pythagorean theorem. The magnitude of a complex function is determined
from its real and imaginary parts using the Pythagorean theorem. Prove the
Pythagorean theorem.

2.7. § A review of the geometric series is given in Appendix 14.4.2.
(a) Show that (5n)! ends in exactly (5n − 1)/4 zeros. For example

(53)! = 125! = 18

826771768889260997437677024916008575954036487149242

588759823150835315633161359886688293288949592313364

640544593005774063016191934138059781888345755854705

552432637556500713177088000000000000000000000000000

0000

ends in 31 zeros.

(b) Show that the number of zeros in N ! for arbitrary N is

Z[N] =
�log5N�∑

k=1

⌊
N

5k

⌋
(2.138)

where �a� denotes “the largest integer not exceeding a”. Thus, for example,
�π� = 3.
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(c) How many zeros are at the end of 2000! ?
(d) Derive an expression for the number of zeros at the end of N !! = N double

factorial.
(e) Stirling’s formula approximating the factorial is

n! ≈ √2πnn+ 1
2 e−n.

or, equivalently,

log n! = 1

2
log(2π )+

(
n+ 1

2

)
log n− n.

Is this a good approximation for the 50! ? For 2000! ?
2.8. Show that m!! in (2.66) can also be written as

m!! =

⎧⎪⎪⎨
⎪⎪⎩

2m/2
(m

2

)
! ; when m is even

m!
2(m−1)/2

(m−1
2

)! ; when m is odd .

2.9. Evaluate
∫∞
−∞ x(t)dt for the following functions.

(a) sinc(t)

(b) jinc(t)

(c) J0(2π t)

(d) Jν (2π t)
(2t)ν .

(e) sinck(t).

(f) sinc(t)jinc(t).

(g) sinc(2t)sinc(t − 1).

(h) cos(2πvt).

2.10. Simplify
(a) x(t) = sin

(
π
2�(t)

)
.

(b) x(t) = �
(

sin2(2π t)
)

.

(c) x(t) = � (�(t)) .

(d) x(t) = sgn (sin(2π t)) .

(e) x(t) = sin
(
π
2 sgn(t)

)
.

(f) x(t) = � (�(t)) .

(g) x[n] = δ [sinc(n)] .

(h) x[n] = δ [δ[n]] .
(i) x[n] = sinc (δ[n]) .
(j) x[n] = δ [jinc(n)] .

2.11. Consider the definite integration of derivatives property in (2.94) which applies
when X(0) <∞. Does this property apply when
(a) x(t) = e−tμ(t)?
(b) x(t) is an odd function?
(c) x(t) = δ(t)?

2.12. Show that
∫ ∞
−∞

e−t2
dt = 2

∫ ∞
−∞

t2 e−t2
dt.

Hint: Apply the definite integration of derivatives property in (2.94).
2.13. Show that

f (0)∫∞
−∞ f (t)dt

=
∫∞
−∞ F(u)du

F(0)
. (2.139)
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2.14. Analytic signals. If x(t)←→ X(u) then the inverse Fourier transform of X(u)μ(t)
is called the analytic signal, x̂(t). That is

x̂(t)↔ X(u)μ(u). (2.140)

(a) What is the analytic signal when x(t) = sin(2π f0t) where f0 is a given
frequency?

(b) Express the analytic signal in terms of x(t) and its Hilbert transform.
(c) What is the connection between the analytic signal and the Hilbert transform

relationship between the real and imaginary components of the Fourier
transform of a causal signal as discussed in Section 2.3.6.4?

2.15. (a) Evaluate the Fourier transform of

x(t) = |sinc(t)|μ(t)

Hint: |sinc(t)|μ(t) = sinc(t)× a square wave ×μ(t). The following Hilbert
transform may prove useful.

H�(t) = −1

π t
∗�(t) = ln

∣∣∣∣∣
t − 1

2

t + 1
2

∣∣∣∣∣ . (2.141)

(b) Are the real and imaginary parts of this causal signal Hilbert transform pairs?
If not, why?

2.16. Define the Dirac delta, δ(t), as the limit of a
(a) triangle function.
(b) jinc.

(c) sinc squared.
(d) Gaussian

2.17. The function X(u) = uδ(u), when evaluated at u = 0, gives 0×∞. What is X(u) =
u δ(u)|u=0?

2.18. Bilateral Laplace transform. The bilateral Laplace transform of a function x(t)
is defined as

XL(s) :=
∫ ∞
−∞

x(t)e−stdt.

(a) Show that a sufficient condition for X(u) = XL( j2πu) is that x(t) has finite
area.

(b) For � (ν + 1
2

)
> 0, the Laplace transform of

(1− t2)n− 1
2�

(
t

2

)

is [544]

XL(s) =
(

2

s

)ν
�

(
ν + 1

2

)
�

(
1

2

)
In(s) (2.142)

where Iν(s) is a modified Bessel function of the first kind defined in (2.75).
Can we use the Laplace transform in (2.142) to evaluate the Fourier transform
of x(t) by replacing s with j2πu?
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2.19. Let x(t) be causal.
(a) What are the even and odd function components of x(t)?
(b) Specify a function that is both causal and even. Causal and odd.

2.20. Is an odd function evaluated at the origin always zero?
2.21. Prove the properties of even and odd functions listed in Table 2.1.
2.22. (a) When x(t) is causal, show that the inverse of the unilateral cosine transform in

(2.120) is

x(t) =
[

2
∫ ∞

0
X(u) cos(2πut)du

]
μ(t).

(b) The bilateral cosine transform is

X̂cos(u) = 2
∫ ∞
−∞

x(t) cos(2πut)dt.

Show this transform cannot be uniquely inverted.
(c) Repeat (a) and (b) for the unilateral sin transform in (2.124) and its inverse

x(t) = 2
∫ ∞

0
Xsin(u) sin(2πut)du, (2.143)

and the bilateral sin transform.
(d) Show that the unilateral cosine and sin transforms are Hilbert transform

pairs.
2.23. Derive the entries in Table 2.4 for

(a) δ(t).
(b) �(t).
(c) �(t).

(d) μ(t).
(e) jinc(t).

2.24. The derivative of a discontinuity is a Dirac delta.
(a) Using the derivative theorem and the Fourier transform of sgn(t), derive the

Fourier transform of d
dt sgn(t).

(b) Do the same for the unit step function.
2.25. Does the Dirac delta have (a) finite area? (b) finite energy?
2.26. The array function

(a) Derive the Fourier transform pair in Equation (2.62).
(b) Show that, when N = QM,

arrayN (t) = arrayQ(Mt)× arrayM (t)

= arrayQ(t)× arrayM (Qt)

(c) Show that the extrema of array2N+1(t) occur when t is a root of the equation

array2N+1(t)

array2N+1

(
t + 1

2

) = (−1)N (2N + 1).

(d) Pointwise versus mean square convergence. Convergence in (2.61) is said
to be pointwise. For any specified value of t, a value of M can be found to
make the array function arbitrarily close to the sinc. A function xM (t) is said to
converge to y(t).
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• pointwise if

limM→∞xM (t) = y(t),

• in the mean square sense if

limM→∞
∫
|y(t)− xM (t)|2dt = 0.

(i) Does arrayM

( t
M

)
converge to sinc(t) in the mean square sense?

(ii) Does mean square convergence imply pointwise convergence or visa versa?
(iii) Does limM→∞ e−π (t−M)2

converge to zero pointwise? In the mean square
sense?

2.27. Since

e−αtμ(t)←→ 1

α + j2πu
,

we can interpret α as a convergence factor and

lim
α→0

e−αtμ(t) = μ(t)←→ lim
α→0

1

α + j2πu
= 1

j2πu
. (2.144)

But, according to (2.48), this is the Fourier transform of sgn(t). Rather, from (2.50),

μ(t)←→ 1

2

[
δ(t)− j

2πu

]
. (2.145)

There is a contradiction between (2.144) and (2.145). What is wrong here?
2.28. Dirac deltas with functional arguments. Assume g(t) has a zero crossing at t = t0,

i.e., g(t0) = 0. Let dg(t0)
dt = a.

(a) Simplify the expression for δ(g(t)).
(b) Evaluate δ(ln(t/b)) for both t and b positive.
(c) Evaluate πδ(sin(π t)).
(d) Evaluate δ(at2 + bt + c) where a, b and c are real coefficients.

2.29. Evaluate the following transforms listed in Table 2.5.
(a) sinc(t).
(b) tanh(π t).
(c) sech2(π t).

(d) Si(π t)

(e)
∞∑

n=0
δ(t − n)

2.30. Find the area of
(a) sinc4(t).
(b) jinc2(t).
(c) J2

0 (2π t).

2.31. Evaluate

(a)
∫ ∞
−∞

jn(2π t)dt.

(b)
∫ ∞
−∞

jn(2π t)jm(2π t)dt.

(c)
∫ 1

−1

Tn(t)√
1− t2

dt.

(d)
∞∑

n=−∞
jn(2π (t − nT )) for T < 1.
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2.32. Evaluate the series
∞∑

n=−∞
an when an =

(a) sinc(t − n).

(b) sinc2(t − n).

(c) jinc(t − n).

(d) sinc (a(t − n)).

(e) jinc(2n).

(f) jinc2( n
4 ).

(g) n exp[−π (nT )2].

2.33. (a) Find the first few extrema of sinc(t).
(b) For large t, find a good approximation for the extrema of sinc(t).

2.34. For a continuous time periodic function, x(t), with period T , the function xT (t) in
(2.16) is a function of τ . Thus, so is its Fourier transform, XT (u). Show, however,
that the sampled transform, XT

( n
T

)
, is not a function of τ .

2.35. As illustrated in Figure 2.30, each period of a periodic function, x(t), is divided into
three sections. We extract three intervals, T1, T2 and T3 from different periods but
do so in such a manner that, together, covers an entire period. Show that the Fourier
series coefficients can be written as

cn = 1

T

(∫
T1

+
∫

T2

+
∫

T3

)
x(t)e−j2πnu/T dt

where T is the signal’s period.
2.36. Specify a periodic function that violates all three Dirichlet conditions.
2.37. For a period of T = 1, does x(t) = log(t) satisfy the Dirichlet conditions? If so,

graph the convergence of the Fourier series for the first few terms.
2.38. (a) Evaluate the Fourier series of the periodic function

x(t) = ez cos(t) (2.146)

Hint: Use (2.75).
(b) Evaluate the Fourier series of

x(t) = e−jz cos(t). (2.147)

Hint: Use (2.76).
2.39. Frequency Modulation (FM). A bounded signal,

|x(t)| ≤ 1, (2.148)

FIGURE 2.30. Illustration of a periodic function for Exercise 2.35.
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is frequency modulated34 on a carrier of frequency of f0 Hertz as

y(t) = A cos

(
2π

∫ t

0
[ f0 + f�x(τ )dτ ]

)

where f� � f0 is the frequency deviation. The function

f (t) = f0 + f�x(t)

is the instantaneous frequency. From (2.148), one might then expect y(t) to be
constrained to the frequency band f0 − f� ≤ u ≤ f0 − f�. This is not true.
(a) Compute the Fourier transform of y(t) when the signal is a pure tone.35

x(t) = cos(2πνt)

where ν is a baseband (audio) frequency.
(b) Show that y(t) in part (a) is not a bandlimited signal.
(c) What is the bandwidth of y(t) as defined as the 3 dB down points of the spectrum

as measured from its maximum?
2.40. At a finite discontinuity, a Fourier series converges to the arithmetic midpoint. To

illustrate, let

y(t) =
∞∑

n=−∞
�

(
t − nT

τ

)
.

Express y(t) as a Fourier series and evaluate y( τ2 ) using that series. Letα = τ/T < 1.
2.41. Evaluate the Fourier transform of

Jν(2π t)

(2t)ν
; ν > −1

2
.

Simplify your result for ν = 0 and ν = 1 thus deriving two of the entries in
Table 2.4.

2.42. (a) Derive the recurrence relation in (2.89) for Hermite polynomials as defined
in (2.88).

(b) Show the following recurrence relationship for Hermite polynomials

H ′n(t) = 2nHn−1(t).

(c) Derive the Fourier transform in (2.90).
2.43. A function, x(t), is zero for |t| > 1 and can be expressed as a Legendre polynomial

expansion.

x(t) =
∞∑

k=0

αkPk(t) �

(
t

2

)
. (2.149)

34. Amplitude modulation (AM) is the topic of Section 3.4.
35. Hint: See Exercise 2.38.
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(a) Find the coefficients, αk , for the Legendre polynomial expansion
(b) The Fourier series of this function, using (2.13), is

x(t) =
∞∑

n=−∞
cn e jπnt �

(
t

2

)
.

Express the Fourier coefficients, cn, in terms of the Legendre polynomial
coefficients, αk . Your answers in (b) and (c) should be in terms of spherical
Bessel functions.

(c) Express the Legendre polynomial coefficients, αk , in terms of the Fourier
coefficients, cn.

(d) Substitute your answer in (b) into (c) to find an orthogonality expression for
spherical Bessel function samples, jk(πn), with respect to k.

(e) Substitute your answer in (c) into (b) to find an orthogonality expression for
spherical Bessel function samples, jk(πn), with respect to n.

2.44. Repeat Exercise 2.43 for Chebyshev polynomial expansions on [−1,1].

x(t) =
∞∑

k=0

βkTk(t)�

(
t

2

)
.

Instead of spherical Bessel functions, your answer will be in terms of nth order
Bessel functions of the first kind.

2.45. For the Chebyshev polynomials, establish
(a) the orthogonality condition in (2.86).
(b) the Fourier transform pair in (2.87).

2.46. (a) Show that Legendre polynomials are evenly odd.

Pn(t) = (−1)nPn(−t).

(b) Are Hermite polynomials evenly odd?
(c) Chebyshev polynomials?
(d) Spherical Bessel functions?
(e) Bessel functions Jn(t)?

2.47. Chebyshev polynomials of the second kind, for t = cos θ , are defined as [5]

Un (cos θ ) := (n+ 1) arrayn+1

(
θ

π

)
. (2.150)

(a) Evaluate Un(x) for n = 0 and n = 1.
(b) Establish the trig identity

sin(n+ 2)θ = 2 cos θ sin(n+ 1)θ − sin nθ. (2.151)

(c) Use the identity in (2.151) to establish the recurrence relationship

Un+1(t) = 2tUn(t)− Un−1(t).

(d) Using the recurrence relationship, plot the first few Chebyshev polynomials of
the second kind on [−1,1].
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2.48. Show that

Jm(t) =
∞∑

n=0

(−1)n
( t

2

)2n+m

n! (m + n)! . (2.152)

2.49. Show that, if x(t) is a real periodic signal, then the corresponding Fourier coefficients
are conjugately symmetric.

cn = c∗−n.

2.50. Show that the sincs in (2.110) are, indeed, orthogonal and that the expansion
coefficients are given by the samples in (2.111).

2.51. Gibb’s phenomenon. From the truncated Fourier series example in Figure 2.1,
we see that the overshoot at discontinuities becomes smaller in duration, but does
not disappear. This property is known as Gibb’s phenomenon. To show this, from
Exercise 2.40, let α = 1

2 and

z(t) = 2y
(

t − τ
2

)
− 1.

The truncated Fourier series for z(t) is zN (t) which will display overshoot, �N , as
shown in Figure 2.31. Compute this overshoot and its exact value as N →∞.
Hint: Si(π ) = 1.851937 where the sine integral is defined in (2.77).

2.52. Show that

comb

(
t − 1

2

)
↔ 1

2

[
comb

(u

2

)
− comb

(
u− 1

2

)]
.

2.53. The generalized comb function. [1022]. Let h(t) be any function that integrates
to A, so ∫ ∞

−∞
h(t)dt = A.

Define the generalized comb function

combh(t) :=
∞∑

n=−∞

1

|n|h
(

t

n

)

where we assume the n = 0 term in the sum is Aδ(t).

FIGURE 2.31. Illustration of Gibb’s phenomenon. See Exercise 2.51.



[12:22 15/10/2008 5165-marks-ch02.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 71 10–103

FUNDAMENTALS OF FOURIER ANALYSIS 71

(a) Show that

combh(t)←→ combK (u) (2.153)

where

K(u) = 1

|u| h

(
1

u

)
. (2.154)

Hint: First, show that

combh(t) =
∫ ∞
ξ=−∞

h(ξ )

[
1

|ξ | comb

(
t

ξ

)]
dξ. (2.155)

(b) Identify a function for which the generalized comb function becomes a regular
comb function.

2.54. (a) Let x(t) = t− 3
4 . Compute both the area and energy of x(t)

(i) over the interval (0, 1) and,
(ii) over the interval (1,∞).

(b) Use your result in (a) to show that finite area does not imply finite energy and
vice versa.

(c) If a continuous time signal’s area is finite, can we conclude its energy is also
finite? What about the converse?

2.55. (a) If x(t) has a spectrum with finite area, show that x(t) is bounded. Let

|x(t)| ≤ C <∞.

Express C in terms of

A =
∫ ∞
−∞
|X(u)|du <∞.

(b) Show that the converse of (a) is not true. That is, there exist bounded signals
whose spectra do not have finite area.

2.56. Show that a finite energy bandlimited signal, x(t), must be bounded. Specifically,

|x(t)|2 ≤ 2BE.

Hint: Apply Schwarz’s inequality36 to the inversion formula.
2.57. (a) Afinite energy signal x(t) is bandlimited. Is its pth derivative also a finite energy

bandlimited function?
(b) Repeat part (a) substituting the word “area” for “energy”.
(c) Substitute “bounded”.

2.58. (a) Apply Schwarz’s inequality37 to the derivative theorem to show that, if x(t) is
bandlimited, its Mth derivative is bounded as

|x(M)(t)|2 ≤ (2πB)2M+1E

2M + 1
. (2.156)

36. See Appendix 14.1.
37. See Appendix 14.1.
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(b) Show that a bandlimited function is smooth in the sense that

|x(t + τ )− x(t)|2 ≤ (2πB)3|τ |2E

3
. (2.157)

2.59. Prove (2.103).
2.60. Consider the general linear integral transform

g(t) =
∫ ∞
−∞

f (τ )h(t, τ )dτ.

For a given t, assume that the kernel, h(t, τ ), as a function of τ , has finite energy,

Eh(t) =
∫ ∞
−∞
|h(t, τ )|2dτ.

If f (t) has finite energy, show that g(t) is bounded.
2.61. Prove the inverse DFT in (2.113) inverts.
2.62. Prove the inverse DCT in (2.117) correctly inverts the DCT in (2.121).
2.63. Prove that (2.128) inverts the Hartley transform.
2.64. Prove that relation between the Hartley and Fourier transforms in (2.127).

2.9 Solutions for Selected Chapter 2 Exercises

2.3. Although there are many parallels between continuous and discrete time signals,
there are also important differences. One of these differences is illustrated here.
Differentiation is not defined for discrete time systems. Although derivatives can
be approximated by, say, finite differences, the derivative,

dx(t)

dt
= lim

�t→∞
x(t)− x(t −�t)

�t
.

is simply meaningless when applied to discrete time signals. The foundational
premise for this problem, differentiation of a discrete time signal, is therefore faulty.

2.4. Absolutely convergent sums I. The series converges absolutely if

S(t) ≡
∞∑

m=0

| t − τ |m
m ! | x(m)(τ ) | <∞.

From the derivative theorem for Fourier transforms,

S(t) =
∞∑

m=0

| t − τ |m
m !

∣∣∣∣
∫ B

−B
( j2πu)m X(u) e j2πut du

∣∣∣∣

≤
∞∑

m=0

| t − τ |m
m !

[∫ B

−B
(2πu)2m du

]1/2

×
[∫ B

−B
|X(u) |2 du

]1/2
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where, in the second step, we have used Schwarz’s inequality.38 Since x(t) has finite
energy,

E =
∫ B

−B
|X(u) |2 du

is finite. Thus

S(t) ≤ √2B E
∞∑

m=0

(2πB | t − τ |2)m

m ! √2m + 1

<
√

2B E
∞∑

m=0

(2πB | t − τ |)m

m !

= √2B E e2πB| t−τ |.

where we have used the Taylor series expansion for ez. This bound is finite for all
finite t and τ .

2.5. Absolutely convergent sums II. Terms in a sum can be shuffled if the sum is an
absolutely convergent sum.
(a) For Z = exp( jθ ) in (2.34),

e jθ =
∞∑

n=0

( jθ )n

n! .

It follows that the sum of the corresponding absolute values is

∞∑
n=0

|(jθ )n|
n! =

∞∑
n=0

|θn|
n!

= eθ .

(b) Since

∞∑
n=1

1

n
= ∞,

the series is not absolutely convergent.
2.6. The Pythagorean theorem. One straightforward geometrical proof of the

Pythagorean theorem is shown in Figure 2.32. A c × c square is placed inside
an (a+ b)× (a+ b) square. The big square’s area can be computed by adding the
area of the small square plus the area of the four small triangles. The result is

(a+ b)2 = c2 + 4

(
1

2
ab

)
.

Solving gives the Pythagorean theorem: c2 = a2 + b2.
2.7. (a) A number ending in Z zeros is divisible by 10Z . In computing a factorial, a

factor of 10 occurs every time factors of 5 and 2 occur. The number of positive

38. See Appendix 14.1.
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FIGURE 2.32. Geometry to illustrate the Pythagorean theorem.

integers divisible by 5 that are less than N is about N
5 when N is large. Since

the density of numbers divisible by two is much larger (50%), we conclude
that every time we pass a number divisible by 5, we multiply the emerging
factorial by 10 and add another zero to the end of the factorial. Every time
we hit numbers like 25 = 52 and 50 that are divisible by 5 twice, we add two
more zeros to the factorial. When 125= 53, 250 etc. are passed, three zeros are
added, and so forth. For N = 5n, the count of numbers divisible by 5 is 5n−1,
by 25 is 5n−2, by 125 = 53 is 5n−3, etc. The total number of zeros is thus given
by the geometric series39

n−1∑
k=0

5k = 5n − 1

4
.

(b) The number of integers below N divisible by 5 is
⌊N

5

⌋
. The number of integers

below N divisible by 52 is
⌊

N
52

⌋
, etc. The biggest value of n for which 5n ≤ N

is �log5N�. The number of 5’s in the factorizations of N ! is therefore given by
(2.138).

(c) As an example, let N = 2000. Then

Z[2000] =
⌊

2000

5

⌋
+
⌊

2000

25

⌋
+
⌊

2000

125

⌋
+
⌊

2000

625

⌋

= 400+ 80+ 16+ 3 (2.158)

= 499

This is verified in Table 2.7.
(d) N !! never ends in a zero.
(e) Stirling’s formula for n = 2000 is

log10 n! = ( 1
2 log(2π )+ (n+ 1

2

)
log n− n

)
/ log 10

= 5,735.5206.

39. See Appendix 14.4.2.
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TABLE 2.7. Tabulation of 2000! As predicted in (2.158), 2000! ends in 499 zeros.

2000! = 33
162750924506332411753933805763240382811172081057803945719354370603807790560082240027323085973259225540
235294122583410925808481741529379613138663352634368890563405855616394060511725257187064785639354404540
524395746703767410872297043468415834375243158087753364512748799543685924740803240894656150723325065279
765575717967153671868935905611281587160171723265715611000421401242043384257371270017588354779689992128
352899666585340557985490365736635013338655040117201215263548803826815215224692099520603156441856548067
594649705155228820523489999572645081406553667896953210146762267133202683155220519449446161823927520402
652972263150257475204829606475092739416585628353177957448287631459645037399132733417726360885249009350
662161014445970941270782131373256383157230201994991495831647094277447387032798554967429860883937632682
415247883438746959582925774057453983750158581546813629421794997239981359948101655656387603422731291225
038470987290962662246197107660593155020189513558316535787149229091677904970224709461193760778516511068
443225590564873626653037738465039078804952460071254940261456607225413630275491367158340609783107494528
221749078134770969324155611133982805135860069059461996525731074117708151992256451677857145805660218565
476095237746301667942248844448579834980154803262082989096585738175188861937669282827988845358463989659
421395298446529109200910371004614944991582858805076186792494638518087987451289140801934007462592005709
872957859964365065589561241023101869055606030878362911050560124590899838341079936790205207685866918347
790655854470014869265692463193333761242809742006717284636193924969862846871999345039388936727048712717
273456170035486747750910295552395354794110742191330135681954109194146276641754216158762526285808980122
244389024867718205495941575199170127176757178749586161966593187885514183578209260148207177733173539603
430496908207058995870138198081303559016076290838857456128821769813618248357673921830311841471913398689
284234400077924669120976673165143349443747323563657204884447833185494169303012453167623274536787932284
747382448509228313995250973250597912703104768360148119110222925337269769382367005756561240029057604385
285290293760647953345817966612383960526254910718666386935476610845504619810208405063582767652658949239
324951968595417167241932953068367349554400458635983816104305944982662753060542358075589410827888042782
595108988063541056791795097401778068878286981021901090014835206168888372025031066592206860148364983053
278208826353655804360568678128416921713304714117631217589577712263758475312351723099054982921013468730
420589801441806387538266416989770423775940628087725370226542653058086237930142267582118714350291863763
634030017325181826207603974736959520264263236414544685111342720215045838385101013694131303485622191663
162389263276581535501127630782505996915882453345743543786368317373067329658935519969445823687350883027
865770087974988999234355556624068283476378468518384497364887395247510322422211056120129582965719136810
869382547576411888687934672519124619215114473883626959164367249007165342822815266124780046392254494517
036372362794075778454209104830546165619062217428698160297332404652020199281385488268195100728286970107
073750092766648750217477537274235150874824672027417003158112280589617812216074743794751095062093855667
458125251837668215771280786149925587613235295042234638787895485088576446613629039412766597804420209228
133798711590089626487894241321045492500356667063290944157937298674342147050721358893201958072306478149
842952259558901275482397177332572291032576092979073329954505638836264047465024508080946911607263208749
414397300070411141859553027882735765481918200244969776111134631819528276159096418979095811733862720608
891043294524497853514701411244214305548608963957837834732532359576329143892528839398625627324286277556
314046383038916842163311344563630957196597846633855149231619633567535513840342580416291983782226690952
177015317533873028461084188655413832917195133211789572854166208482368281793251293123752154192697026970
329947764382338648300887153037340566638386829408848773072176226884902308493466119426018027261380210800
507821574100605484820134785957810277070778065551277254050167433239606625321641500480877240304761192903
221015438535313868553848642557079079534117651957118868373988068389579274374968349814292329219630977709
014393684365533335930782018131299345502420604456334057860696247196150560339489952332180043435996725662
392719643540287205547501207985433197067479731312681352365374408566226320676883758513278289625233328434
181297762469707954343600349234315923967476363891211528540665778364621391124744705125522634270123952701
812704549164804593224810885867460095230679317596775558101167994000524980630376314134441226903703498735
579991600925924807505248554156826628176081544630830540667741263012444186420410837311909313000115447056
027777372437806718889977085105672727678124719883285769584421758889516046786820481001004781646235822083
853248813427083407986848663216272020882330872781908537884546913155602172887312190739396520926022910147
752708093086536497985855401057745027928981460368843182150863724621696787228216934737059928627711244769
092090298832016683017027342025976567170986331121634950217126442682711965026405422823175963087447530184
719409552426341149846950807339008000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
0000000000000000000000
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The mantissa of the log is 0.5206 and the characteristic is 5,735. Since
100.5206 = 0.3316, we conclude that n! ≈ 0.3316 × 105,735. Comparing with
the correct number in Table 2.7, the approximation is thus very good.

2.9. (a) Since

X(0) =
∫ ∞
−∞

x(t)dt,

the transforms in Table 2.4 can be used to solve this and the next few problems.
For this problem,

∫ ∞
−∞

sinc(t)dt = �(u)

∣∣∣∣
u=0
= 1.

(b) Similarly,

∫ ∞
−∞

jinc(t)dt =
√

1− u2�(u)

∣∣∣∣∣
u=0

= 1.

(c)
∫ ∞
−∞

J0(2π t)dt = 1√
1− u2

�(u)

∣∣∣∣
u=0
= 1.

(d) We conclude from (2.164), that

∫ ∞
−∞

Jν(2π t)

(2t)ν
dt = (π/2)ν√

π�(ν + 1
2 )
.

(e) From (2.44),

∫ ∞
−∞

sinck(t)dt = �(u)

sinck(u)

∣∣∣∣∣
u=0

= 1.

(f) These last problems are easily solved using the power theorem in (2.101).
(g)

∫ ∞
−∞

sinc(2t)sinc(t − 1)dt =
∫ ∞
−∞

[
1

2
�
(u

2

)] [
�(u)e−j2πu

]∗
du

= 1

2

∫ 1
2

− 1
2

e j2πudu

= 0.

(h) We have the Fourier transform pair

1↔ δ(u).

In integral form
∫ ∞
−∞

e−j2π tvdt = δ(v).
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Taking the real part of both sides gives the desired result.
∫ ∞
−∞

cos(2π tv)dt = δ(v).

2.10. (a)

sin
(
π
2�(t)

) =

⎧⎪⎪⎨
⎪⎪⎩

sin
(
π
2

) ; |t| < 1
2

sin
(
π
4

) ; |t| = 1
2

sin(0) ; |t| > 1
2

=

⎧⎪⎪⎨
⎪⎪⎩

1 ; |t| < 1
2

1√
2
; |t| = 1

2

0 ; |t| > 1
2

= √
�(t)

(c) � (�(t)) = 1−�(t).
(d) sgn (sin(2π t)) is a square wave.
(e)

sin
(
π
2 sgn(t)

) =

⎧⎪⎪⎨
⎪⎪⎩

sin(−π/2) = −1 ; t < 0

sin(0) = 0 ; t = 0

sin(π/2) = 1 ; t > 0

= sgn(t)

(f) � (�(t)) = 1−�(t).
(g) δ [sinc(n)] = 1− δ [n] .
(h) Since sinc(n) = δ [n], this is the same as (g).
(i) sinc (δ[n]) = 1− δ[n].
(j) δ [jinc(n)] = 0 because jinc(n) 	= 0 for all n.

2.13 Using the signal integral property in (2.93) and its Fourier dual, the numerators of
both sides of (2.139) are equal as are the denominators.

2.14. Analytic signals.
(a) Since

x(t) = sin(2π f0t)←→ X(u) = 1

j2
(δ(u− f0)− δ(u+ f0)) ,

it follows that X(u)μ(u) = 1
j2δ(u − f0). The corresponding analytic signal is

thus

x̂(t) = 1

j2
e j2π f0t .

(b) Sinceμ(u)= (sgn(u)+1)/2 it follows that X(u)μ(u)= 1
2 [X(u)+ X(u) sgn(u)].

Using the Fourier transform of the Hilbert transform in (2.98), we inverse
Fourier transform to obtain a general expression for the analytic signal

x̂(t) = 1

2
(x(t)− jHx(t)) .



[12:22 15/10/2008 5165-marks-ch02.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 78 10–103

78 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

(c) They are Fourier transform duals, i.e., one follows from the other from the
duality theorem.40

2.15.

|sinc(t)|μ(t) = sinc(t)

[
−1+ 2

∞∑
k=0

�

(
t − k − 1

2

)]
μ(t).

Thus

|sinc(t)|μ(t)↔ �(u) ∗
[
−δ(u)+ 2 sinc(u)e−jπu

∞∑
k=0

e−j2πku

]
.

The sum over k is recognized as the Fourier transform of the causal comb in (2.56).
Thus

|sinc(t)|μ(t)↔ �(u) ∗ [−δ(u)+ sinc(u) e−jπu (1− j cotan(πu))
]

or, equivalently,

|sinc(t)|μ(t)↔ −�(u)+�(u) ∗
[

sin(πu)

πu
e−jπu

(
1− j

cos(πu)

sin(πu)

)]

= −�(u)− j�(u) ∗
[

1

πu
e−jπu (cos(πu)+ j sin(πu))

]

= −�(u)+ j

(−1

πu

)
∗�(u)

= −�(u)+ j ln

(∣∣∣∣∣
t − 1

2

t + 1
2

∣∣∣∣∣
)

where, in the last step, we have used the Hilbert transform in (2.141).
2.16. (a) δ(t) = limA→∞ A�(At).

(b) δ(t) = limA→∞ Ajinc(At).
(c) δ(t) = limA→∞ Asinc2(At).

In each case, the limit of the transform approaches one. For example

A jinc(At)←→
√

1− (u/A)2 �
( u

2A

)

−→ 1 as A→∞.

2.20. If o(t) = −o(−t), then o(0) = −o(0) always requires that o(0) = 0. So the answer
is yes. An odd function evaluated at the origin must always be zero.

2.21. Here we prove the entries in Table 2.1 concerning even and odd functions.
(a) Let e3(t) = e1(t)+ e2(t). Then

e2(−t) = e1(−t)+ e2(−t) = e1(t)+ e2(t) = e3(t).

40. See Section 2.3.4.4.



[12:22 15/10/2008 5165-marks-ch02.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 79 10–103

FUNDAMENTALS OF FOURIER ANALYSIS 79

(b) Let o3(t) = o1(t)+ o2(t). Then

−o3(−t) = −[o1(−t)+ o2(−t)] = −o1(−t)− o2(−t)

= o1(t)+ o2(t) = o3(t).

(c) Let e3(t) = e1(t) e2(t). Then

e3(−t) = e1(−t) e2(−t) = e1(t) e2(t) = e3(t).

(d) Let e3(t) = o1(t) o2(t). Then

e3(−t) = o1(−t) o2(−t) = [−o1(−t) (−o2(−t))]
= −[o1(t) o2(t)] = e3(t).

(e) Let o3(t) = o1(t) e2(t). Then

−o3(−t) = −o1(−t) e2(−t) = o1(t) e2(t) = o3(t).

(f) Let o(t) = d
dt e(t). Then

−o(−t) = − d

d(−t)
e(−t) = d

dt
e(t) = o(t).

(g) Let e(t) = d
dt o(t). Then

e(−t) = d

d(−t)
o(−t) = d

dt
o(t) = e(t).

(h) Let e(t) = ∫ t
0 o(τ ) dτ . Then

e(−t) =
∫ −t

0
o(τ ) dτ = −

∫ t

0
o(−τ ) dτ =

∫ t

0
o(τ ) dτ = e(t).

(i) Let o(t) = ∫ t
0 e(τ ) dτ . Then

o(−t) =
∫ −t

0
e(τ ) dτ = −

∫ t

0
e(−τ ) dτ =

∫ t

0
e(τ ) dτ = o(t).

(j) Let z = ∫ T
−T e(t) dt. Then

z =
[∫ 0

−T
+
∫ T

0

]
e(t) dt = −

∫ T

0
e(−t)(−dt)+

∫ T

0
e(t)dt

=
∫ T

0
e(t)dt +

∫ T

0
e(t)dt = 2

∫ T

0
e(t)dt.

(k) Let z = ∫ T
−T o(t) dt. Then

z =
[∫ 0

−T
+
∫ T

0

]
o(t) dt = −

∫ T

0
o(−t)(−dt)+

∫ T

0
o(t)dt

= −
∫ T

0
o(t)dt +

∫ T

0
o(t)dt = 0.
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(l) Let o1[n] =∑n
m=0 o[m]. Then

−o1[−n] = −
−n∑

m=0

o[m] = −
n∑

p=0

−o[−p] =
n∑

p=0

o[p] = o1[n].

(m) Let e1[n] =∑n
m=0 e[m]. Then

e1[−n] =
−n∑

m=0

e[m] =
n∑

p=0

e[−p] =
n∑

p=0

e[p] = e1[n].

(n) Let z =∑N
n=−N e[n]. Then

z =
−1∑

n=−N

e[n] + e[0] +
N∑

n=1

e[n] =
N∑

n=1

e[−n] + e[0] +
N∑

n=1

e[n]

=
N∑

n=1

e[n] + e[0] +
N∑

n=1

e[n] = e[0] + 2
N∑

n=1

e[n].

(o) Let z =∑N
n=−N o[n]. Then

z =
−1∑

n=−N

o[n] + o[0] +
N∑

n=1

o[n] =
N∑

n=1

o[−n] + e[0] +
N∑

n=1

e[n]

=
N∑

n=1

−o[n] + e[0] +
N∑

n=1

e[n] = 0.

(p) Let e3 = e2 ∗ e1. We consider the continuous case where

e3(t) =
∫ ∞
−∞

e2(τ )e1(t − τ )dτ.

Thus

e3(−t) =
∫ ∞
τ=−∞

e2(τ )e1(−t − τ )dτ.

Set ξ = τ and

e3(−t) =
∫ ∞
ξ=−∞

e2(−ξ )e1(−t + ξ )dξ

=
∫ ∞
ξ=−∞

e2(ξ )e1(t − ξ )dξ = e3(t).

(q) Let o3 = o1 ∗ o2. We consider the continuous case where

o3(t) =
∫ ∞
−∞

o1(τ )o2(t − τ )dτ.
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Thus

o3(−t) =
∫ ∞
τ=−∞

o1(τ )o2(−t − τ )dτ.

Set ξ = τ and

o3(−t) =
∫ ∞
ξ=−∞

o1(−ξ )o2(−t + ξ )dξ

=
∫ ∞
ξ=−∞

(−o1(ξ )) (−o2(t − ξ )) dξ

= −o3(t)

(r) Let e1 = e ∗ o. For discrete time convolution.

e1[n] =
∞∑

k=−∞
e[k] o[n− k].

Thus

e1[−n] =
∞∑

k=−∞
e[k] o[−n− k].

Set p = −k and

e1[−n] =
∞∑

p=−∞
e[−p] o[−n+ p]

=
∞∑

p=−∞
e[p] (−o[n− p])

= −e1[n].
(s) For the continuous case, we use the continuous time Fourier transform in (2.11)

and write

e(t)←→ E(u)

=
∫ ∞
−∞

e(t)e−j2πutdt

=
∫ ∞
−∞

e(t) (cos(2πut)+ j sin(2πut)) dt.

Since sin(2πut) is an odd function of t and e(t) is even, from (e), e(t) sin(2πut)
is odd and, using (k),

∫ ∞
−∞

e(t) sin(2πut)dt = 0

and

E(u) =
∫ ∞
−∞

e(t) cos(2πut)dt.
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Thus, setting ξ = −t,

E(−u) =
∫ ∞

t=−∞
e(t) cos(2πut)dt

=
∫ ∞
ξ=−∞

e(−ξ ) cos(2πuξ )dt

=
∫ ∞
ξ=−∞

e(ξ ) cos(2πuξ )dt

= E(−u).

Thus, the Fourier transform of a possibly complex even function is an even
function.

(t) For the discrete case, using the DTFT in (2.112), let

o[n] ←→ �( f )

be DTFT pairs. Then

�( f ) =
∞∑

k=−∞
o[k]e−j2π f kdt

=
∞∑

k=−∞
o[k] (cos(2π f k)− j sin(2π f k)) .

Since cos(2π f k) is an even function of t and o[k] is odd, from (e),
o[k] cos(2π f k) is odd and, using (o),

∞∑
k=−∞

o[n] cos(2π f k) = 0

and

�( f ) = −j
∞∑

k=−∞
o[n] sin(2πut)dt.

Thus, setting p = −k,

�(−f ) =
∞∑

k=−∞
−j o[k] sin(2π f k)

=
∞∑

p=−∞
−j o[−p] sin(2π f (−p))

=
∞∑

p=−∞
−j (−o[p]) (− sin(2π f k))

= −j �( f ).

Thus, the Fourier transform of a possibly complex odd function is an odd
function.
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2.22. (a) Using the inverse Fourier transform of a Dirac delta, we can write

δ(u) =
∫ ∞
−∞

e j2πutdt

= lim
α→0

∫ ∞
−∞

e−α|t|e j2πutdt ; convergence factor

= lim
α→0

∫ ∞
−∞

e−α|t| cos(2πut)dt ; eliminate odd integrand

= lim
α→0

2
∫ ∞

0
e−α|t| cos(2πut)dt ; even integrand

= 2
∫ ∞

0
cos(2πut)dt.

Substituting the proposed inversion into the forward cosine transform gives

x(t)
?=
[

2
∫ ∞

0
X(u) cos(2πut)du

]
μ(t)

=
[

2
∫ ∞

u=0

[
2
∫ ∞
τ=0

x(τ ) cos(2πuτ )dτ

]
cos(2πut)du

]
μ(t)

=
[

4
∫ ∞
τ=0

x(τ )

[∫ ∞
u=0

cos(2πuτ ) cos(2πut)du

]
dt

]
μ(t)

=
[

2
∫ ∞
τ=0

x(τ )

[∫ ∞
u=0

(cos(2πu(t − τ ))+ cos(2πu(t + τ ))) du

]
dt

]
μ(t)

=
[∫ ∞

τ=0
x(τ ) [δ(t − τ )+ δ(t + τ )] dt

]
μ(t)

= [x(t)+ x(−t)]μ(t)

= x(t).

(b) Let zo(t) be any odd function of t. Then, since the bilateral cosine transform of
zo(t) is zero, we see that the bilateral cosine transform of any x(t) is the same
as that of x(t)+ zo(t). Many functions therefore map to Xcos(u) which cannot
be uniquely inverted.

2.24. (a)

d

dt
sgn(t) = 2δ(t)↔ ( j2πu)

1

jπu
= 2.

(b) Since

uδ(u) = 0,

we conclude that

d

dt
μ(t) = δ(t)↔ ( j2πu)× 1

2

[
δ(t)+ 1

jπu

]
= 1.
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2.25. (a) The Dirac delta has finite area since
∫ ∞
−∞

δ(t) = 1 <∞.

(b) The Dirac delta has infinite energy. From the sifting property in (2.27),
∫ ∞
−∞

δ(τ )δ(t − τ ) dτ = δ(t).

Thus,41 for t = 0,
∫ ∞
−∞

δ2(τ )dτ = δ(0) = ∞.

2.28. (a) g(t) ≈ a(t − t0) around the neighborhood t = t0 where a = dg(t0)
dt . Since δ(t) is

nonzero only when ξ = 0, we conclude

δ(g(t)) = δ(a(t − t0))

= 1

| a |δ(t − t0).

(b)

g(t) = ln(t/b); t0 = b

g′(t) = 1/t −→ a = 1/b

and

δ(ln(t/b)) = bδ(t − b).

(c) The argument has an infinite number of zero crossings:

sin(π tn) = 0; tn = 0, ±1, ±2, . . . .

Since

g′(tn) = π cos(π tn)

= (−1)nπ

= an,

we have

πδ(sin(π t)) = π
∞∑

n=−∞

1

| an |δ(t − tn)

= comb(t).

41. Generating a true Dirac delta current or voltage waveform requires more power than is available from all
of the world’s power generation plants. Physically, the Dirac delta is a good approximation for a short high value
waveform.
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(d) From the quadratic formula, the quadratic equation

q(t) = at2 + bt + c

has zeros at

t± = 1

2a

(
−b±

√
b2 − 4ac

)
.

There are three cases of interest, depending on the discriminant,

d = b2 − 4ac.

(i) If d < 0, there are no real solutions of the quadratic and

δ(at2 + bt + c) = 0.

(ii) If d > 0, there are two zeros at

t± = 1

2a

(
−b±

√
b2 − 4ac

)
.

Then

q(t) = (t − t−) (t − t+) .

The derivatives at these two points are

dq(t−)

dt
= t− − t+

and

dq(t+)

dt
= t+ − t−.

Thus

δ(at2 + bt + c) = δ(t − t+)+ δ(t − t−)

t+ − t−
. (2.159)

(iii) If d = 0, there is a double zero at t+ = t− = −b
2a and

q(t) =
(

t + b

2a

)2

.

Thus

q

(−b

2a

)
= 0

and

dq
(
−b
2a

)

dt
= 0.
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The delta function with argument q(t) is then not defined in the sense it
has infinite area.

δ(at2 + bt + c) = ∞ × δ

(
t + b

2a

)
.

This is the same result we would obtain in (2.159) by letting t+ → t−.
2.29. (a) From duality

sinc(t)←→ �(u).

(b) We have established (see (2.39))

sech(π t)←→ sech(πu) =
∫ ∞
−∞

sech(π t) e−j2πutdt.

Thus

ψ(t) ≡ sech(π t) eπ t ←→ �(u) =
∫ ∞
−∞

sech(π t)e
−j2π

(
u+ j

2

)
t
dt.

= sech

(
π

(
u+ j

2

))
.

= 2

e
π

(
u+

j

2

)

+ e
−π

(
u+

j

2

)

= 2

j eπu − j e−πu

= −j cosech(πu).

Since ψ(−t)←→ �(−u), sech is even, and cosech is odd, and

ψ(−t) = sech(π t) e−π t ←→ �(−u) = j cosech(πu).

It follows that

1

2
[ψ(t)− ψ(−t)] =1

2

(
eπ t − e−π t) sech(π t)

=sinh(π t) sech(π t) = sinh(π t)

cosh(π t)

=tanh(π t)

←→1

2
[�(u)−�(−u)]

=− j cosech(πu).

(c) Recall that

d

dt
tanh(t) = sech2(t).

Using the derivative theorem applied to the tanh transform gives the desired
result.
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(d) For the sine integral, we first note, using the signal integral property, that
∫ ∞

t=−∞
sinc(t) = �(0) = 1.

Using the integral theorem in Table 2.3 applied to the pair sinc(t)↔�(u) gives

∫ t

−∞
sinc(τ )dτ ←→ �(u)

j2πu
+ 1

2
δ(u).

Thus, using (2.78),

Si(π t) =π
∫ t

0
sinc(τ )dτ

=π
[
−1

2
+
∫ t

τ=−∞
sinc(τ )dτ

]

←→π
[
−1

2
δ(u)+

{
�(u)

j2πu
+ 1

2
δ(u)

}]

=�(u)

j2u
.

(e) Using a convergence factor

∞∑
n=0

δ(t − n) = lim
α→1−

∞∑
n=0

[
αnδ(t − n)

]
.

Then

lim
α→1−

[ ∞∑
n=0

αnδ(t − n)

]
←→ lim

α→1−

[ ∞∑
n=0

αne−j2πnu

]

= lim
α→1−

[
1

1− αe−j2πu

]

= 1

1− e−j2πu

= e jπu

e jπu − e−jπu

= 1

j2

e jπu

sin(πu)

=−j

2

cos(πu)+ j sin(πu)

sin(πu)

=1

2
[1− jcotan(πu)]

where

cotan(z) = 1

tan(z)
= cos(z)

sin(z)
.
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2.30. (a) Use Parseval’s theorem with x(t) = sinc2(t),

∫ ∞
−∞

sinc4(t)dt =
∫ 1

−1
�2(u)du

= 2
∫ 1

0
(1− u)2du

= 2/3.

(b) Same approach, but x(t) = jinc(t):

∫ ∞
−∞

jinc2(t)dt =
∫ 1

−1
(1− u2)du

= 4/3.

(c) Parseval’s theorem gives

∫ ∞
−∞

J2
0 (2π t)dt = 1

π2

∫ 1

−1

du

1− u2

= ∞.
2.31. (a) Using (2.83), we have

∫ ∞
−∞

jn(2π t)dt = 1

2
j−nPn(0).

From (2.46), the Legendre polynomials are evenly odd. Thus Pn(0) = 0 when
n is odd and

∫ ∞
−∞

jn(2π t)dt = 0 when n is odd.

For even n, we use the recursion equation for the Legendre polynomial in
(2.80). Assuming n is odd, we have

(n+ 1)Pn+1(0) = −nPn−1(0)

or, for m = n+ 1 even,

Pm(0) = −m − 1

m
Pm−2(0). (2.160)

Since P0(0) = 1, the first few values are

P2(0) = −1

2
P0(0) = −1

2
,

P4(0) = −3

4
P2(0) = 3 · 1

4 · 2 ,

P6(0) = −5

6
P4(0) = −5 · 3 · 1

6 · 4 · 2 .
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From this pattern, we deduce

P2m(0) = (−1)m (m − 1)!!
m!! .

Thus

Pn(0) =
⎧⎨
⎩

0 ; n odd

((n/2)− 1)!!
(n/2)!! ; n even

(2.161)

and

∫ ∞
−∞

jn(2π t)dt =
⎧⎨
⎩

0 ; n odd

1

2

((n/2)− 1)!!
(n/2)!! ; n even.

(b) Using the spherical Bessel function Fourier transform in (2.83) and the power
theorem

∫ ∞
−∞

jn(2π t)jm(2π t)dt = jn−m
∫ 1

−1
Pn(u)Pm(u)du.

Using the orthogonality property of the Legendre polynomial in (2.81) gives
the final answer

∫ ∞
−∞

jn(2π t)jm(2π t)dt = 2

2n+ 1
δ[n− m].

(c) Using the Chebyshev polynomial Fourier transform in (2.87)

∫ 1

−1

Tn(t)√
1− t2

dt = jnJn(0).

The series for the Bessel function in (2.152) is

Jm(t) = 1

m!
(

t

2

)m

− 1

(m + 1)!
(

t

2

)m+1

+ · · ·

Clearly, Jm(0) = 0 for m 	= 0. For m = 0, we have Jm(0) = 1. Thus

Jm(0) = δ[m].
This is graphically evident in Figure 2.15. In conclusion, we have

∫ 1

−1

Tn(t)√
1− t2

dt = δ[n].

(d) Use the Fourier transform of the spherical Bessel function in (2.83) as applied
to the Poisson sum formula in (2.102). The result is

T
∞∑

n=−∞
jk(2π (t − nT )) =

∞∑
n=−∞

j−kPk

( n

T

)
�
( n

2T

)
e j2πnt/T . (2.162)
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If T < 1,

�
( n

2T

)
= δ[n]

and (2.162) becomes

∞∑
n=−∞

jk(2π (t − nT )) = 1

T
Pk (0) .

Using the equations for Pk(0) in (2.161)

∞∑
n=−∞

jk(2π (t − nT )) =
⎧⎨
⎩

0 ; k odd

(n/2− 1)!!
T (n/2)!! ; k even.

2.32. (a) Use the Poisson sum formula.

∞∑
n=−∞

sinc(t − n) =
∞∑

n=−∞
�(n)e j2πnt

=
∞∑

n=−∞
δ[n]e j2πnt

= 1

since �(n) = δ[n].
(b) Same result since �(n) = δ[n].
(c) Same result since

√
1− n2 �(n/2) = δ[n].

(d) sinc(at)←→ �(u/a)/a. Thus

∞∑
n=−∞

sinc (a(t − n)) = 1

a

∞∑
n=−∞

�
(n

a

)
e j2πnt

= 1

a

N∑
n=−N

e j2πnt

where N is the greatest integer not exceeding a/2. Using a geometric series

∞∑
n=−∞

sinc (a(t − n)) = sin[(2N + 1)π t]
a sin(π t)

= 2N + 1

a
array2N+1(t).

Part (a) is a special case for a = 1 (N = 0).

∞∑
n=−∞

sinc (a(t − n)rrr) = 1

a

[
1+ 2

N∑
n=1

cos(2πnt)

]
.

Part (a) is special case for a = 1(N = 0).
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(e) Use (2.104) with T = 2

∞∑
n=−∞

jinc(2n) = 1

2

∞∑
n=−∞

√
1− (n/2)2 �(n/4)

= (1+√3)/2.

(f) Use (2.104) with T = 1/4.

∞∑
n=−∞

jinc2(n/4) = 4
∞∑

n=−∞
C(4n)

where

C(u) =
√

1− u2 �(u/2) ∗
√

1− u2 �(u/2)

= C(u)�(u/4).

Thus

∞∑
n=−∞

jinc2(n/4) = 4C(0)

where

C(0) =
∫ 1

−1
(1− u2)du

= 4/3.

(g) The n > 0 and n < 0 terms cancel. The n = 0 term is zero.
2.33. (a) d

dt sinc(t) = 0 =⇒ θ = tan(θ ); θ = π t. The nth extrema location, θn, can be
founded iteratively by θn[m] −→ θn as m −→∞ with

θn[m + 1] = nπ + arctan(θn[m]) ; n = 0, ±1, ±2, . . . .

The first few locations and the corresponding extrema are listed in the Table 2.8.
(b) θn −→ n+ 1/2 as n −→∞ and

sinc(tn) −→ (−1)n

π (n+ 1
2 )
.

To justify, simply compare plots of θ and tan(θ ) vs. θ .
2.34. Using (2.18), the Fourier transform of the periodic function, xT (t), is

XT (u) =
∫ τ+T

t=τ
x(t)e−j2πutdt.

Thus

XT

( n

T

)
=
∫ τ+T

t=τ
x(t)e−j2πnt/T dt.
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TABLE 2.8. The first few extrema of
sinc(t).

n θn sinc(θn)

1 4.4934 −0.21723

2 7.7253 0.12837

3 10.9041 −0.09133

4 14.0662 0.07091

5 17.2208 −0.05797

6 20.3713 0.04903

7 23.5194 −0.04248

8 26.6661 0.03747

9 29.8116 −0.03353

10 32.9564 0.03033

11 36.1006 −0.02769

12 39.2444 0.02547

Using Leibniz’s rule (see Appendix 14.2)

d

dτ
XT

( n

T

)
= x(τ + T )e−j2πn(τ+T )/T − x(T )e−j2πnT/T

= 0.

Therefore, XT
( n

T

)
is not a function of τ .

2.38. (a) The function in (2.146) is periodic with period 2π . Using (2.14), its Fourier
coefficients are

cn = 1

2π

∫ π

−π
ez cos(t)e−jntdt.

Since ez cos(t) is an even function of t,

cn = 1

2π

∫ π

−π
ez cos(t) cos(nt)dt.

The integrand is even, so

cn = 1

π

∫ π

0
ez cos(t) cos(nt)dt.

Using (2.75), the Fourier coefficients are seen to be modified Bessel functions.

cn = In(z).

The Fourier series is thus

ez cos(t) =
∞∑

n=−∞
In(z)e jnt .
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(b) From the Bessel function identity in (2.76), we find that

Jn(z) = jn In(−jz).

The integral in defining the modified Bessel function in (2.75) becomes

Jn(z) = jn

π

∫ π

0
e−jz cos(θ ) cos(nθ )dθ. (2.163)

The periodic function, x(t) = e−jz cos(t) has a period of 2π and, from (2.14),
has Fourier series coefficients

cn = 1

2π

∫ π

−π
e−jz cos(θ ) e−jnθdθ.

Since e−jz cos(θ ) is an even function of θ , this is equivalent to

cn = 1

2π

∫ π

−π
e−jz cos(θ ) cos(nθ )dθ.

The integrand is even. We can therefore write

cn = 1

π

∫ π

0
e−jz cos(θ ) cos(nθ )dθ.

Using (2.163), we therefore conclude the Fourier series coefficients of the
periodic function in (2.147) are

cn = j−n Jn(z).

2.40. The Fourier series is

y(t) = α
∞∑

n=−∞
sinc(αn)e j2πnt/T .

Thus

y(τ/2) = α
∞∑

n=−∞
sinc(αn) cos(nπα).

Write sinc as sin(πx)/(πx) and use a trigonometric identity

y(τ/2) = α
∞∑

n=−∞
sinc(2αn).

We evaluate using (2.104) which, for x(t) = sinc(t), can be written

α

∞∑
n=−∞

sinc(2αn) = 1

2

∞∑
n=−∞

�
( n

2 α

)

= 1/2.
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2.41. Since the integrand in (2.104) is even

Jν(2π t)

(2t)ν
= (π/2)ν√

π�(ν + 1
2 )

∫ 1

−1
(1− u2)ν−

1
2 cos(2πut) du.

Thus we have the transform pair

Jν(2π t)

(2t)ν
←→ (π/2)ν√

π�(ν + 1
2 )

(1− u2)ν−
1
2�

(u

2

)
. (2.164)

The entries in Table 2.4 for ν = 0 , 1 follow immediately using (2.65).
2.43. (a) We first find the coefficients, αk , for the Legendre polynomial expansion. From

(2.149),

Pi(t)x(t) =
∞∑

k=0

αkPi(t)Pk(t) �

(
t

2

)
.

Thus
∫ 1

−1
Pi(t)x(t)dt =

∞∑
k=0

αk

∫ 1

−1
Pi(t)Pk(t) dt

=
∞∑

k=0

αk
2

2k + 1
δ[i − k]

= 2αi

2i + 1
,

or

αk =
(

k + 1

2

)∫ 1

−1
x(t)Pk(t) dt. (2.165)

(b) For a period of T = 2, the Fourier series coefficients are

cn = 1

2

∫ 1

−1
x(t)e jπntdt

= 1

2

∫ 1

−1

[ ∞∑
k=0

αkPk(t)

]
e jπntdt (2.166)

= 1

2

∞∑
k=0

αk

[∫ 1

−1
Pk(t)e jπntdt

]

From (2.83),

jk(2π t)↔ 1

2
j−kPk(u)�

(u

2

)
(2.167)

so that the inverse Fourier transform is
∫ 1

−1
Pk(u)e j2πutdu = 2jkjk(2π t).
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or, substituting t← u and u← n
2 gives

∫ 1

−1
Pk(t)e jπntdt = 2jkjk(πn). (2.168)

Therefore, (2.166) becomes

cn =
∞∑

k=0

jkαkjk(πn). (2.169)

(c) Here, we express the Legendre polynomial coefficients, αk , in terms of the
Fourier coefficients, cn. From (2.165),

αk =
(

k + 1

2

)∫ 1

−1
x(t)Pk(t)dt.

=
(

k + 1

2

)∫ 1

−1

[ ∞∑
n=−∞

cne jπnt

]
Pk(t)dt

=
(

k + 1

2

) ∞∑
n=−∞

cn

[∫ 1

−1
Pk(t)e jπntdt

]

= (2k + 1)jk
∞∑

n=−∞
cnjk(πn)

. (2.170)

where, in the last step, we have used (2.168).
(d) Substitute (2.169) into (2.170) gives

αk = (2k + 1) jk
∞∑

n=−∞

⎛
⎝
∞∑

p=0

jpαpjp(πn)

⎞
⎠ jk(πn)

= (2k + 1) jk
∞∑

p=0

jpαp

( ∞∑
n=−∞

jp(πn)jk(πn)

)
.

For this to be an identity, we must have the following orthogonality condition
for the spherical Bessel function with respect to the function’s index.

(2k + 1)
∞∑

n=−∞
jp+kjp(πn)jk(πn) = δ[k − p].

(e) Substitute (2.170) into (2.169) gives

cn =
∞∑

k=0

jk

[
(2k + 1)jk

∞∑
m=−∞

cmjk(πm)

]
jk(πn)

=
∞∑

m=−∞
cm

[ ∞∑
k=0

(−1)k(2k + 1)jk(πm)jk(πn)

]
.
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We therefore have the following orthogonality condition for samples of the
spherical Bessel function.

∞∑
k=0

(−1)k(2k + 1)jk(πm)jk(πn) = δ[n− m].

2.46. (a) Using the definition of the Legendre polynomial in (2.81), we have

Pn(−t) = 1

2nn!
(

d

d(−t)

)n

(t2 − 1)n

= (−1)n 1

2nn!
(

d

dt

)n

(t2 − 1)n

= (−1)nPn(t).

(b) Using the definition of the Hermite polynomial in (2.88) gives

Hn(−t) = (−1)net2
(

d

d(−t)

)n

e−t2

= (−1)n
[

(−1)net2
(

d

dt

)n

e−t2
]

= (−1)nHn(t).

Yes, Hermite polynomials are evenly odd.
(c) The Chebyshev polynomials recursion in (2.85) is repeated here

Tn+1(t) = 2tTn(t)− Tn−1(t). (2.171)

We know T0(t) = 1 is even and T1(t) = t is odd. When Tn(t) is even, 2tTn(t)
in (2.171) is odd, and, for Tn−1(t) odd, we see Tn+1(t) in (2.171) is odd.
A similar argument can be made for even recurrence, and we have established
that Chebyshev polynomials are evenly odd.

2.47. Chebyshev polynomials of the second kind can be defined by

Un (cos θ ) = sin(n+ 1)θ

sin θ
.

(a)
U0 (cos θ ) = 1 → U0(t) = 1.

U1 (cos θ ) = sin 2θ

sin θ
(2.172)

but

sin 2θ = �e j2θ

= �e jθe jθ

= �(cos θ + j sin θ )(cos θ + j sin θ )

= 2 cos θ sin θ
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so that (2.172) becomes42

U1 (cos θ ) = 2 cos θ sin θ

sin θ
= 2 cos θ.

Thus

U1(t) = 2t.

(b) Equation 2.151 is the imaginary part of the equation

e j(n+2)θ = 2 cos θe j(n+1)θ − e jnθ .

Multiply through by e−j(n+1)θ and this reduces to Euler’s formula.
(c) Divide (2.151) through by sin θ .

sin(n+ 2)θ

sin θ
= 2

cos θ sin(n+ 1)θ

sin θ
− sin nθ

sin θ
,

or, equivalently,

Un+1(cos θ ) = cos θ Un(cos θ )− Un−1(cos θ )

from which the recurrence relationship for Chebyshev polynomials of the
second kind in (2.150) follows.

2.49. From (2.14), since x(t) is real,

c∗n =
1

T

∫
T

x(t) e j2πnt/T dt.

Thus

c∗−n =
1

T

∫
T

x(t) e−j2πnt/T dt = cn.

2.51. With attention to Figure 2.33:

zT (t) = �
(

t − T
4

T/2

)
−�

(
t + T

4

T/2

)
.

Thus

ZT (u) = −j sinc

(
Tu

2

)
sin

(
πut

2

)
.

FIGURE 2.33. See Exercise 2.51.

42. Alternately, we could have looked up a trig identity.
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The Fourier coefficients follow as

cn = 1

T
ZT (n/T )

= −j sinc(n/2) sin(πn/2).

Thus, since z(t) is real,

z(t) =
∞∑

n=−∞
−j sinc(n/2) sin(πn/2) e j2πnt/T

=
∞∑

n=−∞
sinc(n/2) sin(πn/2) sin

(
2πnt

T

)
.

The truncated series is

zN (t) =
N∑

n=−N

sinc(n/2) sin(πn/2) sin

(
2πnt

T

)
.

Extrema come from

0 = d

dt
zN (t)

= 2π

T

N∑
n=−N

sinc(n/2) sin(πn/2) n cos

(
2πnt

T

)

= 4

T

N∑
n=−N

sin2(πn/2) cos

(
2πnt

T

)
.

But

sin2(πn/2) = 1− (−1)n

2

and

0 = 2

T

N∑
n=−N

[1− (−1)n] cos

(
2πnt

T

)

= 2

T
�

N∑
n=−N

[1− (−1)n] e j2πnt/T .

Applying a geometric series43 gives

0 = sin(N + 1
2 )θ

sin(θ/2)
− (−1)N cos(N + 1

2 )θ

cos(θ/2)

43. See Appendix 14.4.2.
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or, for N even,

tan

(
N + 1

2

)
θ = tan(θ/2).

Therefore
(

N + 1

2

)
θ = θ

2
+ pπ; p = 0, ±1, ±2, . . .

or

θ = 2π t

T
= pπ

N
=⇒ t = pT

2N
.

The first extrema is at p = 1 corresponding to t = T/2N . Substituting gives

zN

(
T

2N

)
=

N∑
n=−N

sin2(πn/2)

πn/2
sin(πn/N)

= 2
N∑

n=1

sin2(πn/2)

πn/2
sin(πn/N)

= 2

π

N∑
n=1

1− (−1)n

n
sin(πn/N).

Let 2m + 1 = n

zN

(
T

2N

)
= 4

π

N/2∑
m=0

sin π (2m+1)
N

2m + 1
.

Define

h(t) =
M∑

m=0

sin(2m + 1)t

2m + 1
; M = N/2

so that

zN

(
T

2N

)
= 4

π
h(π/N).

Note that h(0) = 0. Now

dh(t)

dt
=

N∑
m=0

cos(2m + 1)t

= sin 2(M + 1)t

2 sin(t)

= 2(M + 1) array2(M+1)(t/π ).
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Thus

h(t) = 2(M + 1)
∫ t

0
array2(M+1)

( τ
π

)
dτ

and

zN

(
T

2N

)
= 2(N + 1)

π

∫ π/N

0
arrayN+1

( τ
π

)
dτ.

Since the interval of integration gets smaller and smaller, sin τ −→ τ and as
N →∞

zN

(
T

2N

)
−→ 4

π

∫ π/N

0

sin(N + 2)τ

2τ
dτ

= 2

π

∫ π+
2π

N
0

sin(ξ )

ξ
dξ.

Since Si(π ) = 1.8519370, we conclude that, as N →∞,

� −→ 1− 2

π
Si(π ) = 0.1789797.

This is the Gibb’s phenomenon overshoot of the Fourier series expansion of the
square wave.

2.52. Using the shift theorem

comb(t − 1/2)←→comb(u) e−jπu

=
∞∑

n=−∞
δ(u− n) e−jπn

=
∞∑

n=−∞
(−1)n δ(u− n)

=
∑

even n

δ(u− n)−
∑

odd n

δ(u− n)

=
∞∑

m=−∞
δ(u− 2m)−

∞∑
m=−∞

δ (u− (2m + 1))

=1

2

[ ∞∑
m=−∞

δ
(u

2
− m

)
−

∞∑
m=−∞

δ

(
u− 1

2
− m

)]

=1

2

[
comb

(u

2

)
− comb

(
u− 1

2

)]
.

2.54. This problem illustrates that finite area does not dictate finite energy. Neither does
finite energy dictate finite area.
(a) See Table 2.10.
(b) On the interval (0, 1), x(t) has finite area and infinite energy. On the interval

(0, ∞), the area is infinite and the energy is finite.
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TABLE 2.10. See the solution to
Exercise 2.54.

(0, 1) (1,∞)

A 4 ∞
E ∞ 2

(c) A <∞=⇒ F <∞. This follows from the proof that the space of �1 sequences
is subsumed in l2 [854, 1020]. The converse is not true. Consider

x(t) = sinc(Bt).

Clearly, E = 1/B. However, since

∣∣∣ x
( n

2B

) ∣∣∣ =

⎧⎪⎪⎨
⎪⎪⎩

1 ; n = 0

2
π | n | ; odd n

0 ; otherwise

we have the divergent series

A = 1+ 2

π

∞∑
k=0

1

2k + 1
= ∞.

2.55. (a) A spectrum with finite area has a bounded inverse Fourier transform, but the
converse is not true.

| x(t) | =
∣∣∣∣
∫ ∞
−∞

X(u) e j2πut du

∣∣∣∣

≤
∫ ∞
−∞
|X(u) | du

= A.

Thus, C = A. Note, then, that x(t) is bounded if X(u) has finite area.
(b) A counter example is x(t) = sgn(t). Since |x(t)| ≤ 1, the function x(t) is

bounded. The Fourier transform of x(t), though, does not have finite area.
2.56. To show all finite energy bandlimited functions are bounded, we write

| x(t) |2 =
∣∣∣∣
∫ B

−B
X(u) e j2πut du

∣∣∣∣
2

≤ 2B
∫ B

−B
|X(u) |2 du

= 2BE.

2.57. (a) Yes, the pth derivative of a finite energy bandlimited function has finite
energy and is bandlimited. Applying Parseval’s theorem to the derivative
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theorem gives

Ep =
∫ ∞
−∞
| x(p)(t) |2 dt

=
∫ B

−B
| (j2πu)p X(u) |2 du.

Since (u/B)2p < 1 over the interval | u | < B,

Ep = (2πB)2p
∫ B

−B
(u/B)2p |X(u) |2 du

≤ (2πB)2p
∫ B

−B
|X(u) |2 du

= (2πB)2p E

where E is the energy of x(t). Also, x(p)(t) is clearly bandlimited.
(c) Yes, the pth derivative of a bounded bandlimited function is bounded and

bandlimited.
∣∣∣ x(p)(t)

∣∣∣ =
∣∣∣∣
∫ B

−B
(j2πu)p X(u) e j2πut du

∣∣∣∣

≤
∫ B

−B

∣∣ 2πu |p |X(u)
∣∣ du

= (2πB)p
∫ B

−B

∣∣ u/B |p |X(u)
∣∣ du

≤ (2πB)p A

where, in the last step, we have recognized |u/B| ≤ 1 over the interval if
integration, and A is the area of X(u).

2.58. (a) From the derivative theorem

∣∣∣ x(M) (t)
∣∣∣2 =

∣∣∣∣
∫ B

−B
(j2πu)M X(u) du

∣∣∣∣
2

≤ 2(2π )2M E
∫ B

−B
u2M du

which, when evaluated, gives (2.156).
(b) Clearly

| x(t + τ )− x(t) | =
∣∣∣∣
∫ t+τ

t
x′(ξ ) dξ

∣∣∣∣

≤
∫ t+τ

t

∣∣ x′(ξ )
∣∣ dξ

≤
√

(2πB)3 E

3

∫ t+τ

t
dξ

which, when evaluated, gives (2.157).
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2.60. Define

Ef =
∫ ∞
−∞
| f (t) |2 dt.

Then, applying Schwarz’s inequality to the integral gives

| g(t) |2 ≤ Ef Eh(t).

2.61 To show the inversion of the DFT, substitute the DFT in (2.116) into the inverse
DFT in (2.117).

1

N

N−1∑
k=0

X[k]e j2πnk/N = 1

N

N−1∑
k=0

[
N−1∑
m=0

x[m]e j2πmk/N

]
e j2πnk/N

= 1

N

N−1∑
m=0

x[m]
[

N−1∑
k=0

e j2π (n−m)k/N

]

= 1

N

N−1∑
m=0

x[m]
[
N e jπ (N−1)(n−m)/N (2.173)

× arrayN

(
n− m

N

)]

where, in the last step, we have used (14.9). Since

arrayN

(
n− m

N

)
= δ[n− m] for 0 ≤ m ≤ N − 1,

(2.173) becomes x[n].



[16:20 9/9/2008 5165-Marks-Ch03.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 104 104–150

3

Fourier Analysis in Systems Theory

Nature laughs at the difficulties of integration
Pierre-Simon de Laplace (1749–1827) [779]

God does not care about our mathematical difficulties. He integrates empirically.
Albert Einstein (1879–1955) [645]

Does anyone believe that the difference between the Lebesgue and Riemann integrals
can have physical significance, and that whether say, an airplane would or would not

fly could depend on this difference? If such were claimed, I should not care to
fly in that plane.

Richard W. Hamming (1915–1998) [1189]

3.1 Introduction

In the most general sense, any process wherein a stimulus generates a corresponding
response can be dubbed a system. For a temporal system with single input, f (t), and single
output, g(t), the relation can be written as

g(t) = S{ f (t)} (3.1)

where S{·} is the system operator. This is illustrated in Figure 3.1.

3.2 System Classes

There exist numerous system types. We define them here in terms of continuous signals.
The equivalents in discrete time are given as an exercise.1

3.2.1 System Types

3.2.1.1 Homogeneous Systems

For homogeneous systems, amplifying or attenuating the input likewise amplifying or
attenuating the output. For any constant, a,

S{a f (t)} = aS{ f (t)} (3.2)

This is illustrated in Figure 3.2.

1. See Exercise 3.11.

104
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FIGURE 3.1. A temporal system with a single input and output.

FIGURE 3.2. For homogeneous systems, amplifying the input corresponds to an equal amplification of
the output.

3.2.1.2 Additive Systems

If the response of the sum is the sum of the responses, the system is said to be additive.
Specifically,

S{ f1(t)+ f2(t)} = S{ f1(t)} + S{ f2(t)} (3.3)

3.2.1.3 Linear Systems

Systems that are both homogeneous and additive are said to be linear. The criteria in (3.2)
and (3.3) can be combined into a single necessary and sufficient condition for linearity.

S{a f1(t)+ bf2(t)} = aS{ f1(t)} + bS{ f2(t)} (3.4)

where a and b are constants.
All linear systems produce a zero output when the input is zero.

S{0} = 0. (3.5)

To show this, we use (3.4) with a = −b and f1(t) = f2(t).
Note that, because of (3.5), the system defined by

g(t) = b f (t)+ c

where b and c �= 0 are constants, is not linear. It is not homogeneous since

S{a f } = b f + c

�= aS{ f } = a (b f + c) .
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FIGURE 3.3. For time-invariant systems, shifting the input corresponds to an equal shift in the output.
Thus, the response today will be the same as the response tomorrow. The system has not changed. It
is invariant over time.

Neither is it additive since

S{ f1 + f2} = b( f1 + f2)+ c

�= S{ f1} + S{ f2} = (b f1 + c)+ (b f2 + c).

3.2.1.4 Time-Invariant Systems

If, as illustrated in Figure 3.3, shifting any input by, say, τ results in the output being shifted
by the same amount, the system is said to be time–invariant. Let Dτ be a delay operator
so that

Dτ { f (t)} := f (t − τ ).

The system is time-invariant if Dτ commutes with S. That is

Dτ {S{ f (t)}} = S {Dτ { f (t)}} .
Time-invariance models systems that do not change with respect to time, i.e., all system

parameters are fixed and do not change in time. A circuit with a defined input and output that
uses fixed parameter diodes, resistors, transistors, and capacitors is a time invariant system.
Systems changing with respect to time are time–variant or dynamic. A circuit that contains
a thermal resistor whose resistance changes with ambient temperature is time variant. For
spatial systems, like imaging systems, the time-invariance property is dubbed shift invariant
or isoplanatic.

3.2.1.5 LTI Systems

Linear, time-invariant (LTI) systems, as their name indicates, are systems that are both
time-invariant and linear. Thus, input signal superposition, amplification and shift results
in equivalent superposition, amplification and shift of the output. Specifically, for shifts τ1

and τ2,

S{a f1(t − τ1)+ bf2(t − τ2)} = ag1(t − τ1)+ bg2(t − τ2) (3.6)

where gk(t) = S{ fk(t)}, k = 1, 2.
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3.2.1.6 Causal Systems

As is illustrated in Figure 3.4, the output of a causal system must be “caused” by the input.
The output g(ξ ) at time ξ is due only from the input f (t) for times t ≤ ξ . Equivalently,
the system output cannot be a function of an input which has not yet been fed into the
system. Causal systems are also referred to as nonanticipatory systems since the output
cannot anticipate a future input.

Causality applies only to temporal systems and is nearly nonsensical when applied to
spatial systems. In optical imaging, for example, requiring an image output at a point to a
function of only points to the left and below the point is a property rarely if ever observed.
A temporal signal, when stored in memory such as a CD or a WAV file on a hard drive, is
transformed into a spatial signal.

Real time filters, both digital [574, 650, 991, 1053] and analog [193, 1443], feed signals,
as they are received, into the filter. Causality plays a monumental role in the synthesis of
such systems. A low pass filter, for example, has an impulse response of a sinc function.
The sinc is not a causal signal and thus can’t serve as the impulse response of a causal
filter. We can, however, shift the sinc down the positive time axis and accept a linear delay
in the filter output. To insure causality, however, the portion of the shifted sinc for t < 0
must be set to zero thereby altering the desired rectangular shape of its Fourier transform.
Therefore, a compromise must be made between the causality required by real time filters
and the approximation to the shape of the ideal low pass filter’s sinc function impulse
response. Hamming, Chebyshev and other filters explore the tradeoffs of this compromise
[1235, 1353, 1383, 1501]. When the signal is spatial, such as when stored in memory, a
low pass filter is readily accomplished by truncation of a Fourier transform followed by
inversion.

3.2.1.7 Memoryless Systems

A system is memoryless if the output at time t is determined only by the input at time t or,
more generally, a diminishingly small neighborhood around time t such as required by a
derivative. See Figure 3.4.

3.2.1.8 Stable Systems

There are numerous ways to define a stable system. A commonly used definition is bounded
input - bounded output (BIBO) stability. An input is bounded if it is a bounded signal.2 If,
for all such signals, there is a finite D <∞, such that |y(t)| ≤ D, then the system is said to
be BIBO stable. In other words, all bounded inputs to the system produce bounded outputs.

Like causality, stability is a temporal property. An unstable spatial system, with no
reference to time, is conceptually nonsensical.

3.2.1.9 Invertible Systems

If a system in invertible, its input can be determined by its output. If S{ f (t)} = g(t) then
there exists an operator S−1 such that S−1{g(t)} = f (t).

3.2.2 Example Systems

We consider three example systems: the magnifier, the Fourier transformer, and convolution.
Each is categorized according to its properties.

2. See (2.4).
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FIGURE 3.4. For a system to be causal, the output cannot anticipate the input. Thus, g(ξ ), the output
at time t = ξ , is determined only by the input, f (t), for t ≤ ξ . This portion of the input is shaded.
For a memoryless systems, the output at time t = ξ , denoted g(ξ ), is determined only by f (ξ ), the
input at t = ξ . A more general definition, allowing derivatives to be memoryless operations, allows
contribution of input around a diminishingly small neighborhood around t = ξ .

3.2.2.1 The Magnifier

The magnifier with magnification M �= 0 is defined by the input-output relationship

g(t) = S { f (t)} = 1

M
f

(
t

M

)
. (3.7)

• The magnifier is homogeneous since

S {a f (t)} = 1

M

[
a f

(
t

M

)]

= a

[
1

M
f

(
t

M

)]

= a S (f (t))

• The magnifier is additive since

S { f1(t)+ f2(t)} = 1

M

[
f1

(
t

M

)
+ f2

(
t

M

)]

= 1

M
f1

(
t

M

)
+ 1

M
f2

(
t

M

)

= S { f1(t)} + S { f2(t)} .

• The magnifier is linear since it is both homogeneous and additive.
• The magnifier is not time-invariant since shifting a magnification is not the same

as magnifying a shift. Shifting f (t) to f (t − τ ) followed by magnification gives
f
( t

M − τ
)
. On the other hand, if we magnify to f

( t
M

)
followed by shifting, we
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FIGURE 3.5. Examples of magnification for (left) M > 1 and (right) 0 < M < 1.

obtain the different answer f
( t−τ

M

)
. The two results are equal only in the degenerate

case of M = 1.
• Since the magnifier is not time-invariant, it is not an LTI system.
• The magnifier is not, in general, causal. If M > 1, then, as shown on the left

in Figure 3.5, the function spreads. The output at time t = ◦ occurs before the
corresponding input at t = •. The relationship is not causal. When M > 1, as
illustrated on the right in Figure 3.5, the operation is still not causal. The output at
t = � occurs before the corresponding point on the input.

If a system is limited to causal inputs and M > 1, the input-output relationship
of the magnifier is causal. The input at any time t > 0 dictates the output only at
time Mt > t.

• The magnifier is not memoryless for all M �= 1.
• The magnifier is stable since, if |x(t)| ≤ C, then |y(t)| ≤ C/M = D.
• Solving for f in (3.7) gives

f (t) = M g(Mt).

Since the input can be uniquely determined from the output, the magnifier is
invertible.

3.2.2.2 The Fourier Transformer

The Fourier transformer is defined be the input-output pair

g(t) = S { f (t)} =
∫ ∞
−∞

f (τ )e−j2π tτdτ. (3.8)

The operation is identical to the Fourier transform, except t is used in lieu of u in order to
remain consistent with the systems notation we have established.

• The Fourier transformer is homogeneous since

S {a f (t)} =
∫ ∞
−∞

a f (τ )e−j2π tτdτ

= a
∫ ∞
−∞

f (τ )e−j2π tτdτ

= a S { f (t)} .
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• The Fourier transformer is additive since

S { f1(t)+ f2(t)} =
∫ ∞
−∞

[ f1 (τ )+ f2 (τ )] e−j2π tτdτ

=
∫ ∞
−∞

f1(τ )e−j2π tτdτ +
∫ ∞
−∞

f2(τ )e−j2π tτdτ

= S { f1(t)} + S { f2(t)} .
• The Fourier transformer is linear since it is both homogeneous and additive.
• The Fourier transformer is not time-invariant since shifting a Fourier transform

is not the same as Fourier transforming a shift. Let f (t) ↔ F(u). Shifting f (t) to
f (t − ξ ) followed by a Fourier transform gives F(t) exp(−j2πξ t). On the other
hand, if we Fourier transform to F(t) followed by shifting, we obtain the different
answer F(t − ξ ). The two results are equal only in the degenerate case of a zero
shift corresponding to ξ = 0.

• Since the Fourier transformer is not time-invariant, it is not an LTI system.
• The Fourier transformer is not causal. Indeed, the value of the input at time t

contributes to the output at all times.
• For the same reason, the Fourier transformer is not memoryless.
• The Fourier transformer is not stable in the BIBO sense. Consider the bounded

input, x(t) = C cos(2π t). Hence, |x(t)| ≤ C. No matter how small we make C, the
Fourier transform contains unbounded Dirac delta functions.

• Since the Fourier transform has an inverse, the Fourier transformer is invertible.

3.2.2.3 Convolution

For a given h(t), we define the system operation of convolution, from (2.25), as

g(t) = f (t) ∗ h(t) =
∫ ∞
−∞

f (τ ) h(t − τ ) dτ. (3.9)

• Convolution is homogeneous since

S {a f (t)} =
∫ ∞
−∞

a f (τ ) h(t − τ )dτ

= a
∫ ∞
−∞

f (τ ) h(t − τ )dτ

= a S { f (t)} .
• Convolution is additive since

S { f1(t)+ f2(t)} =
∫ ∞
−∞

[f1 (τ )+ f2 (τ )] h(t − τ )dτ

=
∫ ∞
−∞

f1(τ )h(t − τ )dτ +
∫ ∞
−∞

f2(τ )h(t − τ )dτ

= S { f1(t)} + S {f2(t)} .
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• Convolution is linear since it is both homogeneous and additive.
• Convolution is time-invariant since shifting a convolution is the same as convolving

a shift.
– Shifting the convolution by ξ gives

g(t − ξ ) =
∫ ∞
−∞

f (τ̂ ) h(t − ξ − τ̂ ) dτ̂ . (3.10)

– Convolving the shift by ξ gives

S{ f (t − ξ )} =
∫ ∞
−∞

f (τ − ξ ) h(t − τ ) dτ.

Making the variable substitution τ̂ = τ − ξ results in an expression identi-
cal to (3.10).

• Since the convolution operation is linear and time-invariant, it is an LTI system.
Indeed, in Section 3.3.3 we will show the converse is also true. Any time-invariant
system can be expressed as a convolution operation.

• The causality of convolution is determined by the specified value of h(t). If h(t)
is a causal signal (i.e., h(t) = h(t)μ(t)), then convolution corresponds to a causal
system.3 To show this, we substitute h(t)μ(t) for h(t) in the convolution integral
in (3.9)

g(t) = f (t) ∗ (h(t)μ(t))

=
∫ ∞
−∞

f (τ ) h(t − τ )μ(t − τ ) dτ

=
∫ t

−∞
f (τ ) h(t − τ ) dτ

(3.11)

where, in the last step, the unit step has been imposed explicitly in the integration
limits. From (3.11) we see that the output g(t) at time t is determined by an integral
containing the input, f (τ ), from −∞ < τ ≤ t. Thus, the output is determined by
no future point of the input and the system is causal.

• Except for some specific choices of h(t), convolution is not generally memoryless.4

• Convolution is stable in the BIBO sense when h(t) has a finite area. To show
this, we begin with the definition of convolution in (3.9) and use the inequality
in (2.24).

|g(t)| =
∣∣∣∣
∫ ∞
−∞

f (τ ) h(t − τ ) dτ

∣∣∣∣

≤
∫ ∞
−∞
|f (τ ) h(t − τ )| dτ

=
∫ ∞
−∞
|f (τ )| |h(t − τ )| dτ

3. Because of this property, signals which are zero for negative time are dubbed causal signals.
4. A memoryless counterexample is h(t) = δ(t)



[16:20 9/9/2008 5165-Marks-Ch03.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 112 104–150

112 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

To establish BIBO stability, let |f (t)| ≤ C. Then

|g(t)| ≤ C
∫ ∞
−∞
|h(t − τ )| dτ

= C
∫ ∞
−∞
|h(τ )| dτ

Thus, if the area A = ∫∞−∞ |h(τ )| dτ is finite, then

|g(t)| ≤ AC

and the convolution system is stable in the BIBO sense.

3.3 System Characterization

A system is characterized if, for any input, the corresponding output can be ascertained. In
order to completely characterize the input-output relationship of a system of an unspecified
type, every response to all possible inputs must be cataloged. If the system is linear, only the
response to all impulsive inputs is required to uniquely specify the input-output relationship.
If the system is both linear and time invariant, a single function, dubbed the impulse response,
is required. The impulse response of linear time variant and linear time invariant system
goes by other names. In optics and imaging, it is referred to as the line spread function or
the point spread function. In electromagnetics, the impulse response is called the Green’s
function.

3.3.1 Linear System Characterization

3.3.1.1 Continuous Time Systems

The input output relationship of a system can be written in terms of the sifting property of
the Dirac delta in (2.27).

g(t) = S{ f (t)} = S

{∫ ∞
−∞

f (τ )δ(t − τ )dτ

}
.

Since the integral is a continuous sum, due to the additive property of the linearity, we can
write

g(t) = S{ f (t)} =
∫ ∞
−∞

S{f (τ )δ(t − τ )dτ }.

The operator, S{. . .}, operates only on functions ot t. Thus, x(τ ) and dτ can be extracted
from operator due to the homogeneity property of linearity. The result is

g(t) = S{ f (t)} =
∫ ∞
−∞

f (τ )S{δ(t − τ )}dτ. (3.12)

Define the impulse response, h(t, τ ), as the system response to all Dirac delta inputs.

h(t, τ ) = S{δ(t − τ )}. (3.13)

This is illustrated in Figure 3.6. When the input impulse is shifted to a different value of τ ,
the impulse response generally changes its shape.
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FIGURE 3.6. The linear system is totally characterized by its response to all Dirac delta inputs,
{δ(t − τ )| −∞ < t <∞,−∞ < τ <∞}, for all values of (t, τ ).

Substituting (3.13) into (3.12) gives the superposition integral

g(t) =
∫ ∞
τ=−∞

f (τ )h(t, τ )dτ. (3.14)

Knowledge of the impulse response, h(t, τ ), therefore suffices to totally characterize a linear
system.

3.3.1.2 Discrete Time Systems

Discrete Time Systems have an analogous characterization. Let S be a linear operator. The
steps for derivation of the superposition sum characterization of discrete time linear systems
follow the same steps as the continuous time case.

g[n] = S{ f [n]}

= S

{ ∞∑
m=−∞

f [m]δ[n− m]
}

; Kronecker delta sifting property

=
∞∑

m=−∞
S{f [m]δ[n− m]} ; additivity property

=
∞∑

m=−∞
f [m]S{δ[n− m]} ; homogeneity property

=
∞∑

m=−∞
f [m]h[n,m] ; the superposition sum

where the discrete time impulse response is

h[n,m] = S{δ[n− m]} (3.15)

3.3.2 Causal Linear Systems

The impulse of a causal linear system is zero for t < τ . Hence

h(t, τ ) = h(t, τ )μ(t − τ ). (3.16)

To show this, we make use of the property that a zero input into a linear system produces a
zero output. Thus, with reference to Figure 3.7, the input δ(t− τ1), zero from−∞ < t < τ ,
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d(t−t1) d(t−t2)

h(t,t1)

h(t,t2)

t

S{·}

t

t2 t2t1t1

FIGURE 3.7. If a system is both linear and causal, the response to an input Dirac delta at t = τ must
result in a response that is zero for t < τ .

produces an output which is zero on the same interval. No output can occur before a system
stimulus is applied. Thus, h(t, τ1) in Figure 3.7 is zero for t < τ1. Similarly, in Figure 3.7,
with an input δ(t− τ2) (drawn with a broken line), the impulse response, h(t, τ2) (also drawn
with a broken line) of a causal linear system must be zero for t < τ2. These observations
substantiate (3.16).

3.3.3 Linear Time Invariant (LTI) Systems

Consider the linear time invariant system in Figure 3.8. Let an impulse, δ(t), applied at
t = 0, have a system response of h(t). Since the system is time invariant, shifting the input
to δ(t − τ1) similarly shifts the output to h(t − τ1). Similarly, δ(t − τ2) produces h(t − τ2).
Hence, if S{δ(t)} = h(t), then

S{δ(t − τ )} = h(t − τ ). (3.17)

Compating with (3.13), we see that the impulse reponse of an LTI system is only a function
of the distance between t and τ . Specifically5

h(t, τ ) = h(t − τ ) (3.18)

and only a single function, h(t), is required to totally characterize the LTI system.

h(t) = S{δ(t)}. (3.19)

FIGURE 3.8. For a time invariant system, shifting the location of a Dirac delta input results in an
equivalent shift in the response of the system.

5. The relation in (3.18) is a common abuse of notation.Atwo-dimensional function, h(t, τ ), cannot be equated
to a one-dimensional function of the same name.
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When the impulse response in (3.19) is used, the superposition integral in (3.14) becomes
the convolution integral

g(t) =
∫ ∞
−∞

f (τ )h(t − τ )dτ. (3.20)

A shorthand notation for convolution is

g(t) = f (t) ∗ h(t). (3.21)

For discrete time systems, the convolution sum is

g[n] =
∞∑

m=−∞
f [m]h[n− m]

= f [n] ∗ h[n]
where the discrete time LTI impulse response is

h[n] = S{δ[n]}.

3.3.3.1 Convolution Algebra

Convolution algebra properties for continuous time and discrete time operations are in
Tables (3.1) and (3.2). Using the definition of convolution and Fourier transformation,
these properties are straightforward to show.

The frequency response property of convolution indicates a single frequency signal,
expressed as a complex exponential, when placed through an LTI system, yields an output of
the same frequency albeit with different magnitude and phase. The magnitude and phase are
expressed by the frequency response as a complex number. The magnitude of the complex

TABLE 3.1. Continuous time convolution algebra.

Property Continuous

definition x(t) ∗ h(t) = ∫∞
τ=−∞ x(τ )h(t − τ )dτ

identity element x(t) ∗ δ(t) = x(t)

commutative x(t) ∗ h(t) = h(t) ∗ x(t)

associative x(t) ∗ {y(t) ∗ h(t)} = {x(t) ∗ y(t)} ∗ h(t)

distributive x(t) ∗ {y(t)+ h(t)} = {x(t) ∗ y(t)}

+{x(t) ∗ h(t)}

shift x(t − τ ) ∗ h(t) = x(t) ∗ h(t − τ )

frequency response h(t) ∗ e j2πut = H(u)e j2πut

Fourier transform x(t) ∗ h(t) ↔ X(u)H(u)

derivative
d

dt

[
x(t) ∗ h(t)

] = dx(t)

dt
∗ h(t)

= x(t) ∗ dh(t)

dt
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TABLE 3.2. Discrete time convolution algebra.

Property Discrete

definition x[n] ∗ h[n] = ∑∞
−∞ x[m]h[n− m]

identity element x[n] ∗ δ[n] = x[n]

commutative x[n] ∗ h[n] = h[n] ∗ x[n]

associative x[n] ∗ {y[n] ∗ h[n]} = {x[n] ∗ y[n]} ∗ h[n]

distributive x[n] ∗ {y[n] + h[n]} = {x[n] ∗ y[n]}

+{x[n] ∗ h[n]}

shift x[n− m] ∗ h[n] = x[n] ∗ h[n− m]

frequency response h[n] ∗ e j2πnf = HD( f )e j2πnf

Fourier transform x[n] ∗ h[n] ↔ XD( f )HD( f )

number indicated amplification of the input complex exponential and the angle of the
complex number indicates the phase shift. Specifically, for an LTI system with impulse
response h(t),

S{e j2πvt} = e j2πvt ∗ h(t) = H(v)e j2πvt . (3.22)

where the frequency response, H(u), is the Fourier transform of the impulse response.

h(t)←→ H(u).

This property, illustrated in Figure 3.9, reveals the LTI system alters the amplitude and
phase of each frequency, but otherwise does not alter the frequency. If a large mechanical
body has a single component vibrating at a given frequency, then, if an LTI system, all
vibrations in the body are of the same frequency, albeit at different phases and amplitudes.
Likewise, in large LTI systems of arbitrarily connected resisters, inductors, capacitors and
amplifiers, a single sinusoidal voltage source inserted at any part of the circuit will result
in every current and voltage in the circuit oscillating at the same frequency. The phasor
used in linear circuit analysis allows the magnitude and phase of these oscillations to be
characterized [141, 1184].

The complex frequency response in (3.22) is physically interpreted by its real component.
Taking the real part of both sides of (3.22) gives

S{cos(2πvt)} = cos(2πvt) ∗ h(t) = |H(v)| cos (2πvt + � H(v)) (3.23)

FIGURE 3.9. A sinusoidal input into an LTI system always results in a sinusoidal response of the same
frequency. The magnitude change and phase shift are specified by the frequency response, H(u).
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FIGURE 3.10. A cosine into an LTI system will emerge as a cosine of the same frequency with different
magnitude and phase.

where

H(v) = |H(v)|e j � H(v).

keeps tally of the phase shift and amplitude scaling of an input cosine. This is illustrated in
Figure 3.10.

3.3.3.2 Convolution Mechanics

The convolution integral in (3.20) can be interpreted using the “flip and shift” mechanics
of convolution illustrated in Figure 3.11. The integral is a function of τ . To visualize the
operation, we begin with the impulse response, h(τ ), shown in the upper left corner in
Figure 3.11. We transpose this function to form k(τ ) = h(−τ ) as shown. As a function of τ
for a fixed t, the expression k(τ − t) is recognized as k(τ ) shifted from τ = 0 to τ = t. This
is shown in the upper right of Figure 3.11. Clearly, k(τ − t) = h(t − τ ) and h(t − τ ) is the
impulse response contribution to the convolution integral in (3.20). The function h(t − τ )
is recognized as the “flip and shift” of h(τ ).

FIGURE 3.11. The “flip and shift” mechanics of convolution.
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As t increases, h(τ − t) moves down the τ axis. The mechanics of the convolution integral
are now clearly seen. With f (τ ) fixed, as illustrated on the bottom of Figure 3.11, h(t − τ )
shifts to the right as t increases. For any fixed value of t, the area (integral) of the product
f (τ )h(t − τ ) produces the output, g(t), for the corresponding value of t.

The procedure for discrete time convolution is similar.

3.3.3.3 Circular Convolution Mechanics

Circular convolution is obtained by performing an inverse DFT on the product of two DFT’s
and is the topic of Section 2.6.1. For convenience, the circular convolution sum is repeated
here from (2.119).

y[n] =
N−1∑
m=0

x[m]h[n− m]. (3.24)

Relation to Linear Convolution. Circular convolution can be expressed as linear
convolution if we define

xN [n] =
{

x[n] ; 0 ≤ n < N
0 ; otherwise.

Then the circular convolution in (3.24) can be written in terms of linear convolution

y[n] =
∞∑

m=−∞
xN [m]h[n− m] = xN [n] ∗ h[n]. (3.25)

This is illustrated in Figure 3.12.
Circular Convolution Mechanics. The term “circular” in circular convolutions comes

from the ability to interpret (3.24) by performing the “flip and shift” operations of
convolution on a circle. The values of xN [n] are labelled [a,b,c,d] in Figure 3.12 where
the period is N = 4. Likewise, the values of h[n] for its first period are labelled [A,B,C,D].
Using these same letters, the convolution of xN [n] with h[n] can be interpreted as shown
in Figure 3.13. The letters [a,b,c,d] corresponding to xN [n] appear on the outer circle and
do not move. The [A,B,C,D] letters of h[n], shifted, rotate clockwise on the inner circle. At
time n = 0, the circular convolution result is

y[0] = aA+ bD+ cC + dB.

For time n = 1, the inner circle rotates one unit and

y[1] = aB+ bA+ cD+ bC.

The circular shift continues one unit at a time. Since N shifts bring us back to the beginning,
the output y[n] is periodic with period N .

Continuous circular convolution6 is performed analogously.

3.3.3.4 Step and Ramp Response Characterization

An LTI system’s impulse response can be determined from the system’s step or ramp
response. Define

hn(t) = S {rn(t)} (3.26)

6. e.g., See Table 2.6.
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xN[n] h[n]

d ∗a

b
n n

N N

FIGURE 3.12. Illustration of performing circular convolution of two discrete time periodic signals with
identical periods, N . One of the functions, x[n], is truncated to a single period and forms xN [n]. The
linear convolution of xN [n] with h[n] is the circular convolution of x[n] and h[n].

FIGURE 3.13. Illustration of the mechanics of circular convolution. The values [a,b,c,d] and [A,B,C,D]
are the same as in Figure 3.12. The two figures illustrate two visualizations of the same circular
convolution problem.

where
(

d

dt

)n

rn(t) = δ(t). (3.27)

The general solution is, for n ≥ 1,

rn(t) = 1

n! t
n−1μ(t). (3.28)
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Clearly, h0(t) = h(t) is the system’s impulse response. h1(t) = S {μ(t)} is the system’s step
response and h2(t) = S {tμ(t)} is the system’s ramp response.

For LTI systems, differentiation is commutative with the system operator. Differentiating
(3.26) and using (3.27), gives

(
d

dt

)n

hn(t) =
(

d

dt

)n

(S {rn(t)})

= S

{(
d

dt

)n

rn(t)

}

= S {δ(t)}
= h(t)

(3.29)

Thus, the impulse response, h(t), can be obtained by differentiating the step response once or
the ramp response twice. For continuous time systems, this characterization is particularly
important due to the difficulty of realization of an approximation of a Dirac delta.7 The unit
step, on the other hand, can be better realized experimentally without exposing the system
under test to high power levels.

3.3.3.5 Characterizing an LTI System

An LTI system is characterized by its impulse response or, equivalently, its frequency
response. The frequency response can be experimentally determined by repeated exper-
iments of the type shown in Figure 3.10. The response of the system to a cosinusiod
is used to determine the magnitude and phase of the frequency response for a single
frequency. Changing the frequency results in determination of a second magnitude and
phase. Finding these points for all frequencies constitutes determination of the system’s
frequency response.8

Alternately, the impulse response of an LTI system can be determined from a single
experiment either directly by application of a Dirac delta input or indirectly by appropriate
differentiation of the system’s step or ramp response. The Fourier transform of the impulse
response is the system’s frequency response.

3.3.3.6 Filters

Commonly used filters are LTI systems characterized by their frequency responses. They
are illustrated in Figure 3.14. Ideally, they are zero phase filters in that the phase and,
consequently, the imaginary part of the Fourier transform is zero. We will here treat the
case for continuous time. The discrete time case is the topic of Exercise 3.16. For the
continuous case, the filters are as follows

(a) The low pass filter with bandwidth B has a frequency response of

H(u) = �
( u

2B

)
.

7. A Dirac delta has infinite height and infinite power and “the infinite is nowhere to be found in reality” David
Hilbert.

8. For all real systems, negative frequency values follow as the result of the conjugate symmetry of the
frequency response.
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FIGURE 3.14. Commonly used ideal filters include (a) the low pass filter, (b) the bandpass filter, (c) the
high pass filter and (d) band stop filter. The band stop filter is also referred to as a notch filter.

All frequencies components less than B are set to zero. The corresponding
continuous time impulse response follows from the inverse Fourier transform

h(t) = 2B sinc(2Bt).

(b) The bandpass filter passes frequencies in a band of width B centered at f0. The
frequency response of the bandpass filter is

H(u) = �
(

u− f0
B

)
+�

(
u+ f0

B

)
.

It follows that the impulse response of the high pass filter is

h(t) = 2B sinc(2Bt) cos(2π f0t).

(c) The high pass filter has a frequency response of

H(u) = 1−�
( u

2B

)
.

and an impulse response

h(t) = δ(t)− 2B sinc(2Bt).

(d) The band stop (or notch) filter rids the signal of frequency components in a band of
length B centered at frequency f0. The frequency response is

H(u) = 1−
[
�

(
u− f0

B

)
+�

(
u+ f0

B

)]
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FIGURE 3.15. The process of amplitude modulation. A signal proportional to the modulated signal,
z(t), is broadcast by the antenna shown on the right.

and the corresponding impulse response follows as

h(t) = δ(t)− 2B sinc(2Bt) cos(2π f0t).

3.4 Amplitude Modulation

AM radio derives from amplitude modulation used to multiplex audio frequencies on theAM
radio frequency band. The modulation process is shown in Figure 3.15. An audio baseband
signal, x(t), has bandwidth B. The signal is added to a bias, b. For coherent demodulation,
the value of b is unimportant.

w(t) = x(t)+ b ≥ 0. (3.30)

This signal is multiplied by a carrier frequency, f0, to form

z(t) = 2 w(t) cos(2π f0t). (3.31)

Using the convolution theorem, the spectrum of this signal is

Z(u) = W (u) ∗ [δ(u+ f0)+ δ(u− f0)]

or

Z(u) = W (u+ f0)+W (u− f0) (3.32)

where, from (3.30),

W (u) = X(u)+ b δ(u). (3.33)

As is illustrated in Figure 3.16, the baseband signal is shifted or heterodyned down the
frequency axis. AM radio multiplexes a number of such baseband signals side by side on
the AM frequency spectrum by using different carrier frequencies.

3.4.1 Coherent Demodulation

Coherent demodulation of the amplitude modulated signal, z(t), is illustrated in Figure 3.17.
The coherent modulator regains the original baseband signal, x(t). For reasons to become
obvious, however, it is not used for commercial AM radio.

An antenna receives a broadband signal which is passed through a bandpass filter equal
to one for f0 − B ≤ |u| ≤ f0 + B and zero otherwise. From Figure 3.16, this is the band of
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FIGURE 3.16. The spectrum, X(u), of the baseband signal and the spectrum, Z(u), resulting from the
amplitude modulation performed in Figure 3.15. See (3.31).

FIGURE 3.17. Coherent demodulation of anAM signal.The bandpass filter (BPF) over the band f0−B ≤
|u| ≤ f0 + B. The low pass filter (LPF) passes the band of frequencies −B ≤ u ≤ B.

frequencies over which then we see the spectrum Z(u). As shown in Figure 3.16, we will
assume the output of the bandpass filter is z(t). This signal is then multiplied by a cosinusoid
with the same frequency, f0, as the carrier. If there is coherence (i.e., the phase is θ = 0),
then the filter output is

v(t) = z(t) cos(2π f0t) (3.34)

or, in the frequency domain

V (u) = Z(u) ∗ 1

2
[δ(u+ f0)+ δ(u− f0)] .

Using the expression for Z(u) in (3.31) gives

V (u) = 1

2
W (u+ 2f0)+W (u)+ 1

2
W (u− 2f0). (3.35)

The component of interest is W (u). The other terms are high frequency components and
can be removed using the low pass filter (LPF) in Figure 3.17 which is one for |u| ≤ B and
is otherwise one. The output of the low pass filter is therefore

u(t) = w(t)

or, from (3.30),

u(t) = x(t)+ b.
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Thus, after subtracting the bias in the last step shown in Figure 3.17, the output is the
originally transmitted signal

y(t) = x(t). (3.36)

The coherent demodulator has therefore regained the original signal from the heterodyned
signal, z(t).

3.4.1.1 Loss of Coherence and Fading

Coherent demodulation must maintain the carrier frequency phase θ = 0 in Figure 3.17
and must therefore be synchronized with the phase of the transmitter carrier in Figure 3.15.
To illustrate, suppose the phase in the coherent demodulator is θ = −π/2. The carrier thus
becomes cos(2π f0t − θ ) = sin(2π f0t) and, instead of (3.34), we have

v(t) = z(t) sin(2π f0t).

Its Fourier transform is

V (u) = Z(u) ∗ 1

j2
[δ(u− f0)− δ(u+ f0)]

or, using (3.31)

V (u) = 1

j2
W (u− 2f0)− 1

j2
W (u+ 2f0).

Note, in comparison to (3.35), the spectrum of the low pass signal, W (u), has been destroyed
by destructive interference. The output of the coherent demodulator is thus

y(t) = 0. (3.37)

Therefore, as θ changes from zero to π/2, we see fading of the original signal to zero.
Greater details about fading are the topic of Exercise 3.6.

3.4.2 Envelope Demodulation

To avoid the synchronization of the transmitter and receiver oscillators required by coherent
demodulation, an envelope detector can be used to demodulate z(t). Doing so requires that
the bias, b, be chosen such that,9

w(t) = x(t)+ b ≥ 0. (3.38)

The modulated signal, z(t), in (3.31) then resembles that shown in Figure 3.18. The signal,
w(t), rides the upper envelope of z(t). Roughly, the envelope can be found by connecting
the relative maxima of the signal.10

The necessity of requiring w(t) ≥ 0 is apparent in Figure 3.19 where w(t) is allowed to go
negative. When the envelope hits zero, we are faced with the problem of whether to follow

9. Choosing the bias to minimize the average power required by the modulated signal is the topic of
Exercise 4.21.

10. For details of recovering x(t) from the envelope, see Exercise 6.15.
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FIGURE 3.18. The modulated signal z(t) in (3.31) when the bias is sufficiently large to assure that
w(t) ≥ 0. The signal, w(t), then rides the upper envelope of the amplitude varying sinusoid.

FIGURE 3.19. The modulated signal z(t) in (3.31) when the bias is too small to assure that w(t) ≥ 0.

the envelope into negative territory, or to keep the envelope positive. The information is
there to make this decision. Otherwise, coherent demodulation would not be possible for
all values of bias. From the perspective of envelope detection, however, taking advantage
of this information is difficult.11

3.5 Goertzel’s Algorithm for Computing the DFT

Goertzel’s algorithm uses an LTI system to compute the discrete Fourier transform (DFT)12

of signal at a single value of k. The impulse response of the filter for Goertzel’s algorithm is

hG[n] = e j2π (n+1)k/N (3.39)

11. See Exercise 3.7.
12. See (2.116).
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FIGURE 3.20. Illustration of Goertzel’s algorithm for computing the DFT. A discrete time signal, x[n],
is placed into an LTI filter with an impulse response given by (3.39). The filter’s output, y[n], is equal
to the DFT value X[k] at time n = N − 1.

there N is the length of the DFT. The resulting convolution is

y[n] = x[n] ∗ hG[n]

= e j2π (n+1)k/N
n∑

m=0

x[m] e−j2πmk/N .
(3.40)

The output signal at time n = N − 1 is

y[N − 1] =
N−1∑
m=0

x[m] e−j2πmk/N .

Thus, with reference to the DFT in (2.116), the output at this point in time is equal to the
DFT of the input at the frequency corresponding to k.

y[N − 1] = X[k].
This is illustrated in Figure 3.20.

The Goertzel algorithm is more efficient than an FFT when only a few values of Fourier
transform are required.

Implementation of Goertzel’s algorithm and its use in generating short time Fourier
transforms is the topic of Exercise 9.7.

3.6 Fractional Fourier Transforms

The fractional Fourier transform [245, 1068, 1101], a generalization of the Fourier transform
[1579], was first presented by Namias [1015, 969] and has subsequently found application
in sonar [830], radar [661, 1359], beamforming [1546], signal recovery [257, 415],
signal synthesis [1147], pattern recognition [1558, 705], time-frequency representations
[17, 1066, 1067], ultrasound [95], speech recognition [1206], target detection [1359],
quantum mechanics [1015], and optics [775, 1068]. The fractional Fourier transform is
also called the angular Fourier transform [969].

3.6.1 Periodicity of the Fourier Transform Operator

The Fourier transform operator, F , is defined through the Fourier transformer relation
in (3.8),

F x(t) = X(t) =
∫ ∞
−∞

x(τ )e−j2π tτdτ, (3.41)
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where

x(t)↔ X(u)

are Fourier transform pairs. From the duality theorem, application of the operator a second
time gives transposition of the original signal

F2 x(t) = x(−t). (3.42)

A third application gives

F3 x(t) = X(−t) (3.43)

A fourth application returns to us the original signal.

F4 x(t) = x(t) (3.44)

Additional applications of F repeat the cycle.
The operations Fn are linear for n = 1, 2, 3, 4 and therefore can be written using a

superposition integral

Fn x(t) =
∫ ∞
−∞

x(τ )φn(t, τ )dτ (3.45)

where the impulse kernel is

φn(t, τ ) =

⎧⎪⎪⎨
⎪⎪⎩

δ(τ − t) ; n = 0
e−j2π tτ ; n = 1
δ(τ + t) ; n = 2
e j2π tτ ; n = 3

(3.46)

The kernel φn(t, τ ) can be viewed as periodic in n with a period of four. Thus, for example,
φ 9(t, τ ) = φ 1(t, τ ).

3.6.2 Fractional Fourier Transform Criteria

The fractional Fourier transform is motivated by a generalization of (3.45) to operations of
the form Fa x(t) where a is a real number. We require the generalization to be linear. Thus
the generalization can be expressed as a superposition integral of the form

Fa x(t) =
∫ ∞
−∞

x(τ )φa(t, τ )dτ (3.47)

The generalization then corresponds to identifying the fractional Fourier transform kernel,
φa(t, τ ). The solution must

(a) meet the boundary conditions in (3.46) when a = n, and
(b) be periodic in a with a period of four.

These criteria do not specify a unique generalization.
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3.6.3 The Weighted Fractional Fourier Transform

The weighted fractional Fourier transform, one of many possible definitions of the fractional
Fourier transform meeting the boundary conditions in (3.46), is defined as [245]

Fa x(t) = ι0(a) x(t)+ ι1(a) X(t)+ ι3(a) x(−t)+ ι3(a) X(−t) (3.48)

where the weights are

ιm(a) = 1

4

1− e j2πa

1− e jπ (a−m)/2
. (3.49)

The kernel of the weighted fractional Fourier transform follows as

φa(t, τ ) = ι0(a) δ(τ − t)+ ι1(a) e−j2π tτ + ι3(a) δ(τ + t)+ ι3(a) e j2π tτ (3.50)

The plots of ιm(a) in Figure 3.21 reveal that

ιm(n) = δ[n− m],

a property we can also demonstrate analytically. At n = m, this Kronecker delta sifts the
proper term in the kernel in (3.50) and the boundary conditions in (3.46) are satisfied. The
weights in (3.49) thus smoothly interpolate the fractional Fourier transform. For all values

FIGURE 3.21. Plots of the real (solid line) and imaginary (dashed lines) components of ιm(a) in (3.49).
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FIGURE 3.22. The weighted fractional Fourier transform of x(t) = �(t) for the parameter a between
zero and one in stems of 1

14 . The real (solid line) and imaginary (dashed lines) components in each
step show the transition from the rectangle (a = 0) function to the sinc (a = 1).

of a, the weights also sum to one.13

3∑
m=0

ιm(a) = 1 (3.51)

An example of a weighted fractional Fourier transform is shown in Figure 3.22 for the
case of x(t) = �(t).

3.7 Approximating a Linear System with LTI Systems

A linear system response can be approximated by a superposition of LTI systems. Here
is one way to perform this operation. Sample τ at points {τn| − ∞ < n < ∞} such that
τn < τn+1. Then the superposition integral in (3.14) can be written as

g(t) =
∫ ∞
τ=−∞

f (τ )h(t, τ )dτ.

=
∞∑

n=−∞

∫ τn+1

τ=τn

f (τ )h(t, τ )dτ.

(3.52)

13. See Exercise 3.28.
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The input, f (τ ), can be chopped into intervals.

fn(τ ) =
{

f (τ ) ; τn ≤ τ < τn+1

0 ; otherwise
(3.53)

and (3.52) becomes

g(t) =
∞∑

n=−∞

∫ ∞
τ=−∞

fn(τ )h(t, τ )dτ. (3.54)

Choose a point sn in each interval such that

τn ≤ sn ≤ τn+1.

We would like to use the impulse response, h(t, τ ) at τ = sn to approximate an LTI system.
If, indeed, the system is LTI, then h(t, τ ) = k(t− τ ) where k(t) is the LTI impulse response.
Equivalently, for an LTI system, h(t+ τ, τ ) = k(t). Motivated by this expression, we denote
the impulse response assigned to the nth interval in τ by

kn(t) = h(t + sn, sn) (3.55)

or

kn(t − τ ) = h(t − τ + sn, sn). (3.56)

The superposition integral in (3.54) is then approximated by

g(t) ≈
∞∑

n=−∞

∫ ∞
τ=−∞

fn(τ )kn(t − τ )dτ

=
∞∑

n=−∞
fn(t) ∗ kn(t)

(3.57)

The piecewise invariant approximation14 [884] in (3.57) is a summation of convolutions.
As illustrated in Figure 3.23, the time variant linear system is approximated by a
superposition of LTI systems. The piecewise invariant approximation meets the boundary
condition of becoming exact when the linear system being approximated is time invariant.15

3.7.1 Examples of the Piecewise Invariant
Approximation

3.7.1.1 The Magnifier

For the linear time variant magnifier in Section 3.2.2.1, the impulse response from the
input-output relationship in (3.7) follows as

h(t, τ ) = δ(Mτ − t).

14. See Exercise 3.19 for the discrete time equivalent.
15. See Exercise 3.18.
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f (t)

fn (t)∗kn (t)

≈ g (t )

tn≤ t<tn+1

kn−1 (t )

kn+1 (t )

kn (t ) ∑

FIGURE 3.23. Block diagram visualization of the piecewise invariant approximation in (3.57). For the
time interval, τn ≥ t < τn+1, the input, f (t), is fed into the LTI filter whose impulse response, kn(t),
is determined from a sample of the time varying linear system impulse response, h(t, τ ). The outputs
of the LTI filters are summed to obtain an approximation of the linear system output, g(t).

f (t )

gPIA(t)

g(t)

t0 t1 t2 t3 t

Mt0 Mt1 Mt2 Mt3 t

FIGURE 3.24. The piecewise invariant approximation, gPIA(t), of the linear time variant magnifier
with an input-output relationship of g(t) = 1

M f
( t

M

)
. In this figure, M = 2.

The operation is time variant. Choose sn = τn. Thus, from (3.55),

kn(t) = δ (Mτn − (t + τn)) = δ ((M − 1)τn − t)

Using the piecewise invariant approximation in (3.57) gives

g(t) ≈
∑

n

fn (t − (M − 1)τn)

This is illustrated in Figure 3.24. The piecewise invariant approximation shifts the nth
subinterval from the point t = τn to the point t + (M − 1)τn = Mτn.

3.7.1.2 The Fourier Transformer

The Fourier transformer in (3.8) has an impulse response of

h(t, τ ) = e−j2π tτ
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Thus

h(t + τ, τ ) = e−j2π (t+τ )τ

and

kn(t) = e−j2π (t+sn)sn .

Substituting into the piecewise invariant approximation in (3.57) gives

g(t) ≈
∞∑

n=−∞

∫ ∞
−∞

fn(τ )e−j2π ((t−τ )+sn)sn dτ

=
∞∑

n=−∞
e−j2π (t+sn)sn

∫ ∞
−∞

fn(t)e j2πsnτdτ

=
∞∑

n=−∞
e−j2π (t+sn)sn Fn(−sn)

(3.58)

where we use the Fourier transform pair

fn(t)←→ Fn(u).

To illustrate, let f (t) = �(t). Divide the

[
−1

2
,

1

2

]
interval into 2N + 1 subintervals of

length 
 = (2N + 1)−1 and center points { sn = n
 | − N ≤ n ≤ N}. Then

fn(t) = �
(

t − sn




)
↔ Fn(u) = 
 sinc(u
)e−j2πsnu.

Substituting into (3.58) gives

g(t) ≈
N∑

n=−N

e−j2π (t+sn)sn
 sinc(sn
)e−j2πs2
n

= 


N∑
n=−N

sinc(sn
) e−j2πsnt

= 


[
1+ 2

N∑
n=1

sinc(sn
) cos(2πsnt)

]
.

(3.59)

Plots of this piecewise invariant approximation are shown in Figure 3.25 for various values
of N . The N = 50 plot is very close to the desired result of sinc(t) which is plotted with a
dotted line.

3.8 Exercises

3.1. Evaluate the following convolutions.
(a) jinc(t) ∗ sinc(at); a ≥ 2.
(b) sech(π t) ∗ cosech(π t)
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FIGURE 3.25. The piecewise invariant approximation to the Fourier transformer response to f (t)=�(t)
given in (3.59) for N = 5, 10 and 50. The N = 50 curve is close to the desired result of g(t) = sinc(t)
which is plotted with a dotted line.

3.2. (a) Evaluate the autoconvolution of h(t) = 1

t
.

(b) Are the real and imaginary parts of the Fourier transform of the unit step, μ(t),
Hilbert transform pairs?

3.3. Show that, if x(t) is bandlimited in the sense that X(u) = X(u)�(u/2),
then [478]
(a) convolving x(t) with the spherical Bessel function, 2j0(2π t), is x(t).
(b) convolving x(t) with the spherical Bessel function, j1(2π t), gives a result

proportional to the derivative of x(t).
3.4. Let z(t) in (3.31) be a system output.

(a) Do we have a linear system if x(t) is the input? If w(t) is the input?
(b) If linear, what is the impulse response, h(t, τ )?
(c) Do we have a time invariant system if x(t) is the input? If w(t) is the

input?
(d) If LTI, what is the impulse response, h(t)?
(e) Do we have a memoryless system if x(t) is the input? If w(t) is the input?

3.5. Repeat Exercise 3.4 except the system output is v(t) in (3.34) rather than w(t).
3.6. Fading. Evaluate the strength of the signal y(t) in the coherent amplitude

modulation demodulator in Figure 3.17 as a function of θ . From (3.36), the
strength is one (the coefficient of x(t)) for θ = 0 and, from (3.37), the strength
is zero.

3.7. Consider use of an envelope detector on a signal where w(t) dips below zero.
An example of such a modulated signal is shown in Figure 3.19. When the
envelope hits zero, explain how we can use the phase of z(t) to decide whether
to follow the envelope into negative territory, or whether to continue with a positive
envelope.

3.8. Single side band suppressed carrier amplitude modulation (SSSC AM).
Consider amplitude modulation of a real signal, x(t). The spectrum, Z(u), of the
heterodyned signal in Figure 3.16 has symmetry in that knowledge of Z(u) for
f0 < |u| ≤ f0 + B, called the upper sideband, can be used to construct Z(u) over
the lower sideband f0 − B ≤ |u| < f0. If only the upper side band were broadcast,
then the number of baseband signals multiplexed on an AM frequency band could
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be doubled. The signal z̃(t) with spectrum16

z̃(t)←→ Z̃(u) =
{

X(u− f0) ; f0 ≤ |u| ≤ f0 + B
0 ; otherwise

is referred to as the single side band suppressed carrier amplitude modulation
encoding of the baseband signal, x(t). Using a bias of b = 0, the signal z̃(t) can be
generated as shown in Figure 3.15, except only the frequency band f0 < |u| ≤ f0+B
of z(t) is broadcast.
(a) Consider the coherent demodulation procedure in Figure 3.17 except that z̃(t)

emerges from the bandpass filter instead of z(t). Do we generate a form of x(t)
at the demodulator output when θ = 0?

(b) When θ �= 0?
(c) Explain in words what happens to the demodulated signal when the oscillator

frequency in Figure 3.17 is slightly greater than f0.
(d) Slightly less than f0.

3.9. Mellin convolution. The Mellin transform of a signal f (t) is

FM (z) =
∫ ∞

0
f (t)tz−1dt. (3.60)

(a) Evaluate the Mellin transform of f

(
t

τ

)
for τ > 0 in terms of FM (z).

(b) Define the Mellin convolution by

g(t) =
∫ ∞

0
f (τ )h

(
t

τ

)
dτ

τ
. (3.61)

Express the Mellin transform of g(t) in terms of the Mellin transforms of h(t)
and f (t).

3.10. Mellin transfer functions. Similar to the Mellin convolution in (3.61) is the
convolution

g(t) =
∫ ∞

0
f (τ )h(tτ )dτ. (3.62)

(a) Evaluate the Mellin transform of f (tτ ) for τ > 0 in terms of the Mellin
transform in (3.60).

(b) Show that

GM (z) = FM (1− z)HM (z). (3.63)

We will call HM (z) the Mellin transfer function.
(c) The Laplace transform is a special case of Mellin convolution. What is its

Mellin transfer function?
(d) What is the Mellin transfer function of the Hankel transform17 given by

g(t) = 2π
∫ ∞

0
τ f (τ )J0(2π tτ )dτ.

16. Note that z̃(t) is the amplitude modulation of the analytic signal, x̂(t), corresponding to x(t). See
Exercise 2.14.

17. The Hankel transform is introduced in Chapter 8 in (8.41).
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3.11. Let g[n] = S{ f [n]} denote a discrete time system. Define discrete time systems that
are
(a) homogeneous (see Section 3.2.1.1),
(b) additive (see Section 3.2.1.2),
(c) linear (see Section 3.2.1.3),
(d) time-invariant (see Section 3.2.1.4),
(e) LTI (see Section 3.2.1.5),
( f) causal (see Section 3.2.1.6),
(g) memoryless (see Section 3.2.1.7),
(h) stable (see Section 3.2.1.8), and
(1) invertible (see Section 3.2.1.9),

3.12. Specify a system that is
(a) additive but not homogeneous.
(b) homogeneous but not additive.

3.13. IIR Filters. An IIR (infinite impulse response) filter can be expressed as

Q∑
k=0

ak y[n− k] =
P∑

i=0

bi x[n− i] (3.64)

where x[n] is the input and y[n] is the outputs. The coefficients are fixed constants.
(a) Is this system LTI?
(b) If so, what is its impulse response and frequency response?

3.14. Linear differential equations with constant coefficients. Repeat Exercise 3.13
for the linear differential equation with constant coefficients.

Q∑
k=0

ak

(
d

dt

)k

y(t) =
P∑

i=0

bi

(
d

dt

)i

x(t).

3.15. Show that the superposition integral in (3.14) can be written as

g(t) =
∫ ∞
−∞

F(u)H(t, u)du. (3.65)

where f (t)↔ F(u) and

H(t, u) =
∫ ∞
−∞

h(t, τ )e j2πuτdτ.

3.16. The four continuous time filters presented in Section 3.3.3.6 are (a) the low pass
filter, (b) the bandpass filter, (c) the high pass filter and (d) band stop filter. Derive the
impulse responses, h[n], for these signals for the discrete time equivalent. Assume
the frequency responses in Figure 3.14 are functions of f and show a single period
of the frequency response on

[− 1
2 ,

1
2

]
.

3.17. Unlike space, time only flows in one dimension. As a consequence, all real temporal
systems must be causal. The LTI system in Figure 3.26 seems to violate this property.
The output is

g(t) = ε(t)+ ε(t − τ ) (3.66)

where

ε(t) = f (t)+ g(t).
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FIGURE 3.26. A system which is apparently noncausal. See Exercise 3.17.

Substituting (3.66) gives

ε(t − τ ) = −f (t).

Thus,

ε(t) = −f (t + τ ).

Substituting the last two equations into (3.66) gives

g(t) = −f (t)− f (t + τ ).

Thus, the output at time t depends on the input at a future time, t + τ . This appears
to not be a causal system. Since all temporal systems must be causal, something
here is wrong. What is it?

3.18. Show the piecewise invariant approximation in (3.57) becomes exact for LTI
systems.

3.19. Derive the equivalent of the piecewise invariant approximation in (3.57) for discrete
time systems.

3.20. Show that, when sn = nT for a fixed T , the piecewise invariant approximation for
the Fourier transformer in (3.58) is periodic with period 1/T .

3.21. Time variant linear systems a and b have impulse responses ha[n,m] and hb[n,m].
A signal, x[n], is placed into system a whose output is placed into system b.
(a) Express the impulse response, h[n,m], of the composite system in terms of

ha[n,m] and hb[n,m].
(b) Does the order of the cascade of the systems matter?
(c) Under what sufficient condition does the cascade order of the systems not

matter?
(d) Can there exist two time variant systems that, when cascaded, results in a time

invariant system?
3.22. The magnifier in (3.7) is subjected only to signals that are identically zero

for −∞ < t ≤ 0. If M = −1, does the input-output relationship display
causality?

3.23. Consider the linear system defined by

g(t) = f (t)− 1

M
f

(
t

M

)
(3.67)

Derive an expression to invert this system, i.e., given g(t), find f (t). A two
dimensional illustration of this problem is shown in Figure 3.27.
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FIGURE 3.27. Illustration of (3.67) as an image for M = 1
2 . The image on the left, Monika, is degraded

by superimposing a smaller brighter negative version of the image as shown on the right. (Gray scales
are scaled for display purposes.) The restoration problem is to recover the original image from the
degradation.

3.24. The input to an LTI system is, for a fixed ξ ,

f (t) =
⎧⎨
⎩

0 ; t ≤ 0
t ; 0 ≤ t ≤ ξ
ξ ; t ≥ ξ

Express the impulse response of the system, h(t), as a series of derivatives of the
output. HINT: Consider the solution methodology used in Exercise 3.23.

3.25. Linear Motion Blur [297]. A causal signal, f (t) is subjected to uniform motion
blur.

g(t) = f (t) ∗�
(

t − T

2T

)
(3.68)

where T is a known time duration. An image illustration of this linear motion blur,
shown in Figure 3.28. Specify a procedure to invert the system, i.e., find f (t) from
knowledge of g(t) and T . Hint: One might perform a Fourier transform of the
convolution in (3.68) to obtain

G(u) = 2TF(u)sinc (2Tu) e−j2πuT .

Then solve for F(u) and inverse transform. The reciprocal of the sinc, however,
contains undesirable poles and renders the procedure ill-posed. Here is an alternate
approach. Differentiate g(t) and apply the methodology used in Exercise 3.24.

3.26. Causal convolution. If both x(t) and h(t) are causal, show that the convolution
integral can be written as

g(t) =
∫ t

τ=0
x(τ )h(t − τ )dτ.

3.27. The following are examples of systems, g(t) = S{ f (t)}. Categorize each as linear
and/or time-invariant. Assume that ξ is a given number, p a given integer, and h(t)
or h[n] is a specified function. If linear, determine the impulse response.
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FIGURE 3.28. The image on the left, Modulo Man, is degraded by a horizontal linear motion blur from
left to right. The restoration problem is to find the original image from the smeared degradation on
the right given by (3.68). See Exercise 3.25.

(a) g[n] = | f [n− p]|2.
(b) g[n] = h[n] f [n].
(c) g[n] = h ( f [n]) .
(d) g[n] = n f [n].
(e) g[n] = f [n] − f [n− 1].
(f) g[n] = 3 f [n] − 2.

(g) g[n] = �f [n].
(h) g[n] = f [p] f [n].
(i) g[n] = f [2n].
(j) g[n] = f [n2].

(k) g(t) = f (t)+ ξ f (t− ξ )− d
dt f (t).

(l) g(t) = δ ( f (t))

(m) g(t) = ∫∞−∞ f (τ )dτ.

(n) g(t) = f (h(t))) .

(o) g(t) = f ( f (t)) .

(p) g(t) = ∫ f (t)
0 h(τ )dτ.

(q) g(t) = d
dt f (t).

(r) g(t) = 1.

(s) g(t) = 0.

3.28. Show that the sum of the weights in the weighted fractional Fourier transform sum
to one as in (3.51).

3.29. Some functions are their own Fourier transforms.
(a) Evaluate the weighted fractional Fourier transform for x(t) = e−π t2

.
(b) Evaluate the weighted fractional Fourier transform for x(t)= Kn(t) where Kn(t)

is the Hermite-Gaussian function in (2.92). Hint: From Exercise 2.46, Hermite
polynomials are evenly odd in the sense that

Hn(t) = (−1)nHn(−t).
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(c) What does the result in (b) say about weighted fractional Fourier transforms
that are expressed as a series

x(t) =
∞∑

n=0

αnKn(t).

3.30. Let x(t) be bandlimited with bandwidth B. Can the weighted fractional Fourier
transform also be a bandlimited function?

3.31. Show that the weighted fractional Fourier transform, Fa is periodic in a with a
period of two when x(t) is real and even.

3.32. § Transfinite numbers and systems theory. Georg Cantor (1845-1918), the creator
of set theory, also developed the theory of transfinite numbers [7, 244, 482]. Basi-
cally, Cantor showed that some infinities are larger than others.18 An example of a set
containing the smallest transfinite number of elements, ℵ0, is the set of nonnegative
integers, {0, 1, 2, 3, . . .}. An example of the next largest transfinite number, ℵ1, is
the number of elements in the set of all real numbers.An example of the next largest,
ℵ2, is the set of all functions of a real variable. Interestingly, like comprehending
a fourth or higher spatial dimension,19 comprehension of ℵ3 or higher escapes the
intuition [482]. Such sets, however, can be constructed mathematically. The set of
all subsets of a set with ℵN elements contains ℵN+1 elements.20

Consider then, characterizing a continuous time system. If we know nothing
about the system, we require the cataloging of every response to every input. Thus
we require knowledge of ℵ2 input-output relationships. If the system is linear and
time variant, we require the response of the system to a Dirac delta at every instance
in the input time domain, i.e., for all real numbers. Thus, we require the cataloging
of ℵ1 input-output relationships for complete system characterization. If the system
is LTI, a single input-output relationship is required: the response of the system
to an input impulse at time t = 0. For any given input, the output is given by the
convolution with the impulse response thus generated.
(a) What transfinite numbers analogously correspond to characterizing discrete

time systems?
(b) Specify a scenario where a continuous time linear system is completely

characterized by ℵ0 input-output relationships.

3.9 Solutions for Selected Chapter 3 Exercises

3.1. (a)
jinc(t) ∗ sinc(at)←→ √1− u2 �

(u

2

) [1

a
�
(u

a

)]

= 1

a

√
1− u2 �

(u

2

)
; a ≥ 2.

Thus

jinc(t) ∗ sinc(at) = 1

a
jinc(t).

18. ℵ0 �= ∞. The symbol∞, rather, is always used mathematically in terms of a limit.
19. See Section 8.3.
20. Possibilities of sets with ℵℵ0 or even ℵℵℵ0

elements etc., prompted Cantor to correspond with the Vatican
on possible theological implications of his theory [331].
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(b) From Table 2.5 and the duality theorem

cosech(π t)←→−j tanh(πu).

Since sech(π t)←→ sech(πu), we conclude

sech(π t) ∗ cosech(π t)←→−j sech(πu) tanh(πu).

From Table 2.5 and duality, we also conclude

πu sech(πu)←→−j sech(πu) tanh(πu).

Hence

sech(π t) ∗ cosech(π t) = πu sech(πu).

3.2. (a) Since

1

t
↔ jπ sgn(t),

if follows that

1

t
∗ 1

t
↔ −π2.

Thus

1

t
∗ 1

t
= −π2δ(t).

Note: Since Hilbert transformation is equivalent to convolving with
−1

π t
, this

problem illustrates the Hilbert transforming a Hilbert transformation results in the
negation of the original signal. Equivalently, an inverse Hilbert transform is obtained

by convolving with
1

π t
.

(b) Yes. From (2.99) and (2.100), for a causal signal,

I(u) = −1

πu
∗ R(u),

and

R(u) = 1

πu
∗ I(u).

For the unit step (see Table 2.4),

μ(t)←→ X(u) = 1

2

(
δ(u)− j

πu

)
. (3.69)

For X(u) = R(u) + jI(u), we have I(u) = −j

2πu
. Clearly, from (2.99), we have,

proceeding as in (a), the Hilbert transform

I(u) ∗ −1

2πu
= −1

2πu
∗ −1

2πu
= 1

2
δ(u).

From (3.69) this is, indeed, R(u).
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3.3. (a) From the Fourier transform of the spherical Bessel function in (2.83),

2j0(2π t)↔ P0(u)� (u/2) = � (u/2) .

Therefore, the zeroth order spherical Bessel function is a sinc.

j0(2π t) = 2 sinc(2t),

Thus

x(t) ∗ 2 j0(2π t)↔
[
X(u)�

(u

2

)]
�
(u

2

)
= X(u),

and, as was to be shown,

x(t) ∗ 2 j0(2π t) = x(t).

(b) From (2.83),

−4π j1(2π t)↔ 1

2
j4πP1(u)� (u/2) = j2πu� (u/2) .

Then

−4π j1(2π t) ∗ x(t)↔ [j2πu� (u/2)] [X(u)� (u/2)] = j2πuX(u).

From the derivative theorem, we therefore conclude

−4π j1(2π t) ∗ x(t) = d

dt
x(t).

3.10. Mellin transfer functions
(a) Setting ξ = tτ and using (3.60), the Mellin transform of f (tτ ) is

∫ ∞
0

f (tτ )tz−1dt =
∫ ∞

0
f (ξ )

(
ξ

τ

)z−1 dξ

τ
= τ−zFM (z).

(b) Applying this result to (3.62) gives

GM (z) =
∫ ∞
τ=0

f (τ )
[
τ−zHM (z)

]
dτ = HM (z)

∫ ∞
τ=0

f (τ )τ (−z+1)−1dτ

from which the desired solution in (3.63) follows.
(c) For the Laplace transform, h(t) = e−t . Using the definition of the gamma

function in (2.64) gives the following Mellin transfer function for the Laplace
transform.

HM (z) =
∫ ∞

0
tz−1e−tdt = (z) ; �z > 0.

3.11. The discrete time system is defined analogous to (3.1) as g[n] = S{ f [n]}. The
answers to this problem are straightforward restatements of continuous time
counterparts.
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(a) From Section 3.2.1.1, a discrete time system is homogeneous if, analogous
to (3.2),

S{a f [n]} = aS{ f [n]} (3.70)

where a is a scalar.
(b) From Section 3.2.1.2, a discrete time system is additive if, analogous to (3.3),

S{ f1[n] + f2[n]} = S{ f1[n]} + S{ f2[n]} (3.71)

(c) From Section 3.2.1.3, a discrete time system is linear if it is both additive and
homogeneous.

(d) From Section 3.2.1.4,a discrete time system is time-invariant if the system
operator, S{·}, commutes with all shift operators.

(e) From Section 3.2.1.5, a discrete time system is linear time-invariant (LTI) if is
both linear and time-invariant.

( f) From Section 3.2.1.6, a discrete time system is causal if the response at n = k,
g[k], is determined only by the input f [n] for n ≤ k.

(g) From Section 3.2.1.7, a discrete time system is memoryless if the response at
n = k, g[k], is determined only by the input at n = k, f [k].

(h) From Section 3.2.1.8, a discrete time system is stable in the BIBO sense if for
all bounded inputs, |f [n]| ≤ N <∞, there exists a finite number M <∞ such
that g[n] ≤ M.

(i) From Section 3.2.1.9, a discrete time system is invertible if its input can be
determined uniquely by its output. If S{ f [n]} = g[n]} then there exists an
operator S−1 such that S−1{g[n]} = f [n]}.

3.12. (a) An example of a system that is additive but not homogeneous is the conjugation
operation, S{ f (t)} = f ∗(t) is additive since the sum of the conjugate is the
conjugate of the sum. It is not, however, homogeneous since S{a f (t)} = a∗f ∗(t) �=
a f ∗(t). There is no known example when the signals and systems are constrained
to be real. (b) A system that is homogeneous but not additive has yet to be
identified.

3.13. IIR Filters
(a) Yes, the system is LTI.
(b) Perform a DTFT in (2.112) on both sides of (3.64) and use the shift theorem21

to give the frequency response

HD( f ) = YD( f )

XD( f )
=
∑Q

k=0 ake−j2πk f

∑P
i=0 i−j2π i f

.

The corresponding impulse response is obtained by applying the inverse DTFT
in (2.113). There is no closed form solution.

3.15. The power theorem in (2.101) can be written

∫ ∞
−∞

f (τ )k∗(τ ) dt =
∫ ∞
−∞

F(u)K∗(u) du. (3.72)

21. See the entry in Table 2.6.
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Set k∗(τ ) = h(t, τ ) for a fixed t. Then

K∗(u) =
[∫ ∞
−∞

h∗(t, τ )e−j2πuτdτ

]∗

=
∫ ∞
−∞

h(t, τ )e j2πuτdτ

≡ H(u, t).

Hence, (3.72) becomes (3.65).
3.20. When sn = nT for a fixed T , the piecewise invariant approximation for the Fourier

transformer in (3.58) is

g(t) ≈
∞∑

n=−∞
e−j2π (t+sn)sn Fn(−sn)

=
∞∑

n=−∞

[
Fn(−sn)e−j2πs2

n

]
e−j2πntT .

This is a Fourier series with Fourier coefficients

cn = Fn(−sn)e−j2πs2
n .

The period is 1/T .
3.21. (a)

y[n] =
∞∑

k=−∞
hb[n, k]x̂[k]

=
∞∑

k=−∞
hb[n, k]

[ ∞∑
m=−∞

ha[k,m]x[m]
]

=
∞∑

m=−∞

[ ∞∑
k=−∞

hb[n, k]ha[k,m]
]

x[m]

=
∞∑

m=−∞
ĥ[n,m]x[m]

where the composite impulse response is

ĥ[n,m] =
∞∑

k=−∞
hb[n, k]ha[k,m].

The results are similar to that obtained by multiplying two matrices.
(b) As is the case with multiplying two matrices, order matters.
(c) Order does not matter when the linear systems are time invariant22.

22. There may be preferred ordering in certain cases. A low pass filter, for example, should precede a
differentiator so that a smooth signal rather than a potentially spiky signal is differentiated.
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(d) Yes. A Fourier transformer followed by an inverse Fourier transformer, for
example, gives the degenerate albeit valid counterexample of a time invariant
identity operation.

3.22. Yes, the input-output relationship is causal. All (nonzero) response points are for
t ≥ 0 and occur after the stimuli for t ≤ 0.

3.23. To solve (3.67), define the magnifier operator, M, by

M{ f (t)} = 1

M
f

(
t

M

)

so that (3.67) can be written

g(t) = (1−M) f (t).

We will assume the operator is invertible and solve for f (t).

f (t) = (1−M)−1g(t). (3.73)

Expand the operator into a geometric series

(1−M)−1 =
∞∑

k=0

Mk

so that (3.73) becomes

f (t) =
∞∑

k=0

Mkg(t) (3.74)

or

f (t) =
∞∑

k=0

1

Mk
g

(
t

Mk

)
. (3.75)

This is our desired answer.
The steps in (3.73) through (3.75) lack a solid mathematical foundation. The

problem under consideration, though, is of the type that can be verified by
substitution of the result into the problem statement. If the answer works, there
is no need to substantiate the steps leading to it.

The mechanics of the solution in (3.75) can be best illustrated by truncating the
series to K terms and letting K tend to infinity.

fK (t) =
K∑

k=0

1

Mk
g

(
t

Mk

)
. (3.76)
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The first few terms are

f0(t) = g(t) = f (t)− 1

M
f

(
t

M

)
,

f1(t) =
[

f (t)− 1

M
f

(
t

M

)]
+
[

1

M
f

(
t

M

)
− 1

M2
f

(
t

M2

)]

= f (t)− 1

M2
f

(
t

M2

)
,

f2(t) =
[

f (t)− 1

M2
f

(
t

M2

)]
+
[

1

M2
f

(
t

M2

)
− 1

M3
f

(
t

M3

)]

= f (t)− 1

M3
f

(
t

M3

)
.

The pattern is now evident and we can show by induction that

fK (t) = f (t)− 1

MK
f

(
t

MK

)
.

The limit of the unwanted residual term is

lim
K→∞

1

MK
f

(
t

MK

)
=
⎧⎨
⎩

0 ; M > 1

A δ(t) ; M < 1

where23

A =
∫ ∞
−∞

f (t)dt.

The iteration therefore converges for M > 1 and converges with a Dirac delta artifact
for M < 1. Thus, with reference to Figure 3.27, if we attempt to restore the larger
signal by first demagnifying and subtracting, there will be an asymptotic delta in
the middle of the restored image. If the smaller of the two images on the right side
of Figure 3.27 is restored, there will be no artifact.

3.24. The input can be written as

f (t) = r(t)− r(t − ξ )

where the ramp is r(t) = t μ(t). From (3.29), we have

g′(t) = h(t)− h(t − ξ ).

Define w(t) := g′(t). Then, using the shift theorem

w(t)←→ W (u) =
(

1− e j2πuξ
)

H(u).

23. See, e.g., Exercise 2.16.



[16:20 9/9/2008 5165-Marks-Ch03.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 146 104–150

146 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

Solving for H(u) and using a geometric series gives

H(u) = W (u)

1− e j2πuξ
=
∞∑

n=0

W (u)e j2πnuξ . (3.77)

Inverse transforming gives

h(t) =
∞∑

n=0

w(t − nξ ).

The accuracy of this solution becomes more evident when we define

hN (t) :=
N∑

n=0

g′(t − nξ ).

so that hN (t) approaches the impulse response, h(t), as N −→∞ in the following
pointwise sense.

h0(t) = h(t) ; 0 ≤ t < ξ,

h1(t) = h(t) ; 0 ≤ t < 2ξ,

h2(t) = h(t) ; 0 ≤ t < 3ξ,

so that, in general

hN (t) = h(t) ; 0 ≤ t < (N + 1)ξ. (3.78)

As is the case in the solution to Exercise 3.23, use of the geometric series in (3.77)
should be questioned since

|e j2πuξ | ≮ 1

as required.24 As is the case in the solution in Exercise 3.23, however, this
questionable step becomes moot in light of the success of the solution in (3.78).

3.25. Linear Motion Blur [297]. Differentiate (3.68)

d

dt
g(t) = f (t) ∗ d

dt
�

(
t − T

2T

)
.

or
d

dt
g(t) = f (t) ∗ [δ(t)− δ(t − 2T )] = f (t)− f (t − 2T ). (3.79)

The horizontal derivative of the right to left linear motion blur in Figure 3.28 is
shown in Figure 3.29. A negative of the original image is shown to the right of the
original image. Applying the methodology of the solution to Exercise 3.24 gives

f (t) =
∞∑

n=0

g′(t − 2nT ).

If we define

fN (t) =
N∑

n=0

g′(t − 2nT ) (3.80)

24. See (14.6).
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FIGURE 3.29. Illustration of the horizontal derivative of the linearly blurred image Modulo Man shown
in Figure 3.28. This is an illustration of (3.79). To restore the original image according to the formula
in (3.80), repeatedly shift this image to the right and add.

we have, as in the solution to Exercise 3.24,

fN (t) = f (t) ; 0 ≤ t < 2(N + 1)T .

Thus, the image in Figure 3.29 is shifted and added to eliminate the negative image
on the right. Doing so inserts another negative image farther to the right. The original
image is shifted and added to eliminate this image, etc.

3.27. See Table 3.3.
3.28. Substituting (3.49) into (3.51) gives

3∑
m=0

ιm(a)= 1−ej2πa

4

3∑
m=0

1

1−ejπ (a−m)/2

= 1−ej2πa

4

[
1

1−ejπa/2
+ 1

1−ejπ (a−1)/2

+ 1

1−ejπ (a−2)/2
+ 1

1−ejπ (a−3)/2

]

= 1−ej2πa

4

[
1

1−ejπa/2
+ 1

1+j ejπa/2
+ 1

1+ejπa/2
+ 1

1−j ejπa/2

]

(3.81)
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TABLE 3.3. Solution to Exercise 3.27.

Input-output relation Linear TI Impulse response

(a) g[n] = |f [n− p]|2 no yes

(b) g[n] = r[n] f [n] yes no h[n, k] = r[n] δ[n− k]
(c) g[n] = r (f [n]) no no

(d) g[n] = n f [n] no no

(e) g[n] = f [n] − f [n− 1] yes yes h[n] = δ[n] − δ[n− 1]
( f) g[n] = 3 f [n] − 2 no yes

(g) g[n] = �f [n] no yes

(h) g[n] = f [p] f [n] no no

(i) g[n] = f [2n] yes no h[n, k] = δ[k − 2n]
(j) g[n] = f [n2] yes no h[n, k] = δ[k − n2]
(k) g(t) = f (t)+ ξ f (t − ξ )− d

dt
f (t) yes yes h(t) = δ(t)+ ξδ(t − ξ )+ δ′(t)

(l) g(t) = δ ( f (t)) no yes

(m) g(t) = ∫∞−∞ f (τ )dτ yes yes h(t) = 1

(n) g(t) = f (h(t)) yes no‘ h(t, τ ) = δ (τ − h(t))

(o) g(t) = f ( f (t)) no no

(p) g(t) = ∫ f (t)
0 h(τ )dτ no yes

(q) g(t) = d

dt
f (t) yes yes h(t) = δ′(t)

(r) g(t) = 1 no yes

(s) g(t) = 0 yes yes h(t) = 0

= 1−ej2πa

4

[
2

(1−ejπa/2)(1+ejπa/2)
+ 2

(1+j ejπa/2)(1−jejπa/2)

]

= 1−ej2πa

4

[
2

(1−ejπa
+ 2

1+ ejπa

]

= 1−ej2πa

4

[
4

(1−ejπa)(1+ ejπa)

]

= 1−ej2πa

4

[
4

1−ej2πa

]

=1

3.29. (a) For x(t) = e−π t2
, we have X(t) = x(−t) = X(−t) = e−π t2

. Thus, from (3.48),
the weighted fractional Fourier transform is

Fa e−π t2 = e−π t2
3∑

m=0

ιm(a)



[16:20 9/9/2008 5165-Marks-Ch03.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 149 104–150

FOURIER ANALYSIS IN SYSTEMS THEORY 149

Since, from (3.49), the sum of the weights is one, we see that the weighted
fractional Fourier transform of the Gaussian is the same for all a.

Fa e−π t2 = e−π t2
.

(b) From (2.91), the Fourier transform of the Hermite-Gaussian function is

Kn(t)←→ (−j)nKn(u).

Thus, taking advantage of the evenly odd property of the Hermite polynomial

x(t) = Kn(t),

X(t) = j−nKn(t),

x(−t) = (−1)nKn(t),

and

X(−t) = jnKn(t),

The weighted fractional Fourier transform follows as

Fa Kn(t) = �nKn(t)

where

�n = ι0(a)+ j−nι1(a)+ (−1)nι2(a)+ jnι3(a)

= 1− e j2π

4

[
1

1− e jπa/2
+ j−n

1+ j e jπa/2

+ (−1)n

1+ e jπa/2
+ jn

1− j e jπa/2

]
.

The coefficients �n are periodic with period four, i.e., �n+4 = �n. Algebraic
manipulation similar to (3.81) gives

�n = 1

4

[(
1+ e jπa) {(1+ e jπa/2

)
+ (−1)n

(
1− e jπa/2

)}

+jn (1− e jπa) {(1+ j e jπa/2
)
+ (−1)n

(
1− j e jπa/2

)}]
.

Simplifying gives

�n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 ; n = 0

e j3πa/2 ; n = 1

e j2πa ; n = 2

e jπa/2 ; n = 3.

(c) If

x(t) =
∞∑

n=0

αnKn(t)
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then

Fa Kn(t) =
∞∑

n=0

αn�nKn(t).

3.30. When x(t) is bandlimited, X(t) has compact support and, therefore, cannot be
bandlimited. Any weighted sum of x(t) and X(t) can therefore not be bandlimited.
For 0 ≤ a < 4, the weighted fractional Fourier transform, Fax(t), is bandlimited
only for a = 0 and a = 2.

3.32. Transfinite numbers and systems theory
(b) The piecewise invariant approximation in Section 3.7 requires the cataloging

of ℵ0 impulse responses.
For a second example, consider a linear system whose inputs, x(t) are limited

to signals of the type [893]

x(t) =
∞∑

n=0

anφn(t) (3.82)

where the φn(t)’s form a (not necessarily orthogonal) basis of some sort.
Examples include (1) periodic signals represented by a Fourier series and (2)
bandlimited signals expressed as a superposition of sincs as in the cardinal
series.

The output to a linear system when (3.82) is the input is

y(t) = S {x(t)} =
∞∑

n=0

anθn(t)

where

θn(t) = S {φn(t)} .
Knowledge of the θn(t)’s for n = 0, 1, 2, . . . constitute a catalog of ℵ0 input-
output responses required to characterize the linear system.
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Fourier Transforms in Probability,
Random Variables and Stochastic
Processes

I am convinced that He (God) does not play dice.
Albert Einstein (1879–1955) [1320]

[Einstein]. Quit telling God what to do. (1885–1962).
Niels Henrik David Bohr [1320]

Not only does God play dice, but he sometimes throws them where they cannot
be seen.

Stephen Hawking [585]

Pascal’s Wager. Let us weigh the gain and the loss in wagering that God is. Let us
consider the two possibilities. If you gain, you gain all; if you lose, you lose nothing.

Hesitate not, then, to wager that He is.
Blaise Pascal (1623–1662) [1098]

4.1 Introduction

In this Chapter, we present application of Fourier analysis to probability, random variables
and stochastic processes [1089, 1097, 1387, 1329].

4.2 Random Variables

Arandom variable, X , is the assignment of a number to the outcome of a random experiment.
We can, for example, flip a coin and assign an outcome of a heads as X = 1 and a tails
X = 0. Often the number is equated to the numerical outcome of the experiment, such as
the number of dots on the face of a rolled die or the measurement of a voltage in a noisy
circuit. The cumulative distribution function is defined by

FX (x) = Pr[X ≤ x]. (4.1)

The probability density function is the derivative fX (x) = d
dx FX (x).

Our treatment of random variables focuses on use of Fourier analysis. Due to this
viewpoint, the development we use is unconventional and begins immediately in the next
section with discussion of properties of the probability density function.

151
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4.2.1 Probability Density Functions, Expectation,
and Characteristic Functions

The function, fX (x) is said to a probability density function of a random variable, X, if it is
non-negative1 and has an area of one. That is,

∫ ∞
−∞

fX (x)dx = 1, (4.2)

and

fX (x) ≥ 0. (4.3)

We define the expected value of a function, g(X), by

E [g(X)] :=
∫ ∞
−∞

g(x) fX (x)dx. (4.4)

The over bar notation will be used interchangeably for expectation.

g(X) := E [g(X)] .

The expectation

Xk =
∫ ∞
−∞

xk fX (x)dx (4.5)

is dubbed the kth moment of the random variable, X.
The function

�X (u) := E
[
e−j2πuX

]
(4.6)

is the characteristic function of the random variable, X. Clearly, we have the Fourier
transform pair2

fX (x)←→ �X (u) =
∫ ∞
−∞

fX (x)e−j2πuxdx.

A table of commonly used probability density functions with corresponding characteristic
functions, means and variances are in Tables 4.1 and 4.2.

4.2.1.1 Discrete Random Variables

A discrete random variable has a probability density function consisting of point masses

fX (x) =
∞∑

k=−∞
pkδ(x − xk).

1. Implying, then, that fX (x) is real.
2. We do not use the capital F as the Fourier transform of f because (a) � is the universally used symbol for

the characteristic function, and (b) F is reserved for the cumulative distribution function, FX (x) = ∫ x
−∞ fX (ξ )dξ .
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TABLE 4.1. The probability density functions, characteristic functions, means and variance of
some common continuous random variables are listed here. The characteristic function, �X (u), is
the Fourier transform of fX (x). (Continued in Table 4.2.)

Name Parameters fX (x) �X (u) X σ 2
X

Uniform X,R > 0 1
R�

(
x−X

R

)
sinc(Ru)e−j2πuX X R

12

Triangle X,R > 0 1
R�

(
x−X

R

)
sinc2(Ru)e−j2πuX X R2

6

Gaussian X 1√
2πσX

e
− (x−X)2

2σ2
X e−j2πuX X σ 2

X

σX > 0 ×e−2(πuσX )2

Exponential λ > 0 λe−λxμ(x) λ
λ+j2πu

1
λ

1
λ2

Laplace X α
2 e−α|x−X| α2

(2πu)2+α2 X 2
α2

α > 0 ×e−j2πuX

Sech α > 0 α sech(παx) sech(πu/α) 0 1
4α2

Pearson III α, β > 0 1
β�(p)

(
x−α
β

)p−1 (
β

β+j2πu

)p
α + p

β
pβ2

p ∈ N ×e−
x−α
β μ(x − α) ×e−j2πuα

TABLE 4.2. Continued from Table 4.1. Notes. (1) The Erlang random variable (See Figure 4.5) is a
special case of the gamma random variable with α = m ∈ N. (2) The chi-square (χ2) random
variable (See Figure 4.4) is also a special case of the gamma with α = k/2, k ∈ N and λ = 1/2.
(3) ϒa,b(u) =1 F1(b+ 1, b+ c+ 2,−j2πu). See Exercise 4.9 for the derivation. (4) The Cauchy
random variable has undefined mean and variance.

Name Parameters fX (x) �X (u) X σ 2
X

Gamma λ > 0, α > 0 λ(λx)α−1e−λxμ(x)
�(α)

1
(1+j2πu/λ)α

α
λ

α

λ2

Erlang1 λ > 0,m ∈ N
λ(λx)m−1e−λxμ(t)

(m−1)!
(

λ
λ+j2πu

)m
m
λ

m
λ2

Chi-Square2 k ∈ N
x−1+k/2e−x/2μ(t)

2k/2�(k/2)

(
1

1+j4πu

)k/2
k 2k

Beta3 a, b > 0 xb(1−x)c

B(b+1,c+1) (b+ c+ 1) b+1
b+c+2

b+1
(b+c+2)2

× � (x − 1
2

) × ϒa,b(u) × b+2
b+c+3

Cauchy4 α > 0 α/π

x2+α2 e−2πα|u| no no

The pk’s denote the kth probability mass. To satisfy the conditions in (4.2) and (4.3),
we require

∞∑
k=−∞

pk = 1

and

pk ≥ 0 for all k.
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The discrete random variable is said to be of the lattice type if the point probability
masses are located at only integers. Then

fX (x) =
∞∑

k=−∞
pkδ(x − k). (4.7)

The characteristic function of such random variables is given by the discrete time Fourier
transform

�X (u) = E
[
e−j2πuX

]

=
∞∑

k=−∞
pke−j2πuk . (4.8)

Some commonly used discrete random variables and their characteristic functions are in
Table 4.3.

4.2.1.2 Moments from the Characteristic Functions

Recall the derivative theorem.
(

d

du

)k

�X (u) =
∫ ∞
−∞

fX (x)
dk

duk
e−j2πuxdx

=
∫ ∞
−∞

(−j2πx)k fX (x)e−j2πuxdx.

TABLE 4.3. Probability mass functions for common discrete random variables. The probability
density function for discrete random variables of the lattice type are in (4.7). The characteristic
function is in (4.8). The characteristic function, �X (u), is the discrete time Fourier transform of pk .
Notes: (1) 0 ≤ p ≤ 1 and q := 1− p, (2)

(n
k

) = n!
k!(n−k)! (3) See Exercise 4.12. The negative binomial

is stated more generally in some sources with probability mass pk = �(ρ + k)pρ (1− p)k/(k! �(ρ))
for ρ > 0. This is also referred to as the Pólya distribution. The entry in this table is then relegated
to the status of a special case for ρ = r = a positive integer and is called the Pascal distribution.

Name Parameter(s) pk �X (u) X σ 2
X

Deterministic a δ[x − a] e−j2πau a 0

Bernoulli1 p p δ[k] + q δ[k − 1] p+ qe−j2πu p pq

Uniform discrete N ∈ N
1
N ; 0 ≤ n < N e−jπ (N−1)u N−1

2
(N−1)(N+1)

12

×arrayN (u)

Binomial1,2 n > 0, p
(n

k

)
pkqn−k; (q + pe−j2πu)n np npq

0 ≤ k ≤ n

Geometric1 p pqkμ[k] p
1−qe−j2πu

1
p

q
p2

Poisson α > 0 αk e−αμ[k]
k! eα(e−j2πu−1) α α

Negative binomial1,2,3 p, r
(k−1

r−1

)
prqk−rμ[k − r]

(
p

e j2πu−q

)r
r
p

rq
p2
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Thus, we can obtain the kth moment from the kth derivative of the characteristic function

Xk = 1

(−j2π )k

(
d

du

)k

�X (0). (4.9)

If the characteristic function can be expanded in a Taylor series about the origin, then the
kth term of the Taylor series contains the kth moment.3

�X (u) =
∞∑

k=0

�
(k)
X (0)uk/k!

=
∞∑

k=0

(−j2πu)k Xk/k! (4.10)

The second characteristic function is the natural log of the first.

�X (u) := ln �X (u). (4.11)

Note that �X (0) = 1 and �X (0) = 0. Given �X (u), �X (u), or fX (x), we can find the other
two functions.

The mean (a.k.a. first moment) of the random variable is X and, as illustrated in Figure 4.1
is the center of mass of the probability density function, i.e., the point of balance.4 The width
or, more properly, the dispersion of the probability density function can be measured by σX

where

σ 2
X := E

[(
X − X

)2] = X2 − X
2
. (4.12)

is dubbed the variance and σX the standard deviation.

FIGURE 4.1. A probability density function, fX (x), its mean X and standard deviation,
√

var(X).

3. See, for example, Exercise 4.5.
4. The other measures of central tendency of a probability density function are the median which is the point

the density function is divided into equal areas and the mode which is the density function’s mass. For the Gaussian,
all are the same. For the density function fX (x) = e−xμ(x), the mean is one, the median is ln(2) and the mode
is zero.
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The mean and variance of a random variable can be determined immediately from the
second characteristic function.

d

du
�X (u) = d

du
ln �X (u)

= �′X (u)/�X (u). (4.13)

Thus

d

du
�X (0) = �′X (0)/�X (0)

= −j2πX.

and the first moment is determined through the first derivative.

X = 1

−j2π

d

du
�X (0). (4.14)

For the variance, we use the quotient rule for differentiation of (4.13) and write

(
d

du

)2

�X (u) = �X (u)�′′X (u)− (�′X (u))2

�2
X (u)

,

and we have the variance directly from the second derivative of the second derivative
function.

σ 2
X =

−1

(2π )2

(
d

du

)2

�X (0). (4.15)

Example 4.2.1. Let5

fY (x) = 1

S
fX

(
x − a

S

)
(4.16)

where S > 0 and a is real. If fX has unit area, then so does fY . Our goal is to find the mean
and standard deviation of Y in terms of the mean and standard deviation of X.

From the scaling theorem

�Y (u) = �X (Su)e−j2πau

and

�Y (u) = �X (Su)− j2πau.

Thus

d

du
�Y (u) = S� ′(Su)− j2πa,

and the mean of Y is related to the mean on X via

Y = SX + a.

5. This relationship results from the random variable transformation Y = SX + a.
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For the variance, we have

(
d

du

)2

�Y (u) = S2� ′′(Su)

and

σ 2
Y = S2σ 2

X . (4.17)

Two random variables, X and Y , are said to be independent6 if, for all functions g(·) and
h(·), assuming existence, the expected value of the probability density function product is
equal to the product of the expected values.

E [ g(X)h(Y )] = E [ g(X)] E [h(Y )] .

The random variables X and Y are identically distributed if, for all g(·),
E [ g(X)] = E [ g(Y )] .

If X and Y are both independent and identically distributed, they are said to be i.i.d.

4.2.1.3 Chebyshev’s Inequality

The variance is revealed as a measure of a probability density function’s dispersion by
Chebyshev’s inequality7 which states

∫
|x−X|≤a

fX (x)dx ≥ 1−
(σX

a

)2
(4.18)

for any probability density function with defined mean and standard deviation and any8

a>0. For a fixed a, as the standard deviation, σX , increases, the function spreads and the
area of the density function in the interval about the mean, X − a ≤ x ≤ X + a, decreases.
This is illustrated in Figure 4.2.

Proof . The definition of the variance is

σ 2
X =

∫ ∞
−∞

(
x − X

)2
fX (x) dx.

We break up the integration as

σ 2
X =

[∫ X−a

−∞
+
∫ X+a

X−a
+
∫ ∞

X+a

] (
x − X

)2
fX (x) dx.

Since the integrand is nonnegative, removal of the middle integral will result in the same
or a smaller value.

6. This definition of independence is not traditional, but serves our purposes. Traditionally, two random
variables X and Y are said to be independent if their joint probability density function is separable, i.e., fXY (x, y) =
fX (x) fY (y). Our definition allows establishing independence without introducing the joint probability density
function.

7. Also spelled Tchebycheff.
8. For σX >a, the right side of (4.18) is negative. Although the inequality still applies, the result has no use

since we already know the probability density function, and thus its integral, is always nonnegative.
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FIGURE 4.2. Illustration of Chebyshev’s inequality. The probability density function with the small
variance, shown by the dashed line, has a greater percentage of area around the mean, X, than does
the function with larger variance.

Thus

σ 2
X ≥

[∫ X−a

−∞
+
∫ ∞

X+a

] (
x − X

)2
fX (x) dx. (4.19)

The integration is over the interval x < X − a and x > X + a, or equivalently over all x for
which

∣∣x − X
∣∣ ≥ a.

Therefore, over the integration limit we satisfy

(
x − X

)2 ≥ a2. (4.20)

Note that the term (x − X)2 is explicitly in the integrand of (4.19). Substitution of a2 for
this term in (4.20) guarantees the result will, at worst, get larger. Thus, (4.19) becomes

σ 2
X ≥ a2

∫
|x−X|>a

fX (x) dx. (4.21)

Since the probability density function integrates to one,
∫
|x−X|>a

fX (x) dx = 1−
∫
|x−X|≤a

fX (x) dx.

substituting into (4.21) gives Chebyshev’s inequality in (4.18).

We will later use Chebyshev’s inequality to derive the weak law of large numbers.

4.2.2 Example Probability Functions, Characteristic
Functions, Means and Variances

Some commonly used probability density functions are in Tables 4.1, 4.2 and 4.3. Derivation
of some of these entries follows. Probability density functions for some other random
variables are listed in Appendix 14.6.
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4.2.2.1 The Uniform Random Variable

The uniform random variable with mean X and variance

σ 2
X =

R2

12

has a probability density function of

fX (x) = 1

R
�

(
x − X

R

)
.

This uniform random variable is said to be

“uniform on

[
X − R

2
,X − R

2

]
.”

A randomly chosen angle is oft modelled as a uniform random variable on [0, 2π ] or
[−π, π ].

The characteristic function of the uniform random variable is

�X (x) = sinc(Ru) e−j2πuX .

4.2.2.2 The Triangle Random Variable

The triangle (or uniform difference) random variable with mean X and variance

σ 2
X =

R2

6

has a probability density function of

fX (x) = 1

R
�

(
x − X

R

)
.

A triangle random variable results from adding two independent random variables uniform

on
[

X−R
2 , X+R

2

]
or, equivalently, subtracting a random variable uniform on

[
−X+R

2 , −X−R
2

]

from another uniform on
[

X−R
2 , X+R

2

]
. The characteristic function of the triangular random

variable is

�X (u) = sinc2(Ru) e−j2πuX .

4.2.2.3 The Gaussian Random Variable

The probability density function of the Gaussian random variable is commonly referred to as
the bell shaped curve.9 The Gaussian random variable is often chosen to be the underlying

9. See Figure 4.7.
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random variable in experiments-an assumption which can be inappropriate. The central
limit theorem10 has the Gaussian random variable as the limiting model of the sums and
averages of many random variables.

The Gaussian random variable is also referred to as the normal random variable.
The probability density function with mean X and variance σ 2

X is

fX (x) = 1√
2π σX

e
− (x−X)2

2σ2
X .

Some plots are in Figure 4.3.
The characteristic function of the Gaussian follows directly from the Gaussian’s Fourier

transform.11 From Table 4.1, the second characteristic function for the Gaussian random
variable is

�X (u) = ln�X (u) = −j2πuX − 2(πuσX )2.

The first and second derivatives using (4.14) and (4.15) reveals that the mean of the Gaussian
random variable is X and its variance is σ 2

X .

4.2.2.4 The Exponential Random Variable

The exponential random variable has many uses, including in the fields of queuing theory
and reliability. A time of failure of a light bulb whose operation begins at time zero is
often modelled as an exponential random variable. The time from receipt of a given bit
packet to the arrival of the next bit packet is often modelled as an exponential random
variable.

The exponential random variable with parameter λ > 0 has a probability density
function of

fX (x) = λe−λxμ(x).

0.8

σ = 1

2

3
4
5

0.6

0.4

0.2

0
−10 −8 −6 −4 −2 0 2 4 6 8

FIGURE 4.3. The Gaussian probability density function for various values of σ .

10. See Section 4.2.5.
11. See Section 2.3.5. An alternate derivation is in Exercise 4.5.
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Straightforward integration gives the corresponding characteristic function.

�X (u) = λ

λ+ j2πu
. (4.22)

The exponential random variable is a special case of the gamma random variable and the
generalized Gaussian random variable.

4.2.2.5 The Laplace Random Variable

With mean X and scale parameter α, the Laplace random variable has a probability density
function of

fX (x) = α

2
e−α|x−X|.

Laplace noise is used to measure impulsive disturbances such as lightning [890]. From the
Fourier transform in Table 2.4 and the scaling theorem, the corresponding characteristic
function follows as

�X (u) = α2

(2πu)2 + α2
e−j2πuX .

The second characteristic function is therefore

�X (u) = 2 ln (α)− ln
(

(2πu)2 + α2
)
− j2πuX.

The first derivative is then

d

du
�X (u) = − 2(2π )2u

(2πu)2 + α2
− j2πX

which dictates, unsurprisingly, that the mean is X. Differentiating again gives

(
d

du

)2

�X (u) = −2(2π )2

[
(2πu)2 + α2

]− 2(2πu)2

[
(2πu)2 + α2

]2 .

Hence

σ 2
X =

2

α2
.

4.2.2.6 The Hyperbolic Secant Random Variable

Hyperbolic secant noise has tails that decay in the same manner as those in Laplace noise
and is used to model similar phenomena. With scale parameter, α, its probability density
function is

fX (x) = α sech(παx). (4.23)
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From the list of Fourier transforms in Table 2.5, we find the following characteristic
function.

�X (x) = sech
(πu

α

)
.

The second characteristic function is

�X (x) = − ln
(

cosh
(πu

α

))
.

Thus

d

du
�X (u) = −π

α

sinh
(
πu
α

)
cosh

(
πu
α

)

= −π
α

tanh
(πu

α

)

Since the probability density function in (4.23) is even, we are not surprised to see the mean
is equal to zero.

Since

d

dθ
tanh(θ ) = 1− tanh2(θ ),

the second derivative of the second characteristic function is

(
d

du

)2

�X (u) = −
(π
α

)2 [
1− tanh2

(πu

α

)]
.

Using (4.15), the corresponding variance of the hyperbolic secant random variable is

σ 2
X =

1

4α2
.

4.2.2.7 The Gamma Random Variable

The gamma random variable with parameters of λ and α has a probability density function

fX (x) = λ(λx)α−1e−λx μ(x)

�(α)
(4.24)

Special cases of the gamma probability density function are as follows.

1. The chi-squared random variable, also written as the χ2-random variable, is the
special case of the gamma random variable for λ = 1

2 . The sum of the squares of k
i.i.d. zero mean unit variance Gaussian random variables is a chi-squared random
variable. Probability density function plots are shown in Figure 4.4.

2. The Erlang random variable is a special case of the gamma random variable for
α = k. The sum of k i.i.d. exponential random variables is an Erlang random
variable. Probability density functions, are shown in Figure 4.5.



[14:05 15/10/2008 5165-Marks-Ch04.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 163 151–216

PROBABILITY, RANDOM VARIABLES AND STOCHASTIC PROCESSES 163

0.2
2

3

4
5

6
7

8 9

k = 0

k = 1

k = 13

x

0.1

0
0 5 10 15 20 25

FIGURE 4.4. The χ2 (chi-square) probability density function with k degrees of freedom.
fX (x) = (x/2)−1+k/2e−x/2μ(x)/�(k/2).
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FIGURE 4.5. The normalized probability density function for the Erlang random variable,
fX (x/λ)/λ = xm−1e−xμ(x)/(m − 1)!.

To derive the characteristic function for the gamma random variable in Table 4.1, we
explicitly parameterize its characteristic function by α.

�X (u, α) =
∫ ∞

0

λ(λx)α−1e−λx

�(α)
e−j2πutdt.

Integrate by parts.

û = (λx)α−1/�(α) ; dv̂ = e−λxe−j2πuxdx

dû = (α − 1)λα−1xα−2dx/�(α) ; v̂ = −e−λxe−j2πux/(lambda+ j2πu).

= λ(λx)α−2dx/�(α − 1)
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Thus

�X (u, α) = −λxα−1

(λ+ j2πu)�(α)
e−λxe−j2πux

∣∣∣∣
∞

0

+
∫ ∞

0

(λx)α−2

�(α − 1)
e−λxe−j2πuxdx

1

1+ j2πu/λ

= 0+ 1

1+ j2πu/λ
�X (u, α − 1).

or

�X (u, α) = �X (u, α − 1)

1+ j2πu/λ
.

A solution of this recursion is the entry in Table 4.1 which we rewrite here.

�X (u, α) =
(

1

1+ j2πu/λ

)α
. (4.25)

The gamma random variable forα = 1 is the exponential random variable. The characteristic
function in (4.22) verifies a boundary condition and therefore the validity of the solution in
(4.25) is established.

The second characteristic for the gamma random variable follows as

�X (u) = −α ln

(
1+ j2πu

λ

)
.

The first derivative follows as

d

du
�X (u) = −j2πα/λ

1+ j2πu/λ
,

and the second derivative is
(

d

du

)2

�X (u) = −α (2π/λ)2

(1+ j2πu/λ)2
.

From (4.14) and (4.15), the mean and variance of the gamma random variable follow as

X = α

λ
(4.26)

and

σ 2
X =

α

λ2
. (4.27)

The mean and variance of the exponential, Erlang and chi-squared random variable follow
as special cases.

4.2.2.8 The Beta Random Variable

The beta random variable with parameters b and c has a probability density function of

fX (x) = xb(1− x)c

B(b+ 1, c+ 1)
�

(
x − 1

2

)
(4.28)

where B(b, c) is the beta function defined in (2.68). The uniform random variable on [0, 1] is
a special case for b = c = 0. Plots of the beta probability density function are in Figure 4.6.
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FIGURE 4.6. The probability density function for the beta random variable in (4.28). The beta
probability density function has symmetry in the sense that fX (x; b, c) = fX (1− x; c, b).

Since (4.28) is a probability density function that must integrate to one, we have
∫ 1

0
xb(1− x)cdx = B(b+ 1, c+ 1).

Thus
∫ 1

0
xb+n(1− x)cdx = B(b+ n+ 1, c+ 1)

and the nth moment of the beta random variable follows as

Xn =
∫ 1

0

xb+n(1− x)c

B(b+ 1, c+ 1)
dx

= B(b+ n+ 1, c+ 1)

B(b+ 1, c+ 1)
= �(b+ n+ 1)

�(b+ 1)

�(b+ c+ 2)

�(b+ n+ c+ 2)
. (4.29)

Using the gamma function recursion in (2.67) gives the mean as

X = b+ 1

b+ c+ 2

and the second moment is

X2 = (b+ 2)(b+ 1)

(b+ c+ 3)(b+ c+ 2)
.
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The variance follows as

σ 2
X =

(b+ 1)(c+ 1)

(b+ c+ 3)(b+ c+ 2)2
.

4.2.2.9 The Cauchy Random Variable

The Cauchy probability density function is

fX (x) = α/π

x2 + α2
. (4.30)

The ratio of two independent zero mean Gaussian random variables is a Cauchy random
variable. For this reason, the Cauchy random variable is also referred to as the Gaussian
ratio random variable. Plots are shown in Figure 4.7.

The Cauchy probability density function has much larger tales than the Gaussian
probability density function. This is shown in Figure 4.8.

The mean of the Cauchy random variable in Table 4.1 is not defined. We can show this
is two ways. The first is through use of its characteristic function in Table 4.1. We take the
log to find the second characteristic function.

�X (u) = −2πα|u|.
The derivative follows as

d

du
�X (u) = −2πα sgn(u).

Using (4.14) to find the mean of the Cauchy random variable necessitates the dangerous
practice of evaluating a continuous function at a discontinuity, namely sgn(0). In this sense,
the mean of the Cauchy random variable is undefined.

Alternately, we can examine the integral in (4.5) for k = 1. First, let’s consider some
background. Since 1/x is an odd function, one might suppose

∫ 1

−1

1

x
dx = 0 ← ? (4.31)

0.3
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0.1

0
−10 −8 −6 −4 −2 0
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4
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α = 1

2 4 6 8 x

FIGURE 4.7. The probability density function for the Cauchy random variable in (4.30) for various
values of α.
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FIGURE 4.8. The Cauchy probability density function with parameter α = 1 and the Gaussian
probability density function with zero mean and unit variance.

Since, however

∫ 1

0

1

x
dx = ∞,

we are, in (4.31), making the dangerous assumption that

∞−∞ = 0.

We can, though, accurately write

lim
ε→0

[∫ −ε
−1
+
∫ 1

ε

]
1

x
dx = 0.

This is referred to as the Cauchy principle value.
A similar problem occurs in evaluating the first moment of the Cauchy random variable.

Using the probability density function in Table 4.1 and (4.5) for k = 1 gives,

X =
∫ ∞
−∞

x
α/π

x2 + α2
dx. (4.32)

Like (4.31), we might suppose that, since the integrand is odd, this integral goes to zero.
Note, though, that (1) since, for large x,

x
α/π

x2 + α2
→ α/π

x

and (2) the tail of the curve 1/x has infinite area, we conclude
∫ ∞

0
x

α/π

x2 + α2
dx = ∞.

Thus, like (4.31), we are left with an∞−∞ situation in evaluating (4.32).
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All positive even moments of the Cauchy random variable are infinite. The positive
even moments of the Cauchy random variable are, for k = 1, 2, 3, . . .

X2k =
∫ ∞
−∞

x2k α/π

x2 + α2
dx. (4.33)

As x → ±∞, the integrand approaches αx2(k−1)/π . For k = 1, 2, 3, . . ., this corresponds
to an integrand with infinite area.

There is an alternative explanation for the infinite second moment of the Cauchy random
variable. The second derivative of the Cauchy characteristic function contains a Dirac delta
at the origin and the second moment is proportional to δ(0) = ∞.

4.2.2.10 The Deterministic Random Variable

The phrase deterministic random variable seems to be an oxymoron. It is not. A model of
randomness must contain deterministic events as a special case. The probability density
function for a deterministic random variable with parameter a is

fX (x) = δ(x − a).

All of the probability mass of the density function is at x = a. The characteristic function
of the deterministic random variable is

�X (u) = e−j2πau.

Thus

�X (u) = −j2πau.

The mean and variance of the deterministic random variable are

X = a

and

σ 2
X = 0.

Let fY (x) denote the probability density function of a random variable, Y . Then12

lim
r→∞ rfY (rx) = δ(x).

To see this, Let Z = Y/r. The probability density function of Z is

fZ (x) = rfY (rx).

Independent of the distribution of Y , the random variable Z approaches the deterministic
value of zero as r →∞.

12. A similar problem is addressed in Exercise 2.16.
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4.2.2.11 The Bernoulli Random Variable

A Bernoulli random variable has success with probability p and failure with probability
q = 1 − p. A zero is assigned to a failure and one to a success. The probability density
function follows as

fX (x) = (1− p)δ(x)+ pδ(x − 1).

The corresponding characteristic function is

�X (x) = (1− p)+ pe−j2πux.

The performance of an experiment to generate a Bernoulli random variable, e.g., the flipping
of a fair coin, p = 1

2 , or getting 3 dots on the rolling of a fair die, p = 1
6 , is dubbed a Bernoulli

trial.

4.2.2.12 The Discrete Uniform Random Variable

The discrete uniform random variable, with parameter N , has probability mass of 1
N for

0 ≤ k < N . Its probability density function follows as

fX (x) = 1

N

N−1∑
k=0

δ(t − n).

The Bernoulli random variable is a special case for N = 2.
The corresponding characteristic function is obtained using a trigonometric geometric

series.13 The result is

�X (u) = e−jπ (N−1)u arrayN (u).

The mean and variance of the discrete uniform random variable is best calculated directly
rather than through manipulation of the characteristic function. Since

N−1∑
n=0

n = 1

2
(N − 1)N,

The mean follows as

X = N − 1

2
.

Similarly, since

N−1∑
n=0

n2 = 1

6
(N − 1)N(2N − 1),

the second moment is

X2 = 1

6
(N − 1)(2N − 1).

13. See Appendix 14.4.2.2.
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The variance of the discrete uniform random variable follows as

σ 2
X = X2 − X

2 = 1

12
(N − 1)(N + 1).

4.2.2.13 The Binomial Random Variable

The probability density function for the binomial random variable with parameters
n and p is

fX (x) =
n∑

k=0

(
n

k

)
pk(1− p)n−kδ(t − k).

The binomial random variable is a discrete random variable of the lattice type. It models the
number of successes, k, in n repeated i.i.d. Bernoulli trials with probability of success, p.
The probability mass functions are shown in Figures 4.9 and 4.10. (See also Figures 4.23,
4.24 and 4.25.)

The characteristic function of the binomial random variable follows as

�X (u) =
∫ ∞
−∞

fX (x)e−j2πuxdx

=
n∑

k=0

(
n

k

)
pkqn−ke−j2πuk

=
n∑

k=0

(
n

k

)(
p e−j2πu

)k
qn−k

=
(

p e−j2πu + q
)n

where q = 1− p and, in the last step, we have used the binomial series.14
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FIGURE 4.9. The binomial probability mass function with for p = 1
2 . Points are connected linearly.

See Figure 4.10 for the case of p = 0.75. A waterfall plot of the same data is in Figure 4.23.

14. See Appendix 14.4.1.
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For the mean of the binomial random variable, we evaluate

d

du
�X (u) = −j2πnp e−j2πu

(
pe−j2πu + q

)n−1
.

Thus, using (4.9),

X = np.

Differentiating again

(
d

du

)2

�X (u) = (−j2π )2e−j2πu
(

p e−j2πu + q
)n−2 [(

p e−j2πu + q
)
+ (n− 1)p

]
.

Again using (4.9) gives

X2 = np+ (n− 1)np2.

The variance of the binomial random variable is thus

σ 2
X = X2 − (X )2 = np(1− p).

4.2.2.14 The Poisson Random Variable

The Poisson random variable with parameter α > 0 is a discrete random variable of the
lattice type. Its probability density function is

fX (x) = e−α
∞∑

n=0

αk

k! δ(x − k).

Example plots of the corresponding probability mass functions are shown in Figure 4.11.
The corresponding characteristic function is

�X (x) = e−α
∞∑

n=0

(
αe−j2πu

)k
k! .

Using the exponential Taylor series in (2.34) gives the desired result.

�X (x) = e−αexp
(
αe−j2πu

)
.

The second characteristic function is then

�X (u) = −α + αe−j2πu.

Since

d

du
�X (u) = −j2παe−j2πu,

the mean of the Poisson random variable, using (4.14), is

X = α. (4.34)
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FIGURE 4.10. The binomial probability mass function with for p = 3
4 . Points are connected linearly.

See Figure 4.9 for the case of p = 1
2 . A waterfall plot of the same data is in Figure 4.24.
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FIGURE 4.11. The Poisson probability mass function for various values of α. Points are connected
linearly. A waterfall plot of the same data is in Figure 4.26.

Differentiating again gives

(
d

du

)2

�X (u) = −(2π )2αe−j2πu,

and the variance follows from (4.15) as

σ 2
X = α. (4.35)

Interestingly, then, the Poisson random variable’s mean is equal to its variance.
The PoissonApproximation. The probability mass of the binomial random variable can,

under certain constraints, be approximated by the probability mass of the Poisson random
variable. The binomial random variable’s probability mass is

pk =
(

n

k

)
pk (1− p)n−k . (4.36)
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The approximation criteria are

p
 1 (4.37)

and

n� 1. (4.38)

Therefore, we expect

k 
 n. (4.39)

As a consequence

(
n

k

)
= n!

k!(n− k)!

= 1

k!
n(n− 1) . . . (n− k + 1)(n− k)(n− k − 1) . . .

(n− k)(n− k − 1) . . .

≈ nk

k!

(4.40)

Also, since n � k, we have (1 − p)n−k ≈ (1 − p)n. For p 
 1, we can approximate
(1− p) ≈ e−p. In summary,

(1− p)n−k ≈ (1− p)n ≈ (e−p)n = e−np.

This and the approximation in (4.40) when substituted into (4.36), give

pk =
(

n

k

)
pk (1− p)n−k ≈ e−np (np)k

k! . (4.41)

The binomial probability mass can therefore be approximated by a Poisson
probability mass.

4.2.3 Distributions of Sums of Random Variables

We now examine distributions of the sum

Sn =
n∑

k=1

Xk . (4.42)

For continuous random variables, the probability density function of the sum is a continuous
function. For discrete time, the probability density function is of the form

fSn (x) =
∞∑

k=−∞
pSn [k]δ(x − xk)
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where pSn [k] is the probability mass. In either case, the characteristic function of the
sum is

�Sn (u) = E
[
e−j2πuSn

]

= E

[
exp

(
−j2πu

n∑
k=1

Xk

)]

= E

[
n∏

k=1

exp (−j2πuXk)

]
.

4.2.3.1 The Sum of Independent Random Variables

If the random variables are independent, the characteristic function of the sum is

�Sn (u) =
n∏

k=1

E [exp (−j2πuXk)]

=
n∏

k=1

�Xk (u). (4.43)

The corresponding second characteristic function follows.

�Sn (u) =
n∑

k=1

�Xk (u). (4.44)

Differentiating both sides and applying (4.14) reveals that the mean of the sum of
independent random variables is the sum of the means.

Sn =
n∑

k=1

Xk . (4.45)

Similarly, differentiating (4.44) twice and applying (4.15) shows that the variance of the
sum of independent random variables is equal to the sum of the random variables’variances.

σ 2
Sn
=

n∑
k=1

σ 2
Xk
. (4.46)

These results indicate how functions shift and spread when they are convolved. Taking
the inverse Fourier transform of (4.43) gives

fSn (x) = fX1 (x) ∗ fX2 (x) ∗ . . . ∗ fXk (x) ∗ . . . ∗ fXn (x).

The center of mass of fSn (x) is the sum of the means in (4.45). The dispersion of the
convolution, σSn , becomes larger, as indicated by the sum in (4.46), i.e., the operation of
convolution spreads.

4.2.3.2 Distributions Closed Under Independent
Summation

We say a random variable is closed under independent summation if the summation of
independent random variables in a class results in random variable in that same class.
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The sum of independent Gaussian random variables, for example, is a Gaussian random
variable. Exponential, uniform, Laplace and geometric random variables are not closed
under independent summation. Here are some random variables that are.15

• Gaussian Random Variables. If n independent Gaussian random variables with
parameters Xk and σ 2

Xk
are added, the characteristic function of their sum is

�Sn (u) =
n∏

k=1

e−j2πuXk e−(2πuσXk )2

= exp

(
−j2πu

n∑
k=1

Xk

)
exp

(
−(2πu)2

n∑
k=1

σ 2
Xk

)

= e−j2πuSn e−(2πu)2σ 2
Sn .

Therefore, the sum is also distributed as a Gaussian random variable with mean

Sn =
n∑

k=1

Xk

and variance

σSn =
n∑

k=1

σ 2
Xk
.

• Gamma Random Variables. If n independent Gamma random variables with
parameters λ and αk are added, the characteristic function of their sum is that
of a gamma random variable. Specifically,

�Sn (u) = 1

(1+ j2πu/λ)αSn

where

αSn =
n∑

k=1

αk .

The result extends to Erlang and chi-square random variables which are special
cases of the gamma random variable.

• Cauchy Random Variables. We add n independent Cauchy random variables. The
characteristic function of the sum is

�Sn (u) =
n∏

k=1

e−2π |u|αk

= exp

(
−2π |u|

n∑
k=1

αk

)

= e−2piαSn |u|

15. The Pearson III random variable is treated in Exercise 4.10 and the negative binomial random variable is
analyzed in Exercise 4.12. Both are closed under independent summation.
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The result is a Cauchy random variable with parameter

αSn =
n∑

k=1

αk .

• Poisson Random Variables. The sum of n independent Poisson random variables
with parameter αk is

�Sn (u) =
n∏

k=1

exp
(
αk

(
e−j2πu − 1

))

= exp

(
n∑

k=1

αk

(
e−j2πu − 1

))

= exp
(
αSn

(
e−j2πu − 1

))
.

The sum is a Poisson random variable with parameter

αSn =
n∑

k=1

αk .

4.2.3.3 The Sum of i.i.d. Random Variables

We now examine the specific case of the density function of the sum when all components
are identically distributed. If, in addition to being independent, the random variables are
identically distributed, then all of the characteristic functions of the random variables in the
sum are identical and

�Xk (u) = �X (u) for 1 ≤ k ≤ n.

The characteristic function of the sum in (4.43) then becomes

�Sn (u) = �n
X (u).

The mean and variance of the sum, from (4.45) and (4.46), are

Sn = n X

and

σ 2
Sn
= n σ 2

X .

4.2.3.4 The Average of i.i.d. Random Variables

The average, or sample mean, of n i.i.d.random variables is

An = 1

n

n∑
k=1

Xk = 1

n
Sn. (4.47)
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Following the same procedure as for the sum, we obtain

�An (u) = �n
X

(u

n

)
. (4.48)

The second characteristic function of the average is

�An (u) = n �X

(u

n

)
. (4.49)

Differentiating once gives the mean of the average as

An = 1

−j2π

d

du
�An (0)

= n

−j2π

d

du
�X

(u

n

)∣∣∣∣
u=0

= X. (4.50)

The average is used to estimate the mean. Therefore, the expected value of the average
should be equal to the mean. We have here showed that it, indeed, is.

As the number, n, of samples increases, the accuracy of the average in estimation of the
mean should increase. The uncertainty of the average in estimating the mean is the standard
deviation, σAn . This can be obtained by taking the second derivative of (4.49).

σ 2
An
= −n

(2π )2

(
d

du

)2

�X

(u

n

)∣∣∣∣∣
u=0

= σ 2
X/n. (4.51)

The dispersion, σAn , therefore decreases by a factor 1/
√

n and, as n→∞, goes to zero.
Thus, not only does the expected value of the average equal the mean, but the uncertainty
of this measure goes to zero as n tends to∞. Recall the deterministic random variable has
zero variance.16 The result is better stated using a law of large numbers.

4.2.4 The Law of Large Numbers

The law of large numbers states that, as the number of samples used to compute the average
in (4.48) increases, the average approaches the mean. Thus, as the number of rolls of a
fair die increase without number, the percentage of instances where six dots show will
approach 1

6 .

Theorem 4.2.1. The weak law of large numbers17 states for a random variable with finite
mean and variance, for any ε > 0, that

lim
n→∞

∫ X+ε

x=X−ε
fAn (x) dx = 1. (4.52)

Thus, all of the probability mass of the density function for the average squeezes into the
interval X ± ε. In the limit, the density function resembles that of a deterministic random
variable. This is illustrated in Figure 4.12 for the uniform random variable.

16. See Section 4.2.2.10.
17. The strong law of large numbers is that, if |X| < ∞, then limn→∞ Pr[An = X] = 1, i.e., the average

converges almost surely to the mean.
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FIGURE 4.12. An illustration of the law of large numbers in (4.52) for a uniform random variable. As
the number, n, of samples used in the average increases, the probability density function, as shown
on the left, approaches a Dirac delta centered on the mean, X. An arbitrarily large percentage of the
probability mass can thus be contained in any fixed neighborhood around X. On the left are shown
the probability density functions, fAn (x), for various values of n. The plots on the right are of the same
functions, but each has been normalized to have the same maximum value. Note also, as required by
the central limit theorem, a Gaussian shape emerges.

Proof . To show the weak law of large numbers, we use the Chebyshev inequality in (4.18).
∫
|x−An|≤a

fAn (x)dx ≥ 1−
(σAn

a

)2
.

From (4.50), the expected value of the average is equal to the random variable’s expected
value. If we also apply the variance relationship in (4.51), Chebyshev’s inequality becomes

∫
|x−X|≤a

fAn (x)dx ≥ 1− 1

n

(σX

a

)2
.

As n −→ ∞, the right side of the inequality approaches one and the weak law of large
numbers in (4.52) follows.

4.2.4.1 Stochastic Resonance

The law of large number establishes that the average converges to the mean. We present an
example of stochastic resonance that illustrates the law of large numbers [920]. Stochastic
resonance is loosely defined as the phenomenon in a detection process wherein the addition
of just the right amount and type of noise improves performance. Too little or too much
noise result in degraded performance. The phenomena has numerous manifestations [21,
477, 920, 988, 1168, 1597].

Pictures of the type illustrated in Figure 4.13 are used to illustrate a type of stochastic
resonance when a simple threshold detector is used [920]. A gray level image is subjected to
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noise and is then subjected to a threshold. Too little noise renders the picture unrecognizable
as does too much noise. When just the right amount of noise is added, a semblance of the
original image is evident. The α = 0.5 image from the right is at stochastic resonance.

Let a pixel in the image be denoted by x where x is a gray level between zero and one.
We choose to corrupt the pixel by noise� with a uniform random variable with probability
density function

f�(ξ ) = 1

2α
�

(
ξ

2α

)
. (4.53)

The pixel now has a value of Y = x + �. We threshold this at a level T to obtain either a
value of zero (black) or one (white). This value is the random variable

W (x) = μ(Y − T ) = μ(x +�− T ).

W must either be one or zero. Its expected value is

W (x) = 1
2α

∫ α
ξ=−α μ(x + ξ − T )dξ

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 ; T − x ≤ −α
1

2α

∫ α
ξ=T−x dξ = α−T+x

2α ; −α ≤ T − x ≤ α

0 ; T − x ≥ α
For

α = T = 1

2
, (4.54)

we are at stochastic resonance because, at these values, the expected value of the threshold
is equal to the pixel’s value.

W (x) = x.

For α and T at any other values, we are not at resonance. Indeed, from simply a visual
grading, the α = 0.5 image in Figure 4.13 can be argued to be the best representation of
the original.

At resonance, the law of large numbers states that the average of a number of W ’s will
approach x in the sense of (4.52). This is illustrated in Figure 4.15 for an image at stochastic
resonance. As the number of images used in the average increases, the average looks more
and more like the original. The average using 1024 images is indistinguishable from the
original.

Figure 4.18 illustrates what happens at noise levels other than resonance. The original of
the image Brother Ray is shown in the upper left corner. Each of the remaining images is for
1024 averaged images subjected to noise at a level α and then clipped. As in the previous
example, resonance occurs at α = 1

2 . α = 0, 1
4 is too little noise, and α = 3

4 , 1 is too much
noise. They do not faithfully reconstruct the original image.

Stochastic resonance, in another context, is the topic of Exercise 4.18.

4.2.5 The Central Limit Theorem

The central limit theorem states that, under loose conditions, the sum of random variables
will be a Gaussian random variable. For independent random variables, the central limit
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FIGURE 4.13. An example of stochastic resonance. The picture, Jeremiah, at the upper left is subjected
to additive noise in (4.53) for various values of α and is then thresholded at the mid of the gray scale
range. Values greater than 1 are pictured as white and those below zero are set to zero. The α = 0
image is simply the original image thresholded. The α = 0 corresponds to too little noise and α = 1.75
is too much. The optimal amount of noise, corresponding to stochastic resonance, lies somewhere in
between. As shown in (4.54), α = 0.5 gives the best stochastic representation of the original image.
(Continued in Figure 4.14.)
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FIGURE 4.14. Continuation of Figure 4.13.



[14:05 15/10/2008 5165-Marks-Ch04.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 182 151–216

182 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

FIGURE 4.15. The average of a number of binary realizations of an image, Baby Senator, at stochastic
resonance. The original image is shown at the top left. The averages of a number of binary realizations
is shown. For the average of 1024 noisy images, the result is nearly indistinguishable from the original
image. (Continued in Figures 4.16 and 4.17.)
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FIGURE 4.16. Continuation of Figure 4.15. Continued in Figure 4.17.
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FIGURE 4.17. Continuation of Figures 4.15 and 4.16.
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Original a = 0 

a = ¼ a = ½ 

a = ¾ a = 1 

FIGURE 4.18. Image from averaging 1024 clipped noisy images of Brother Ray at different noise levels.
The α = 0 image is simply the original image thresholded at mid gray level. Resonance occurs at
α = 1

2 .
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theorem results from the property that convolution of a number of functions, under mild
conditions, will approach a Gaussian shaped curve. We will illustrate this for the sum of
i.i.d. random variables. Define the normalized random variable

Zn = An − An

σAn

. (4.55)

It follows that

Zn = 0

and

σZn = 1.

Our derivation will be made simpler by assuming X = 0. This is done without loss of
generality since shifting a probability density function to the origin to give a zero mean
followed by autoconvolution is equivalent to autoconvolving first and then shifting. Since
X = 0, we have An = 0, and the characteristic function of (4.55) is

�Zn (u) = E
[
e−j2πuZn

]

= E

[
exp

(
−j2πu

An − An

σAn

.

)]

= E

[
exp

(
−j2πu

An

σAn

)]

= �An

(
u

σAn

)
.

Using the characteristic function of the average in (4.48) and (4.51) gives

�Zn (u) = �An

(
u

nσAn

)

= �n
X

(
u√
nσX

)
.

Use the Taylor series of the characteristic function for the random variable X in (4.10) gives

�Zn (u) =
( ∞∑

k=0

1

k!
(−j2πu√

nσX

)k

Xk

)n

=
(

1− j2πu√
nσX

X − (2πu)2

nσ 2
X

X2

2
+ · · ·

)n

=
(

1− (2πu)2

nσ 2
X

X2

2
+ · · ·

)n

; since X = 0

=
(

1− 2(πu)2

n
+ · · ·

)n

; since X2 = σ 2
X .
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The higher order terms have powers of n that will tend to zero as n increases. We can now
make use of the limit18 for large n

�Zn (u)→ exp
(
−2(πu)2

)
.

From Table 4.1, this is recognized as the characteristic function of a Gaussian random
variable with zero mean and unit variance. Note that this derivation of the central limit
theorem for the sum of i.i.d. random variables makes the assumption that the mean and
variance of the random variable X exist. Such is not the case, for example, with the Cauchy
random variable and certain cases of the Pareto random variable.

4.2.5.1 The Central Limit Theorem Applied to Randomly
Generated Probability Density Functions

• Adding i.i.d. uniform random variables together results in a probability density
function equal to the convolutional concatenation of N rectangle functions. This
is illustrated in Figure 4.19. The result is becoming graphically indistinguishable
from the Gaussian as N increases.

• The central limit theorem is also applicable when the probability density functions
are not identical. This is illustrated in Figure 4.20 where six randomly generated
probability density functions are shown.The convolution of these functions is shown
in Figure 4.21. The Gaussian with the same mean and variance is shown with
dashed lines. The curves are similar. An example of the cumulative convergence is
shown in Figure 4.22 where, in each step, a new randomly generated probability
density function is added. Graphically, we have close convergence to the Gaussian
using six functions.

1.5
N = 1

1

0.5

0.5

0

0.5

0

0

1

0

2

4 8

−0.5 −0.5 0 0.5 10

−1 0 1 2 −2 0 2 4

−0.5

FIGURE 4.19. Illustration of the central limit theorem. Each figure shows the convolution of N
rectangles, �(t). Shown with dashed lines is the Gaussian density function with the same mean and
variance as the convolutions. In accordance to the central limit theorem, the successive convolutions
approach a Gaussian as N increases. The result for N = 4 is the Parzen window.

18. See (14.3) in Appendix 14.3.
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FIGURE 4.20. Six randomly generated probability density functions. The length of each function was
chosen randomly on the interval [1, 200]. Over this interval, numbers are chosen randomly on the
unit interval for each point. The function is then normalized to unit area. The convolution of these six
functions is shown in Figure 4.21.

4.5
x 10−3

4

2

0
0 200 400 600

FIGURE 4.21. An illustration of the central limit theorem. Shown is the convolution of the six randomly
generated probability density functions in Figure 4.20. The Gaussian with the same mean and variance
is shown with the dashed lines.
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FIGURE 4.22. An illustration of the cumulative convergence of the central limit theorem. In each step,
a randomly generated probability density function is added. Each density function is generated in the
manner explained in the caption of Figure 4.20. The corresponding Gaussian in each case is shown
with dashed lines. Graphically, we have close convergence for six component functions.

4.2.5.2 Random Variables That Are
Asymptotically Gaussian

Many of the distributions discussed herein that are closed under addition approach Gaussian
random variables. We adopt the following shorthand notation for the Gaussian random
variable.

N(X, σ 2
X; x) := 1√

2πσX
exp

(
− (x − X)2

2σ 2
X

)
.

The sum of many i.i.d. random variables asymptotically approaches a Gaussian. We need
only identify the mean and variance of the random variable sum. This becomes the mean
and variance of the Gaussian. Here is a partial list.

• Gaussian random variable.

fSn (x) = 1√
2π
√

nσX
exp

(
− (x − nX)2

2nσ 2
X

)
= N

(
nX, nσ 2

X; x
)
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• Gamma random variable.

fSn (x) = λ(λx)nα−1e−λx

�(nα)
→ N

(nα

λ
,

nα

λ2
; x
)
.

• Erlang random variable.

fSn (x) = λ(λx)nm−1e−λx

(nm − 1)! → N
(nm

λ
,

nm

λ2
; x
)
.

Indeed, note the n = 13 plot of the Erlang probability density function in Figure 4.5
resembles a Gaussian curve.

• Chi-square random variable.

fSn (x) = x(nk−2)/2e−x/2

2nk/2�(nk/2)
→ N (k, 2k; x) .

The k = 13 plot for the chi-squared probability density function in Figure 4.4 closely
resembles a Gaussian curve.

• Binomial random variable. For notational clarity, let the random variable parameters
be p and m. As always, q = 1− p.

pSn [k] =
(

nm

k

)
pkqnm → N (nmp, nmpq; x) .

The binomial graphically approaching a Gaussian curve is graphically evident, for
p = 1

2 , in Figure 4.23 and, for p = 075, in Figure 4.24. The central limit theorem
applies to the binomial random variable for p = 0.95 but, as evident in Figure 4.24,
convergence takes longer.
Application of the central limit theorem to the binomial random variable is oft called
the deMoivre-Laplace theorem

• Poisson random variable.

pSn [k] =
(nα)ke−nα

k! → N (nα, nα; x) .

The approach of the Poisson random variable to the Gaussian is graphically evident
in Figure 4.26.

• The negative binomial random variable’s probability density function approaches
a Gaussian as r →∞. See Exercise 4.12.

• The Pearson III random variable’s probability density function as the parameter
p→∞. See Exercise 4.10.

4.3 Uncertainty in Wave Equations

A function, ψX (x), possibly complex, is said to be a wave function if fX (x) = |ψX (x)|2 is a
probability function. Let �V (v) be the Fourier transform of ψX (x). Then, from Parseval’s
theorem,

∫ ∞
−∞
|ψX (x)|2dx =

∫ ∞
−∞
|�V (v)|2dv = 1
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FIGURE 4.23. A waterfall plot of the binomial probability mass function,
(n

k

)
pkqn−k , for various values

of n. In accordance to the central limit theorem, the binomial probability mass function for p = 1
2

is seen to approach a Gaussian as n increases. For p = 0.75, see Figure 4.24 and, for p = 095, see
Figure 4.25. Points here are connected linearly. A plot of the same data in a different format is shown
in Figure 4.25.
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FIGURE 4.24. Continuation of Figure 4.23. Here, p = 0.75. The same plot in a different format is
shown in Figure 4.10.
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FIGURE 4.25. Continuation of Figure 4.24. Here, p = 0.95 will approach a Gaussian as n increases.
Compared to the p = 1

2 plot in Figure 4.23 and the p = 0.75 plot in Figure 4.24, a clear Gaussian
shape has not yet emerged. The value of n needs to be larger than considered here.
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FIGURE 4.26. According to the central limit theorem, the Poisson probability mass function will
approach a Gaussian as α increases. This is evident in this waterfall plot. Points are connected linearly.
A plot of the same data in a different format is in Figure 4.11.

and fV (v) = |�V (v)|2 can also be considered a probability density function. Thus, �V (v)
is also a wave function. The scaling theorem states that, as a function is stretched in one
domain, it is squeezed in the other. We thus expect that, as the variance in one domain
is increased, the variance in the other will decrease. This property is expressed via the
uncertainty relationship

σVσX ≥ 1

4π
. (4.56)

The uncertainty relationship is used in Section 13.3 to derive Heisenberg’s uncertainty
principle from Schrödinger’s equation.

Proof . To show the uncertainty relationship in (4.56), we will assume, with no loss of
generality, that both X and V are zero.19 Then σ 2

X = X2 and σ 2
V = V2.

σ 2
Xσ

2
V =

∫ ∞
−∞

x2 fX (x)dx
∫ ∞
−∞

v2fV (v)dv

=
∫ ∞
−∞

x2 |φX (x)|2 dx
∫ ∞
−∞

v2 |�V (v)|2 dv (4.57)

=
∫ ∞
−∞
|xφX (x)|2 dx

1

(2π )2

∫ ∞
−∞

∣∣∣∣
dψX (x)

dx

∣∣∣∣
2

dv

where, in the last step, we have used the power and derivative theorems. Schwarz’s
inequality20 is

∣∣∣∣ �
∫ ∞
−∞

g(x)h∗(x)dx

∣∣∣∣
2

≤
∫ ∞
−∞
|g(x)|2 dx

∫ ∞
−∞
|h(x)|2 dx

19. For arbitrary V , the new wave function ψ̂X (x) = ψX (x)e j2πxV will give a �̂V (v) with a zero mean.
20. See Appendix 14.1.
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We apply this to (4.57) with

g(x) = xψX (x)

and

h(x) = dψX (x)

dx
.

The result is

σ 2
Xσ

2
V ≥

1

(2π )2

∣∣∣∣ �
∫ ∞
−∞

(
xψ∗X (x)

dψX (x)

dx

)∣∣∣∣
2

= 1

(2π )2

∣∣∣∣ �
∫ ∞
−∞

1

2
x

d

dx

(
ψX (x)ψ∗X (x)

)∣∣∣∣
2

(4.58)

= 1

(4π )2

∣∣∣∣
∫ ∞
−∞

x
d

dx
fX (x)dx

∣∣∣∣
2

.

If X is finite, then21

x fX (x)|x=±∞ = 0.

Integrating by parts
∫ ∞
−∞

x
d

dx
fX (x)dx = x fX (x)|x=±∞ +

∫ ∞
−∞

fX (x)dx

= 1.

Substituting into (4.58) gives

σ 2
Xσ

2
V ≥

1

(4π )2

which is the desired result.

4.4 Stochastic Processes

A stochastic process can be either discrete or continuous time signal and can be used to
model either noise or a signal. In many applications, the first and second order statistics of
a stochastic process suffice for a description.

Example 4.4.1. Poisson Point Processes. The Poisson approximation in (4.41) is valuable
for modelling random points on a line. Consider the interval [0, t] and a subsumed
subinterval of duration T . If a point is placed randomly on [0, t], the probability it lands in
the subinterval T is

p = T

t
.

21. Since X = ∫∞−∞ x fX (x)dx, the integrand must go to zero at ±∞ if the integral is finite.
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Repeat the trial n times, The number of successes is a binomial random variable with
parameters n and p. Keep T constant and let t and n be large keeping constant their ratio

λ = t

T
.

The criteria in (4.37, 4.38, 4.39) for the Poisson approximation are fulfilled and, using (4.41),
we have

pk ≈ e−λT (λT )k

k! . (4.59)

As n and t grow without bounds, the approximation becomes exact. The n = ∞ points
on the interval from zero to ∞ are said to be a Poisson point process with parameter λ.
This stochastic process is used to measure, for example, random arrival of photons on a
photodetector and arrival of messages at a router. It is also a good model for the pops heard
when popping popcorn and the audible hits of rain on a metal roof. The cumulative spotting
of a sidewalk by light rain is an example of a spatial Poisson process.

4.4.1 First and Second Order Statistics

The mean of a continuous time stochastic process, ξ (t), is

ξ (t) = E[ξ (t)]
where E denotes the expected value operator. The noise level is the variance of the process:

var ξ (t) = E[|ξ (t)− ξ (t)|2]
= |ξ (t)|2 − | ξ (t) |2.

If a process is zero mean, then ξ (t) is zero and the noise level is |ξ (t)|2. If a process is a
signal, this is called the signal level.

Both the mean and noise (signal) level are first order statistics since they are only
concerned about the process at a single point in time. Second order statistics are concerned
about the process at two different points in time. The autocorrelation, for example, is

Rξ (t, τ ) = E[ξ (t)ξ∗(τ )]. (4.60)

Note that

Rξ (t, t) = |ξ (t)|2. (4.61)

Similarly, the cross correlation between two processes, ξ (t) and η(t), is defined as

Rξη(t, τ ) = E[ξ (t)η∗(τ )].

Example 4.4.2. Poisson Point Process Mean and Autocorrelation.
Using the Poisson point process in Example 4.4.1 for a given λ, define the Poisson

counting process by

X(t) = { k | k = the number of point on the interval (0, t)}.
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For a given t, the process X(t) is a Poisson random variable with parameter α = λt. Thus

E [X(t)] = λt

and

σ 2
X(t) = λt. (4.62)

It follows that

X2(t) = λt (1+ λt).

For the autocorrelation, we write

RX (t, τ ) = E [X(t)X(τ )] .

Choose, for now, t ≥ τ so that the number of Poisson points on (0, τ ) is independent of the
number of points on (τ, t). Then

E [X(τ ) (X(t)− X(τ ))] = E [X(τ )] E [X(t)− X(τ )]

= λτ λ(t − τ ). (4.63)

Since

X(t)X(τ ) = X(τ ) [X(τ )+ X(t)− X(τ )]

we have

RX (t, τ ) = E [X(τ ) (X(τ )+ X(t)− X(τ ))]

= E
[
X(τ ) (X(t)− X(τ ))+ X2(τ )

]
.

Using (4.62) and (4.63), we therefore have

RX (t, τ ) = λτ λ(t − τ ) + λτ (1+ λτ )

= λ2tτ + λτ.
This, however, is valid only for t ≥ τ . For the general case, the autocorrelation for the
Poisson counting process is

RX (t, τ ) = λ2tτ + λmin [t, τ ] . (4.64)

4.4.1.1 Stationary Processes

A process that does not change its character with respect to time is said to be stationary.
A process is said to be wide sense stationary (or stationary in the wide sense) if it meets
two conditions. First, the mean of the process must be a constant for all time.

ξ (t) = ξ .
Secondly, the autocorrelation is only a function of the distance between the two points of
interest.

E[ξ (t)ξ∗(τ )] = Rξ (t − τ ). (4.65)
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For such processes, the autocorrelation can thus be described by a one-dimensional rather
than a two-dimensional function.22

Example 4.4.3. Let ξ (t) be the current or voltage through a one ohm resistor. The
instantaneous power is a stochastic process, P(t) = ξ2(t). If ξ (t) is stationary, the average
power dissipated by the resistor is

P(t) = ξ2. (4.66)

Therefore, the second moment of a stochastic process is associated with power.

Properties of the autocorrelation for a real signal include

(a) Relation to second moment. For stationary processes, (4.61) becomes23

Rξ (0) = ξ2. (4.67)

Similarly, in discrete time

Rξ [0] = ξ2.

(b) Hermetian property. The autocorrelation obeys the symmetry constraint

Rξ (t) = R∗ξ (−t). (4.68)

Similarly, in discrete time

Rξ [n] = R∗ξ [−n].
(c) Bounded by the second moment. The autocorrelation is bounded by the second

moment of the process.24

|Rξ (τ )| ≤ ξ2. (4.69)

The property is also true in discrete time

|Rξ [n]| ≤ ξ2.

4.4.2 Power Spectral Density

The power spectral density, Sξ (u), of a wide sense stationary process can be defined in
continuous time as the Fourier transform of the autocorrelation.

Rξ (t)←→ Sξ (u).

The power spectral density measures the power content of the process at each frequency
component.

22. For stationary processes, the two-dimensional autocorrelation function becomes one dimensional. The
autocorrelation therefore becomes invariant to shifts. This is similar to the linear system wherein, if the impulse
response becomes a function of one variable, the system is dubbed time invariant. In a thesaurus, the words
stationary and time invariant could appear as synonyms. Indeed, stationary stochastic processes are processes
whose character does not change with respect to time. A time invariant system is a system whose parameters do
not change with time.

23. See Exercise 4.20.
24. See Exercise 4.19 for a proof.
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For a wide sense stationary discrete process, the autocorrelation is

Rξ [n− m] = E {ξ [n] ξ∗[m]}. (4.70)

The power spectral density for such processes is given by a Fourier series.

Sξ ( f ) =
∞∑

n=−∞
Rξ [n]e−j2πnf . (4.71)

For discrete time stochastic processes, the power spectral density is therefore periodic with
a period of one.

4.4.3 Some Stationary Noise Models

Here we list some commonly used autocorrelation functions. For continuous stochastic
processes, the power spectrum’s inverse transform is the autocorrelation function with

|ξ (t)|2 =
∫ ∞
−∞

Sξ (u) du (4.72)

or, for a discrete stochastic process,

|ξ [n]|2 =
∫ 1

2

− 1
2

Sξ ( f ) df . (4.73)

4.4.3.1 Stationary Continuous White Noise

Real stationary white noise has an autocorrelation of

Rξ (τ ) = ξ2 δ(τ ). (4.74)

Only for white noise does the notation |ξ |2 not correspond to the second moment of the
process. Indeed, the noise level for this process is infinite. White noise is so named because
its power spectral density

S(u) = ξ2 (4.75)

has the same energy level at every frequency.
Because continuous white noise requires an infinite amount of power, it does not

physically exist. A physical noise which closely approximates continuous white noise is
thermal noise (or Johnson-Nyquist noise). The noise, in volts, associated with resistor R
ohms has power spectral density

Sξ (u) = 2RkT
ϑu

eϑu − 1

where

ϑ = h

kT
,
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k is Boltzmann’s constant,25 h is Planck’s constant,26 and T is temperature in degrees Kelvin.
For ϑu
 1, we approximate eϑu � 1+ ϑu and

Sξ (u) � 2RkT = constant; |ϑu| 
 1.

Over this interval, thermal noise is therefore approximately white.

4.4.3.2 Stationary Discrete White Noise

This is a discrete process with autocorrelation

Rξ [n] = ξ2 δ[n]. (4.76)

Note that one does not obtain a discrete white sequence by sampling a continuous white
noise process. Here, for example, the noise level is finite.

4.4.3.3 Laplace Autocorrelation

For a given positive parameter λ, the Laplace autocorrelation of a real process is

Rξ (τ ) = ξ2 e−λ|τ |. (4.77)

It follows that

Sξ (u) = 2 λ ξ2

λ2 + (2πu)2
. (4.78)

4.4.3.4 Ringing Laplace Autocorrelation

A special case of the Laplace autocorrelation is the ringing Laplace autocorrelation where

Rξ (τ ) = ξ2 e−λ|τ | cos(2πvt)

where v is a given frequency. The corresponding power spectral density is

Sξ (u) = λξ2

[
1

λ2 + (2π (u− v))2
+ 1

λ2 + (2π (u+ v))2

]
.

4.4.4 Linear Systems with Stationary
Stochastic Inputs

A stochastic process, ξ (t), is placed through an LTI system with deterministic impulse
response h(t). The system output is given by the convolution

η(t) = ξ (t) ∗ h(t). (4.79)

Then the cross correlation between input and output is27

Rηξ (τ ) = Rξ (τ ) ∗ h(τ ) (4.80)

25. k = 1.3807× 10−16 J K−1

26. h = 6.626068× 10−34m2kg/sec2

27. See Exercise 4.17 for proofs of (4.80) and (4.81).
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or, in terms of the power spectral densities,

Sηξ (u) = Sξ (u)H(u).

The output’s autocorrelation is

Rη(t) = h(t) ∗ h∗(−t) ∗ Rξ (t) = [h(t) � h(t)] ∗ Rξ (t) (4.81)

or, in the frequency domain,

Sη(u) = |H(u)|2 Sξ (u). (4.82)

The same relationship holds for discrete time.

Example 4.4.4. Poisson point processes and shot noise. Extend the Poisson counting
process in Example 4.4.2 to (−∞,∞) and differentiate. The example is a sequence of
Dirac deltas located at Poisson point locations

Y (t) =
∞∑

n=−∞
δ(t − tn). (4.83)

The autocorrelation is28 [1077]

RY (τ ) = λ2 + λ δ(τ ). (4.84)

The mean is

Y (t) = E

[
d

dt
X(t)

]

= d

dt
E [X(t)]

= d

dt
λt

= λ.
Since the mean is constant and the autocorrelation is a function of only τ , the process
is therefore wide sense stationary. The power spectral density is the Fourier transform of
(4.84).

SY (u) = λ2 δ(u)+ λ.
Shot noise, for a given h(t), is defined as

Z(t) =
∞∑

n=−∞
h(t − tn).

Shot noise can therefore be obtained by placing Y (t) in (4.83) through an LTI filter with
impulse response h(t). From (4.82), the power spectral density of shot noise is thus

SZ (u) = |H(u)|2SY (u)

= λ2 δ(u) |H(0)|2 + λ |H(u)|2.

28. See Exercise 4.14.
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4.4.5 Properties of the Power Spectral Density

The term power spectral density contains three words. From (4.85) and Example 4.4.3,
integration of Sξ (u) gives units of power. Thus, Sξ (u) is a power density. Because integration
is over frequency, it is a power spectral density.

4.4.5.1 Second Moment

We can now substantiate (4.72) and (4.73). From the signal integral property in (2.93) and
(4.67), the area of the power spectral density is the second moment of the stochastic process.

ξ2 =
∫ ∞
−∞

Sξ (u)du. (4.85)

For discrete time stochastic processes, we use Parseval’s theorem for the Fourier series
in (2.19) and conclude

ξ2 =
∫ 1/2

−1/2
Sξ ( f )df .

4.4.5.2 Realness

The power spectral density is real. To show this for continuous time, we write the inverse
Fourier transform

Rξ (τ ) =
∫ ∞
−∞

Sξ (u)e j2πutdu.

It follows that

R∗ξ (−τ ) =
∫ ∞
−∞

S∗ξ (u)e j2πutdu.

Because of the Hermetian property in (4.68), we require that Sξ (u) = S∗ξ (u) which dictates
that Sξ (u) is real.

The autocorrelation for discrete stochastic processes is also conjugately symmetric.

4.4.5.3 Nonnegativity

The power spectral density is nonnegative. To show this for continuous time, we pass
ξ (t) through an LTI system with a frequency response equal to one in the interval
B− ε ≤ u ≤ B+ ε and otherwise zero. The output is η(t). Using (4.82), the second moment
of the filter’s output is

η2 =
∫ ∞
−∞

Sη(u)du

=
∫ B+ε

B−ε
Sξ (u)du

≈ 2ε Sξ (B)

The approximation becomes exact as ε → 0. Since η2 ≥ 0, we therefore must conclude
Sξ (B) ≥ 0. This must be true for all B. Thus, Sξ (u) ≥ 0 for all u.
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4.5 Exercises

4.1. Let X denote a random variable with units of volts.
(a) What are the units of the mean and variance of X?
(b) Since the units of the mean and variance are different, how can the mean and

variance of the Poisson random variable in (4.34) and (4.35) both be equal to α?

4.2. If fX (x) is a probability density function, show that

∫ ∞
−∞

(
d

dx
fX (x)

)
dx = 0.

4.3. Gamma random variable moments
(a) Using the characteristic function of the gamma random variable, evaluate

the expression for the mth moment of the gamma random variable. Simplify
the expression for the special cases of the Erlang and the chi-square random
variables.

(b) Using only the definition of the gamma random variable probability density
function in (4.24) and the moment definition in (4.5), derive the nth moment
of the gamma random variable.

(c) Verify the mean and variance in (4.26) and (4.27) using the result in (b).
4.4. With reference to (4.55), show that an alternate expression is

Zn = Sn − Sn

σSn

. (4.86)

4.5. Gaussian random variable moments. Consider the Gaussian probability density
function with zero mean and variance σ 2.
(a) Set

α = 1

2σ 2

so that

√
π

α
=
∫ ∞
−∞

e−αx2
dx.

Note, then,

(
d

dα

)k √
π

α
=
∫ ∞
−∞

(
−x2

)k
e−αx2

dx. (4.87)

Use this to expression to evaluate all the moments of the Gaussian random
variable.

(b) Use the moments in (a) in a Taylor series expansion to derive the characteristic
function for the Gaussian random variable. Compare your result to the entry in
Table 4.1.

4.6. § Reliability. The reliability of a random variable, X, is defined as
RX (x) = Pr[X > x]. Note that RX (x) = 1 − FX (x) where FX (x) is the cumulative
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distribution function of the random variable X. Consider the reliability defined by
the transcendental relationship

RX (x) =
{

e−xRX (x) ; x ≥ 0

1 ; x < 0
(4.88)

(a) Provide a plot of RX (x).
(b) Prove that the corresponding probability density function is bounded.
(c) Show that all of the moments of the random variable X are infinite.
(d) Are there any other random variables with all moments equal to infinity?

4.7. Show that the uncertainty relationship in (4.56) is, for a Gaussian probability density
function, an identity.

4.8. Show that the maximum of
(a) the gamma random variable in (4.24) is at

x = α − 1

λ
.

(b) the beta probability density function in (4.28) is at

x = b

b+ c
.

4.9. Confluent hypergeometric functions. The confluent hypergeometric function of
the first kind can be defined by

1F1(α, β; z) = �(β)

�(β − α)�(α)

∫ 1

0
ezxxα−1(1− x)β−α−1dx. (4.89)

(a) Use this definition to derive the characteristic function of the beta random
variable.

(b) Using the Taylor series for the characteristic function in (4.10), derive a Taylor
series for the confluent hypergeometric function of the first kind.

4.10. The Pearson III random variable is defined in Table 4.1.
(a) Derive the characteristic function shown in Table 4.1 for the Pearson III random

variable.
(b) Verify the mean and variance for the Pearson III random variable listed in

Table 4.1.
(c) Is the sum of i.i.d. Pearson III random variables a Pearson III random variable?
(d) Evaluate the central limit theorem approximation of the probability density

function of sum of i.i.d. Pearson III random variables as the number in the sum
becomes large.

4.11. The Von Mises random variable. Show that the characteristic function for the Von
Mises random variable in (14.16) can be expressed as a sampling theorem expansion
using the modified Bessel functions, In(b), in the samples. Hint: See Exercise 2.38.

4.12. Negative binomial random variable. From Table 4.3, the negative binomial or
Pascal random variable is discrete with probability mass

pk =
(

k − 1

r − 1

)
prqk−rμ[k − r]

where 0 < p < 1 and r ∈ N are given parameters.
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(a) Show that the characteristic function is

�X =
(

p

ej2πu − q

)r

.

(b) Show that the mean is

X = r

p
,

and the variance is

σ 2
X =

rq

p2
.

(c) Does the negative binomial random variable result from the addition of n
geometric random variables? Assume each has parameter p.

(d) What is the characteristic function of the sum of n independent negative
binomial random variables?

(e) What is the characteristic function of the sum of n i.i.d. independent negative
binomial random variables?

(f) Using the central limit theorem, approximate the probability mass function of
the sum of n negative binomial random variables as a Gaussian.

4.13. Mixed random variables. A mixed random variable, with both continuous and
discrete components, is

fX (x) = 1

2
δ(x + T )+ 1

4
e−(x+T )/2�

( x

2T

)
+ 1

2
e−T δ(x − T ). (4.90)

where T > 0 is a given parameter.
(a) Show that the corresponding characteristic function is

�X (u) = e−T/2
[

cosh (θ )+ T

2θ
sinh (θ )

]
(4.91)

where

θ =
(

1

2
+ j2πu

)
T .

(b) The n-fold autoconvolution of the mixed probability density function has an
important application in optimal detection theory. Marks et al. [890] used it to
derive the performance of the optimal detector for signals corrupted by Laplace
noise [342]. Except for the case of Gaussian noise, it remains the only known
closed form optimal detector performance solution.

Evaluate the n-fold autoconvolution of (4.90). Hint: Expand the charac-
teristic function into a binomial expansion. Then expand the sinh and cosh,
expressed as exponentials, into binomial series. Use the following Fourier
transform pair from Table 2.5.

t�−1 e−atμ(t)

(�− 1)! ↔ 1

(a+ j2πu)�
. (4.92)
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4.14. (a) Show that if a stochastic process, X(t), has autocorrelation RX (t, τ ), then the
auto-correlation of

Y (t) = d

dt
X(t),

if it exists, is

RY (t, τ ) = ∂2

∂t ∂τ
RX (t, τ ).

(b) Show that, the autocorrelation of the Poisson counting process, X(t) in (4.64),
results in the autocorrelation in (4.84) for Y (t) = d

dt X(t).
4.15. Evaluate the autocorrelation for the wide sense stationary stochastic process

ξ (t) =
√

2 ξ2 cos (2π f0t −�) (4.93)

where f0 is given and the random variable � is uniform on [−π, π ]. If the process
is wide sense stationary, determine its power spectral density.

4.16. (a) Derive the bound for the autocorrelation in (4.72).
(b) Derive a similar expression for a discrete stochastic process.

4.17. Prove the cross correlation and autocorrelation relationships in (4.80) and (4.81)
for a stochastic process being fed through an LTI system.

4.18. Stochastic resonance, in another context than presented in Section 4.2.4.1 [1076],
occurs in the filtering of stochastic processes. Consider the high pass filter

H(u) = 1

( j2πu+ α)( j2πu+ β)
. (4.94)

where α, β > 0. Let ξ (t) denote the class of wide sense stationary stochastic
processes with fixed second moment, ξ2.
(a) What stochastic process in this class generates a filter output with maximum

power?
(b) What is the maximum power output of the filter?

4.19. Prove the bounding property of the autocorrelation in (4.69).
4.20. Show that the Hermetian symmetry of the autocorrelation in (4.68) is valid.
4.21. Consider amplitude modulation as discussed in Section 3.4. Assume the baseband

signal, x(t), is a zero mean bounded wide sense stationary stochastic process with

second moment x2. Assume |x(t)| ≤ A. To use envelope detection demodulation,29

we must keep w(t) = x(t)+ b ≥ 0.
(a) What value of bias minimizes the average power required to transmit x(t) using

the amplitude modulation procedure illustrated in Figure 3.15?
(b) What is this average power?

4.6 Solutions for Selected Chapter 4 Exercises

4.1. (a) If X is a random variable with units of volts, then its mean and standard deviation
have units of volts. Its variance has units of volts squared. (b) The Poisson random

29. See Section 3.4.2.
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variable is applicable only to unitless quantities, e.g., the number of hits on a web
site in a given hour.

4.2. See the definite integration of derivatives property in (2.94).
4.3. Gamma random variable moments. Our goal is derivation of the moments of the

gamma random variable in two ways and verify the mean and variance in (4.26)
and (4.27) that were derived using the second characteristic function.
(a) The first few derivatives of the characteristic function for the gamma random

variable are

�(u) = 1

(1+ j2πu/λ)α

d

du
�(u) =

(−j2π

λ

)
α

(1+ j2πu/λ)α+1

(
d

du

)2

�(u) =
(
− j2π

λ

)2
α(α + 1)

(1+ j2πu/λ)α+2

(
d

du

)3

�(u) =
(
− j2π

λ

)3
α(α + 1)(α + 2)

(1+ j2πu/λ)α+3

(
d

du

)4

�(u) =
(
− j2π

λ

)4
α(α + 1)(α + 2)(α + 3)

(1+ j2πu/λ)α+4
.

We deduce the pattern

(
d

du

)m

�(u) =
(−j2π

λ

)m 1

(1+ j2πu/λ)α+m

m−1∏
q=0

(α + q)

which can be firmly established by induction. Thus, from (4.9)

Xm = λ−m
m−1∏
q=0

(α + q) (4.95)

For the Erlang random variable, α = k and

m−1∏
q=0

(k + q) = k(k + 1)(k + 2) . . . (k + m − 1) = k!
(k + m)! .

Equation (4.95) becomes

Xm = (k + m − 1)!
(k − 1)! λ−m.

The mean and variance of the Erlang random variable follow as

X = α

λ
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and

σ 2
X = X2 − (X )2

= α(α + 1)

λ2
−
(α
λ

)2

= α

λ2
.

These are the same results derived in (4.26) and (4.26) which were derived
using the second characteristic function.

For the chi-square random variable, α = k/2 and λ = 1
2 . Then

m−1∏
q=0

(
k

2
+ q

)
= k

2

(
k

2
+ 1

)(
k

2
+ 2

)(
k

2
+ 3

)
. . .

(
k

2
+ m − 1

)

= 2mk(k + 2)(k + 4)(k + 6) . . . (k + 2(m − 1))

= 2m (k + 2(m − 1))!!/(k − 2)!!
where the double factorial is defined in (2.66). Thus, using (4.95),

Xm = 4m (k + 2(m − 1))!!
(k − 2)!! .

(b) The nth moment of the gamma random variable follows from (4.24) and (4.5) as

Xn =
∫ ∞

0

λxn(λx)α−1e−λx

�(α)
dx

which we can also write as

Xn = �(α + n)

λn�(α)

∫ ∞
0

λ(λx)α+n−1e−λx

�(α + n)
dx.

The integration is over a gamma probability density function with parameter
α̂ = α + n and therefore integrates to one. This leaves

Xn = �(α + n)

λn�(α)
. (4.96)

(c) From (4.96),

X = �(α + 1)

λ�(α)
= α�(α)

λ�(α)
= α

λ

which is the same as the gamma random variable mean calculated in (4.26).
Similarly

X2 = �(α + 2)

λ2�(α)
= α(α + 2)

λ2
.

Thus

σ 2
X = X2 − X

2 = α(α + 1)

λ2
−
(α
λ

)2 = α

λ2

which is identical to the variance computed in (4.27).
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4.4. Beginning with (4.86).

Zn = Sn − Sn

σSn

= Sn/n− Sn/n

σSn/n

= An − An

σAn

This is (4.55).
4.5. Gaussian random variable moments

(a) The first few derivatives are

d

dα
α−1/2 = −1

2
α−3/2,

(
d

dα

)2

α−1/2 = 1

2

3

2
α−5/2,

(
d

dα

)3

α−1/2 = −1

2

3

2

5

2
α−7/2,

(
d

dα

)4

α−1/2 = 1

2

3

2

5

2

7

2
α−9/2.

From this pattern, we deduce

(
d

dα

)k

α−1/2 = (−1)k 1

2

3

2
· · · 2k − 1

2
α−(2k+1)/2.

or, equivalently,

(
d

dα

)k

α−1/2 = (2k − 1)!!
(−2)k

α−(2k+1)/2.

Thus, (4.87) becomes

√
π

(2k − 1)!!
2k

α−(2k+1)/2 =
∫ ∞
−∞

(
−x2

)k
e−αx2

dx.

Substituting α = 1/(2σ 2) and manipulating gives

(2k − 1)!! σ 2k = 1√
2π σ

∫ ∞
−∞

x2ke
− x2

2σ2 dx.

Thus

X2k = (2k − 1)!! σ 2k .

Since the probability density function is even, all of the odd moments are
zero. Thus

Xk = (k − 1)!! σ k δ[k − even ]. (4.97)
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(b) Substituting (4.97) in the Taylor series expansion in (4.10) gives the character-
istic function

�X (u) =
∞∑

k=0

(−j2πu)k (k − 1)!! σ k δ[k − even]/k!. (4.98)

Since

(k − 1)!!
k! = (k − 1)(k − 3)(k − 5) . . .

k(k − 1)(k − 2)(k − 3) . . .
= 1

k!! ,

(4.98) becomes

�X (u) =
∞∑

k=0

(−j2πuσ )k

k!! σ k δ[k − even].

Setting k = 2n and noting that

(2n)!! = 2n(2n− 2)(2n− 4) . . . = 2nn(n− 1)(n− 2) . . . = 2nn!
gives

�X (u) =
∞∑

n=0

(−2(πuσ )2
)n

n! .

From the Taylor series for the exponential in (2.34), we conclude

�X (u) = e−2(πuσ )2
.

Applying the shift theorem for a nonzero mean gives the Gaussian entry in
Table 4.1.

4.6. Reliability. Note that, for a range of values of y, the operation yn+1 = e−xyn

corresponds to a contractive operator (see Section 11.5.2) and will converge to
y∞ = e−xy∞ . This, however, is not the most straightforward method to generate the
data to plot RX (x).
(a) Rather, we can solve for the inverse of (4.88) to obtain

x = − ln (RX (x))

RX (x)
.

The inverse can be easily plotted and then appropriately rotated and flipped to
give RX (x). The result is shown in Figure 4.27.

(c) Since fX (x) = − d
dx RX (x), the kth moment in (4.5) can be written as

Xk = −
∫ ∞

0
xk dRX (x)

dx
dx

Administer the variable substitution y = RX (x) to obtain

Xk =
∫ 1

0

(− ln(y)

y

)k

dy.
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FIGURE 4.27. The plot of the reliability function, RX (x), defined by (4.88) in Exercise 4.6.

Since the integrand is positive, we have

Xk ≥
∫ e−1

0

(− ln(y)

y

)k

dy.

Over the interval 0 < y < e−1 we have − ln(y) > 1 and, for k ≥ 1,

Xk ≥
∫ e−1

0

1

yk
dy = ∞.

All of the moments of X are therefore infinite.
(d) Let fW (x) denote the probability density function of a Cauchy random variable.

Then all of the moments of the random variable Z = |W |, with a probability
density function of fZ (x) = 2fW (x)μ(x), are infinite. There are other examples.

4.9. Confluent hypergeometric functions
(a) To massage the integrand of confluent hypergeometric function definition in

(4.89) into the probability density function of the beta random variable in (4.28),
we set

b = α − 1

and

c = β − α − 1.

Thus

α = b+ 1

and

β = b+ c+ 2.
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The integral in (4.89) can then be written as

1F1(b+ 1, b+ 1; z) = �(b+ c+ 1)

�(c+ 1)�(b+ 1)

∫ 1

0
ezxxb(1− x)cdx. (4.99)

The characteristic function for the beta random variable is the Fourier transform
of the probability density function in (4.28).

�X (u) =
∫ 1

0

xb(1− x)c

B(b+ 1, c+ 1)
e−j2πuxdx.

Simplifying using (4.99) gives

�X (u) = (b+ c+ 1)1F1(b+ 1, b+ c+ 2,−j2πu) (4.100)

(b) Substituting the expression for the moments of the beta random variable in
(4.29) into the characteristic function Taylor series expansion in (4.10) gives

(b+ c+ 1)1F1(b+ 1, b+ c+ 2,−j2πu)

=
∞∑

n=0

(−j2πu)n�(b+ n+ 1)

�(b+ 1)

�(b+ c+ 2)

�(b+ n+ c+ 2)
.

4.10. The Pearson III random variable
(a) Use the Pearson III random variable defined in Table 4.1 with α = 0. We will

add in the shift after performing a Fourier transform. From Table 2.5,

tk−1e−atμ(t)←→ �(k)

(a+ j2πu)k

Thus, we have

1

β�(p)

(
x

β

)p−1

e−x/βμ(x)↔
(

β

β + j2πu

)p

and, after application of the shift theorem, the characteristic function of the
Pearson III random variable is that entered in Table 4.1.

(b) The second characteristic function for the Pearson III random variable is

�X (u) = p ln β − p ln(β + j2πu)− j2παu.

Thus

d

du
�X (u) = −j2π

(
p

β + j2πu
+ α

)

and

X = 1

−j2π

d

du
�X (0) = p

β
+ α.

Continuing with the second derivative

(
d

du

)2

�X (u) = (−j2π )2p

(β + j2πu)2
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and the variance of the Pearson III random variable is

σ 2
X =

1

−(2π )2

(
d

du

)2

�X (0) = pβ2.

(c) The characteristic function of the sum of N i.i.d. Pearson III random variable’s
with parameters α, β and p is

�S(u) = �N
X (u) =

(
β

β + j2πu

)Np

pe−j2πuNα.

The sum is therefore a Pearson III random variable with parameters Nα, β
and Np.

(d) Since the mean of the Pearson random variable is X = α + p
β

and its

variance σ 2
X = pβ2, we expect, from the central limit theorem, the sum to

approach a Gaussian probability function for large N with a mean of NX and
variance Nσ 2

X .
4.13. Mixed random variables

(a) The characteristic function for the mixed probability density in (4.90) is

�X (x) = 1

2
ej2πuT + 1

4
e−T/2

∫ T

x=−T
e−x/2e−j2πuxdx

+ 1

2
e−T ej2πuT .

= e−T/2
[(

1

2
eT/2ej2πuT + 1

2
e−T/2e−j2πuT

)

+
(

1

2
eT/2ej2πuT − 1

2
e−T/2e−j2πuT

)
/(1+ j4πu)

]
.

Simplifying gives (4.91).
(b) We raise (4.91) to the nth power to obtain

�Sn (u) = �n
X (u)

= e−nT/2
[

cosh (θ )+ T

2θ
sinh (θ )

]n

= e−nT/2
n∑

k=0

(n

k

)( T

2θ

)k

sinhk (θ ) coshn−k (θ )

= e−nT/2
n∑

k=1

(n

k

)( T

2θ

)k

sinhk (θ ) coshn−k (θ )

+ e−nT/2coshn(θ ).



[14:05 15/10/2008 5165-Marks-Ch04.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 212 151–216

212 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

Express the cosh and sinh as exponentials and expand again using a binomial
expansion.

�Sn (u) = 1

2n
e−nT/2 (eθ + e−θ

)n

+ e−nT/2
n∑

k=1

(n

k

)( T

2θ

)k

× 1

2k

(
eθ − e−θ

)k 1

2n−k

(
eθ + e−θ

)n−k

= 1

2n
e−nT/2

n∑
m=0

( n

m

)
emθ (e−θ )n−m

+ e−nT/2
n∑

k=1

(n

k

)( T

2θ

)k

(4.101)

×
k∑

p=0

(
k

p

)
(−1) p(e−θ ) pe(k−p)θ

× 1

2n−k

n−k∑
q=0

(
n− k

q

)
(e−θ )qe(n−k−q)θ

= 1

2n
e−nT/2

n∑
m=0

( n

m

)
e(2m−n)θ

+ 1

2n
e−nT/2

n∑
k=1

(n

k

)( T

2θ

)k

×
k∑

p=0

(−1)p
(

k

p

) n−k∑
q=0

(
n− k

q

)
e(n−2(p+q))θ .

Since

θ =
(

1

2
+ j2πu

)
T

and, from (4.92),

t�−1e−atμ(t)

(�− 1)! ↔
1

(a+ j2πu)�
,

we then conclude from the shift theorem that

(x + �T )k−1e−x/2μ(x + �T )

Tk(k − 1)! ↔ e
�T
(

1
2+j2πu

)

[
T
( 1

2 + j2πu
)]k .
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Thus, with � = n − 2(p + q), the inverse Fourier transform of (4.101) is our
final answer

fSn (x) = 1

2n
e−nT

n∑
m=0

( n

m

)
emT δ (x + (2m − n)T )

+ 1

2n
e−(x+nT )/2

n∑
k=1

(n

k

) 1

2k(k − 1)!

×
k∑

p=0

(−1)p
(

k

p

)
(4.102)

×
n−k∑
q=0

(x + (n− 2(p+ q)) T )k−1

× μ (x + (n− 2(p+ q)) T ) .

The computational complexity of this probability density function can be
simplified dependent on the value of x [342].

4.14. (a) Since, for real X(t),

RX (t, τ ) = E [X(t)X(τ )] ,

and

Y (t) = d

dt
X(t),

we have

RY (t, τ ) = E [Y (t)Y (τ )]

= E

[
d

dt
X(t)

d

dτ
X(τ )

]

= E

[
∂2

∂t ∂τ
X(t)X(τ )

]

= ∂2

∂t ∂τ
E [X(t)X(τ )]

= ∂2

∂t ∂τ
RX (t, τ ).

(b) Using (4.64) for Y (t) = d
dt X(t),

RY (t, τ ) = ∂2

∂t ∂τ

[
λ2tτ + λmin [t, τ ]

]

= ∂2

∂t ∂τ

[
λ2tτ + λτ μ(t − τ )+ λt μ(τ − t)

]

= ∂

∂τ

[
λ2τ + λτ δ(t − τ )− λt δ(t − τ )+ λμ(τ − t)

]
.
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Since

τ δ(t − τ ) = t δ(t − τ )

we have

RY (t, τ ) = ∂

∂τ

[
λ2τ + λμ(τ − t)

]
.

= λ2 + λ δ(t − τ ).

This is equivalent to (4.84)
4.15. First, since � is uniform on [−π, π ],

ξ (t) = 1

2π

√
2ξ2

∫ π

−π
cos (2π f0t − θ ) dθ = 0.

The expected value of the process is thus identically zero and meets the first of two
criteria for being stationary in the wide sense.

The autocorrelation of the stochastic process in (4.93) is

Rξ (t, τ ) = 2ξ2 E [cos (2π f0t −�) cos (2π f0τ −�)] .

Using a trig identity30

Rξ (t, τ ) = ξ2 (cos (2π f0(t − τ ))+ E [cos (2π f0(t + τ )− 2�) ]) .

But, since

E [cos (2π f0(t + τ )− 2θ ) ] = 1

2π

∫ π

−π
cos (2π f0(t + τ − 2θ )) dθ = 0

and

Rξ (t, τ ) = ξ2 cos (2π f0(t − τ )).

The stochastic process is therefore stationary with autocorrelation

Rξ (τ ) = ξ2 cos (2π f0τ ).

Its power spectral density follows as

Sξ (u) = ξ2

2
[δ(u− f0)+ δ(u+ f0)].

4.16. (a) ξ2 = Rξ (0) = ∫∞−∞ Sξ (u)du.

(b) ξ2 = Rξ [0]. Note that (4.71) is a Fourier series with period 1. Thus

ξ2 =
∫

1
Sξ (u)du

where integration is over any period.

30. Here is a derivation of the trig identity. cos(α) cos(β) = � ejα cos(β) = 1
2� ejα

(
ejβ + e−jβ

)
. Thus

cos(α) cos(β) = 1
2 [cos(α + β)+ cos(α − β)].
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4.18. Stochastic resonance
(a) The magnitude squared of (4.94) is maximum when

1

|H(u)|2 = (v + a)(v + b)

and is minimum where v = (2πu)2, a = α2, b = β2. This occurs when

v = a+ b

2

or

u = ur = 1

2π

√
α2 + β2

2
.

The maximum filter output occurs when all the power spectral density is
concentrated at the maximum of |H(u)|. This occurs when X(t) has a power
spectral density with all of its mass at the resonant frequency, ur , i.e.,

SX (u) = X2

2
[δ(u+ ur)+ δ(u− ur)] .

A candidate is the stochastic process in Exercise 4.15 with f0 = ur .
(b) Let η(t) be the filter output. Since

|H(ur)|2 = 4

α2 + β2
,

we have, using (4.82), the average power of the filter output as

η2 = 4ξ2

(α2 + β2)2
.

4.20. (a) From (4.65)

R∗ξ (τ − t) = E[ξ (τ ) ξ∗(t)]∗

= Rξ (t − τ ).

(b)

S∗ξ (u) =
∫ ∞
−∞

R∗ξ (t) ej2πut dt

=
∫ ∞
−∞

R∗ξ (−τ ) e−j2πuτ dτ

=
∫ ∞
−∞

Rξ (τ ) e−j2πuτ dτ

= Sξ (u).
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4.21. (a) The bias, b, is the only free parameter. The minimum average power results
by minimizing the bias. To keep w(t) = x(t)+ b ≥ 0, we choose b = A. Then the
modulated signal envelope will touch zero but not go negative. This is illustrated
in Figure 4.28

FIGURE 4.28. Full modulation using minimum average power.
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The Sampling Theorem

When I am violently beset with temptations, or cannot rid myself of evil thoughts,
[I resolve] to do some Arithmetic, or Geometry, or some other study, which

necessarily engages all my thoughts, and unavoidably keeps them from wandering.
Jonathon Edwards (1703–1758) [867].

I tell them that if they will occupy themselves with the study of mathematics they will
find in it the best remedy against the lusts of the flesh.

Thomas Mann (1875–1955) [871].

Life is good for only two things, discovering mathematics and teaching mathematics.
Siméon Poisson [468].

If I feel unhappy, I do mathematics to become happy. If I am happy, I do mathematics
to keep happy.

Alfréd Rényi (1921–1970) [1419].

I just wondered how things were put together.
Claude Shannon

5.1 Introduction

Much of that which is ordinal is modelled as analog. Most computational engines, on the
other hand, are digital. Transforming from analog to digital is straightforward: we simply
sample. Regaining the original signal from these samples or assessing the information lost in
the sampling process are the fundamental questions addressed by sampling and interpolation
theory.

This chapter deals with understanding, generalizing and extending the cardinal series
of Shannon sampling theory. The fundamental form of this series states, remarkably,
that a bandlimited signal is uniquely specified by its sufficiently close equally spaced
samples.

The cardinal series has many names, including the Whittaker-Shannon sampling theorem
[514], the Whittaker-Shannon-Kotelnikov sampling theorem [679], and the Whittaker-
Shannon-Kotelnikov-Kramer sampling theorem [679]. For brevity, we will use the terms
sampling theorem and cardinal series.

5.1.1 The Cardinal Series

If a signal has finite energy, the minimum sampling rate is equal to two samples per period
of the highest frequency component of the signal. Specifically, if the highest frequency

217
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component of the signal is B hertz, then the signal, x(t), can be recovered from the
samples by

x(t) = 1

π

∞∑
n=−∞

x
( n

2B

) sin (π (2Bt − n))

2Bt − n
.

The frequency B is also referred to as the signal’s bandwidth and, if B is finite, x(t) is
said to be bandlimited [1283].

5.1.2 History

The history of Shannon sampling theory and the cardinal series is intriguing. A summary
of key events in the development of the cardinal series is listed in Table 5.1.

Luke [856] credits Lagrange for deriving the sampling theorem for the special case of
periodic bandlimited signals in 1765.

H.S. Black[119] credits Cauchy for recognition of the mechanics of band-limited signal
sampling in 1841 and even offers the following translation from Cauchy’s original French
text [252].

If a signal is a magnitude-time function, and if time is divided into equal

intervals such that each subdivision comprises an interval T seconds

long where T is less than half the period of the highest significant

frequency component of the signal, and if one instantaneous sample is

taken from each subinterval in any manner; then a knowledge of the

instantaneous magnitude of each sample plus a knowledge of the instant

within each subinterval at which the sample is taken contains all the

information of the original signal.

In a later historical overview, Higgins [603], however, notes that such a quote was
not included in the paper by Cauchy that was cited by Black. Higgins, rather, credits

TABLE 5.1. Key events in the development of the cardinal series

1765 - Lagrange derives the sampling theorem for the special case of periodic bandlimited signals [856].
1841 - Cauchy’s recognition of the Nyquist rate [252]1.
1897 - Borel’s recognition of the feasibility of regaining a bandlimited signal from its samples [136].
1915 - E.T. Whittaker’s publishes his highly cited paper on the cardinal series [1482].
1928 - H. Nyquist establishes the time–bandwidth product of a signal [1033].
1929 - J.M. Whittaker coins the term cardinal series.
1933 - A. Kotelnikov publishes the sampling theorem in the Soviet literature.
1948 - C.E. Shannon publishes a paper which establishes the field of information theory. The sampling theorem

is included [1256].
1959 - H.P. Kramer generalizes the sampling theorem to functions that are bandlimited in other than the Fourier

sense [772].
1962 - D.P. Peterson and D. Middleton extend the sampling theorem to higher dimensions [984].
1977 - A. Papoulis publishes his generalization of the sampling theorem [1086]. A number of previously

published extension are shown to be special cases.

1. Disputed. See text.
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Emile Borel [136] in 1897 for the initial recognition of the cardinal series and cites the
following passage translated from the original French.

Consider

f (z) =
∫ π

−π
�(x) e jzxdx

and suppose that the function�(x) satisfies the conditions of Dirichlet.

If one knows the values of the function, f (z), at the points z = 0,

±1,±2, . . ., then the function �(x) is completely determined and,

consequently, the entire function f (z) is known without ambiguity.

This connection of the Fourier series to the sampling theorem was the same tool of
explanation later used by Shannon in his classic paper [1256].

E. T. Whittaker published his highly cited paper on the sampling theorem in 1915
[1482]. In his work, if one function had the same uniformly spaced samples as another,
the functions were said to be cotabular. The sampling theorem interpolation from these
samples resulted in what Whittaker called the cardinal function. The interpolation formula
was later dubbed the cardinal series by Whittaker’s son, J. M. Whittaker [1484]. Among
other things, the senior Whittaker showed the functions, x(t), to which the cardinal
series applied were bandlimited and entire on the finite t plane. He also noted that
applicability of the cardinal series to a function was independent of the choice of sampling
phase.

The sampling theorem was reported in the Soviet literature in a paper by Kotelnikov in
1933. Shannon [1256] used the sampling theorem to demonstrate that an analog bandlimited
signal was equivalent in an information sense to the series of its samples taken at the
Nyquist rate. He was aware of the work of Whittaker which he cited. Other noted historical
generalizations and extensions of the sampling theorem are listed chronologically in
Table 5.1.

Marks published the first volume dedicated entirely to the sampling theorem in 1991
[915]. Other texts have followed [605, 606, 916, 957].

A signal is bandlimited in the low pass sense if there is a B > 0 such that

X(u) = X(u)�
( u

2B

)
. (5.1)

That is, the spectrum is identically zero for |u| > B. The B parameter is referred to as the
signal’s bandwidth. It then follows that

x(t) =
∫ B

−B
X(u) e j2πut du. (5.2)

In most cases, the signal can be expressed by the cardinal series

x(t) =
∞∑

n=−∞
x
( n

2B

)
sinc(2Bt − n). (5.3)

The ability to thus express a continuous signal in terms of its samples is the fundamental
statement of the sampling theorem.
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At other than sample locations, a more computationally efficient form of (5.3) requiring
evaluation of only a single trigonometric function is

x(t) = 1

π
sin(2πBt)

∞∑
n=−∞

(−1)n x( n
2B )

2Bt − n
. (5.4)

5.2 Interpretation

The sampling theorem reduces the normally continuum infinity of ordered pairs required to
specify a continuous time function to a countable - although still infinite – set. Remarkably,
these elements are obtained directly by sampling.

Bandlimited functions are smooth.Any behavior deviating from “smooth” results in high
frequency components which in turn invalidate the required property of being bandlimited.
The smoothness of the signal between samples precludes arbitrary variation of the signal
there.

Let’s examine the cardinal series more closely. Evaluation of (5.3) at t = m/2B and
using (2.42) reduces (5.3) to an identity. Thus, only the sample at t = m/2B contributes to
the interpolation at that point. This is illustrated in Figure 5.1 where the reconstruction of
a signal from its samples using the cardinal series is shown. The value of x(t) at a point
other than a sample location (e.g., t = (m + 1

2 )/2B) is determined by all of the sample
values.

5.3 Proofs

We now present three proofs of the conventional sampling theorem. The first is used most
commonly in texts. The second, due to Shannon, exposes the sampling theorem as the

FIGURE 5.1. Illustration of the manner by which x(t) is regained from its samples using the cardinal
series. Note that the sinc for a given sample is zero at all other sample locations.
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Fourier transform dual of the Fourier series. Finally, an eloquently compact form of proof
due to Papoulis [1087] is presented.

5.3.1 Using Comb Functions

In this section we present the standard textbook proof of the sampling theorem. Since it
can be nicely illustrated, the proof is quite instructive. It requires only an introductory
knowledge of Fourier analysis.

In presenting this proof, we will repeatedly refer to Figure 5.2 where five functions and
their Fourier transforms are shown. In (a) is pictured a signal which, as is seen from its
transform, is bandlimited with bandwidth B. The sampling is performed by multiplying the
signal by the sequence of Dirac deltas shown in (b). The result, shown in (c) is

s(t) = x(t) 2B comb(2Bt) (5.5)

=
∞∑

n=−∞
x
( n

2B

)
δ
(

t − n

2B

)
. (5.6)

FIGURE 5.2. Illustration of Shannon’s proof of the sampling theorem. Sampling is performed by
multiplying lines (a) and (b) in time to obtain line (c). The signal is regained by multiplying lines (c)
and (d) in frequency to obtain line (e).
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Our goal is to recover x(t) from s(t) which is specified only by the signal’s samples.
Let’s examine what happens in the frequency domain when we sample. Multiplication

in the time domain corresponds to convolution in the frequency domain. Since

2B comb(2Bt)←→ comb
( u

2B

)
,

we conclude that the transform of (5.5) is

S(u) = X(u) ∗ comb
( u

2B

)
.

Because convolving a function with δ(u− a) centers that function at a,

F(u) ∗ δ(u− a) = F(u− a),

we conclude that

S(u) = 2B
∞∑

n=−∞
X(u− 2nB). (5.7)

These replications do not overlap.

5.3.1.1 Aliasing

If X(u) was not truly bandlimited or if the sampling rate were below 2B, then the
spectra would overlap. This phenomena is referred to as aliasing. Here, the low fre-
quency components of the signal can still be regained although the high frequency
components are irretrievably lost. Clearly, sampling can be performed at a rate greater
than 2B without aliasing. The minimum sampling rate resulting in no aliasing (in this
case 2B) is referred to as the Nyquist rate. Sampling above the Nyquist rate can relax
interpolation formula requirements and improve noise sensitivity. If there are Dirac
deltas in the signal’s spectrum, sampling a bit above twice the signal’s bandwidth may
be required.

5.3.1.2 The Resulting Cardinal Series

Sampling is performed in Figure 5.2 by multiplying lines (a) and (b) in time to obtain
line (c). Clearly, if there is no aliasing, multiplication of S(u) on line (c) by the low pass
filter on line (d) will result in the original spectrum, X(u). That is

X(u) = S(u)
1

2B
�
( u

2B

)
.

The corresponding time domain operation is convolution:

x(t) = s(t) ∗ sinc(2Bt).

Substituting (5.6) and evaluating gives the sampling theorem in (5.3).

5.3.2 Fourier Series Proof

Since X(u) is identically zero for |u| > B, we can replicate it to form a periodic function
in the frequency domain with period 2B. This periodic function can be expressed as a
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Fourier series. The result of the series for |u| ≤ B is X(u). The Fourier series

X(u) =
∞∑

n=−∞
cn e−jπnu/B�

( u

2B

)
(5.8)

has Fourier coefficients

cn = 1

2B

∫ B

−B
X(u) e jπnu/B du

= 1

2B
x
( n

2B

)
. (5.9)

Substituting into (5.8) and inverse transforming gives the sampling theorem series in (5.3)
which, as we see here, is the Fourier transform dual of the Fourier series.

5.3.3 Papoulis’ Proof

A eloquent proof [1087] of the sampling theorem begins with the Fourier series expansion
of a periodic function with period 2B that is equal to exp( j2πut) for |u| ≤ B:

e j2πut =
∞∑

n=−∞
sinc(2Bt − n) e j2π (n/2B)u. (5.10)

Substituting into the inversion formula in (5.2) gives

x(t) =
∞∑

n=−∞

∫ B

−B
X(u) e jπnu/B du sinc(2Bt − n)

Evaluating the integral by again using (5.2) gives the cardinal series in (5.3).

5.4 Properties

We now present some properties of the cardinal series.

5.4.1 Convergence

Although there are exceptions, the cardinal series generally converges uniformly. That is

lim
N→∞ |x(t)− xN (t)| = 0 (5.11)

where the truncated cardinal series is

xN (t) =
N∑

n=−N

x
( n

2B

)
sinc(2Bt − n). (5.12)

The validity of (5.11) is obvious at the sample locations (t = m
2B ) since contributions

from adjacent points are zero. Uniform convergence is stronger than, say, the mean square
convergence characteristic of Fourier series expansions of functions with discontinuities.
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5.4.1.1 For Finite Energy Signals

We first will prove (5.11) for the case where x(t), and therefore X(u), has finite energy [478].
Note that

x(t)− xN (t) =
∫ B

−B
[X(u)− XN (u)] e j2πut du (5.13)

where

xN (t)←→ XN (u)

= 1

2B

N∑
n=−N

x
( n

2B

)
e−jπnu/B�

( u

2B

)
.

Schwarz’s inequality2 can be written

∣∣∣∣
∫ ∞
−∞

A(u) C(u) du

∣∣∣∣
2

≤
∫ ∞
−∞
|A(u)|2 du

∫ ∞
−∞
|C(u)|2 du. (5.14)

Application to (5.13) yields

|x(t)− xN (t)|2 ≤ 2B
∫ B

−B
|X(u)− XN (u)|2 du. (5.15)

The right side approaches zero if XN → X in the mean square sense. Since the limit of XN is
the Fourier series of X and the Fourier series displays mean square convergence,3 the right
side of (5.15) tends to zero and our proof is complete.

5.4.1.2 For Bandlimited Functions with Finite Area Spectra

We now present an alternate proof of the cardinal series’ uniform convergence for the case
where X(u) has finite area:

∫ B

−B
|X(u)| du <∞. (5.16)

From Exercise 2.19, this constraint requires that x(t) be bounded. Our proof will,
for example, allow cardinal series representation for J0(2π t) and x(t) = constant both
of which, due to infinite energy, are excluded in the conditions of the previous proof.

We begin our proof by defining

eN (u; t) =
N∑

n=−N

sinc(2Bt − n) e jπnu/B. (5.17)

From (5.10), we recognize that eN (u; t) is a truncated Fourier series of exp( j2πut) for
|u| < B. Since, for a fixed t, exp( j2πut) is continuous for |u| < B, the Fourier series

2. See Appendix 14.1.
3. See Section 2.3.2.2.
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in (5.10) converges pointwise on this interval. Define the error magnitude

εN (u; t) =
∣∣∣e j2πut − eN (u; t)

∣∣∣ .

Let �N denote the maximum (or supremum) of εN (u; t) for |u| < B. Then we are
guaranteed that

lim
N→∞ �N = 0. (5.18)

Next, note that the truncated cardinal series in (5.12) can be written as

xN (t) =
N∑

n=−N

∫ B

−B
X(u) e jπnu/B du sinc(2Bt − n)

=
∫ B

−B
X(u) eN (u; t) du.

Using the inequality
∣∣∣∣
∫

Y (u) du

∣∣∣∣ ≤
∫
|Y (u)| du (5.19)

we find that

|x(t)− xN (t)| =
∣∣∣∣
∫ B

−B
X(u)

[
e j2πut − eN (u; t)

]
du

∣∣∣∣

≤
∫ B

−B
|X(u)| εN (u; t) du.

Since the integrand is positive,

|x(t)− xN (t)| ≤ �N

∫ B

−B
|X(u)| du.

From (5.16), the integral is finite. Use of (5.18) results in (5.11) and the proof is complete.
The uniform convergence result for the cardinal series should not be surprising. Because

of limited frequency constraints, bandlimited functions are inherently smooth. The sinc
interpolation function is similarly smooth. There is thus no mechanism by which deviations
such as Fourier series’ Gibb’s phenomenen can occur.4

5.4.2 Trapezoidal Integration

5.4.2.1 Of Bandlimited Functions

Clearly, if x(t)↔ X(u), then

X(0) =
∫ ∞
−∞

x(t) dt.

4. See Exercise 2.51.
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FIGURE 5.3. When sampling is performed at or above the Nyquist rate, the integration of x(t) over all
t (top) gives the same result as integrating over a piecewise linear interpolation of the samples, i.e
trapezoidal integration (middle) and a piecewise constant representation of the signal (bottom).

Using (5.8) with (5.9), we thus conclude the integral of a bandlimited function can be written
directly in terms of its samples:

∫ ∞
−∞

x(t) dt = 1

2B

∞∑
n=−∞

x
( n

2B

)
.

Thus, as illustrated in Figure 5.3, trapezoidal integration of bandlimited signals contains no
error due to the piecewise linear approximation of the signal if sampling is at or above the
Nyquist rate. Since integration is over all of t, trapezoidal integration gives the same result
as piecewise constant (rectangular) integration.

Accurate integration results from a signal’s samples can also be obtained when sampling
below the Nyquist rate.5

5.4.2.2 Of Linear Integral Transforms

Consider numerical evaluation of the linear integral transform

g(t) =
∫ ∞
−∞

u(τ ) h(t; τ ) dτ (5.20)

where u(τ ) is the input, g(t) is the transform and h(t; τ ) is the transform kernel. Special
cases are numerous and include correlation,convolution, and Laplace, Abel, Mellin, Hilbert
and Hankel transforms [149].

One popular approach is to evaluate (5.20) by trapezoidal integration:

g(t) ≈ g�(t) = �
∞∑

n=−∞
u(n�) h(t; n�) (5.21)

where � is the input sampling interval. If the output is sampled, (5.21) can be expressed
simply as a matrix-vector product.

5. See Exercise 5.3.
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We will show that by a simple alteration of the transform kernel, the expression in (5.21)
can be made exact in the spirit of the sampling theorem [898]. Certain linear operations
that cannot be directly evaluated by use of (5.21) because of singularities can be evaluated
through this sampling theorem characterization.

5.4.2.3 Derivation of the Low Passed Kernel

Let u(τ ) be bandlimited in the low pass sense with bandwidth B. Let W > B. Then u(τ ) is
unaffected by low-pass filtering.

u(τ ) = 2W
∫ ∞
−∞

u(η) sinc (2W (τ − η)) dη.

Substituting into the expression for the linear integral transform in (5.20) gives

g(t) =
∫ ∞
−∞

u(η) k(t; η) dη (5.22)

where the low-passed kernel (LPK) is

k(t; η) = 2W
∫ ∞
−∞

h(t; τ ) sinc (2W (τ − η)) dτ. (5.23)

Even though the kernel in (5.22) is altered, it yields the same result as in (5.20).
Since both the input and the LPK are bandlimited in η, they can be expressed by the

cardinal series:

u(η) =
∞∑

n=−∞
u(n�) sinc

(
n− η

�

)
(5.24)

and

k(t; η) =
∞∑

m=−∞
k(t;m�) sinc

(
m − η

�

)
(5.25)

where the input sampling interval must be chosen such that

� ≤ 1

2W
≤ 1

2B
.

Substituting (5.24) and (5.25) into (5.22) gives

g(t) =
∞∑

n=−∞

∞∑
m=−∞

u(n�) k(t;m�) (5.26)

×
∫ ∞
−∞

sinc
(

n− η

�

)
sinc

(
m − η

�

)
dη (5.27)

= �
∞∑

n=−∞
u(n�) k(t; n�). (5.28)

This is the desired result. Comparing it with (5.21), we conclude that the inaccuracy that
is due to trapezoidal integration can be totally eliminated if the LPK is used in lieu of the
original linear integral transform kernel.
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Example Transforms

To illustrate use of (5.28), we now present example applications for the cases of Laplace
and Hilbert transformation.

Laplace Transform. The (unilateral) Laplace transform, from (2.22), can be written as

g(t) =
∫ ∞

0
u(τ ) e−tτ dτ.

Comparing with (5.20) and (5.22), we have

h(t; τ ) = e−tτ μ(τ )

and

k(t; η) =
∫ ∞

0
e−tτ sinc(τ − η) dτ

where μ(·) denotes the unit step and we have chosen 2W = 1.
Consider the Laplace transform of u(t) = sinc(t). We evaluate the resulting Laplace

transform integral in three ways.

• Directly.

The Laplace integral becomes

g(t) =
∫ ∞

0
sinc(τ ) e−tτ dτ. (5.29)

To evaluate this integral, consider

γ =
∫ ∞

0

sin(aτ )

τ
e−tτ dτ.

Clearly

∂γ

∂a
=
∫ ∞

0
cos(aτ ) e−tτ dτ

= t

t2 + a2
.

Thus, using the boundary condition that a = 0 −→ γ = 0, we conclude that γ =
arctan( a

t ), and the Laplace transform of sinc(τ ) is

g(t) = 1

π
arctan

(π
t

)
.

• Using Trapezoidal Integration

Applying trapezoidal integration to the integral in (5.29) with a step size of� gives6

g(t) ≈ g�(t) = �

2
+�

∞∑
n=1

sinc(n�) e−tn�

= �

2
+ 1

π
	σ (5.30)

6. The �
2 term is replaced by � for rectangular integration.
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where 	 is the imaginary operator,

σ =
∞∑

n=1

1

n
Zn,

and Z = exp(−(t − jπ )�). From the geometric series,7

∂σ

∂Z
=
∞∑

m=0

Zm

= 1

1− Z

we conclude, since Z = 0 −→ σ = 0, that

σ = − ln(1− Z).

For Z = |Z| e j 
 (Z), recall that 	 ln Z = 
 (Z). Thus, after some substitution, (5.30)
becomes

g�(t) = �

2
+ 1

π
arctan

(
sin(π�)

et� − cos(π�)

)
. (5.31)

Note that, as � −→ 0,

sin(π�)

et� − cos(π�)
−→ π

t
.

Thus, as we would expect,

lim
�→0

g�(t) = g(t).

A plot of g�(t) for various �′s is shown in Figure 5.4 along with g(t). Recall that
for� = 1, the LPK approach, in the spirit of the cardinal series, gives exact results.

• Using the LPK
For u(τ )= sinc(τ ) and 2W = 2B = 1/�= 1, the LPK expression in (5.28) becomes

g(t) = k(t; 0)

where we have used the property that sinc(n) = δ[n]. Using (5.23) with η = 0 gives

g(t) =
∫ ∞
−∞

h(t; τ ) sinc(τ ) dτ

which is the integral we wished to evaluate in the first place. The LPK, when applied
to sinc(t), therefore reduces to an identity for Laplace transformation or, for that
matter, any other linear transform.

7. See Appendix 14.4.2
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FIGURE 5.4. Evaluation of the Laplace transform of sinc(t) by trapezoidal integration. Shown is g�(t)
for� = 1, 0.5 and 0.25. Use of the low passed kernel will converge to the desired g(t) for step sizes,
�, less than or equal to one.

Hilbert Transform

The Hilbert transform

g(t) = − 1

π

∫ ∞
−∞

u(τ ) dτ

t − τ (5.32)

cannot be accurately evaluated by direct trapezoidal integration because of the singularity
at τ = t. Fourier transform analysis, rather, is commonly used. We will now show, however,
that through application of the LPK, an accurate matrix-vector characterization of the Hilbert
transform is possible. From (5.32)

h(t; τ ) = −1

π (t − τ )
.

If we choose W = B, the corresponding LPK is

k(t; η) =
∫ B

−B

[
− 1

π

∫ ∞
−∞

exp(−j2πuτ )

t − τ dτ

]
e j2πuη du

= −j
∫ B

−B
sgn(u) e−j2πu(t−η) du

= −2B sin πB(t − η) sincB(t − η). (5.33)

Afurther simplification arises after we note that Hilbert transformation is a shift-invariant
operation. Thus, if u(τ ) is bandlimited, so then is the output, g(t). This being true, we need
to know g only at the points where t = m/2B. Substituting (5.33) into (5.28) with� = 1/2B
gives

g(m�) =
∞∑

n=−∞
u(n�) sin

(π
2

(m − n)
)

sinc

(
1

2
(m − n)

)
.
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Noting that every other term is zero yields the final desired result.

g(m�) = − 2

π

∑
m−n odd

u(n�)

m − n
.

This discrete convolution version of the Hilbert transform contains no singularities and is
exact for all band-limited inputs.

5.4.2.4 Parseval’s Theorem for the Cardinal Series

The energy of a signal is

E =
∫ ∞
−∞
|x(t)|2 dt.

For a bandlimited signal, we substitute the cardinal series in (5.3) and write

E =
∞∑

n=−∞

∞∑
m=−∞

x
( n

2B

)
x∗
( m

2B

)
Inm

where

Inm =
∫ ∞
−∞

sinc(2Bt − n) sinc(2Bt − m) dt.

Using the power theorem

Inm = 1

(2B)2

∫ B

−B
e−jπ (n−m)u/B du

= 1

2B
δ[n− m].

This gives Parseval’s theorem for the sampling theorem:

E = 1

2B

∞∑
n=−∞

∣∣∣x
( n

2B

)∣∣∣2 . (5.34)

The signal’s energy can thus be determined by summing the square of the magnitude of each
sample.

5.4.3 The Time-Bandwidth Product

The cardinal series requires an infinite number of samples. Since all bandlimited functions
are analytic, they cannot be identically zero over any finite subinterval except for the
degenerate case x(t) ≡ zero. Thus, the number of nonzero samples taken from almost
every band-limited function is finite. The only exceptions are signals that can be expressed
as the sum of a finite number of uniformly spaced sinc functions.

We can, however, have a “good” representation of the function using a finite number of
samples. If a signal has either finite area or finite energy, it must asymptotically approach
zero at t = ±∞. In such cases, there is always an interval of duration T outside of which
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the samples are negligibly small. If we sample over this interval at the Nyquist rate, 2B,
then a total of

S = 2BT (5.35)

samples are needed to characterize the signal. This quantity, the time–bandwidth product,
measures the number of degrees of freedom of the signal. It has also been termed the Shannon
number [1407].

Choice of T is dictated by the truncation error one can tolerate. This topic is treated in
Section 7.5.

5.5 Application to Spectra Containing Distributions

The cardinal series is applicable in certain cases where X(u) contains distributions such as
the Dirac delta. Indeed x(t) = 1 is bandlimited in the sense of (5.1) for all B > 0 and falls
into the category of bandlimited signals with finite area spectra. The corresponding cardinal
series is

∞∑
n=−∞

sinc(2Bt − n) = 1. (5.36)

Similarly, cos(2πBt−φ) has a transform containing two Dirac delta functions at u =±B.
To insure both deltas are contained in the replicated sample spectrum, the sampling rate, 1

T ,
must exceed 2B and

cos(2πBt − φ) =
∞∑

n=−∞
cos(πrn− φ) sinc

(
t

T
− n

)

where

r = 2BT < 1. (5.37)

If r = 1, the bandwidth interval begins and ends at delta function locations. We are
confronted with the unanswerable question of what percentage of each delta should be
included in the bandwidth interval. Requiring (5.37) to be a strict inequality avoids this
problem. Note, also, for r = 1, it is possible to have every sample be zero. The resulting
interpolation clearly would be identically zero and therefore incorrect.

A distribution whose inverse transform does not have a valid cardinal series is the unit
doublet–the derivative of the Dirac delta:

δ(1)(u) =
(

d

du

)
δ(u).

From the dual of the derivative theorem,

−j2π t←→ δ(1)(u).

Thus, x(t) = t is bandlimited in the sense of (5.1). Using the form of the cardinal series in
(5.4), we ask the question

t
?= 1

π
sin(2πBt)

∞∑
n=−∞

(−1)n (n/2B)

(2Bt − n)
.
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For a fixed t 
= m/2B, the answer is clearly “no” since the nth term in the sum approaches
(−1)n+1 – an oscillatory and thus divergent series. The truncated cardinal series thus does
not asymptotically approach the desired value.

5.6 Application to Bandlimited Stochastic Processes

A real wide sense stationary stochastic process, f (t), is said to be bandlimited if its power
spectral density obeys

Sf (u) = Sf (u)�
( u

2B

)
.

As a consequence, the autocorrelation is a bandlimited function. We will use this observation
to show mean square convergence of the cardinal series for f (t). Specifically, define

f̂ (t) =
∞∑

n=−∞
f
( n

2B

)
sinc(2Bt − n).

Then f̂ (t) is equal to f (t) in the mean square sense:

E
[
{ f (t)− f̂ (t)}2

]
= 0. (5.38)

Proof . Expand the mean square error expression to give

E[{ f (t)− f̂ (t)}2] = f 2

+
∞∑

n=−∞

∞∑
m=−∞

Rf

(
n− m

2B

)
sinc(2Bt − n) sinc(2Bt − m)

−2
∞∑

n=−∞
Rf

(
t − n

2B

)
sinc(2Bt − n)

= f 2 + T2 + T3. (5.39)

In the second term, we make the variable substitution k = n− m:

T2 =
∞∑

k=−∞
Rf

(
k

2B

) ∞∑
n=−∞

sinc(2Bt − n+ k) sinc(2Bt − n).

Application of the cardinal series yields, for arbitrary τ ,

∞∑
n=−∞

sinc(2Bτ − n) sinc(2Bt − n) = sinc 2B(t − τ ). (5.40)

Using the result of substituting τ = t + k
2B in (5.40) gives

T2 =
∞∑

k=−∞
Rf

(
k

2B

)
δ[k]

= f 2. (5.41)
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To evaluate the third term, we recognize that Rf (τ − t) is bandlimited and can be written
as a cardinal series:

Rf (τ − t) =
∞∑

n=−∞
Rf

(
τ − n

2B

)
sinc(2Bt − n).

Evaluation at t = τ gives

T3 = −2 f 2.

Substituting this and (5.41) into (5.39) yields (5.38) and our proof is complete.

5.7 Exercises

5.1. A mono audio recording lasts for 5 minutes. Assume the frequency range for human
hearing is 20 Hertz to 20,000 Hertz.
(a) If 20,000 Hertz is the highest frequency in the audio signal, estimate the

minimum number of samples required to characterize the signal.
(b) Assume the audio recording is a duet between a tuba and a flute. Describe what

happens if the recording is reproduced from samples taken below the Nyquist
rate.

5.2. The derivation of the Poisson sum formula closely parallels Shannon’s proof of the
sampling theorem. Starting with the Fourier dual of the Poisson sum formula, derive
the sampling theorem series.

5.3. The integral of a bandlimited signal

I =
∫ ∞
−∞

x(t) dt

can be determined from signal samples taken below the Nyquist rate. Find I from

{x(nT )|n = 0,±1,±2, . . .} when B < 1/T < 2B and X(u) = X(u)�
( u

2B

)
.

5.4. Assume x(t) can be expressed by the cardinal series.
(a) Show that, for any real α,

x(t) =
∞∑

n=−∞
x
( n

2B
+ α

)
sinc (2B(t − α)− n) (5.42)

(b) Since x(t) does not depend on α, is

d

dα
x(t) = 0 ?

5.5. Investigate application of the cardinal series to a signal whose spectrum is an mth–let:

δ(m)(u) =
(

d

du

)m

δ(u).

When, if ever, is the cardinal series applicable here? Assume m > 1.
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5.6. Let y(t) be any well behaved (not necessarily bandlimited) function. We sample y(t)
at a rate of 1

T and, in the spirit of (5.5), define

ŝ(t) = y(t)
1

T
comb

(
t

T

)
.

Show that

T
∫ 1/T

−1/T
Ŝ(u) du =

∫ ∞
−∞

Y (u) du.

5.7. Let x(t) and y(t) denote two finite energy bandlimited functions with bandwidth B.
How is the series

∞∑
n=−∞

x
( n

2B

)
y∗
( n

2B

)

related to
∫ ∞
−∞

x(t) y∗(t) dt?

5.8. The spectrum of a real signal is Hermetian or conjugately symmetric, i.e., it is
equal to the conjugate of its transpose. Thus, if we know the spectrum for positive
frequencies, we know it for negative frequencies. Visualize setting the negative
frequency components to zero and shifting the remaining portion of the spectrum to
be centered about the origin. Clearly, we have reduced the bandwidth by a factor of
one half yet have lost no information. Explain, however, why the sampling density
of this new signal is the same as that required by the original.

5.9. Squaring a bandlimited function at least doubles its bandwidth and therefore the
signal’s Nyquist rate.
(a) Are there finite energy nonbandlimited signals that, when squared, become

bandlimited?
(b) Given a complex bandlimited signal, x(t), show that the same number of

samples per time interval is required as for the signal |x(t)|2.

(c) Is the converse of squaring a bandlimited function doubling its bandwidth true?
Does the square root of a positive bandlimited signal result in a signal with half
the original signal’s bandwidth?8

5.10. Apply the low passed kernel technique to Fourier inversion of a bandlimited
function. Let f (t) have a bandwidth of B and use the Fourier kernel

h(u; t) = exp(−j2πut).

Comment on the usefulness of the result.

8. Here is some supporting evidence for the truth of the converse. The square root of any positive number
approaches one in the limit. Thus, if x(t) > 0, repeated application of positive square roots to any function, in the
limit, approaches one. If n denotes the number of square root operations, then

lim
n→∞ (x(t))2−n = 1.

In the limit, therefore, the bandwidth of the signal approaches zero.
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5.11. Upsampling. Let a bandlimited function, x(t), have a bandwidth B. From knowledge
of the samples, x

( n
2B

)
, we wish to upsample to M samples per sample interval.

Denote these samples by the discrete time signal

x[n] = x
( n

2B

)

and the upsampled signal by

y[m] = x
( n

M2B

)
.

(a) Show the upsampled signal can be characterized by the discrete time
convolution

y[m] = x[n] ∗ sinc
(m

M

)
. (5.43)

(b) Zero pad the original samples and let

x̂[m] =
{

x[n] ; m = nM

0 ; otherwise

Show that y[m] results from placing x̂[m] through a discrete time low pass filter,

H(f ) = M �(Mu).

(c) Assume x[−1] = 2, x[0] = 5, x[1] = 3 and all other samples are zero. The

global maximum of x(t) apparently lies in the interval
(
0, 1

2B

)
. Numerically

determine the location and maximum by upsampling and identifying the
resulting maximum value.

5.8 Solutions for Selected Chapter 5 Exercises

5.1. (a) Use the Shannon number (or time-bandwidth product) in (5.35) with B = 20, 000
Hertz and T = 5 minutes.
(b) The high frequencies will be aliased.

5.2. The Fourier dual of the Poisson sum formula is

2B
∞∑

n=−∞
X (u− 2nB) =

∞∑
n=−∞

x
( n

2B

)
e−jπnu/B.

Since X(u) = X(u) � (u/2B), we multiply both sides by �( u
2B ) and inverse

transform. The sampling theorem series results.
5.3. Use the Fourier dual of the Poisson sum formula again:

∞∑
n=−∞

X
(

u− n

T

)
= T

∞∑
n=−∞

x(nT ) e−j2πnuT .
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FIGURE 5.5. Samples taken below the Nyquist rate can still be used to compute the area of a signal.
See Exercise 5.3.

For B < 1/T < 2B, the sum on the left will be the overlapping aliased version
in Figure 5.5. Note that no spectra overlap the zeroth order spectrum at u = 0.
Thus

∞∑
n=−∞

X
(

u− n

T

) ∣∣∣
u=0
= X(0) ;B < 1/T < 2B

and

∫ ∞
−∞

x(t) dt = T
∞∑

n=−∞
x(nT ) ;T < 1/B.

5.4. If x(t) is bandlimited, so is x(t + α). Thus

x(t + α) =
∞∑

n=−∞
x
( n

2B
+ α

)
sinc(2Bt − n).

(a) Substitute t − α for t and we’re done.
(b) We have

dx(t)

dα
=

∞∑
n=−∞

x′
( n

2B
+ α

)
sinc (2B(t − α)− n)

+
∞∑

n=−∞
x
( n

2B
+ α

)
(−2B) sinc′ (2B(t − α)− n) . (5.44)

If x(t) is bandlimited, so is x′(t + α) and

x′(t + α) =
∞∑

n=−∞
x′
( n

2B
+ α

)
sinc (2Bt − n) .

or, setting t to t − α,

x′(t) =
∞∑

n=−∞
x′
( n

2B
+ α

)
sinc (2B(t − α)− n) . (5.45)
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Differentiating (5.42) with respect to t gives

x′(t) =
∞∑

n=−∞
x
( n

2B
+ α

)
2B sinc′ (2B(t − α)− n) . (5.46)

Substituting (5.45) and (5.46) into (5.44) reveals that

dx(t)

dα
= x′(t)− x′(t) = 0.

5.5. Since

(−j2π t)m ←→ δ(m)(t)

we use (5.4) and ask the question

tm ?= 1

π (2B)m
sin(2πBt)

∞∑
n=−∞

(−1)n nm

2Bt − n
.

The result is clearly a divergent series for m ≥ 1.
5.6.

ŝ(t) =
∞∑

n=−∞
y(nT ) δ(t − nT ).

Thus

Ŝ(u) =
∞∑

n=−∞
y(nT ) e−j2πnuT

Ŝ(u) is periodic with Fourier coefficients

y(nT ) = T
∫ 1/T

−1/T
Ŝ(u) e j2πnuT du.

Thus

T
∫ 1/T

−1/T
Ŝ(u) du = y(0).

From the inversion formula

y(t) =
∫ ∞
−∞

Y (u) e j2πut du.

Thus

y(0) =
∫ ∞
−∞

Y (u) du

and our exercise is complete.
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5.7.

∫ ∞
−∞

x(t) y∗(t) dt = 1

2B

∞∑
n=−∞

x
( n

2B

)
y∗
( n

2B

)
.

5.8. The new signal’s spectrum is no longer Hermetian. The signal, therefore, is complex.
Although the sampling rate is reduced by a factor of a half, each sample now requires
two numbers.

5.9. (a) Yes. An example is |sinc(t)|.
(b) For the complex signal, x(t), there are 4B samples per time interval because

each sample consists of two numbers: the real and the imaginary portions of
the signal. The signal |x(t)|2 has a bandwidth of 2B and therefore requires a
sampling rate of 4B. Only one number per sample is needed. Therefore, the
number of samples per time interval is the same for x(t) and |x(t)|2.

(c) Squaring a bandlimited function at least doubles its bandwidth. The converse
is not true. Taking the square root of a positive bandlimited function does
not reduce the bandwidth by a factor of a half. Before showing this, the
problem statement needs to be further refined. There is an inherent problem in
the original statement. The square root of a positive signal has two values:
plus and minus. Therefore, the square root of sinc2(t) can be sinc(t), or,
if the positive square root is always taken, the rectified signal, sinc(t) ×
sgn[sinc(t)], results. This problem is removed if the bandlimited signal, x(t),
is strictly positive. An example of a strictly positive finite energy bandlimited
signal is

x(t) = sinc2
(

t + 1

3

)
+ sinc2

(
t − 1

3

)
. (5.47)

Every place the first sinc2 goes to zero, the second sinc2 is positive and visa
versa. Let xn(t) be the result of application of the square root operator n times.
Then

xn(t) = [x(t)]2−n
. (5.48)

Clearly

x0(t) = x(t).

A log plot of xn(t) is shown in Figure 5.6 for n = 0, 1, 2. Let

xn(t)←→ Xn(u).

Note that

X(u) = X0(u) = 2�(u) cos

(
2πu

3

)
. (5.49)

Normalized numerically evaluated linear and log plots of Xn(u) for n = 0, 1, 2

are in Figures 5.7 and 5.8. The plots are of Xn(u)
Xn(0) . For the n = 0 case, the plot

corresponding to X(u) = X0(u), as expected, is identically zero for u > 1. For
the square root and the fourth root, this is not the case.
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FIGURE 5.6. Plots of xn(t) in (5.48) for n = 0, 1, 2. The n = 0 signal is the strictly positive finite energy
bandlimited function, x(t), in (5.47).

FIGURE 5.7. Plots of Xn(u)
Xn(0) for n = 0, 1, 2. Xn(u), the Fourier transforms of xn(t) in (5.48), are shown.

The plot for n = 0 is zero for u > 1. A log plot is shown in Figure 5.8.

Thus, we have empirically shown that the square root of a strictly positive finite
energy bandlimited function not only doesn’t produce a bandlimited signal with
half of the bandwidth, it does not even produce a bandlimited signal.

Note, interestingly, that as n increased, the spectra in Figure 5.7 becomes more
and and more impulsive. This is because

lim
n→∞ xn(t) = 1←→ lim

n→∞Xn(u) = δ(u).



[18:54 1/9/2008 5165-Marks-Ch05.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 241 217–241

THE SAMPLING THEOREM 241

FIGURE 5.8. Log plots of Xn(u)
Xn(0) for n = 0, 1, 2. The linear plots are shown in Figure 5.7.

The signal thus clearly approaches a signal with bandwidth zero, but not in a
manner wherein intermediate functions are strictly bandlimited.

5.10. The resulting low pass kernel is

k(u; t) = exp(−j2πut) �
( u

2B

)
.

We are thus assured that g(u), the Fourier transform of f (t), is zero outside of the
interval | u | ≤ B. Since this is the definition of a bandlimited function, the result is
of little use. Note that Fourier inversion of (5.23), as we would expect, results in
the cardinal series.

5.11. Equation (5.43) results from evaluation of the cardinal series at the points

t = m

2MB
.
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6

Generalizations of the Sampling
Theorem

One should always generalize.
Carl Gustav Jakob Jacobi (1804–1851) [354]

Each problem that I solved became a rule which served afterwards to solve other
problems.

Rene Descartes (1596–1650) [365]

In mathematics you don’t understand things. You just get used to them.
Johann von Neumann (1903–1957) [1598]

6.1 Introduction

There have been numerous interesting and useful generalizations of the sampling theorem.
Some are straightforward variations on the fundamental cardinal series. Oversampling, for
example, results in dependent samples and allows much greater flexibility in the choice of
interpolation functions. In Chapter 7, we will see that it can also result in better performance
in the presence of sample data noise.

Bandlimited signal restoration from samples of various filtered versions of the signal
is the topic addressed in Papoulis’ generalization [1086, 1087] of the sampling theorem.
Included as special cases are recurrent nonuniform sampling and simultaneously sampling
a signal and one or more of its derivatives.

Kramer [772] generalized the sampling theorem to signals that were bandlimited in
other than the Fourier sense. We also demonstrate that the cardinal series is a special case
of Lagrangian polynomial interpolation. Sampling in two or more dimensions is the topic
of Section 8.9.

6.2 Generalized Interpolation Functions

There are a number of functions other than the sinc which can be used to weight a signal’s
samples in such a manner as to uniquely characterize the signal. Use of these generalized
interpolation functions allows greater flexibility in dealing with sampling theorem type
characterizations.

242
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6.2.1 Oversampling

If a bandlimited signal has bandwidth B, then it can also be considered to have bandwidth
W ≥ B. Thus,

x(t) =
∞∑

n=−∞
x
( n

2W

)
sinc(2Wt − n). (6.1)

Note, however, since

x(t) = x(t) ∗ 2B sinc(2Bt)

we can write

x(t) =
∞∑

n=−∞
x
( n

2W

)
sinc(2Wt − n) ∗ 2B sinc(2Bt)

= r
∞∑

n=−∞
x
( n

2W

)
sinc(2Bt − rn) (6.2)

where the sampling rate parameter is

r = B/W ≤ 1. (6.3)

Equation (6.2) reduces to the conventional cardinal series for r = 1. Oversampling can be
used to reduce interpolation noise level.

6.2.2 Restoration of Lost Samples

6.2.2.1 Sample Dependency

When a bandlimited signal is oversampled, its samples become dependent. Indeed, in this
section we will show that in the absence of noise, any finite number of lost samples can be
regained from those remaining. First, using intuitively straightforward arguments, we will
illustrate the feasibility of lost sample recovery. Then, an alternate expression with better
convergence properties will be derived.

6.2.2.2 Restoring a Single Lost Sample

Consider a finite energy bandlimited signal x(t) and its spectrum as shown at the top of
Figure 6.1. From (5.5) and (5.7) the spectrum of the signal of samples

s(t) = x(t) 2W comb(2Wt) (6.4)

is

S(u) = 2W
∞∑

n=−∞
X(u− 2nW ). (6.5)

As is shown in Figure 6.1, there are intervals identically equal to zero in S(u) when we
oversample.
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FIGURE 6.1. Geometrical illustration of restoring a single lost sample from an oversampled bandlimited
signal.

In Figure 6.1a, the sample of x(t) at the origin has been set to zero. We can view this as
the subtraction of x(0) δ(t) in Figure 6.1c from s(t).

ŝ(t) = s(t)− x(0) δ(t).

Given ŝ(t), we can regain x(0). Indeed, transforming gives

Ŝ(u) = S(u)− x(0). (6.6)

Since S(u) ≡ 0 on the interval B < |u| < 2W − B,

Ŝ(u) = −x(0) ; B < |u| < 2W − B.

This is illustrated in Figure 6.1d. An appropriate point to sample in this interval is u = W .
Thus

x(0) = −Ŝ(W ). (6.7)

Therefore, the lost sample at the origin can be regained from those samples remaining.
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Samples from oversampled signals display an interesting zero sum property. Writing
(6.4) in terms of delta functions and transforming gives

S(u) =
∞∑

n=−∞
x
( n

2W

)
e−jπnu/W .

Since S(W ) = 0, we conclude that

∞∑
n=−∞

(−1)n x
( n

2W

)
= 0 ; r < 1. (6.8)

Thus, for example,

x(0) = −
∑
n �=0

(−1)nx
( n

2W

)
. (6.9)

An alternate formula for restoring a lost sample (with better convergence properties)
results directly from inspection of (6.2). Note that, unlike the conventional (r = 1) cardinal
series, (6.2) does not reduce to an identity when t = n/2W . For example, at t = 0 we have

x(0) = r
∞∑

n=−∞
x
( n

2W

)
sinc(rn). (6.10)

Isolating the n = 0 term in (6.10) and solving for x(0) gives

x(0) = r

1− r

∑
n �=0

x
( n

2W

)
sinc(rn). (6.11)

The sample at the origin is thus completely specified by the remaining samples if r < 1.
The convergence here is better than in (6.9) due to the 1/n decay of the summand from the
sinc term. Equation (6.8), on the other hand, does not require knowledge of r.

From the cardinal series, we have

x(t) = x(0) sinc(2Wt)+
∑
n �=0

x
( n

2W

)
sinc(2Wt − n).

Substituting (6.11) and simplifying gives an interpolation formula not requiring knowledge
of the sample at the origin.1

x(t) =
∑
n �=0

x
( n

2W

) [
sinc(2Wt − n)+ r

1− r
sinc(rn) sinc(2Wt)

]
. (6.12)

Both sides can be low pass filtered to give the corresponding low passed filter expression.2

6.2.2.3 Restoring M Lost Samples

The single sample restoration result can be generalized to restoring an arbitrarily large
but finite number of lost samples. Let M denote a set of M integers corresponding to the

1. The noise sensitivity and truncation error for this interpolation is explored in Section 7.2.2.1.
2. See Exercise 6.23.
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locations of M lost samples. From the data set
{
x
( n

2W

) | n �∈M}
we wish to find the lost

samples,
{
x( n

2W ) | n ∈M}
.

To do this, we write (6.2) as

x(t) = r

⎡
⎣∑

n∈M
+
∑

n �∈M

⎤
⎦ x
( n

2W

)
sinc(2Bt − rn). (6.13)

Evaluating this expression at the M points {t = m
2W | m ∈M} and rearranging gives

∑
n∈M

x
( n

2W

)
{δ[n− m] − r sinc (r(n− m))} = g

( m

2W

)
; m ∈M (6.14)

where

g(t) = r
∑

n �∈M
x
( n

2W

)
sinc(2Bt − rn) (6.15)

can be computed from the known samples.
Equation (6.14) consists of M equations and M unknowns. In matrix form

H 	x = 	g (6.16)

where {gm = g
( m

2W

) | m ∈M}, {xn = x
( n

2W

) | n ∈M} and H = I − S where S has
elements

{snm = sn−m = r sinc (r(n− m)) | (n,m) ∈M×M}. (6.17)

Clearly, we can determine the lost samples if H is not singular. The matrix is singular
when r = 1.

6.2.2.4 Direct Interpolation from M Lost Samples

Here we address direct generation of x(t) from the samples {x(n/2W ) | n �∈M}. Using
(6.15) the solution of (6.14) can be written as

x
( q

2W

)
=
∑
p∈M

apq g
( p

2W

)

= r
∑

n �∈M
x
( n

2W

) ∑
p∈M

apq sinc (r( p− n)) ;

q ∈M (6.18)

where {apq | ( p, q) ∈M ×M} are elements of the inverse of H. The cardinal series can
be written:

x(t) =
∑

n �∈M
x
( n

2W

)
sinc(2Wt − n)+

∑
q∈M

x
( q

2W

)
sinc(2Wt − q).

Substituting (6.18) gives

x(t) =
∑

n �∈M
x
( n

2W

)
kn(2Wt) (6.19)
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where the interpolation function is

kn(t) = sinc(t − n)+ r
∑
p∈M

∑
q∈M

apq sinc (r(n− p)) sinc(t − q). (6.20)

Alternately, we can pass (6.19) through a filter unity for |u| < B and zero elsewhere. The
result is

x(t) =
∑

n �∈M
x
( n

2W

)
k(r)

n (2Bt) (6.21)

where

k(r)
n (2Bt) = kn(2Wt) ∗ 2B sinc(2Bt).

It is straightforward to show that

k(r)
n (t) = rsinc(t − rn)+ r2

∑
p∈M

∑
q∈M

apqsinc(r(n− p))sinc(t − rq). (6.22)

For M empty, (6.19) reduces to the cardinal series and (6.22) to the oversampled
restoration formula in (6.10).

In the absence of noise we can, in general, restore an arbitrarily large number of lost
samples if r < 1. In Chapter 7, we demonstrate that restoration becomes more and more
unstable as M increases and/or r approaches one. The algorithm is extended to higher
dimensions in Chapter 8 where we show restoration of lost samples may be possible even
when sampling is performed below the Nyquist density.

6.2.2.5 Relaxed Interpolation Formulae

Here we show oversampled signals can tolerate rather significant perturbations in the
interpolation function. Consider (6.5). If x(t) has a bandwidth of W , then the replicated
spectra will be separated as is shown in Figure 6.2. Define

Kr(u) =
⎧⎨
⎩

1

2W
; |u| ≤ B

anything convenient ; B < |u| < 2W − B

FIGURE 6.2. Replicated spectra for an oversampled signal allows flexibility in interpolation function
choice.
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where the subscript r is for “relaxed.” Clearly, since S(u) = 0 for B < | u | < 2W − B.

X(u) = S(u) Kr(u).

Inverse transforming gives

x(t) = s(t) ∗ kr(t)

=
∞∑

n=−∞
x
( n

2W

)
kr

(
t − n

2W

)
(6.23)

where we have used (6.4). Both the cardinal series and (6.2) are subsumed in this expression.
Also, in practice, we can relax the roll–off in the spectrum of the generalized interpolation
function, kr(t), with no error cost in restoration (in the absence of data noise and truncation
error).

6.2.3 Criteria for Generalized Interpolation Functions

Let k(t) now be an arbitrary function and define

g(t) =
∞∑

n=−∞
f
( n

2B

)
k(2Bt − n). (6.24)

If f (t) has a bandwidth of B, under what condition can we recover f (t) from g(t) ?
Transforming (6.24) gives

G(u) = 1

2B

∞∑
n=−∞

f
( n

2B

)
e−jπnu/B K

( u

2B

)

=
∞∑

n=−∞
F(u− 2nB) K

( u

2B

)

where we have used the Fourier dual of the Poisson sum formula. The function, G(u),
is recognized as the replicated signal spectrum weighted by K(u/2B). Define the transfer
function

H(u) = �(u)

K(u)
. (6.25)

Then the signal spectrum can be regained by

F(u) = G(u) H
( u

2B

)
.

Thus, f (t) can be generated by passing g(t) through a filter with impulse response h(t). The
cardinal series is the special case when H(u) = �(u).

Clearly, H(u) does not exist if K(u) is identically zero over any subinterval of | u | ≤ 1/2.
If K(u) passes through zero for |u| ≤ B, then restoration is still possible but may be ill-posed.

6.2.3.1 Interpolation Functions

The function k(t) in (6.24) is said to be an interpolation function if the resulting interpolation
passes through the samples. For (6.24), this is equivalent to requiring that

k(n) = δ[n]. (6.26)
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FIGURE 6.3. Sample data (top) with zeroth order sample and hold (middle) and piecewise linear
(bottom) interpolation.

This condition assures that the resulting interpolation passes through the sample points.
Specifically, for t = m/2B, (6.24) reduces to an identity when (6.26) is valid.

Some commonly used interpolation functions follow:

(a) For k(t) = sinc(t), (6.24) becomes the cardinal series.
(b) Zeroth order sample and hold. Consider the interpolation function

k(t) = �(t).

The resulting interpolation is referred to as a zeroth order sample and hold. An
example is shown in Figure 6.3. To restore f (t) from this interpolation, we pass the
zero order sample and hold data through a filter with frequency response H(u/2B)
where

H(u) = �(u)

sinc(u)
.

Note that H(u) is bounded. It follows that the inverse Fourier transform is3

h(t) = sinc1(t).

(c) Piecewise linear interpolation uses the interpolation function

k(t) = �(t).

The result, as is shown in Figure 6.3, is that the sample points are linearly connected.
The signal x(t) can be regained by passing this waveform through a filter with
frequency response H(u/2B) where

H(u) = �(u)

sinc2(u)
. (6.27)

Again, H(u) is bounded. The inverse Fourier transform is

h(t) = sinc2(t).

3. As defined in (2.44).



[19:10 1/9/2008 5165-Marks-Ch06.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 250 242–287

250 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

6.2.4 Reconstruction from a Filtered Signal’s Samples

Here we consider reconstruction of a bandlimited signal f (t) from samples of

g(t) = f (t) ∗ h(t)

taken at the Nyquist rate. Let

2B K(u) = �( u
2B )

H(u)
(6.28)

If K(u) is bounded, we can write

F(u) = 2B G(u) K(u)�
( u

2B

)
.

Using this and

G(u) = 1

2B

∞∑
n=−∞

g
( n

2B

)
e−jπnu/B �

( u

2B

)

in the inversion formula gives

f (t) =
∫ B

−B
F(u)e j2πutdu

=
∞∑

n=−∞
g
( n

2B

)
k
(

t − n

2B

)
(6.29)

where

k(t) = 1

2B

∫ B

−B

e j2πut

H(u)
du ←→ K(u). (6.30)

As we will see in Chapter 7, (6.29) is ill posed when K(u) contains a pole.
The signal samples can be regained from (6.29) with the discrete time convolution

f
( m

2B

)
=

∞∑
n=−∞

g
( n

2B

)
k

(
m − n

2B

)
.

6.2.4.1 Restoration of Samples from an
Integrating Detector

The integrating detector is shown in Figure 6.4. Digital cameras capture images using an
array integrating detectors. The axis is divided into bins of duration T = 1

2B . A function,
f (t), is integrated in each bin to generate the samples

g (nT ) =
∫ t=

(
n+ 1

2

)
T

t=
(

n− 1
2

)
T

f (t)dt. (6.31)
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FIGURE 6.4. An integrating detector. The area of f (t) over intervals of duration T are available as the
only information from which to regain the bandlimited signal, f (t).

Our problem is to restore the signal f (t) from these samples. To do so, define

g(t) = f (t) ∗�
(

t

T

)

=
∫ ∞
−∞

f (τ )�

(
t − τ

T

)
dτ

=
∫ t+ T

2

t− T
2

f (τ )dτ.

Sampling g(t) at t = n
T gives the samples of the integrating detector in (6.31). Using

h(t) = �
(

t

T

)

gives the Fourier transform

H(u) = T sinc(Tu)

and (6.30) gives

k(t) = 1

2TB

∫ B

−B

e j2πut

sinc(Tu)
du.

At the Nyquist rate, T = 1
2B and

k(t) = 2B sinc1(2Bt).

The original samples can therefore be regained through the discrete time convolution

f
( n

2B

)
= g

( n

2B

)
∗ 2B sinc1 (2B(m − n)) .
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6.3 Papoulis’ Generalization

There are a number of ways to generalize the manner in which data can be extracted from
a signal and still maintain sufficient information to reconstruct the signal. Shannon [1256],
for example, noted that one could sample at half the Nyquist rate without information loss
if, at each sample location, two sample values were taken: one of the signal and one of
the signal’s derivative. The details were later worked out by Linden [837] who generalized
the result to restoring from a signal sample and samples of its first N − 1 derivatives taken
every N Nyquist intervals.

Alternately, one can choose any N distinct points within N Nyquist intervals. If signal
samples are taken at these locations every N Nyquist intervals, we address the question of
restoration from interlaced or bunched samples [1544].

Another problem encountered is restoration of a signal from samples taken at half the
Nyquist rate along with samples of the signal’s Hilbert transform taken at the same rate.

Remarkably, all of these cases are subsumed in a generalization of the sampling theorem
developed by Papoulis [1086, 1087]. The generalization concerns restoration of a signal
given data sampled at 1/Nth the Nyquist rate from the output of N filters into which the
signal has been fed. The result is a generalization of the reconstruction from the filtered
signal’s samples.

In this section, we first present a derivation of Papoulis’Generalized Sampling Theorem
[1086, 1087]. Specific attention is then given to interpolation function evaluation. Lastly,
specific applications of the problems addressed at the beginning of this section are given.

6.3.1 Derivation

Let {Hp(u) | p = 1, 2, . . . ,N} be a set of N given filter frequency responses and let f (t)
have bandwidth B. As is shown in Figure 6.5, f (t) is fed into each filter. The outputs are

gp(t) = f (t) ∗ hp(t) ; 1 ≤ p ≤ N . (6.32)

Each output is sampled at 1/Nth the Nyquist rate. Define

BN = B/N .

FIGURE 6.5. Generation of sample data from Papoulis’ generalized sampling theorem. The encircled
S is a sampler.
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The signal of samples obtained from the pth filter is

sp(t) = gp(t) 2BN comb(2BN t)

=
∞∑

n=−∞
gp(nTN ) δ(t − nTN ) (6.33)

where TN = 1/2BN . Our problem is to restore f (t) from this set of functions or, equivalently,
the sample set

{gp(nTN ) | 1 ≤ p ≤ N, −∞ < n <∞}.
We will show that

f (t) =
N∑

p=1

∞∑
n=−∞

gp(nTN ) kp(t − nTN ) (6.34)

where

kp(t) =
∫ B

B−2BN

Kp(u; t) e j2πut du (6.35)

and the Kp(u; t)’s, if they exist, are the solutions of the simultaneous set of equations

2BN

N∑
p=1

Kp(u; t) Hp(u− 2mBN ) = exp(−j2πmt/TN );

0 ≤ m < N (6.36)

over the parameter set 0 ≤ m < N, B − BN < u < B and −∞ < t < ∞. Note that
Kp(u; t) and kp(t) are not Fourier transform pairs.

Proof . From (6.32)

Gp(u) = F(u)Hp(u).

Fourier transforming (6.33) and using the Fourier dual of the Poisson sum formula gives

Sp(u) = 2BN

∞∑
n=−∞

Gp(u− 2nBN ). (6.37)

Clearly, each Sp(u) is periodic with period 2BN . Since Gp(u) has finite support, i.e.,

Gp(u) = Gp(u)�
( u

2B

)
,

we conclude (6.37) is simply an aliased replication of Gp(u). Example replications for N = 2
and 3 are shown in Figure 6.6.

Note that on the interval | u| ≤ B, there are 2N − 1 portions of shifted Gp(u)’s.
Equivalently, there are M = N − 1 spectra overlapping the zeroth order spectrum on both
sides of the origin. Accordingly, M is referred to as the degree of aliasing. Over the interval

B− 2BN < u < B, (6.38)

corresponding to one period of Sp(u), there are a total of N portions of replicated
spectra. If we have N varied forms of Nth order aliased data, it makes sense that our signal
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FIGURE 6.6. For the spectrum shown at the top, we have illustration of first order (middle) and second
order (bottom) aliasing.

can be recovered. Indeed, on the interval in (6.38),

Sp(u) = 2BN

N−1∑
n=0

Gp(u− 2nBN ) (6.39)

= 2BN

N−1∑
n=0

Hp(u− 2nBN )F(u− 2nBN ) (6.40)

Here we have N equations and N unknowns. This may be made clearer by viewing (6.40)
in matrix form:

2BN

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1(u) . . . H1(u− 2nBN ) . . . H1(u− 2(N − 1)BN )
H2(u) . . . H2(u− 2nBN ) . . . H2(u− 2(N − 1)BN )
...

...
...

...
...

...

Hp(u) . . . Hp(u− 2nBN ) . . . Hp(u− 2(N − 1)BN )
...

...
...

...
...

...

HN (u) . . . HN (u− 2nBN ) . . . HN (u− 2(N − 1)BN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F(u)
F(u− 2BN )

...

...

F(u− 2nBN )
...
...

F(u− 2(N − 1)BN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1(u)
S2(u)
...
...

Sp(u)
...
...

SN (u)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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or, in short hand notation,

2BN H	F = 	S. (6.41)

Thus, assuming the H matrix is not singular, we can solve for F(u) with knowledge of
the set:

{F(u− 2nBN ) | B− 2BN < u < B ; 0 ≤ n < N}.

Indeed, each F(u− 2nBN ) over the interval B− 2BN < u < B is a displaced section of F(u).
This is illustrated in Figure 6.7 for N = 3. The sections F(u − 2nB3) for −2B3 < u < B
are shown there for n = 0, 1 and 2.

Our purpose now is to appropriately put these pieces of F(u) together and
inverse transform. Towards this end, let the inverse of the matrix 2BN H be Z with
elements

{Zp(u; n) | B− 2BN < u < B ; 1 ≤ p ≤ N, 0 ≤ n < N}.

That is

2BN

N∑
p=1

Zp(u; n)Hp(u− 2mBN ) = δ[n− m];B− 2BN < u < B, 0 ≤ n,m, < N .

The solution of (6.40) is thus

F(u− 2nBN ) =
N∑

p=1

Sp(u)Zp(u; n). (6.42)

Consider, then

f (t) =
∫ B

−B
F(ν)e j2πνtdν. (6.43)

FIGURE 6.7. Illustration of F(u− 2nBN ) on B− 2BN < u < B for various n.
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To facilitate use of (6.42), we divide the integration into N intervals of width 2BN :

∫ B

−B
=
∫ BN

BN−2BN

+
∫ B−2BN

B−4BN

+ . . .+
∫ −B+2BN

−B

=
N−1∑
n=0

∫ B−2nBN

B−2(n+1)BN

.

Substitute into (6.43) and make the variable substitution ν = u− 2nBN .

f (t) =
N−1∑
n=0

∫ B

B−2BN

F(u− 2nBN )e j2π t(u−2nBN )du. (6.44)

Define

Kp(u; t) =
N−1∑
n=0

Zp(u; n) exp(−j4πnBN t). (6.45)

Then substitution of (6.42) into (6.44) gives

f (t) =
N∑

p=1

∫ B

B−2BN

Sp(u)Kp(u; t)e j2π tudu. (6.46)

Directly transforming (6.33) yields

Sp(u) =
∞∑

n=−∞
gp(nTN ) exp(−jπnu/BN ).

Substituting into (6.46) produces Papoulis’ generalized sampling theorem.

f (t) =
N∑

p=1

∞∑
n=−∞

gp(nTN )kp(t − nTN ) (6.47)

where

kp(t) =
∫ B

B−2BN

Kp(u; t)e j2π tudu. (6.48)

Equation (6.47) generates f (t) from the undersampled outputs of each of the N filters.

6.3.2 Interpolation Function Computation

In order to find the kp’s required for interpolation in (6.47), for a given set of frequency
responses, we need not invert the H matrix in (6.41). Rather, we need only to solve N
simultaneous equations.

To derive this set of equations, we rewrite (6.45) as

	K = Z 	E (6.49)
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where the vector 	K has elements

Kp(u; t) ; B− 2BN < u < B, 1 ≤ p ≤ N

and 	E has elements

exp(−j4πnBN t) ; −∞ < t <∞, 0 ≤ n < N .

Multiplying both sides of (6.49) by 2BN H = Z−1 gives

2BN H 	K = 	E

or, equivalently

2BN

N∑
p=1

Kp(u; t)Hp(u− 2mBN ) = exp(−j4πmBN t) (6.50)

where 0 ≤ m < N, B− 2BN < u < B and t is arbitrary. The Kp(u; t)’s can be determined
from this set of equations and the corresponding interpolation functions from (6.48).

6.3.3 Example Applications

6.3.3.1 Recurrent Nonuniform Sampling

As is shown in Figure 6.8, let {αp | p= 1, 2, . . . ,N} denote N distinct locations in N Nyquist
intervals. A signal is sampled at these points in every N Nyquist intervals. We thus have
knowledge of the data

{
f

(
αp + m

2BN

)∣∣∣∣ 1 ≤ p ≤ N, −∞ < m <∞
}
.

Such sampling is also referred to as bunched or interlaced sampling.
The generalized sampling theorem is applicable here if we choose for filters

Hp(u) = exp( j2παpu); 1 ≤ p ≤ N . (6.51)

The corresponding equations in (6.50) can be solved in closed form using Cramer’s rule and
the Vandermonde determinant4 [572]. On the interval (0,TN ), the resulting interpolation

FIGURE 6.8. Illustration of Nth order recurrent nonuniform sampling. In each N Nyquist intervals,
samples are taken at these same relative locations.

4. See Exercise 6.9.
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functions are

kp(t) = sinc
(
2BN (t − αp)

) N∏

q = 1
q �= p

sin
(
2πBN (t − αq)

)
sin
(
2πBN (αp − αq)

) . (6.52)

Note that kp(t) is a true interpolation function in the sense that

kp(αn) = δ[p− n].

6.3.3.2 Interlaced Signal–Derivative Sampling

Consider the N = 2 case where

H1(u) = e j2παu (6.53)

H2(u) = ( j2πu)M . (6.54)

The output of filter #1 is f (t + α) and that of #2 is the Mth derivative of f (t). The
resulting sampling geometry is shown in Figure 6.9 We will derive the spectra of the two
corresponding interpolation functions.

The output of the two filters is sampled at a rate of 2BN = B. From (6.40), the desired
signal spectrum, F(u), satisfies the set of equations

[
S1(u)
S2(u)

]
= B

[
e j2παu e j2πα(u−B)

( j2πu)M [ j2π (u− B)]M
] [

F(u)
F(u− B)

]
; 0 ≤ u ≤ B.

The determinant of the H matrix here is

	(u) = −( j2π )M e j2παu
[
uM e−j2παB − (u− B)M

]
. (6.55)

Solving the two simultaneous equations results gives

F(u) = j2π (u− B)MS1(u)− e j2πα(u−B)S2(u)

B	(u)
; 0 < u < B

and

F(u− B) = − ( j2πu)MS1(u)− e j2παuS2(u)

B	(u)
; 0 < u < B.

FIGURE 6.9. Interlaced signal-derivative sampling. The signal f (t), and its Mth derivative are both
sampled at half the Nyquist rate.
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Shifting the second term to the interval (−B, 0) and recognizing that both S1(u) and S2(u)
are periodic with period B gives:

F(u) = K1(u)S1(u)+ K2(u)S2(u),

where the spectra of the interpolation functions are

K1(u) = ( j2π )M

B

[
− (u− B)M

	(u)
�

(
u

B
− 1

2

)
+ (u+ B)M

	(u+ B)
�

(
u

B
+ 1

2

)]
(6.56)

and

K2(u) = e j2παu

B

[
e−j2παB

	(u)
�

(
u

B
− 1

2

)
− e j2παB

	(u+ B)
�

(
u

B
+ 1

2

)]
. (6.57)

We will use these results in Chapter 7 to show that interpolation here becomes unstable
(ill–posed) when

(a) M is even and α = 0, or
(b) M is odd and α = 1

2B .

Otherwise, interpolation can be tolerant of data noise.
Reconstruction from the M = 1, α = 0 data was first addressed by Shannon [1256] and

derived by Linden [837]. Inverse transforming (6.56) and (6.57) for this case gives the
interpolation functions

k1(t) = sinc2(Bt) (6.58)

and

k2(t) = t sinc2(Bt) (6.59)

These are pictured in Figure 6.10. It follows that

f (t) = sin2(πBt)

π2

∞∑
n=−∞

[
f ( n

B )

(Bt − n)2
+ f

′
( n

B )

B(Bt − n)

]
. (6.60)

6.3.3.3 Higher Order Derivative Sampling

Consider sampling a signal and its first N − 1 derivatives every N Nyquist intervals [837].
We can show that, as N →∞, the interpolation functions for the restoration approach those
used in a Taylor series expansion.

The filters required for our problem are

Hp(u) = ( j2πu)p−1; 1 ≤ p ≤ N . (6.61)

The solution for the interpolation function for the N = 1 case is clearly

k1(t) = sinc(2Bt).
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FIGURE 6.10. The functions for interpolating a signal from its samples and samples of its derivatives
each taken simultaneously at half the Nyquist rate. The function k1(t/B) is used for the samples and
k2(t/B) for the derivative samples.

For N = 2, the interpolation functions are given by (6.58) and (6.59) which we rewrite
here as

k1(t) = sinc2
(

2Bt

2

)

k2(t) = t sinc2
(

2Bt

2

)

In Exercise 6.26, we show that, for N = 3

k1(t) = sinc3
(

2Bt

3

)

k2(t) = t sinc3
(

2Bt

3

)
(6.62)

k3(t) = 1

2
t2 sinc3

(
2Bt

3

)
.

From this pattern, we deduce that, in general,

kp(t) = tp−1 sincN ( 2Bt
N

)
(p− 1)! ; 1 ≤ p ≤ N .

Substituting into (6.47) gives the interpolation series

f (t) =
N∑

p=1

∞∑
n=−∞

(
t − nN

2B

)p−1

(p− 1)! f (p−1)
(

nN

2B

)
sincN

(
2Bt

N
− n

)
.
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Since

lim
N→∞ sincN

(
2Bt

N
− n

)
= δ[n],

we conclude that

lim
N→∞ f (t) =

∞∑
p=1

tp−1

(p− 1)! f (p−1)(0)

which is recognized as the Taylor series expansion of f (t) about t = 0.

6.3.3.4 Effects of Oversampling in Papoulis’ Generalization

Suppose f (t) has bandwidth B and is sampled at a rate of 2W > 2B. Redefine TN = N/2W .
Then the transform of (6.47) becomes

F(u) =
N∑

p=1

Kp(u)
∞∑

n=−∞
gp(nTN )e−j2πnuTN�

( u

2W

)
.

Multiplying both sides by �(u/2B) leaves the result unaltered.

F(u) =
N∑

p=1

Kp(u)
∞∑

n=−∞
gp(nTN )e−j2πnuTN�

( u

2B

)
. (6.63)

In the time domain, this is equivalent to using the interpolation function set {k̂p(t)} in place
of {kp(t)} where

k̂p(t) =
∫ B

−B
Kp(u)e j2πutdu

= kp(t) ∗ 2B sinc(2Bt). (6.64)

Inverse transforming (6.63) then gives us the oversampled version of (6.47).

f (t) =
N∑

p=1

∞∑
n=−∞

gp(nTN )k̂p(t − nTN ). (6.65)

As we shall demonstrate in Section 7.2.1, oversampling can reduce interpolation noise level
due to noisy data. Thus, with all other factors equal, (6.65) should be used in lieu of (6.47)
for interpolating oversampled signals.

6.4 Derivative Interpolation

Interpolation formulae for generating the derivative of a bandlimited signal can be obtained
by direct differentiation of the cardinal series [900]. The result is

x(p)(t) =
(

d

dt

)p

x(t)

= (2B)p
∞∑

n=−∞
x
( n

2B

)
dp(2Bt − n) (6.66)
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where

dp(t) :=
(

d

dt

)p

sinc(t) (6.67)

is the derivative kernel. From the derivative theorem of Fourier analysis, we can equivalently
write

dp(t) =
∫ 1/2

−1/2
( j2πu)pe j2πutdu

= (−1)pp !
π tp+1

[
sin(π t) cosp/2(π t)− cos(π t) sin p−1

2
(π t)

]
(6.68)

where the incomplete sine and cosine are defined, respectively, as

cosa(z) =
a�∑
n=0

(−1)nz2n

(2n)! (6.69)

and

sina(z) =
a�∑
n=0

(−1)nz2n+1

(2n+ 1)! . (6.70)

The notation a� denotes “the greatest integer less than or equal to a”. To allow for p = 0
in (6.68), we set sin−1/2(t) = 0. Then d0(t) = sinc(t). In the evaluation of (6.68), we used
the identity [544]

∫
xn eaxdx = (−1)n eax

n∑
k=0

(−1)k (n− k)!
k!

xk

an−k+1
.

6.4.1 Properties of the Derivative Kernel

This section will be devoted to exploring properties of the derivative kernel. For large t and
even p, the cosp/2(π t) term in (6.68) dominates. For odd p, sin(p−1)/2(π t) dominates. This
observation leads to the following asymptotic relation for dp(t) for large t.

lim
t→∞ dp(t) =

{
(−1)p/2πp sinc(t) ; p even

(−1)(p−1)/2πp cos(π t)/(π t) ; p odd.

Convolution of (2B)p+1dp(2Bt) with any bandlimited x(t) yields x(p)(t). To show this,
we write

(2B)p+1
∫ ∞
−∞

x(τ )dp (2B(t − τ )) dτ

= (−1)p
∫ ∞
−∞

x(τ )

(
d

dτ

)p

sinc (2B(t − τ )) dτ

=
∫ B

−B
X(u)( j2πu)p e j2πutdu

= x(p)(t) (6.71)
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where, in the second step, we have used the power theorem of Fourier analysis. This result
is a generalization of that of Gallagher and Wise [478] who noted that the first derivative
of a bandlimited signal can be achieved by a convolution with an appropriately scaled
first–order spherical Bessel function j1(t) = − d

dt sinc(t/π ).
Using dq(t) as the signal in (6.71) gives the recurrence relation

dp+q(t) =
∫ ∞
−∞

dq(τ )dp(t − τ )dτ. (6.72)

Thus, higher order kernels can be generated by convolution of lower ordered kernels.
A second obvious recurrence relation is

dp+q(t) =
(

d

dt

)p

dq(t).

Using this expression with q = 1 and the relations

d

dt
cosn(t) = − sinn−1(t)

d

dt
sinn(t) = cosn(t)

gives, via (6.68), a third recurrence formula:

d

dt
dp(t) = dp+1(t)

=

⎧⎪⎪⎨
⎪⎪⎩

−(p+1)
t dp(t)+ (−1)p/2πp

t cos(π t); even p

−(p+1)
t dp(t)− (−1)

p−1
2 πp

t sin(π t); odd p.

(6.73)

Alternate derivative interpolation can be achieved by recognizing that if x(t) is
bandlimited, so is x(p)(t). Therefore

x(p)(t) =
∞∑

m=−∞
x(p)
( m

2B

)
sinc(2Bt − m).

Thus, the signal derivative is uniquely specified by its sample values which, from (6.66)
can be computed by the discrete time convolution

x(p)
( m

2B

)
= (2B)p

∞∑
n=−∞

x(p)
( n

2B

)
dp(m − n) (6.74)

where, from (6.68)5

dp(m) =

⎧⎪⎪⎨
⎪⎪⎩

−(−1)m+pp!
πmp+1

sin p−1
2

(πm) ; m �= 0

(−1)p πp

p+ 1
δ[p− even] ; m = 0.

5. To derive the m = 0 case, it is easiest to use the integral in (4.66) with t = m = 0.
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FIGURE 6.11. Plots of |dp(n)| for even p. Points are connected for clarity.

Note that the discrete derivative kernel is independent of the signal bandwidth. Plots of
|dp(m)| are shown in Figures 6.11 and 6.12.

Using (6.70), the asymptotic behavior for dp(m) for large m is found to be

dp(m) −→

⎧⎪⎪⎨
⎪⎪⎩

(−1)m+ p
2 pπp−2/m2 ; even p

(−1)m+ p−1
2 πp−1

m
; odd p.

A recurrence relation for the discrete derivative kernel follows from the use of dq(n) as
the signal in (6.74)

dp+q(m) =
∞∑

n=−∞
dq(n)dp(m − n).

This is the discrete equivalent of (6.72).
A second recurrence relation immediately follows from (6.73) for m �= 0:

dp+1(m) =

⎧⎪⎪⎨
⎪⎪⎩

−(p+ 1)

m
dp(m)+ (−1)m+ p

2πp

m
; even p

−(p+ 1)

m
dp(m) ; odd p.
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FIGURE 6.12. Plots of |dp(n)| for odd p. Points are connected for clarity.

The discrete derivative kernel is square summable. Since dp(m) is simply the mth Fourier
coefficient of ( j2πu)m for | u | < 1/2, we have

∞∑
m=−∞

| dp(m) |2 =
∫ ∞
−∞
| dp(t) |2dt

=
∫ 1/2

−1/2
| ( j2πu)p |2du

= π2p

2p+ 1
.

The sensitivity of derivative interpolation to additive sample noise is examined in
Chapter 7. There, we show that the interpolation noise level increases significantly with p.

6.5 A Relation Between the Taylor and Cardinal Series

The discrete derivative kernel can be utilized to couple a bandlimited signal’s Taylor series
and sampling theorem expansion. If x(t) is bandlimited, it is analytic everywhere. Thus, its
Taylor series about t = m/2B,

x(t) =
∞∑

p=0

(t − m
2B )p

p! x(p)
( m

2B

)
,
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converges for all t. Substituting (6.74) gives

x(t) =
∞∑

p=0

(2Bt − m)p

p!
∞∑

n=−∞
x
( n

2B

)
dp(m − n).

Since the series is absolutely convergent,6 we can interchange the summation order

x(t) =
∞∑

n=−∞
x
( n

2B

) ∞∑
p=0

(2Bt − m)pdp(m − n)

p! . (6.75)

The sum over p is recognized as the Taylor series expansion of sinc(2Bt−n) about t = m/2B.
Thus (6.75) reduces to the cardinal series.

6.6 Sampling Trigonometric Polynomials

A trigonometric polynomial is a bandlimited periodic function with a finite number of
nonzero Fourier coefficients. A low pass trigonometric polynomial with period T can be
written as

x(t) =
N∑

m=−N

cme−j2πmt/T . (6.76)

This function is uniquely determined by 2N + 1 coefficients. We therefore would expect
that 2N + 1 samples taken within a single period would suffice to uniquely specify x(t). We
will show that

x(t) =
P∑

q=1

x(qTp) k

(
t

Tp
− q

)
(6.77)

where Tp = T/P is the sampling interval, P (assumed odd) is the number of samples per
period and the interpolation function is

k(t) = arrayP

(
t

P

)
(6.78)

We require that P > 2N + 1.

Proof . The cardinal series for x(t) can be written as

x(t) =
∞∑

p=−∞
x
(
pTp
)

sinc

(
t

Tp
− p

)
(6.79)

where the sampling interval is

Tp = T

P
; P = 2M + 1 > 2N + 1. (6.80)

6. See Exercise 2.5.
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We have assumed, for simplicity, that the odd number of samples taken in each period are
the same. We can partition the sum in (6.79) as

∞∑
p=−∞

= . . .+
2P∑

p=1+P

+
P∑

p=1

+
0∑

p=1−P

+ . . .

=
∞∑

n=−∞

(1−n)P∑
p=1−nP

=
∞∑

n=−∞

P∑
q=1

where q = p + nP. Using this, and recognizing that x
(
(q − nP)Tp

) = x(qTp) reduces
(6.79) to

x(t) =
P∑

q=1

x(qTp) iq(t)

where the interpolation function is

iq(t) =
∞∑

n=−∞
sinc

(
t + nT

Tp
− q

)
. (6.81)

Using the Poisson sum formula

iq(t) = 1

2M + 1

M∑
n=−M

e−j2πn
(

q
P− t

T

)

and the geometric series in (14.8) gives

iq(t) =
sin π

(
t

Tp
− q
)
/P

sin π
(

t
Tp
− q
)
/P

= arrayP

( t
Tp
− q

P

)

and our proof is complete.

6.7 Sampling Theory for Bandpass Functions

A signal x(t) is said to be bandpass with center frequency f0 and bandwidth B if

X(u) ≡ 0 ; 0 < | u | < fL, fU < | u | <∞
where the upper and lower frequencies are fL = f0 − B/2 and fU = f0 + B/2 respectively.
An example spectrum is shown in Figure 6.13. The signal is assumed to be real so that X(u)
is Hermetian.
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FIGURE 6.13. Parameters for the support of the Fourier transform of a bandpass signal.

We will discuss two techniques to characterize a bandpass function by its samples. The
first requires preprocessing prior to sampling. The second uses samples taken directly from
x(t) at a rate of 2B. A hybrid approach is left as an exercise.

6.7.1 Heterodyned Sampling

A bandpass signal can be heterodyned down to baseband by using the standard (coherent)
upper sideband amplitude demodulation technique illustrated in Figure 6.14. The bandpass
signal is first multiplied by a cosinusoid to obtain

y(t) = x(t) cos(2π fLt)

or, in the frequency domain

Y (u) = X(u) ∗ 1

2
[δ(u− fL)+ δ(u+ fL)]

= 1

2
X(u− fL)+ 1

2
X(u+ fL).

The result is illustrated in Figure 6.15. The signal y(t) is then low pass filtered to yield
the baseband signal z(t), which can be sampled by conventional means. If sampling is

FIGURE 6.14. (a) Heterodyning a bandpass signal to baseband in order to apply conventional sampling.
The encircled S is a sampler. (b) Restoration of the bandpass signal from the baseband signal’s
samples.
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FIGURE 6.15. Illustration of heterodyning down to baseband.

performed at the Nyquist rate, then the baseband samples are

z
( n

2B

)
= 2B

∫ ∞
−∞

x(t) cos(2π fLt) sinc(2Bt − n)dt.

Postprocessing is also required to regenerate x(t) from samples of z(t). We parti-
tion Z(u) as

Z(u) = U(u)+ L(u)

where

U(u) = Z(u) μ(u)

and

L(u) = Z(u) μ(−u).

Then, clearly

1

2
X(u) = L(u+ fL)+ U(u− fL)

= Z(u+ fL)μ(−u− fL)+ Z(u− fL) μ(u− fL).

The inverse transform of the first term is the conjugate of the inverse transform of the
second. Thus

1

2
x(t) = 2� w(t)
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where

w(t) = {z(t) exp(−j2π fLt)} ∗
{(

1

2
δ(t)− j

2π t

)
exp(−j2π fLt)

}
,

and � is the real operator. Simplifying gives

x(t) = 2 z(t) cos(2π fLt)+ 2 zH (t) sin(2π fLt)

where the Hilbert transform of z(t) is

zH (t) = − 1

π

∫ ∞
−∞

z(τ ) dτ

t − τ .

6.7.2 Direct Bandpass Sampling

A bandpass signal can also be reconstructed by samples taken directly from the signal. With
reference to Figure 6.11, assume that fL is an integer multiple of B.

fL = 2NB. (6.82)

This relation can always be achieved by artificially increasing fU , resulting in an equal
incremental increase in B.

The reason for requiring (6.82) is made evident in Figure 6.16. When the bandpass signal
is sampled at a rate of 2B, the replicated spectra do not overlap with X(u) (shown with solid
lines). Therefore, X(u) can be regained from the sample data with the use of a bandpass
filter. Let’s derive the specifics. Let

s(t) =
∞∑

n=−∞
x
( n

2B

)
δ
(

t − n

2B

)
= x(t) 2B comb(2Bt) (6.83)

so that

S(u) = X(u) ∗ comb(u/2B) = 2B
∞∑

n=−∞
X(u− 2nB).

The signal is regained with a bandpass filter.

X(u) = 1

2B
S(u)

[
�

(
u+ f0

B

)
+�

(
u− f0

B

)]
.

X(u)
X(u)

u

replications

B 2fL=2B

FIGURE 6.16. When fL is an integer multiple of B, the spectral replications corresponding to a sampling
rate of 2B do not overlap the original spectrum. Note, in this example, we had to artificially increase
B to meet the integer multiplication criterion.
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1
N = 1

0

0 2 4 6 8
−1

1
N = 3

0

0 2 4 6 8
−1

1
N = 2

0

0 2 4 6 8
−1

1
N = 4

0

0 2 4 6 8
−1

FIGURE 6.17. Interpolation functions in (6.85) for direct bandpass signal sampling for various N .

Inverse transforming gives

x(t) = s(t) ∗ (sinc(Bt) cos(2π f0t)) .

Substituting (6.83) and simplifying leaves

x(t) =
∞∑

n=−∞
x
( n

2B

)
k(2Bt − n). (6.84)

where the interpolation function is

k(t) = sinc

(
t

2

)
cos

(
π (2N + 1)t

2

)
. (6.85)

Plots of k(t) for various N are shown in Figure 6.17.

6.8 A Summary of Sampling Theorems for Directly
Sampled Signals

A number of the sampling theorems discussed in this chapter can be written as

x(t) =
∑
n∈S

x(tn)kn(t) (6.86)

where S is a set of integers. A list of some applicable sampling theorems are in Table 6.1.
The signal x(t) is assumed to be (low pass or high pass) bandlimited with bandwidth B.
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TABLE 6.1. Direct sample interpolation following the formula in (6.86). (a) The sum is over both
n and p. (b) 2W = P/T where T is the signal’s period and P is an odd integer. Parameter comments:
(1) B = signal’s bandwidth W > B. (2) r = B/W = sampling rate parameter, (3) BN = B/N ,
(4) αp = sample locations in recurrent nonuniform sampling

(Eq)/Section Sample domain Sample locations Interpolation function
S tn kn(t)

Cardinal
Series −∞ < n <∞ n

2B sinc(2Bt − n)
(5.3)/ 5.1

Over-
sampling −∞ < n <∞ n

2W r sinc(2Bt − rn)
(6.2)/6.2.1

Lost sample
at t = 0

(6.94)/6.11
n �= 0 n

2W r sinc(2Bt − rn)

+ r2

(1−r) sinc(rn)sinc(2Bt)

Recurrent 1 ≤ p ≤ P tnp = sinc(2BN (t − tnp))
nonuniform(a) −∞ < n <∞ n

2BN
+ αp

(6.52)/6.3.3 ×∏N
q=1
q �=p

sin
(
2πBN (t − tnq)

)
sin
(
2πBN (tnp − tnq)

)

Bandpass −∞ < n <∞ n
2B sinc

(
Bt − n

2

)
signals × cos

(
π (2N + 1)

(
Bt − n

2

))
(6.85)/6.7.2

Trigonometric
polynomials(b) 1 ≤ n ≤ P n

2W arrayP

( t−tn
P

)
(6.78)/6.6

The sampling rate 2W exceeds the Nyquist rate. Note that, in each case, the function used
for interpolation can itself be sampled and interpolated as

km(t) =
∑
n∈S

km(tn) kn(t). (6.87)

Excluded from this generalization are interpolations requiring samples of a signal’s
derivative or Hilbert transform. Derivative interpolation is likewise not included.

6.9 Lagrangian Interpolation

There exists a unique N th order polynomial passing through any N + 1 samples.
Lagrangian interpolation identifies that polynomial. Lagrangian interpolation, when applied
to an infinite number of uniformly spaced samples, is equivalent to cardinal series
interpolation.

In general, let {tn} denote a set of sample locations for a function x(t). The corresponding
Lagrangian interpolation from these samples is [1155]

y(t) =
∑

n

x(tn)kn(t) (6.88)

where

kn(t) =
∏
m �=n

t − tm
tn − tm

.
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Note that this function meets the interpolation function criterion

kn(tm) = δ[n− m].
In other words, y(t) passes through all the sample points.

We now show that if {tn = nT | −∞ < n <∞}, then (6.88) becomes the cardinal series.
Under this assumption, the interpolation function clearly takes on the same form at every
sample location. Thus

kn(t) = k(t − nT ).

Analysis of the n = 0 case therefore suffices. There,

k(t) =
∏
m �=0

[
1−

(
t

mT

)]
.

Separating the product into its positive and negative m portions followed by a multiplicative
combination gives

k(t) =
∞∏

m=1

[
1−

(
t

mT

)2
]
.

Since [5]

sin(z) = z
∞∏

m=1

[
1−

( z

πm

)2
]

(6.89)

we conclude that

k(t) = sinc

(
t

T

)

and our equivalence demonstration is complete.

6.10 Kramer’s Generalization

The generalization of the sampling theorem by Kramer (1959) [772] can best be explained
by a review of the conventional sampling theorem derivation in followed by a parallel
generalized derivation.

Consider the inverse Fourier transform expression of a bandlimited function in (5.2). We
can evaluate this expression without loss of information at the points t = n/2B because the
functions {exp(−jπnu/B)| − ∞ < n < ∞} form a complete orthogonal basis set on the
interval −B < u < B. Therefore, as explained in Section 2.4, the inner products expressed
in (5.9) are sufficient for an orthogonal series expansion for X(u) and therefore x(t).

Consider, then, the generalized integral transform7

y(t) =
∫

I
Y (u)C(t; u)du (6.90)

7. In this section, y(t) and Y (u) are not Fourier transform pairs.
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where C(t; u) is a given kernel, and I a given interval.8 Assume that over the interval I , the
functions {C(tn; u) | − ∞ < n < ∞} form a complete orthonormal basis set which can
be used to express Y (u). Then Y (u) can be expressed in an orthonormal expansion using
samples of y(t) as coefficients.

Y (u) =
∞∑

n=−∞
y(tn) C∗(tn; u).

Substituting into (6.90) gives a generalization of the cardinal series

y(t) =
∞∑

n=−∞
y(tn) kn(t) (6.91)

where the nth interpolation function is

kn(t) =
∫

I
C∗(tn; u)C(t; u)du. (6.92)

Equations (6.91) and (6.92) constitute Kramer’s generalization.

6.11 Exercises

6.1. Fill in the details between the two equations in (6.2).
6.2. Let x(t) have a bandwidth of B. Let r = B/W ≤ 1. Consider the sinc squared

interpolation:

y(t;A) = D
∞∑

n=−∞
x(nT ) [A sinc (A(t − nT )]2

where D is a constant and T = 1/2W . Let C be such that

B ≤ C ≤ 2W − B.

(a) Find D such that

y(t;C)− y(t;B) = x(t).

(b) Find a filter H( u
2B ) that gives x(t) as an output when y(t;C) is input.

6.3. (a) Let

k(2Bt) = 1

2B
e−atμ(t).

Restore the resulting generalized interpolation in (6.24) using a differentiator,
a low pass filter and an amplifier.

(b) Same except

k(2Bt) = 1

2B
e−a | t |.

Here, you are allowed an inverter, two amplifiers, two differentiators and a low
pass filter for restoration.

8. For the specific case of Fourier series, C(t; u) = exp( j2πut) /
√

2B and I = {u| − B < u < B}.
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6.4. A signal’s Hilbert transform can be obtained by passing the signal through a filter
with frequency response

H(u) = −j sgn(u).

Let f (t) be a bandlimited signal with bandwidth B and let g(t) be its Hilbert
transform. Find f (t) from {g ( n

2B

) | −∞ < n <∞}.
6.5. A bandlimited signal, f (t), and its Hilbert transform are both sampled in phase at

half their Nyquist rates. Generate the interpolation functions required to regain f (t).
6.6. Generate an alternate method for restoring lost samples by evaluating (6.13) at the

points {t = n
2W | n �∈M}.

6.7. A signal’s samples are

f (nT ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

4(−1)n/2

π (1− n2)
; n even

? ; n = ±1

0 ; otherwise.

Given r = 1/2, find f (±T ).
6.8. Except for n = 0, a signal’s samples are

f (nT ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2

n
(−1)n/2 ; even n �= 0

4(−1)(n+1)/2

πn2
; odd n

.

The signal is known to be oversampled, but the value of r is uncertain. Find f (0).
6.9. Vandermonde determinants

The determinant of the matrix
⎡
⎢⎢⎢⎢⎣

1 x1 x2
1 . . . xN−1

1

1 x2 x2
2 . . . xN−1

2
...
...
... . . .

...

1 xN x2
N . . . xN−1

N

⎤
⎥⎥⎥⎥⎦

is called the Vandermonde determinant and is equal to

	 = �1≤ j<k≤N (xk − xj).

For example, for N = 4,

	 = (x4 − x3)(x4 − x2)(x4 − x1)

× (x3 − x2)(x2 − x1)

× (x2 − x1).

Use this result to derive (6.52) by using (6.51) in (6.50) with Cramer’s rule.
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6.10. Let f (t) have bandwidth B. The signals f (t− α) and f (t+ α) are sampled uniformly
at a rate of B. Show that [1087]

f (t) = cos(2πBα)− cos(2πBt)

2πB sin(2πBα)

×
∞∑

n=−∞

f ( n
B + α)

B(t − α)− n
− f ( n

B − α)

B(t + α)− n
.

6.11. (a) Derive the interpolation functions in (6.58) and (6.59).
(b) Show that the formula in (6.60) not only interpolates the signal samples

properly, but also interpolates the derivative samples.
6.12. Consider the case where the integrating detector bins in Section 6.2.4.1 are separated

by gaps and, in lieu of (6.31), we are given

g
( n

T

)
=
∫ t=

(
n+ 1

2

)
ϒ

t=
(

n− 1
2

)
ϒ

f (t)dt.

where ϒ < T . Assuming 1/T equals or exceeds the Nyquist rate, craft a procedure
to find the samples of f (t).

6.13. Why can’t we allow M = N in (6.80) ?
6.14. Show that the Fourier coefficients of a trigonometric polynomial can be generated

directly from the signal’s samples by the matrix equation

	c = A 	x

where 	x contains the P signal samples, 	c contains the 2N + 1 Fourier coefficients
and the nqth element of A is

anq =
∫ 1

2

− 1
2

arrayP

(
t − q

P

)
e j2πnt dt

6.15. Envelope detection
In this problem, we consider the amplitude modulation process in Section 3.4.

A bandlimited signal, x(t), has bandwidth B is used to form the signal

z(t) = 2 w(t) cos(2π f0t)

where f0 is the carrier frequency and

w(t) = x(t)+ b.

The bias, b, is chosen such that w(t) ≥ 0. Then, as illustrated in Figure 3.18, the
signal w(t) rides the envelope of the modulating sinusoid. The signal z(t) touches

w(t) when t = n/f0. We therefore have access to the samples w
(

n
f0

)
and therefore

the samples

x

(
n

f0

)
= w

(
n

f0

)
− b.
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(a) Are the maxima of z(t) in Figure 3.18 equal to the samples w
(

n
f0

)
? Hint: See

Exercise 2.33.
(b) Under what conditions can we regain the baseband signal, x(t), from the

samples x
(

n
f0

)
using the sampling theorem?

(c) Form a signal by linearly connecting the points of x
(

n
f0

)
. Can the baseband

signal be recovered from this piecewise linear signal?
6.16. Let v(t) denote a real baseband signal with a maximum frequency component of B/2.

The signal

x(t) = v(t) cos(2π f0t)

is bandpass. We showed that x(t), when heterodyned to baseband, required a
minimum sampling rate of 2B. Show a technique whereby a down heterodyned
version of x(t) requires a sampling rate of half that much ( f0 > B).

6.17. Implicit sampling of a function x(t) is illustrated in Figure 6.18. A sample is taken
when x(t) crosses a predetermined level. Assume that the levels are each separated
by an interval of 	 and that one of the levels is at zero. Show that not all finite
energy bandlimited signals are determined uniquely by their implicit samples for
any finite value of	. Hint:Assume an average sampling density of 2B is necessary
to uniquely specify the signal and consider the function

y(t) = sinc2(t)+ sinc2(t − a)

which is strictly positive when a is not an integer.
6.18. Does (6.85) satisfy the criterion for an interpolation function? If not, why?
6.19. What class of functions does Lagrangian interpolation always interpolate exactly

using only N samples?
6.20. Derive a closed form expression for the interpolation function for recurrent

nonuniform sampling using Lagrangian interpolation. Is it the same as (6.52)?
6.21. Does Lagrangian interpolation result in the expression in (6.2) for oversampled

bandlimited signals?
6.22. An oversampled bandlimited function can be interpolated using the oversampled

cardinal series as

x(t) = r
∞∑

n=0

x
( rn

2B

)
sinc(2Bt − rn) (6.93)

FIGURE 6.18. Implicit sampling.
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where the sampling rate parameter, r, has been explicitly placed in the argument of
x(·). For finite energy signals, this is true for 0 < r ≤ 1. Thus, as r changes in this
range, x(t) should not change and

d

dr
x(t) = 0.

Show that, indeed, this is true. Hint: If x(t) is bandlimited, so is tx(t) and tx′(t).
6.23. Show that for any oversampled finite energy bandlimited function that

x(t) = r
∑
n �=0

x
( n

2W

)(
sinc(2Bt − rn)+ r

(1− r)
sinc(rn) sinc(2Bt)

)
. (6.94)

6.24. The lost sample formula in (6.11) works for finite energy signals. Does it work
for x(t) = cos(2πBt) when r = 0.5? In other words, can the sample at the origin,
x(0) = 1 be expressed using the other samples?

6.25. A bandpass function with bandwidth B is directly sampled at a rate 2B where B
is an integer multiple of fL. The samples are interpolated using the conventional
cardinal series. Outline the processing required to regain the original signal from
this interpolation. Does it make a difference whether the integer multiple is odd
or even?

6.26. For the filters in (6.61), derive the corresponding interpolation functions
for N = 3.

6.27. Complex Walsh functions
For a given B, let I = {u| − B < u < B}. Let

C(t; u) = {sgn [cos(2πut)] + j sgn[sin(2πut)]} /√2B.

The set of functions, {C( n
2B ; u)| − ∞ < n < ∞}, known as complex Walsh

functions, form a complete orthonormal basis set for finite energy functions on the
interval I . Evaluate the interpolation functions, kn(t), corresponding to Kramer’s
generalization of the sampling theorem for this basis set.

6.12 Solutions for Selected Chapter 6 Exercises

6.2. (a) y(t;C) = D C2
∞∑

n=−∞
x(nT ) sinc2 (C(t − nT ))

y(t;W ) = D W2
∞∑

n=−∞
x(nT ) sinc2 (W (t − nT ))

x(t) =
∞∑

n=−∞
x(nT ) kr(t − n/2W )

where

kr(t) = D
[
C2 sinc2(Ct)− B2 sinc2(Bt)

]

←→ Kr(u) = D [C�(u/C)− B�(u/B)] .
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For | u | ≤ B,

Kr(u) = D

[
C

(
1− | u |

C

)
− B

(
1− | u |

B

)]

= T; D = 1

2W (C − B)

and x(t) is recovered.
(b) Here

kr(t) = D C2 sinc(Ct)

←→ Kr(u) = K
( u

2B

)
= D C�

( u

C

)

and

H
( u

2B

)
= �

( u

2B

)
/K
( u

2B

)

= 1

D(C − | u |) �
( u

2B

)
.

Notice, for | u | ≤ B

1

DC
≤ H

( u

2B

)
≤ 1

D(C − B)
.

6.3. (a) K
( u

2B

) = 1/(a+ j2πu) and

H
( u

2B

)
= (a+ j2πu) �

( u

2B

)
.

This inverse filter is shown in Figure 6.19.9

(b)

K
( u

2B

)
= 2a

a2 − ( j2πu)2

FIGURE 6.19. See Exercise 6.3a.

9. Note: the LPF should be used first to avoid differentiating discontinuities.
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FIGURE 6.20. See Exercise 6.3b.

and

H
( u

2B

)
=
[

a

2
− 1

2a
( j2πu)2

]
�
( u

2B

)
.

The inverse filter is shown in Figure 6.20.
6.4. (b) H(u) = −j sgn(u). Since 1/sgn(u) = sgn (u),

K(u) = j

2B
sgn(u) �

( u

2B

)

and

k(t) = j

2B

∫ B

−B
sgn(u) ( j sin(2πut)) du

= −1

B

∫ B

0
sin(2πut) du

= −πBt sinc2(Bt).

Thus, if g(t) is the Hilbert transform of f (t) with bandwidth B, then

f (t) = 1

π

∞∑
n=−∞

g
( n

2B

) (−1)n cos(2πBt)− 1

2Bt − n
.

6.5. (a) For M = 1 and α = 0, (6.55) becomes

	(u) = j2πB.

Equation (6.56) becomes

K1(u) = 1

j2πB2

[
�

(
u

B
− 1

2

)
−�

(
u

B
+ 1

2

)]

= 1

j2πB2
�
( u

B

)
∗
(
δ

(
u− B

2

)
− δ

(
u+ B

2

))
.

Thus

k1(t) = 1

πB
sinc(Bt) sin(πBt)

= sin2(πBt)

π2 B2t

= t sinc2(Bt).
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Equation (6.57) becomes

K2(u) = 1

B2

[
−(u− B)�

(
u

B
− 1

2

)
+ (u+ B) �

(
u

B
+ 1

2

)]

= 1

B
�
( u

B

)
.

Thus

k2(t) = sinc2(Bt)

= sin2(πBt)

(πBt)2

= sinc2(Bt).

(b) The interpolation is

f (t) =
∞∑

n=−∞

[
f
( n

B

)
k1

(
t − n

B

)
+ f ′

( n

B

)
k2

(
t − n

B

)]
.

Since k1( p/B) = δ[n] and k2(p/B) = 0, the equation reduces to an identity at
t = m/B. Differentiate

f ′(t) =
∞∑

n=−∞

[
f
( n

B

)
k′1
(

t − n

B

)
+ f ′

( n

B

)
k
′
2

(
t − n

B

)]
.

Clearly

k
′
1(t) = d

dt
sinc2(Bt)

= 2B sinc(Bt) d1(Bt)

and

k
′
1

( n

B

)
= 0

since d1(0) = 0 and sinc(n) is zero everywhere else. Note that

k2(t) = t k1(t),

Thus

k
′
2(t) = t k

′
1(t)+ k1(t)

and

k
′
2

( n

B

)
= sinc2(n)

= δ[n].
The interpolation therefore also interpolates the derivative samples.
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6.6. Doing so gives
∑

n �∈M
[δ[n− m] − rsinc (r(n− m))] x

( n

2W

)
= r

∑
n∈M

x
( n

2W

)
sinc (r(n− m))

or

	̂g = S 	x
where 	̂g has elements {ĝ ( n

2B

) | n ∈ M} and

ĝ(nT ) =
∑

n �∈M
[δ[n− m] − rsinc (r(n− m))] x

( n

2W

)

can be found from the known data.
6.7.

f (nT ) =

⎧⎪⎪⎨
⎪⎪⎩

4(−1)n/2

π (1− n2)
; even n

0 ; odd n, n �= ±1

Therefore, for T = 1/2W ,

g(±T ) = 1

2

∑
even n

4(−1)n/2

π (1− n2)
sinc

(±1− n

2

)
.

Note g(T ) = g(−T ). Using the + gives

sinc

(
n− 1

2

)
= 2(−1)n/2

π (1− n)
; even n

and

g(±T ) =
(

2

π

)2 ∑
even n

1

(1− n2)(1− n)

=
(

2

π

)2
[

1+ 2
∞∑

m=1

1(
1− (2m)2

)2
]

where we have let 2m = n. Numerically,

g(±T ) = 1

2
.

Now,

H =
[−1/2 0

0 1/2

]
.

Thus

f (±T ) = 1.

Note: The function these samples were taken from is

f (t) = sinc

(
2Bt − 1

2

)
+ sinc

(
2Bt + 1

2

)
.
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6.8. The samples are taken from the signal

f (t) = d

dt
sinc(t) = cos(π t)− sinc(t)

t
.

Thus f (0) = 0. (Note r = 1/2). Using (6.8) :

x(0) = −2
∑

even n
n �= 0

(−1)n/2

n
− 4

π

∑
odd n

(−1)
n+1

2

n2

= 0

since both summands are odd.
6.13. We have implicitly assumed that C±N = 0. If P = 2N + 1 then, in the spectral

replication, the Dirac delta at u = N/T would be aliased by the shifted Dirac delta
originally at u = −N/T . We evaluate the Fourier coefficients in (6.76) with the
familiar formula

cn = 1

T

∫ T/2

−T/2
x(τ ) e j2πnτ/T dτ.

Substituting (6.77 ) followed by manipulation completes the problem.
6.16. Since v(t) is real, V (u) is Hermitian. Thus, as illustrated in Figure 6.21, X(u) has a

four fold symmetry. We can, therefore, heterodyne the center frequency f0 (rather
than the lower frequency fL to the origin). Let

y(t) = x(t) cos(2π f0t)

= v(t) cos2(2π f0t)

= 1

2
v(t)+ 1

2
v(t) cos(π f0t).

A lowpass filter gives

z(t) = 1

2
v(t)

which can be sampled at the Nyquist rate of B.

FIGURE 6.21. See Exercise 6.16.
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6.17. Since y(t) > 0 and approaches zero for large | t |, no matter how small 	, there
exists some value of | t | above which there will be no more samples. Thus, the
number of samples is finite and the signal is not uniquely determined.

6.18. Clearly

k(n) = sinc(n/2) cos (π (2N + 1)n/2) .

Except for n = 0, sinc(n/2) is zero for even n. The cosine term is always zero for
odd n. Therefore, (6.26) is satisfied.

6.19. Real (N − 1)st order polynomials.
6.20. We wish to compute the interpolation function corresponding to αp. The Lagrangian

kernel in (6.88) can be partitioned as

kp(t) = ap(t) bp(t)

where

ap(t) =
∏
m �=0

t − (mTN + αp)

αp − (mTN + αp)

is due to sample locations located distances mT from αp and the contribution due
to the remaining terms is

bp(t) =
∏

q = 1
q �= p

∞∏
m=−∞

t − (mTN + αp)

αp − (mTN + αp)
.

Using the product formula for sin(z) in (6.89) gives

ap(t) = sinc
(
2BN (t − αp)

)
.

After factoring out the zero term, the m product in bp(t) can be written as

t + αq

αp − αq

∏
m �=0

1− t − αq

mTN

1− αp − αq

mTN

.

Expressing both products as sincs and simplifying reveals the resulting interpolation
function to be identical to that in (6.52).

6.21. No. Lagrangian interpolation would result in the conventional cardinal series.
Recall that Lagrangian interpolation results in an interpolation where only the
sample value contributes to the interpolation at that point. Equation (6.2), on
the other hand, usually has every sample value contributing to the sample at
t = m/2W .
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6.22. Differentiating (6.93) gives

d

dr
x(t) = d

dr

(
r
∞∑

n=0

x
( rn

2B

)
sinc(2Bt − rn)

)

=
∞∑

n=0

x
( rn

2B

)
sinc(2Bt − rn)

+ r
∞∑

n=0

( n

2B

)
x′
( rn

2B

)
sinc(2Bt − rn) (6.95)

− r
∞∑

n=0

n x
( rn

2B

)
sinc′(2Bt − rn)

The first of the three terms is recognized as x(t)/r and (6.95) becomes

d

dr
x(t) = 1

r
x(t)+ r

∞∑
n=0

( n

2B

)
x′
( rn

2B

)
sinc(2Bt − rn)

− r
∞∑

n=0

n x
( rn

2B

)
sinc′(2Bt − rn) (6.96)

For the second term, we use the hint and expand tx′(t) into an oversampled cardinal
series

tx′(t) = r
∞∑

n=0

( rn

2B

)
x′
( rn

2B

)
sinc(2Bt − rn).

Equation (6.96) thus becomes

d

dr
x(t) = 1

r
x(t)+ 1

r
t x′(t)− r

∞∑
n=0

n x
( rn

2B

)
sinc′(2Bt − rn). (6.97)

Using the hint and expanding tx(t) into an oversampled cardinal series gives

tx(t) = r
∞∑

n=0

( rn

2B

)
x
( rn

2B

)
sinc(2Bt − rn).

Thus

d

dt
tx(t) = r

∞∑
n=0

(rn) x
( rn

2B

)
sinc′(2Bt − rn)

and (6.97) becomes

d

dr
x(t) = 1

r
x(t)+ 1

r
t x′(t)− 1

r

d

dt
tx(t)

= 1

r

[
x(t)+ t x′(t)− (x(t)+ t x′(t)

)]

= 0.
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6.23. We write (6.2) as

x(t) = rx(0)sinc(2Bt)+ r
∑
n �=0

x(n/2B) sinc(2Bt − rn).

Substitute (6.11) and simplify. The same result can be obtained by filtering (6.12).
6.24.

x
( n

2W

)
= cos(πrn).

For r = 0.5, (6.11) becomes

x(0) =
∑
n �=0

x
( n

2W

)
sinc

(n

2

)
.

But x
( n

2W

) = 0 for odd values of n and sinc
( n

2

) = 0 for even values of n �= 0. The
series is thus equal to zero rather than the desired value of one. The lost sample
restoration procedure clearly does not work in this case.

6.26. The matrix to solve is
(
for B

3 < u < B
)

⎡
⎣

S1(u)
S2(u)
S3(u)

⎤
⎦ = 2B

3

⎡
⎢⎣

1 1 1
j2πu j2π (u− 2B

3 ) j2π (u− 4B
3 )

( j2πu)2 [ j2π (u− 2B
3 )]2 [ j2π (u− 4B

3 )]2

⎤
⎥⎦

×
⎡
⎢⎣

F(u)
F(u− 2B

3 )

F(u− 4B
3 )

⎤
⎥⎦ .

Using the third order Vandermonde determinant

	(u) = j2

(
4πB

3

)3

and Cramer’s rule, we have

F(u) = 1

2

(
3

2B

)3 [(
u− 2B

3

)(
u− 4B

3

)
S1(u)

+ j

(
1

2π

)(
3

2B

)2

(u− B) S2(u)

−
(

1

8π2

)(
3

2B

)3

S3(u)

]
; B

3
< u < B

F

(
u− 2B

3

)
= −

(
3

2B

)3

u

(
u− 4B

3

)
S1(u)

− j

(
1

π

)(
3

2B

)3 (
u− 2B

3

)
S2(u)

+
(

1

4π2

)(
3

2B

)3

S3(u) ; B

3
< u < B
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F

(
u− 4B

3

)
= 1

2

(
3

2B

)3

u

(
u− 2B

3

)
S1(u)

+ j

(
1

2π

)(
3

2B

)3 (
u− B

3

)
S2(u)

−
(

1

8π2

)(
3

2B

)3

S3(u) ; B

3
< u < B.

To construct F(u), we evaluate the equation

F(u) = K1(u) S1(u)+ K2(u) S2(u)+ K3(u) S3(u) ;−B < u < B.

Solving gives

K1(u) = 1

2

(
3

2B

)3 [(
u− 2B

3

)(
u− 4B

3

)
�

(
3u

2B
− 1

)

− 2

(
u− 2B

3

)(
u+ 2B

3

)
�

(
3u

2B

)

+
(

u+ 2B

3

)(
u+ 4B

3

)
�

(
3u

2B
+ 1

)]
,

K2(u) = j

(
1

2π

)(
3

2B

)2 [
(u− B)�

(
3u

2B
− 1

)

−2u�

(
3u

2B

)
+ (u+ B)�

(
3u

2B
+ 1

)]

and

K3(u) = −
(

1

8π2

)(
3

2B

)3 [
�

(
3u

2B
− 1

)

−2�

(
3u

2B

)
+�

(
3u

2B
+ 1

)]
.

With a bit of work we inverse Fourier transform to the interpolation functions
in (4.57).
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7

Noise and Error Effects

As far as the laws of mathematics refer to reality, they are not certain; and as far as they
are certain, they do not refer to reality.

Albert Einstein, [402b]

In theory, theory and reality are the same. In reality, they’re not.
unknown

It is not certain that everything is uncertain.
Blaise Pascal (1623–1662) [1098]

7.1 Introduction

Exact interpolation using the cardinal series from unaliased samples assumes that (a) the
values of the samples are known exactly, (b) the sample locations are known exactly (c) an
infinite number of terms are used in the series, and (d) sampling is performed at a sufficiently
fast rate. Deviation from these requirements results in interpolation error due to (a) data noise
(b) jitter (c) truncation and (d) aliasing respectively. The perturbation to the interpolation
from these sources of error is the subject of this chapter.

7.2 Effects of Additive Data Noise

If noise is superimposed on sample data, the corresponding interpolation will be perturbed.
In this section, the nature of this perturbation is examined. The effect of data noise on
continuous sampling interpolation is treated in Section 10.3.1.2. The multidimensional
case is the topic of Section 8.10.2.

7.2.1 On Cardinal Series Interpolation

Suppose that the signal we sample is corrupted by real additive zero mean wide sense
stationary noise, ξ (t). Then, instead of sampling the deterministic bandlimited signal, x(t),
we would be sampling the signal

y(t) = x(t)+ ξ (t). (7.1)

288
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From these samples, we form the series

z(t) =
∞∑

n=−∞
y
( n

2W

)
sinc(2Wt − n) (7.2)

where the sampling rate, 2W , equals or exceeds twice the bandwidth, B, of x(t). Recall the
sampling rate parameter

r = B

W
≤ 1.

In general, z(t) will equal y(t) only at the sample point locations.
Substituting (7.1) into (7.2) reveals that

z(t) = x(t)+ η(t) (7.3)

where

η(t) =
∞∑

n=−∞
ξ
( n

2W

)
sinc(2Wt − n). (7.4)

Therefore, η(t) is the stochastic process generated by the samples of ξ (t) alone and is
independent of the signal. Note that, since ξ (t) is zero mean, so is η(t). Hence, expectating
both sides of (7.3) leads us to the desirable conclusion that the expected value of the noisy
interpolation is the noiseless signal.

z(t) = x(t).

7.2.1.1 Interpolation Noise Level

A meaningful measure of the cardinal series’ noise sensitivity is the interpolation noise
level which, since ξ (t) is zero mean, is, η2(t). Towards this end, we will first find the
autocorrelation for η(t). From (7.4)

Rη(t − τ ) = E[η(t)η(τ )]

=
∞∑

n=−∞

∞∑
m=−∞

Rξ

(
n− m

2W

)
sinc(2Wt − n)sinc(2Wτ − m)

=
∞∑

k=−∞
Rξ

(
k

2W

) ∞∑
n=−∞

sinc(2Wτ − n+ k)sinc(2Wt − n) (7.5)

where our assumption of the wide sense stationarity of η(t) will shortly be justified and, in
the second step, we have let k = n−m. The n sum in (7.5) is the cardinal series applied to
x(t) = sinc (2W (τ − t)+ k). Then

Rη(t) =
∞∑

k=−∞
Rξ

(
k

2W

)
sinc(2Wt − k). (7.6)

Thus, the interpolation noise autocorrelation is found from the cardinal series interpolation
using sample values from the data noise autocorrelation.
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To find the interpolation noise level, we simply evaluate (7.6) at t = 0. The remarkable
result is

η2 = ξ2. (7.7)

That is, the cardinal series interpolation results in a noise level equal to that of the original
signal before sampling [149].

7.2.1.2 Effects of Oversampling and Filtering

In many cases, one can reduce the interpolation noise level by oversampling and filtering.
If, for example, we place z(t) in (7.3) through a filter that is one for | u |≤ B and zero
otherwise, then the output is

zr(t) = z(t) ∗ 2B sinc(2Bt)

= x(t)+ ηr(t)

where the stochastic process, ηr(t), is defined as

ηr(t) = η(t) ∗ 2B sinc(2Bt).

We now will show that

η2
r ≤ η2 = ξ2. (7.8)

That is, filtering reduces or maintains the interpolation noise level since power due to the
high frequency components of the noise is eliminated.

Using the appropriate form of (4.82) with h(t) = 2B sinc(2Bt) gives

Sηr (u) = Sη(u)�
( u

2B

)
.

From (4.72),

η2
r =

∫ B

−B
Sη(u)du (7.9)

whereas

η2 =
∫ W

−W
Sη(u)du. (7.10)

Since power spectral densities are nonnegative, comparison of (7.9) and (7.10) immediately
reveals that the noise level is maintained or reduced as was advertised in (7.8).

We now investigate this reduction more specifically for two types of noise
autocorrelations.

(a) Discrete White Noise
Here, we assume that

Rξ
( u

2W

)
= ξ2δ[n].
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Then, from (7.6):

Rη(t) = ξ2sinc(2Wt).

Thus

Sη(u) = ξ2

2W
�
( u

2W

)

and, from (7.9)

η2
r =

ξ2

2W

∫ B

−B
�
( u

2W

)
du

= rξ2. (7.11)

The noise level is reduced by the ratio of the Nyquist to the sampling rate.

(b) Laplace Autocorrelation
If the data noise has a Laplace autocorrelation with parameter λ as in (4.77), then the Fourier
transform of (7.6) is

Sη(u) = ξ2

2W

∞∑
n=−∞

e
−λ|n|
2W e−jπnu/W �

( u

2W

)

= ξ2

2W

∞∑
n=−∞

e
−λ|n|
2W cos(πnu/W )�

( u

2W

)

where, in the second step, we have recalled that Sη is real. Continuing,

Sη(u) = ξ2

2W

[
1+ 2

∞∑
n=1

e
−λn
2W cos(πnu/W )

]
�
( u

2W

)

= ξ2

2W

[
1+ 2�

∞∑
n=1

e
−n(λ+j2πu)

2W

]
�
( u

2W

)
. (7.12)

Applying the geometric series1 to (7.12) and simplifying gives the (unfiltered) interpolation
noise power spectral density [904]

Sη(u) = ξ2

2W

sinh
(
λ

2W

)
�
(
πr
2

)
cosh

(
λ

2W

)− cos(πu/W )
.

The power spectral density for ηr(t) is the same, but is only nonzero over the interval
| u |≤ B. The filtered interpolation noise level, from (7.9), follows as

η2
r = ξ2 sinh

(
λ

2W

)∫ r

0

[
cosh

(
λ

2W

)
− cos(πν)

]−1

dν (7.13)

1. See (14.6) in the Appendix.
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where we have made the variable substitution ν = 2uT and have recognized the integrand
is even. Since [544]

∫
dγ

a+ b cos(γ )
= 2√

a2 − b2
arctan

(√
a2 − b2 tan(γ /2)

a+ b

)
; a2 > b2

equation (7.13) can be evaluated as

η2
r =

2ξ2

π
arctan

(
sinh

(
λ

2W

)
tan(πr

2 )

cosh
(
λ

2W

)− 1

)
. (7.14)

Since the principle value of the arctan is strictly less than π/2, it is clear that the filtered
interpolation noise level is less than the data noise level.

Note that for large λ, the Laplace autocorrelation approaches the autocorrelation of
discrete white noise. This follows from

lim
ρ→∞

sinh(ρ)

cosh(ρ)− 1
= 1.

The corresponding limiting case of (7.14) is thus the same as that for white noise in (7.11).
Note also for r = 1 and η replacing ηr , that (7.14) reduces to (7.7).

Plots of η2
r /ξ

2 are shown in Figure 7.1 as a function of r for various values of λ/2W . The
higher the correlation between adjacent noise samples, the higher the filtered interpolation
noise level.
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FIGURE 7.1. Plots of interpolation noise variance for additive data for various values of λ/2W where
λ is the parameter of the Laplace autocorrelation.
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7.2.2 Interpolation Noise Variance for Directly
Sampled Signals

The results of the previous section can be nicely generalized to the sampling theorems listed
in Table 6.1, all of which can be written as

x(t) =
∑
n∈S

x(tn)kn(t) (7.15)

where S is a set of integers. Suppose the data were corrupted by real additive zero mean
stationary noise ξ (t). Then x(tn)+ ξ (tn) would appear in the summand of (7.15) rather than
just x(tn). The result is clearly x(t)+ η(t) where the interpolation noise is

η(t) =
∑
n∈S

ξ (tn)kn(t). (7.16)

Our noisy interpolated signal is then

z(t) = x(t)+ η(t). (7.17)

Since ξ (t) is zero mean, we have the desirable property that

z(t) = x(t).

The second order statistics of η(t) reveal the uncertainty of our estimate. Using (7.16), we
have

Rη(t; τ ) = E[η(t)η(τ )]
=
∑
n∈S

∑
m∈S

Rξ (tn − tm)kn(t)km(τ ). (7.18)

The interpolation noise variance follows as

η2(t) = Rη(t; t). (7.19)

If there is oversampling, the signal, once interpolated, can be filtered to remove noise
components not in the pass band. If the signal is low pass with bandwidth B, the
result is

zr(t) = z(t) ∗ 2B sinc(2Bt)

= x(t)+ ηr(t) (7.20)

where

ηr(t) = η(t) ∗ 2B sinc(2Bt).

Discrete White Noise. The expressions for the second order statistics simplify significantly
if the noise samples {ξ (tn) | n ∈ S} are uncorrelated (white). Then

Rξ (tn − tm) = ξ2δ[n− m], (7.21)



[16:24 9/9/2008 5165-Marks-Ch07.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 294 288–325

294 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

and (7.18) reduces to a single sum:

Rη(t; τ ) = ξ2
∑
n∈S

kn(t)kn(τ ), (7.22)

and the normalized interpolation noise variance (NINV) becomes

η2(t)/ξ2 =
∑
n∈S

k2
n(t). (7.23)

If the interpolated signal is filtered, the resulting NINV is

η2
r (t)/ξ2 =

∑
n∈S

[
k(r)

n (t)
]2

(7.24)

where, if the signal is low pass with bandwidth B,

k(r)
n (t) = kn(t) ∗ 2B sinc(2Bt). (7.25)

The general results of this section will now be applied to some specific cases.

7.2.2.1 Interpolation with Lost Samples

We here consider the NINV resulting from interpolation in the presence of lost samples
[906]. We will demonstrate that the NINV increases when (a) the r < 1 sampling rate
becomes close to that of Nyquist, (b) the number of lost samples increases and/or (c) the
lost sample locations are “close” to each other. Analysis will be restricted to additive white
noise as in (7.21).

(a) One Lost Sample
For one lost sample at the origin, we use the corresponding interpolation function
in (6.12):

kn(t) = sinc(2Wt − n)+ r

1− r
sinc(rn)sinc(2Wt). (7.26)

Substituting into (7.23) gives

η2(t)/ξ2 =
∑
n 	=0

[
sinc(2Wt − n)+ r

1− r
sinc(rn)sinc(2Wt)

]2

=
∞∑

n=−∞

[
sinc2(2Wt − n)+

(
r

1− r

)2

sinc2(rn)sinc2(2Wt)

+ 2r

1− r
sinc(2Wt − n)sinc(rn)sinc(2Wt)

]

− 1

(1− r)2
sinc2(2Wt). (7.27)

Each of the three infinite sums can be evaluated in closed form. For the first term, we set
τ = t in the cardinal series expansion

sinc (2W (t − τ )) =
∞∑

n=−∞
sinc(2Wτ − n) sinc(2Wt − n).
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The cardinal series applied to

sinc(2Bt) =
∞∑

n=−∞
sinc(rn) sinc(2Wt − n) (7.28)

lets us evaluate the third sum, and the series in (6.2) can similarly be applied to

sinc(2Bt) = r
∞∑

n=−∞
sinc(rn) sinc(2Bt − rn). (7.29)

Setting t = 0 gives the second sum. Alternately, (7.29) is a low passed version of (7.28).
Collecting terms and simplifying leaves

η2(t)/ξ2 = 1+ 2r

1− r
sinc(2Wt) sinc(2Bt)

− 1

1− r
sinc2(2Wt). (7.30)

Note that, for large t, the NINV approaches one. This is consistent with (7.7) since, far
removed from the origin, the effect of the lost sample is negligible.

The noise at the origin follows from (7.30) as

η2(0)/ξ2 = r

1− r
. (7.31)

The result is monotonically increasing on 0 < r ≤ 1. Interestingly, for r < 1/2, the
normalized interpolation noise level in (7.31) is less than one which is less than the noise
level of the known sample data. Note, however, that we have yet to filter the high-frequency
components of the discrete white noise.

For the filtered case for one lost sample, the interpolation function, from Table 6.1, is

k(r)
n (t) = r sinc(2Bt − rn)+ r2

1− r
sinc(rn)sinc(2Bt).

From (7.23), the corresponding NINV is:

η2
r /ξ

2 = r2
∑
n 	=0

[
sinc(2Bt − rn)+ r

1− r
sinc(rn) sinc(2Bt)

]2

.

Proceeding in a manner similar to that for the unfiltered case above, we obtain

η2
r /ξ

2 = r

1− r

[
1− r{1− sinc2(2Bt)}

]
. (7.32)

For large t, the noise level goes to the no lost sample filtered equivalent in (7.11). Note, in
particular, from (7.31) that

η2
r (0) = η2(0).
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Hence, filtering the interpolation does not improve the uncertainty of the restoration of the
lost sample. As we would expect from (7.7) and (7.11) respectively,

η2(±∞) = ξ2

and

η2
r (±∞) = rξ2.

Plots of (7.30) and (7.32) are shown in Figure 7.2.

(b) Two Lost Samples
Let M = 2 and let the lost samples be located at the origin and at x = k/2B for some
specified positive integer k. The 2× 2 matrix, A, discussed in direct interpolation from M
lost samples in Section 6.2.1 has elements

a11 = a22 = 1− r

�

and

a12 = a21 = r sinc(rk)

�

FIGURE 7.2. Plots of the normalized interpolation noise variance (NINV) for the case of a single lost
sample vs. t/2W for four different values of r. In all cases, the curve with the largest values are for
η2/ξ2 in (7.30) and the lower curves are the filtered case, η2

r /ξ
2, in (7.32). As expected, the NINV

increases with r. In all cases, for both the filtered and unfiltered cases, the NINV asymptotically
approaches one.
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where

� = (1− r)2 − r2 sinc2(rk).

The corresponding interpolation functions in (6.20) and (6.22) are substituted into (7.23)
and (7.24), respectively. After straightforward yet tedious calculations, we obtain

η2(t)/ξ2 = 1− (α2 + β2)+ 2r [ a11(ατ + βρ)+ a12(αρ + βτ )]
+ r2 [(a2

11 + a2
12)(α2λ+ 2αβγ + β2λ)

+ 2a11a12(α2γ + 2αβλ+ β2γ )] (7.33)

and

η2
r (t)/ξ2 = r − r2(α2

1 + β2
1 )

+ 2r3[a11(α1τ1 + β1ρ1)+ a12(α1ρ1 + β1τ1)]
+ r4[(a2

11 + a2
12)(α2

1λ+ 2α1β1γ + β2
1λ)

+ 2a11a12(α2
1γ + 2α1β1λ+ β2

1γ )] (7.34)

where

α = sinc(2Wt − k), α1 = sinc(2Bt − rk)

β = sinc(2Wt), β1 = sinc(2Bt)

and

ρ =
∑

p	=0,k

sinc(rp)sinc(2Wt − p)

= β1 − β − α sinc(rk),

ρ1 =
∑

p	=0,k

sinc(rp)sinc(2Bt − rp)

=
(

1− r

r

)
β1 − α1 sinc(rk),

τ =
∑

p	=0,k

sinc(r(p− k))sinc(2Wt − p)

= α1 − α − β sinc(rk),

τ1 =
∑

p	=0,k

sinc(r(p− k))sinc(2Bt − rp)

=
(

1− r

r

)
α1 − β1 sinc(rk),
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λ =
∑

p	=0,k

sinc2(rp)

=
∑

p	=0,k

sinc2(r(p− k))

= 1

r
− 1− sinc2(rk),

γ =
∑

p	=0,k

sinc(rp)sinc(r(p− k))

=
(

1

r
− 2

)
sinc(rk).

Numerical examples of the NINV’s in (7.33) and (7.34) are shown in Figures 7.3 and 7.4
for k = 1 and various r. The samples are lost at times t = 0 and 1. The asymptotic value
of the unfiltered restoration approaches one and that of the filtered case, r. As the sampling
rate becomes closer to the Nyquist rate, the problem of restoration of the two lost samples
becomes more ill-conditioned.2

h2(t )/x2

h2(t )/x2

h2
r /x

2 h2
r /x

2

h2(t )/x2

1

0.8

0.6

0.4

0.2

0
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3

2

1

0

−5 0 5 10

r = 0.20

r = 0.60 r = 0.80

r = 0.40
1.5

1

0.5

0

60

50

40

30

20

10

0

−5 0 5 10

−5 0 5 10 −5 0 5 10

FIGURE 7.3. NINV in (7.33) and (7.34) for two adjacent lost samples (at t = 0 and t = 1) corresponding
to, on the top row, r = 0.2 and 0.4 and, on the bottom row, r = 0.6 and 0.8. In all cases, the unfiltered
NINV, η2(t)/ξ2 is the top curve, i.e., η2(t)/ξ2 ≥ η2

r (t)/ξ2 where η2
r (t)/ξ2 is the filtered NINV. The

unfiltered NINV always asymptotically approaches one whereas the filtered NINV approaches r. For

the r = 0.8 curve (bottom right), the filtered and unfiltered NINV’s are graphically indistinguishable.
The r = 0.8 curve is shown using a logarithm plot in the upper left of Figure 7.4.

2. See Appendix 14.5.



[16:24 9/9/2008 5165-Marks-Ch07.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 299 288–325

NOISE AND ERROR EFFECTS 299

102

104

102

100

10−2

106

104

102

100

101

100

10−1

−10 −5 0 5 10

102

103

101

100

10−1

−10 −5 0 5 10

−10 −5 0 5 10 −10 −5 0 5 10

r = 0.80

r = 0.95

r = 0.90

r = 0.99
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h2
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FIGURE 7.4. NINV in (7.33) and (7.34) for two adjacent lost samples (at t = 0 and t = 1) corresponding
to, in the top row, r = 0.8 and 0.9 and, in the bottom row, r = 0.95 and 0.99. For all but the r = 0.8
case, the curves are graphically indistinguishable. The unfiltered NINV, η2(t)/ξ2 always exceeds
the unfiltered case, i.e., η2(t)/ξ2 ≥ η2

r (t)/ξ2 where η2
r (t)/ξ2 is the filtered NINV. Since the NINV

becomes larger as the sampling rate becomes closer to the Nyquist rate, whereat it becomes infinite,
the restoration of the two lost samples becomes more ill-conditioned. As we move farther from the
lost sample, η2(t)/ξ2 → 1 and η2

r (t)/ξ2 → r

For r = 0.5, the NINV in (7.33) and (7.34) is shown in Figure 7.5 for various k. For
separation by k = 1 sample (upper left), the NINV for both the filtered and unfiltered cases
is higher. For k = 2, 3, 4, the NINV’s are commensurate. One might expect that, for large
k, the NINV’s would become the same as that as for a single lost sample. In essence, each
point is sufficiently separated from the other so neither knows the other is there. This is
illustrated in Figure 7.6 where NINV’s for two lost samples are shown for k = 4, 8. The
shapes of the curves are nearly identical.

The NINV at the filtered and unfiltered lost sample locations are identical. Examining
the filtered and unfiltered NINV at the lost sample point locations yields

η2(0) = η2

(
k

2B

)
= η2

r (0) = η2
r

(
k

2B

)

= r2ξ2
[(

a2
11 + a2

12

)
λ+ 2a11a12γ

]
. (7.35)

As the separation, k, between the two lost samples increases, the NINV approaches that for
a single lost sample. From (7.31), we have

lim
k→∞ η

2(0) = lim
k→∞ η

2

(
k

2B

)
= lim

k→∞ η
2
r (0) = lim

k→∞ η
2
r

(
k

2B

)
= rξ2

1− r
(7.36)
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FIGURE 7.5. NINV in (7.33) and (7.34) for r = 0.5 and various k. The lost samples are at (0, k). The
unfiltered NINV, η2(t)/ξ2 is the top curve in all four plots. As we move farther from the lost sample,
η2(t)/ξ2 → 1 and η2

r (t)/ξ2 → r.
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1
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2

FIGURE 7.6. NINV in (7.33) and (7.34) for r = 0.5 and k = 4 and k = 8 . The locations of the lost
samples are sufficiently separated so that the NINV’s around the lost samples are nearly the same.
The unfiltered NINV, η2(t)/ξ2 is the top curve in both plots. As we move farther from the lost sample,
η2(t)/ξ2 → 1 and η2

r (t)/ξ2 → r.

(c) A Sequence of Lost Samples
For an even greater number of lost samples, the obtaining of a closed form solution
for the NINV using the previous methods becomes nearly intractable. Evaluation of the
infinite series numerically becomes more attractive. Alternately, a concise matrix approach
to the problem developed by Tseng [1414] can be used. We will not, however, review
it here.

Numerically evaluated plots of the filtered NINV for three samples in a row are shown in
Figure 7.8 for r = 0.5 and 0.8. The NINV at the lost sample locations is shown in Figure 7.9
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FIGURE 7.7. Log plot of the NINV for two lost samples at the sample point locations in (7.35). The
top curve corresponds to lost sample separation k = 1. The next curve is for k = 2, etc. As k →∞,
the curves, as predicted in (7.36), approach r/(1− r).

FIGURE 7.8. Filtered NINV for three lost samples at 0, +1, and −1 as a function of 2Wt.

for M lost samples in a row.The noise level increases drastically with respect to the number of
adjacent lost samples and sampling rate parameter. Correspondingly, the condition number
of the A = [I− S]−1 matrix increases greatly with larger M and r.

7.2.2.2 Bandpass Functions

The NINV for bandpass function interpolation follows from Table 6.1 and (7.23) as

η2(t)/ξ2 =
∞∑

n=−∞
sinc2

(
Bt − n

2

)
cos2

(
π (2N + 1)

(
Bt − n

2

))
. (7.37)
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FIGURE 7.9. NINV of M lost samples in a row at the lost sample locations. The lower dot values in
each case correspond to r = 0.5 and the upper ×’s to r = 0.8.

Expanding the bandpass function

x(t) = sincB(t − τ ) cos (π (2N + 1)B(t − τ ))

in the bandpass sampling theorem in (6.84) and (6.85) gives

sincB(t − τ ) cos (π (2N + 1)B(t − τ ))

=
∞∑

n=−∞
sinc

(
Bτ − n

2

)
cos

(
π (2N + 1)

(
Bτ − n

2

))

× sinc
(

Bt − n

2

)
cos

(
π (2N + 1)

(
Bt − n

2

))
.

Evaluating this expression at τ = t reduces (7.37) to

η2(t)/ξ2 = 1.

Therefore, as in the cardinal series, the interpolation noise variance is the same as the
variance of the data noise.

7.2.3 On Papoulis’ Generalization

Papoulis’ generalization of the sampling theorem was presented in Section 6.3. Here, we
will explore the effects of additive white noise superimposed on the sample data. We will
expose the ill-posedness of a number of innocent appearing sampling theorems [285].
Interpolation is here defined to be ill-posed if the NINV cannot be bounded. Clearly, such
sampling theorems should be avoided.

An example of an ill-posed sampling theorem is a special case of signal-derivative
sampling. Shannon was the first to note that one could sample at half the Nyquist rate if
at each sample location two samples were taken: one of the signal and one of the signal’s
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derivative. Consider the seemingly innocent alteration of sampling at the Nyquist rate with
interlaced signal and first derivative samples taken at each Nyquist interval. As we will
demonstrate, restoration here is ill-posed. Indeed, subjecting the samples to sample-wise
white noise renders the restoration unstable. Hence, one would wish to sample an odometer
and speedometer simultaneously, rather than sequentially, to determine position.

Let {ξp(nTN ) | p = 1, 2, . . . ,N;−∞ < n <∞} denote a zero mean discrete stochastic
noise sequence. If gp(nTN ) + ξp(nTN ) is used in (6.47) instead of gp(nTN ), the output is
f (t)+ η(t) where

η(t) =
N∑

p=1

∞∑
n=−∞

ξp(nTN )kp(t − nTN ). (7.38)

We will assume that the discrete noise is stationary and white:

E [ ξk(nTN )ξp(mTN ) ] = ξ2
p δ[k − p] δ[n− m]

where ξ2
p = E[| ξp(nTN ) |2] is the data noise variance of the pth sampled signal. The

interpolation noise level then follows as

η2(t) =
N∑

p=1

ξ2
p

∞∑
n=−∞

| kp(t − nTN ) |2 .

Clearly, η2(t) is periodic with period TN . Application of the Poisson sum formula yields

η2(t) = 1

TN

N∑
p=1

ξ2
p

∞∑
n=−∞

Wp(2nBN ) e j4πnBN t (7.39)

where

| kp(t) |2←→ Wp(u) =
∫ B

−B
Kp(β)K∗p (β − u)dβ.

Note that (7.39) is simply a Fourier series with coefficients

Cn = 1

TN

N∑
p=1

ξ2
p Wp(2nBN ). (7.40)

We accordingly define the average interpolation noise variance by

C0 = 1

TN

N∑
p=1

ξ2
p Wp(0)

= 1

TN

N∑
p=1

ξ2
p

∫ B

−B
| Kp(u) |2 du (7.41)

or, using Parseval’s theorem,

C0 = 1

TN

N∑
p=1

ξ2
p

∫ ∞
−∞
| kp(t) |2 dt. (7.42)
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Thus the average interpolation noise variance is infinite if any one of the N interpolation
functions has unbounded energy. Equivalently, if, for any p = 1, 2, . . . ,N ,

∫ ∞
−∞
| kp(t) |2 dt =

∫ B

−B
| Kp(u) |2 du = ∞ (7.43)

then the restoration is ill-posed.

7.2.3.1 Examples

1. Derivative Sampling. Consider the N = 1 case corresponding to Mth-order derivative
sampling

H1(u) = ( j2πu)M

We can, in principle, regain all frequency components other than zero. Note, however, that
(7.42) becomes

C0 = ξ2
1

(2π )2MTN

∫ B

−B
u−2Mdu

= ∞.
The corresponding sampling theorem is thus ill-posed.

2. Interlaced Signal-Derivative Sampling. A less obvious ill-posed sampling theorem
occurs when we nonuniformly interlace Mth order derivative samples with signal samples.
The sampling theorem for this problem was addressed in Section 4.2.3.2. The spectra of the
interpolation functions K1(u) and K2(u) have real poles when �(u) = 0 or �(u + B) = 0
on the intervals (0,B) and (−B, 0) respectively. The former occurs when

uMe−j2π (αB+n) = (u− B)M; 0 ≤ n < M

or

u = B

2

[
1− j cotan

(
π (αB+ n)

M

)]
.

One of these roots is real when (a) α = 0 and M is even, or (b) α = 1
2B and M is odd

(corresponding to n = M/2 and n = (M − 1)/2, respectively.) In either case, the real
pole generated by �(u) is at B/2 and that generated by �(u + B) is at −B/2. Clearly,
application of (7.41) exposes these sampling theorems as ill-posed. Plots of the spectra of
the interpolation functions are shown in Figure 7.10 for M = 1 for various values of α.
Figure 7.11 illustrates the same process for M = 2.

7.2.3.2 Notes

1. Sample Contributions in the Ill-Posed Sampling Theorems. Insight into the ill-
posedness of the sampling theorems can be gained by inspection of the interpolation
functions. Consider, for example, N = 1 derivative sampling with M = 1. It follows that

k1(t) = 1

4πB

∫ B

−B

e j2πut

ju
du

= 1

2πB
Si(2πBt)
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FIGURE 7.10. Illustration of the manner in which the interpolation functions in (6.56) and (6.57)
approach poles for M = 1 as α → 1/2B. On top is a plot of | K1(u) | for different values of α.
| K2(u) | is shown on the bottom. The bandwidth, B, is normalized to one.
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FIGURE 7.11. Same as Figure 7.10, except M = 2.
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where Si(·) is the sine integral.3 Since Si(±∞)=±π/2, interpolation at any point is affected
significantly by every sample value, no matter how distant.

A similar contribution occurs for the ill-posed cases of interlaced signal-derivative
sampling. We can invert (6.56) and (6.57). For M = 2 and α = 0, the results are

k1(t) = 1

2

(
sin(πBt)Si(πBt)+ cos(πBt) sinc(Bt)+ sinc2(Bt)

)

and

k2(t) = 1

2

sin(πBt)Si(πBt)

(πB)2
.

Again, the occurrence of the sine integrals makes possible equally significant contributions
from all sample values, no matter how far removed from the point of interpolation. The
weighted noise levels from each sample value thus add to a random variable with unbounded
variance.
2. Effects of Oversampling. If we sample at a rate 2W > 2B and do not take advantage of
the oversampling, the average interpolation noise level in (7.41) becomes

C0 = ξ2

TN

N∑
p=1

∫ W

−W
| Kp(u) |2 du

where, now, TN = N/2W . If, however, the filtered interpolation formula in (6.65) is used,
then one can easily show that the average noise variance reduces to

C(r)
0 =

ξ2

TN

N∑
p=1

∫ B

−B
| Kp(u) |2 du. (7.44)

Clearly

C(r)
0 ≤ C0.

Thus, as we have seen before, oversampling can reduce interpolation noise variance by
allowing suppression of high frequency noise components.

As an example, consider the ill-posed interlaced signal derivative sampling theorem.
If we sample at a rate greater than twice the Nyquist rate, the integral in (7.44) will not
include the poles at u = ±W/2 and the resulting sampling theorem becomes well-posed. At
exactly twice the Nyquist rate, the integration limits in (7.44) are at the pole locations. Thus
C(r)

0 =∞. We can, however, discard the derivative samples and use the conventional (well-
posed) sampling theorem to restore the signal. Thus we are confronted with the curious task
of discarding the derivative samples to improve the interpolation noise level.

7.2.4 On Derivative Interpolation

Hamming [572] notes that “the estimation of derivatives from computed or tabulated values
is dangerous.” This is largely due to data uncertainty. We will show especially that, even

3. Defined in (2.77).
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when the noise is bandlimited, NINV’s for high order differentiation interpolation can be
significantly high [900].

Recall from Section 6.4 on derivative interpolation that derivatives of bandlimited signals
can be computed via

x(p)(t) = (2W )p
∞∑

n=−∞
x
( n

2W

)
dp(2Wt − n) (7.45)

where the derivative kernel is

dp(t) =
(

d

dt

)p

sinc(t).

Since x(p)(t) is bandlimited, it is unaltered by low-pass filtering. Passing (7.45) through a
filter unity on | u |< B and zero elsewhere gives

x(p)(t) = r(2B)p
∞∑

n=−∞
x
( n

2W

)
dp(2Bt − rn). (7.46)

If the noise samples, ξ ( n
2B ), are added to the signal samples in (7.46), the result is x(p)(t)+

η(p)(t) where

η(p)(t) = r(2B)p
∞∑

n=−∞
ξ
( n

2W

)
dp(2Bt − rn).

Thus

Rηp (t − τ ) = E
[
η(p)(t)η(p)(τ )

]

= r2(2B)2p
∞∑

m=−∞
Rξ

( m

2W

) ∞∑
n=−∞

dp (2Bτ − (n− m)r) dp (2Bt − rn).

Since x(t) = dp (2B(τ − t)+ mr) is bandlimited, we can use (7.46) to evaluate the n sum
above. Furthermore, since

dp(t) = (−1)pdp(−t)

and (
d

dt

)p

dp(t) = d2p(t)

it follows that

Rηp (τ ) = (−1)pr(2B)2p
∞∑

m=−∞
Rξ

( m

2W

)
d2p(2Bτ − rm). (7.47)

Since ηp(t) is zero mean, the interpolation noise is wide sense stationary. The corresponding
interpolation noise variance is

η2
p = Rηp (0)

= (−1)pr(2B)2p
∞∑

m=−∞
Rξ

( m

2W

)
d2p(rm). (7.48)
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A spectral density description of the process can be obtained by first transforming (7.47).

Rηp (t)←→Sηp (u)

= (2πu)2p

2W

∞∑
m=−∞

Rξ
( m

2W

)
e−jπmu/W �

( u

2B

)
.

Application of the Poisson sum formula to the m sum gives

Sηp (u) = (2πu)2p
∞∑

n=−∞
Sξ (u− 2nW )�

( u

2B

)

where Rξ (t)←→Sξ (u) and Sξ (u) is the input noise power spectral density.
An alternate expression for the output noise level follows as

η2
p =

∫ ∞
−∞

Sηp (u)du

= (2π )2p
∞∑

n=−∞

∫ B

−B
u2pSξ (u− 2nW ) du. (7.49)

For the unfiltered case (r = 1), the integration interval in (7.49) is over | u |≤ W .
Since Sξ (u) ≥ 0, filtering always results in a noise level equal to or better than the
unfiltered case.

7.2.5 A Lower Bound on the NINV

Consider ξ (t) input into the cascaded low-pass filter and pth-order differentiator in
Figure 7.12. Let θp(t) denote the output. Recall that, in general, the output spectral density
Sθ (u) due to a spectral density input Si(u) into a system with transfer function H(u) is:

Sθ (u) =| H(u) |2 Si(u).

Thus

Sθ (u) = (2πu)2pSξ (u)�
( u

2B

)

and

θ2
p = (2π )2p

∫ B

−B
u2pSξ (u) du. (7.50)

x(t)+x(t) x (p)(t)+qp(t)
1

d

dt

p

LPF
B u−B

FIGURE 7.12. Cascaded low-pass filter and pth order differentiator. The output noise level, θ2
p , is a

lower bound for pth order derivative interpolation from the input samples.
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Compare this to (7.49). Since Sξ (u) ≥ 0, it follows that θ2
p is a lower bound for the output

noise level

η2
p ≥ θ2

p .

Equality is achieved when ξ (t) has band-limited spectral density (say over the interval
| u |≤ � ) and the sampling rate is sufficiently high to avoid aliasing (i.e., 2W −� > B).
A lower sampling rate would result in aliasing and a higher output noise level.

For finite ξ2, Sξ (u) → 0 as | u |→ ∞. We see from (7.49) that η2
p → θ2

p as 2W →∞.
Hence, the bound can be approached arbitrarily closely by an appropriate increase in
sampling rate. Note that we can guarantee from (7.49) that η2

p strictly decreases with r if
Sξ (u) strictly decreases with u > 0. This spectral density property is applicable to a Laplace
autocorrelation. It is, however, not applicable to triangular autocorrelation.

7.2.5.1 Examples

(a) Triangular Autocorrelation. Consider the triangle autocorrelation parameterized by
a > 0.

Rξ (τ ) = ξ2�
(τ

a

)
. (7.51)

Substituting into (7.48) gives the normalized error.

η2
p

ξ2
= (−1)pr(2B)2p

[
d2p(0)+ 2

N∑
m=1

(
1− m

T

)
d2p(rm)

]
(7.52)

where

T = 2Wa

and N = �T. Plots of (7.52) are shown in Figure 7.13 for 2B = 1 and a = 0.5 and 0.1.

FIGURE 7.13. NINV for the triangle autocorrelation with 2B = 1. The solid curve is for a = 0.1 and
the dashed curve for a = 0.5. The curves are identical for r > 1/2 where the noise samples are white.
For a = 0.1, the noise samples are white for r > 0.1.
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Of specific interest is the case where sampling is performed such that T < 1. The noise
samples are then white. That is,

Rξ
( n

2W

)
= ξ2 δ[n]. (7.53)

Since

d2p(0) =
∫ 1

2

−1
2

( j2πu)2pdu

= (−1)pπ2p

2p+ 1
, (7.54)

we have for white samples

η2
p/ξ

2 = r(2πB)2p

2p+ 1
. (7.55)

For the conventional sampling theorem, p = 0 and the noise level is improved by a factor
of r. This result is also in (7.11).

Since 2B = 1 in Figure 7.13, the plots there are equivalent to (7.55) for r > a. Note that
(7.55) is independent of the a parameter-thus the merging of the a = 0.1 and 0.5 plots at
r = 0.5. For the domain shown, all of the a = 0.1 samples are white.

Note also that (a) the NINV increases dramatically with the order of differentiation
and (b) there can exist a point whereupon a further increase of sampling rate results in an
insignificant improvement in the interpolation noise level.

Since �(t)←→ sinc2u, from (7.50), the normalized lower bound for the triangle
autocorrelation is

θ2
p /ξ

2 = 2a(2π )2p
∫ B

0
u2p sinc2(au) du. (7.56)

To place this in more palatable form, we rewrite it as

θ2
p /ξ

2 = (2π )2p

π2a

∫ B

0
u2p−2[1− cos(2πau)] du. (7.57)

For even index

d2q(t) =
∫ 1

2

− 1
2

( j2πν)2qe−j2πνtdν

= 2(2π )2q(−1)q
∫ 1

2

0
ν2q cos(2πνt)dν.

For u = 2Wν, it follows from (7.57) that for p > 1

θ2
p /ξ

2 = 2(2B)2p(−1)p

a
[d2p−2(0)− d2p−2(2aB)].
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The p = 0 case follows immediately from (7.56) using integration by parts. Thus,
using (7.54),

θ2
p /ξ

2 =

⎧⎪⎪⎨
⎪⎪⎩

4pB2p−1

a
[ π

2p−2

2p− 1
+ (−1)pd2p−2(2aB)] ; p > 0

2

π
[Si(2πaB)− sin(πaB) sinc(aB)] ; p = 0.

Lower bounds for each of the plots in Figure 7.13 are graphically indistinguishable from
the r = 0.1 values.

(b) Laplace Autocorrelation. A second tractable solution results from the Laplace
autocorrelation parameterized by λ.

Rξ (τ ) = ξ2 e−λ|τ |. (7.58)

is considered here. Rewriting (7.48) as

η2
p =

(2π )2p

2W

∫ B

−B
u2p

∞∑
n=−∞

Rξ
( n

2W

)
e−jπnu/W du,

we can show in a manner similar similar to that in Section 7.2.1 that the NINV can be
written as

η2
p/ξ

2 = (2πW )2psinh

(
λ

2W

) ∫ r

0

u2p du

cosh( λ
2W )− cos(πu)

. (7.59)

The well-behaved (strictly increasing) integrand in (7.59) provides for straightforward
digital integration. Sample plots of (7.59) are shown in Figure 7.14 for 2B = 1. As with the
previous example, the NINV increases significantly with p.

Two special cases of (7.59) are worthy of note.

a) The p = 0 case as plotted in Figure 7.13 simply corresponds to conventional
sampling theorem interpolation followed by filtering. For this case, (7.59) becomes
the integral in (7.13) whose solution is (7.14).

FIGURE 7.14. NINV for Laplace autocorrelation with λ = 2B = 1.
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b) If

λ

2W
� 1 (7.60)

then (7.59) approaches

η2
p/ξ

2 = (2πW )2p
∫ r

0
u2pdu

= r(2πB)2p

2p+ 1
(7.61)

which is the same result as the discrete white noise case in (7.54). Indeed, when
(7.60) is applicable, the noise samples are very nearly white and the plots for white
samples in Figure 7.13 can be used as excellent approximations.

Here, as in the previous example, one must be cautioned on comparing equally
parameterized interpolation noise levels for differing p. If we are dealing with
temporal functions, the units of η2

p/ξ
2 are (seconds)−2p.

For a lower bound for the Laplace autocorrelation, we transform (7.58) and substitute
into (7.50). The result is

θ2
p /ξ

2 = 4(2π )2p

λ

∫ B

0

ν2pdν

1+ ( 2πν
λ

)2
. (7.62)

Setting u = 2πν/λ gives

θ2
p /ξ

2 = 2

π
λ2p

∫ ε

0

u2pdu

1+ u2
(7.63)

where ε = 2πB/λ. The p = 0 case follows immediately. For p > 0, consider first the case
where ε < 1. With z = −u2, the denominator in (7.63) can be expanded via the geometric
series in (14.6).

∞∑
m=0

zm = (1− z)−1; | z |< 1. (7.64)

The resulting integral is evaluated to give

θ2
p /ξ

2 = 2

π
λ2p

∞∑
m=0

(−1)m ε2m+2p+1

2m + 2p+ 1
.

Set n = m + p and recall the Taylor series

arctan z =
∞∑

n=0

(−1)nz2n+1

2n+ 1
. (7.65)

Thus, for ε < 1,

θ2
p /ξ

2 = 2

π
(−1)pλ2p

⎛
⎝arctan ε −

p−1∑
n=0

(−1)n ε
2n+1

2n+ 1

⎞
⎠.
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For ε > 1 we rewrite (7.63) as

θ2
p /ξ

2 = 2

π
λ2p

[ ∫ 1−

0
+
∫ ε

1+

]
u2pdu

1+ u2

= 2

π
λ2p

⎡
⎣(−1)p

⎛
⎝π

4
−

p−1∑
n=0

(−1)n

2n+ 1

⎞
⎠+

∫ ε

1+
u2pdu

1+ u2

⎤
⎦.

From (7.64), it follows that

−
∞∑

n=0

z−n = z

1− z
; | z |> 1.

Again, with z = −u2, we obtain

θ2
p /ξ

2 = 2

π
λ2p

⎡
⎣(−1)p

⎛
⎝π

4
−

p−1∑
n=0

(−1)n

2n+ 1

⎞
⎠+

∞∑
m=0

(−1)m ε
2p−2m−1 − 1

2p− 2m − 1

⎤
⎦.

Set n = m− p in the m sum and use (7.65). Recognizing π/2− arctan(1/ε) = arctan ε for
ε > 0 again yields (7.66). Placing these results in recursive form gives

θ2
p

ξ2
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2
π

arctan ε ; p = 0

2λ2

π
[ε − arctan ε] ; p = 1

2λ(2πB)2p−1

π (2p− 1)
− λ2

θ2
p−1

ξ2
; p > 1

(7.66)

where

ε = 2πB

λ
.

Graphically, these bounds are also indistinguishable from the corresponding smallest values
on the plots in Figure 7.14.

7.3 Jitter

Jitter occurs when samples are taken near to but not exactly at the desired sample locations.
We here consider only the case of direct uniform sampling [1079]. Instead of the sample
set x(n/2W ), we have the sample set

{
x
( n

2W
− σn

)∣∣∣−∞ < n <∞
}

where σn is the jitter offset of the nth sample. We assume that the jitter offsets are
unknown. If they are known, then sampling theorems for irregularly spaced samples can
be used [951].

In this section, we will show that cardinal series interpolation of jittered samples yields
a biased estimate of the original signal. Although the bias can be corrected with an inverse
filter, the resulting interpolation noise variance is increased.



[16:24 9/9/2008 5165-Marks-Ch07.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 314 288–325

314 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

7.4 Filtered Cardinal Series Interpolation

We know that

x(t) = r
∞∑

n=−∞
x
( n

2W

)
sinc(2Bt − rn)

and thus may be motivated to estimate x(t) directly from the jittered data as

y(t) = r
∞∑

n=−∞
x
( n

2W
− σn

)
sinc(2Bt − rn). (7.67)

The interpolation error is obtained by subtracting these two expressions.

η(t) = y(t)− x(t)

= r
∞∑

n=−∞
ξn sinc(2Bt − rn) (7.68)

where

ξn = x
( n

2W
− σn

)
− x

( n

2W

)
. (7.69)

If the jitter deviations {σn} are identically distributed random variables, then the interpolation
in (7.67), does not give an unbiased estimate of x(t). That is

y(t) = x̃(t) 	= x(t) (7.70)

where, for any function v(t), we define

ṽ(t) = v(t) ∗ fσ (t) (7.71)

and fσ (t) is the probability density function describing each σn. To show this, we first note
that if x(t) is bandlimited with bandwidth B, then so is x̃(t). Hence

x̃(t) = r
∞∑

n=−∞

˜
x
( n

2W

)
sinc(2Bt − rn).

The expectation of a single jittered sample is

x
( n

2W
− σn

)
=
∫ ∞
−∞

fσ (τ ) x
( n

2W
− τ

)
dτ

= ˜
x
( n

2W

)
. (7.72)

Substituting this into the expected version of (7.67) substantiates our claim in (7.70).

7.4.1 Unbiased Interpolation from Jittered Samples

Equation (7.70) reveals that cardinal series interpolation from jittered samples results in a
biased estimate of the original signal. Motivated by our analysis in the previous section and
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Section 6.2.4 on reconstruction from a filtered signal’s samples, we propose the interpolation
formula

z(t) =
∞∑

n=−∞
x
( n

2W
− σn

)
k
(

t − n

2W

)
(7.73)

where

k(t) ←→ 1

2W

�
( u

2B

)
�σ (u)

(7.74)

and the jitter offset’s characteristic function.�σ (u), is the Fourier transform of its probability
density function.

fσ (t) ←→ �σ (u).

We claim that z(t) is an unbiased estimate of x(t).

z(t) = x(t). (7.75)

Furthermore, the interpolation noise variance is given by

var z(t) = E
[
{z(t)− z(t)}2

]

=
∞∑

n=−∞

[
˜

x2
( n

2W

)
− ˜

x
( n

2W

)2]
k2
(

t − n

2W

)
(7.76)

when the jitter offsets are independent. As jitter becomes less and less pronounced,

fσ (t)→ δ(t).

From (7.72), we thus expect to see the interpolation noise variance in (7.76) correspondingly
approach zero.

Proof . Expectating (7.73) and substituting (7.72) gives

z(t) =
∞∑

n=−∞

˜
x
( n

2W

)
k
(

t − n

2W

)
.

Fourier transforming and using (7.74) gives

z(t)←→ 1

2W

∞∑
n=−∞

˜
x
( n

2W

)
e−jπnu/W �( u

2B )

�σ (u)

=X(u)�σ (u)
�( u

2B )

�σ (u)

=X(u) (7.77)

where we have recognized from (7.71) that

x̃(t) ←→ X(u)�σ (u).

Inverse transforming (7.77) completes our proof of (7.75).
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To show (7.76), we first compute the autocorrelation

Rz(t; τ ) =
∞∑

n=−∞

∞∑
m=−∞

x
( n

2W
− σn

)
x
( m

2W
− σm

)
k
(

t − n

2W

)
k
(
τ − m

2W

)
. (7.78)

Since the σn’s are independent

x
( n

2W
− σn

)
x
( m

2W
− σm

)
=
⎧⎨
⎩

˜x2
( n

2W

) ; n = m

˜x
( n

2W

)
˜x
( m

2W

) ; n 	= m.

Substituting into (7.78) gives

Rz(t; τ ) =
∞∑

n=−∞

˜
x2
( n

2W

)
k
(

t − n

2W

)
k
(
τ − n

2W

)

+
∞∑

n=−∞

∞∑
m=−∞

˜
x
( n

2W

)
˜

x
( m

2W

)
k
(

t − n

2W

)
k
(
τ − m

2W

)

−
∞∑

n=−∞

˜
x
( n

2W

)2

k
(

t − n

2W

)
k
(
τ − n

2W

)

=
∞∑

n=−∞

[
˜

x2
( n

2W

)
− ˜

x
( n

2W

)2]
k
(

t − n

2W

)
k
(
τ − n

2W

)
+ x(t)x(τ ).

Using the relationship

var z(t) = Rz(t; t)− x2(t)

gives our desired result.

7.4.2 Effects of Jitter In Stochastic Bandlimited
Signal Interpolation

Our analysis in this section will show that the use of an inverse filter to obtain an unbiased
interpolated estimate from jittered samples will increase the variance of the estimate. Instead
of a deterministic signal, x(t), we consider the analysis of the previous section as applied
to a wide sense stationary stochastic signal, χ (t), with mean χ and autocorrelation Rχ (τ ).

We assume that jitter locations (which we will express in vector form as �σ ) are
independent of χ (t). Thus, the joint probability density function for �σ and χ (t) can be
expressed as the product of the probability density of �σ with that of χ (t). Thus, the
expectation of any function w[�σ ;χ (t)] can be written

Ew[�σ ;χ (t)] = Eχ E�σw[�σ ;χ (t)] (7.79)

where Eχ and E�σ denote expectation with respect to χ (t) and �σ respectively. Thus, if (7.73)
is used to interpolate jittered samples from the stochastic process χ (t), we conclude from
(7.75) that

E�σ z(t) = χ (t).
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In accordance with (7.79) we expectate both sides with respect to χ (t) and conclude that

Ez(t) = χ (t). (7.80)

If υ(t) is any stochastic signal with constant expectation υ, we conclude from
(7.71) that

Eυ̃(t) =
∫ ∞
−∞

υ(τ )fσ (t − τ )dτ = υ.

Reinterpret (7.76) as

E�σ
[

z(t)− z(t)
]2 =

∞∑
n=−∞

[
˜

χ2
( n

2W

)
− ˜
χ
( n

2W

)2]
k2
(

t − n

2W

)
.

Expectation of both sides with respect to χ therefore gives

var z(t) = var (χ (t))
∞∑

n=−∞
k2
(

t − n

2W

)

where

var χ (t) = χ2 − χ2

is a constant. Applying the Poisson sum formula gives

var z(t) = 2Wvar [χ (t)]
∞∑

n=−∞
℘(2nW ) e−j4πnWt

where

℘(u) = K(u) � K(u)

and � denotes deterministic autocorrelation.4 Since K(u) = 0 for | u |> B, we conclude that
℘(u) = 0 for | u |> 2B. Thus

℘(2nW ) = ℘(0)δ[n].
Since

℘(0) = 1

(2W )2

∫ B

−B
| �σ (u) |−2 du

we conclude that

var z(t)

var χ (t)
= 1

2W

∫ B

−B
| �σ (u) |−2 du. (7.81)

This and equation (7.80) are our desired results.

4. See Table 2.3.
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7.4.2.1 NINV of Unbiased Restoration

Using the filtered cardinal series in (7.67) on the stochastic signal χ (t) results in a now
unbiased estimate

y(t) = χ
where, now

var y(t)

var χ (t)
= r. (7.82)

Since density functions are non-negative, the characteristic function obeys the inequality

| �σ (u) |≤ �σ (0) = 1. (7.83)

Thus, (7.81) always equals or exceeds r. The price of an unbiased estimate is a higher NINV.
This price can be measured in the ratio of (7.81) to (7.82):

ρ = var z(t)

var y(t)
= 2

∫ 1/2

0
| �σ (2Bv) |−2 dv ≥ 1.

7.4.2.2 Examples

In the following specific examples of unbiased restoration from jittered samples, s is the
standard deviation of the jitter density. We will also find useful the parameter

κ = 2πBs.

In all cases, we will see ρ increase with increasing κ .

1 Gaussian Jitter. If

fσ (t) = 1√
2πs

exp

(−t2

2s2

)

then

�σ (u) = exp
(
−2(πsu)2

)
.

Thus

ρ = 2
∫ 1/2

0
e(2κv)2

dv.

A plot is shown in Figure 7.15 versus κ .
2 Laplace Jitter. Let

fσ (t) = 1√
2s

exp

(
−√2 | t |

s

)
.

Then

�σ (u) = 2/s2

(2/s2)+ (2πu)2
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FIGURE 7.15. A plot of ρ for Gaussian (ρ1), Laplace (ρ2) and uniform (ρ3) jitter as a function of
κ = 2πBs.

and we obtain the closed form solution

ρ = 1+ 1

3
κ2 + 1

2σ
κ4.

A plot is shown in Figure 7.15.
3 Uniform Jitter. Uniform jitter is characterized by the density

fσ (t) = 1

ϕ
�(t/ϕ)←→ sinc(ϕu)

where ϕ = √12s. The density function is thus zero for

| t |> ϕ

2
=
√

12 s

2
.

Therefore

ρ = 2
∫ 1/2

0

dv

sinc2(
√

12 κv
π

)
.

A plot is shown in Figure 7.15. Note that there is a singularity in the integrand when
any zero of the sinc lies within the interval of integration. This occurs when

ϕ ≥ 1

B

or, in other words, when the temporal locations of two adjacent samples have a finite
probability of interchanging their position in time. The value of ρ in such cases
is unbounded. This case reveals that obtaining an unbiased estimate by inverse
filtering can be an unstable undertaking.
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7.5 Truncation Error

The cardinal series requires an infinite number of terms to exactly interpolate a bandlimited
signal from its samples. In practice, only a finite number of terms can be used. We will
examine the resulting truncation error for both deterministic and stochastic bandlimited
signals.

7.5.1 An Error Bound

We can write the truncated cardinal series approximation of x(t) as

xN (t) =
N∑

n=−N

x
( n

2B

)
sinc(2Bt − n).

The error resulting from using a finite number of terms is referred to as truncation error:

eN (t) =| x(t)− xN (t) |2 . (7.84)

We will show that [1079]

eN (t) ≤ 2B(E − EN )[ sinc(2Bt + N)− sinc(2Bt − N)](−1)n sin(2πBt)

π

= (E − EN )
4NB/π2

N2 − (2Bt)2
sin2(2πBt) ; | t |< N

2B
(7.85)

where E is the energy of x(t) and EN is the energy of xN (t). Using Parseval’s theorem
in (5.34) applied to xN (t) gives,

EN = 1

2B

N∑
n=−N

∣∣∣x
( n

2B

)∣∣∣2.

From (7.85), as we would expect,

a) since E∞ = E, the error bound tends to zero as N →∞.
b) for | n |≤ N , the error eN ( n

2B ) is zero.

A plot of

eN (τ/2B)

2B(E − EN )
= 2N sin2(π t)

π2
(
N2 − t2

)

is shown in Figure 7.16 for N = 10. Also shown is the curve’s envelope

2 N/π2

N2 − τ 2
.

The envelope for N = 50 is shown in Figure 7.17. Note that, at τ = N − 1, the envelope
has a value, for large N , of about 1/π2 ≈ 0.10.
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FIGURE 7.16. Truncation error bound and it’s envelope for N = 10.
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N = 50

10−1

10−2
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FIGURE 7.17. Truncation error envelope for N = 50.

Proof . Using the cardinal series expansion in (3.4), we have

eN (t) = 1

π2
sin2(2πBt)

∣∣∣∣∣∣
∑
|n|>N

(−1)nx( n
2B )

2Bt − n

∣∣∣∣∣∣

2

applying Schwarz’s inequality5 gives

eN (t) ≤ sin2(2πBt)

2Bπ2
(E − EN )

∑
|n|>N

(
t − n

2B

)−2
(7.86)

5. See Appendix 14.1.
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FIGURE 7.18. The left side of the inequality in (7.88) is the area under the rectangles. The right side
of the inequality is the area under the 2B(t − τ )−2 curve over the interval (N/2B,∞).

where we have recognized that

1

2B

∑
|n|>N

∣∣∣x
( n

2B

)∣∣∣2 = E − EN .

We can write (7.86) as

eN (t) ≤ sin2(2πBt)

2Bπ2
(E − EN )

[−N−1∑
n=−∞

+
∞∑

n=N+1

] (
t − n

2B

)−2
. (7.87)

Motivated by Figure 7.18, we can write, for t < N/2B,

∞∑
n=N+1

(
t − n

2B

)−2 ≤ 2B
∫ ∞

N/2B
(t − τ )−2 dτ

= 2B

(
N

2B
− t

)−1

. (7.88)

Similarly, for t > N/2B,

∞∑
n=N+1

(
t + n

2B

)−2 ≤ 2B

(
N

2B
+ t

)−1

.

Substitution of these two inequalities into (7.87) followed by simplification yields our
desired result in (7.85).

7.6 Exercises

7.1. According to (7.11), the filtered interpolation noise level can be made arbitrarily
small by simply increasing the sampling rate. Why is this result intuitively not
satisfying as r→∞? Explain why we cannot make the noise level arbitrarily small
in practice.

7.2. The interpolation function for trigonometric polynomials has infinite energy. Thus,
application of either (7.23) or (7.24) results in an infinite NINV classifying the
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interpolation as ill-posed. Explain why this reasoning is faulty. Derive the filtered
and unfiltered NINV using (6.77) assuming additive discrete white noise on the P
data points.

7.3. The stochastic process in (7.38) is wide sense cyclostationary [1076, 1329]. Define
the stochastic process

�(t) = η(t −�)

where � is a uniform random variable on the interval (0,TN ) and η(t) is given
by (7.38).
(a) Show that �(t) is wide sense stationary.
(b) Evaluate �2 in terms of the Fourier coefficients in (7.40).

7.4. In both Figures 7.13 and 7.14, colored noise always produces a worse NINV than
white noise. Is this always true? If not, specify a noise for which the statement is
not true.

7.5. Using the result of Exercise 2.23, show that the interpolation noise variance due to
jitter in (7.68) can be bounded as

η2(t) ≤ (2πB)3Eσmax/(3π )

where the jitter deviation is bounded by

σmax ≥| σn |
and we have assumed sampling at the Nyquist rate.

7.6. Using (7.76), let

Ez =
∫ ∞
−∞

var z(t) dt.

Similarly, let

Ey =
∫ ∞
−∞

var y(t) dt.

Show that Ez ≥ Ey.
7.7. Show that the interpolation noise in (7.68) is not zero mean.
7.8. Compute the NINV in (7.9) when the additive noise has a Cauchy autocorrelation

with parameter γ .

Rξ (τ ) = ξ2

(τ/γ )2 + 1
.

7.9. Consider restoring a single lost sample at the origin when r ≤ 1/2. We could use
(6.11) or delete every other sample and use the filtered cardinal series in (6.2).
Contrast the corresponding NINV’s.

7.10. A bandlimited signal, x(t), with nonzero finite energy, can be characterized by a
finite number of samples if there exists a T such that x(t) ≡ 0 for | t |> T . Show,
however, that no such class of signals exists.

7.11. Show that ∫ ∞
−∞

eN (t) dt = E − EN

where eN (t) is the truncation error in (7.84).
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7.7 Solutions for Selected Chapter 7 Exercises

7.1. The explanation is unreasonable because the noise level on a bandlimited signal
could, in the limit, be reduced to zero. The resolution is that any physical continuous
noise has a finite correlation length. Thus, as the samples are taken closer and closer,
the noise eventually must become correlated and the white noise assumption is
violated. For continuous white noise, all noise samples are uncorrelated. But the
noise level is infinite.

7.3. �2 = c0.
7.4. Consider a power spectral density that is nonzero only over the interval B< |u| < W .

Interpolating and filtering would yield a zero NINV.
7.6. Clearly

Ez =
∞∑

n=−∞

[
˜x2(n/2W )− ˜x(n/2W )

2
] ∫ ∞
−∞

k2(t) dt.

From (7.74) and Parseval’s theorem,
∫ ∞
−∞

k2(t) dt = 1

(2W )2

∫ B

−B
|�θ (u) |−2du.

The case of y(t) can be obtained by k(t) = r sinc(2Bt). Since

r2
∫ ∞
−∞

sinc2(2Bt) dt = 1

(2W )2

∫ B

−B
du

= r

2W
≤
∫ ∞
−∞

k2(t) dt,

We conclude that Ez ≥ Ey.

7.7. Clearly

η(t) = x̃(t)− x(t) 	= 0.

7.8. The power spectral density of the noise follows from the transform of (7.6);

Sη(u) = 2W γ 2 ξ2

[
1

(2Wγ )2
+ 2

∞∑
n=1

cos(πnu/W )

n2 + (2Wγ )2

]
�
( u

2W

)
.

Since [544]

∞∑
k=1

cos(kx)

k2 + a2
= π

2a

cosh (a(π − x))

sinh(aπ )
− 1

2a2
; 0 < x ≤ 2π,

we conclude that

Sη(u) = γπξ2 cosh (2πγ (W − u))

sinh(2πγW )
�
( u

2W

)
.

Substituting into (7.9) and evaluating gives

η2
r /ξ

2 = sinh(2πγB) coth(2πγW )

= sinh(2πrγW ) coth(2πγW ).
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FIGURE 7.19. NINV for additive Couchy noise. See Exercise 7.8.

A semilog plot of the NINV is shown in Figure 7.19 as a function of γW for
various values of r.

7.9. By deleting every other sample, the sampling rate parameter becomes 2r. The NINV
for a single sample is r/(1− r). Since

2r < r/(1− r) ; r < 1/2,

we conclude that (6.11) yields a smaller NINV.
7.10. Since x(t) is bandlimited, it is analytic. Thus, its Taylor series expanded about

any given point converges everywhere. We choose an interval for which x(t)
is identically zero. The resulting Taylor series, however, converges to x(t) ≡ 0
everywhere.
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Multidimensional Signal Analysis

Most people never think about dimensions, except in geometry and architecture
classes, for the simple reason that our dimensional realm never changes. Since birth we

have lined in the four dimensions of length, width, height, and time … The laws of
physics God designed for physical life require that all the matter and energy of the

universe be situated on (and confined to) the manifold, or ‘envelope’ of these
four dimensions.

Hugh Ross [1193].

We must admit with humility that, while number is purely a product of our minds,
space has a reality outside our minds, so that we cannot completely prescribe its

properties a priori.
Karl Friedrich Gauss (1777–1855), Letter to Bessel, 1830.

But my Lord has shewn me the intestines of all my countrymen in the Land of Two
Dimensions by taking me with him into the Land of Three. What therefore more easy

than now to take his servant on a second journey into the blessed region of the Fourth
Dimension, where I shall look down with him once more upon this land of Three

Dimensions, and see the inside of every three dimensioned house, the secrets of the
solid earth, the treasures of the mines in Spaceland, and the intestines of every solid

living creature, even of the noble and adorable Spheres.
Edwin A. Abbott in Flatland (1884) [3].

8.1 Introduction

N dimensional signals are characterized as values in an N dimensional space. Each point
in the space is assigned a value, possibly complex. Each dimension in the space can be
discrete, continuous, or on a time scale.1 A black and white movie can be modelled as a
three dimensional signal.Acolor picture can be modelled as three signals in two dimensions,
one each, for example, for red, green and blue.

This chapter explores Fourier characterization of different types of multidimensional
signals and corresponding applications. Some signal characterizations are straightforward
extensions of their one dimensional counterparts. Others, even in two dimensions, have
properties not found in one dimensional signals. We are fortunate to be able to visualize
structures in two, three, and sometimes four dimensions. It assists in the intuitive
generalization of properties to higher dimensions.

1. See Chapter 12 on time scales.

326
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Fourier characterization of multidimensional signals allows straightforward modelling
of reconstruction of images from their tomographic projections. Doing so is the foundation
of certain medical and industrial imaging, including CAT (for computed axial tomography)
scans.

Multidimensional Fourier series are based on models found in nature in periodically
replicated crystal Bravais lattices [987, 1188]. As is one dimension, the Fourier series
components can be found from sampling the Fourier transform of a single period of the
periodic signal.

The multidimensional cosine transform, a relative of the Fourier transform, is used in
image compression such as JPG images.

Multidimensional signals can be filtered. The McClellan transform is a powerful method
for the design of multidimensional filters, including generalization of the large catalog of
zero phase one dimensional FIR filters into higher dimensions.

As in one dimension, the multidimensional sampling theorem is the Fourier dual of the
Fourier series. Unlike one dimension, sampling can be performed at the Nyquist density
with a resulting dependency among sample values. This property can be used to reduce the
sampling density of certain images below that of Nyquist, or to restore lost samples from
those remaining.

Multidimensional signal and image analysis is also the topic of Chapter 9 on time
frequency representations, and Chapter 11 where POCS is applied signals in higher
dimensions.

8.2 Notation

A continuous multidimensional function is denoted x
(�t ) where the coordinates of the N

dimensional space be expressed by the vector

�t := [t1 t2 t3 . . . tn . . . tN ]T . (8.1)

and−∞ < tn <∞ for 1 ≤ n ≤ N . The superscript T denotes transposition. The �m vector
norm of �t is

||�t||m :=
[

N∑
n=1

|tn|m
]1/m

. (8.2)

The �2 norm of this vector, �t, is thus determined by the expression2

||�t||22 = �tT�t =
N∑

n=1

t2
n .

Geometrically, the �2 vector norm is the Euclidean length of the vector. The �1 norm, also
dubbed the city block metric, is

||�t||1 =
N∑

n=1

|tn|.

2. In the absence of a subscript for || · ||, we assume the �2 norm. That is

|| · || := || · ||2.
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The �∞ norm is determined solely by the dominate term in the vector.

||�t||∞ = N
max
n=1
|tn|.

For discrete signals, a multidimensional signal is denoted using square brackets as in x [ �m]
where

�m = [m1 m2 m3 . . . mn . . .mN ]T .
and mn = . . . ,−2,−1, 0, 1, 2, . . . for 1 ≤ n ≤ N .

Multidimensional signals can be mixed, with a continuous domain in one dimension
and a discrete or time scale domain in another. An example is a black and white celluloid
movie where a sequence of continuous two dimensional images is presented in discrete
time steps.

8.3 Visualizing Higher Dimensions

Conceptual extrapolation to higher dimensions is often straightforward. A two dimensional
circle becomes a sphere in three dimensions and, in N dimensions, a hypersphere. The
equation describing the locus of points on an N dimensional hypersphere is

||�t||2 = r

where r is the radius of the sphere. If the points internal to the hypersphere are included,
we have an N dimensional hyperball that includes all points satisfying ||�t||2 ≤ r.
Similarly, a two dimensional box becomes a three dimensional cube and, in N dimensions,
a hypercube. The locus of points on the hypercube are described by all the points
satisfying ||�t||∞ ≤ r2.

The mathematical extensions to higher dimensions are often straightforward, but can
mislead the intuition. As an example, consider a unit radius circle embedded in a square.
The Euclidean distance from the middle of the circle to a point on the circle is one. The
distance from the center to a vertex of the square is

√
2. In three dimensions, we have a unit

radius sphere imbedded in a box. The distance from the center to the surface of the sphere
is one. The distance to a vertex of the box is

√
3. Thus, in general, for N dimensions, a

unit radius hypersphere embedded in a hypercube has one unit to the surface of the sphere
and
√

N units to the vertex of the box. Hence, for N =10,000 dimensions, we traverse
one unit to arrive at the hypersphere surface and 99 more units to arise at the vertex of the
hypercube. Geometric visualization of such properties in higher dimensions is beyond our
ability. Hilbert spaces3 can have an infinite number of dimensions.

8.3.1 N Dimensional Tic Tac Toe

Higher dimensions can be pictured in lower dimensions. In Figure 8.1, a three dimensional
tic tac toe cube on the left is shown as three matrices of two dimensions on the right.
The object of the the game is to colinearly align four X’s or O’s in three dimensions. The
5 × 5 matrix of 5 × 5 matrices in Figure 8.2 is a two dimensional representation of a tic

3. See Section 11.3.1.
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FIGURE 8.1. Tic tac toe in three dimensions can be characterized in two dimensions. Four in a row in
any direction wins. Three winning combinations are shown.

FIGURE 8.2. Tic tac toe in four dimensions can be characterized in two dimensions. Five in a row in
any direction wins. Three winning combinations of five in a row are shown.

tac toe game in four dimensions. Each linear sequence of five matrices represents a three
dimensional cube. A line through any three dimensional cube wins. The four dimensional
game can be played in two dimensions on a sheet of paper. As is seen in Figure 8.3, this is
also true of the game in five dimensions. There is a 6× 6 matrix of 6× 6 matrices of 6× 6
matrices. The visualization of winning tic tac toe lines clearly becomes more difficult as
the dimensions increase.

8.3.2 Vectorization

The tic tac toe example aids in understanding vectorization: the reduction of higher
dimensional linear mappings into lower dimensions. Consider the two dimensional
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FIGURE 8.3. Tic tac toe in five dimensions can also be characterized in two dimensions.

superposition sum

y[n1, n2] =
K1∑

k1=1

K2∑
k2=1

h[n1, n2; k1, k2]x[k1, k2]; 1 ≤ nl ≤ N1 and 1 ≤ n2 ≤ N2. (8.3)

Here, y[n1, n2] is the system output of a linear system with point spread function
h[n1, n2; k1, k2] corresponding to an input x[k1, k2]. Inversion of this mapping, i.e., finding
the input from the output, can be achieved through mapping of (8.3) to a one dimensional
mapping. We unwrap the K1 × K2 matrix row by row and let � = (K1−1)k2+ k1. Similarly,
let m = (N1 − 1)n2 + n1. The superposition sum in (8.3) then becomes

y[m] =
L∑
�=1

h[m, �]x[�]; 1 ≤ m ≤ M (8.4)

where M = N1N2 and L = K1K2. The two dimensional mapping in (8.3) is revealed as
a sequence of simultaneous equations that, in the case of inversion, can be solved using
conventional tools for solving simultaneous equations in one dimension.

8.4 Continuous Time Multidimensional Fourier Analysis

The Fourier transform of x(�t) is defined by the integral

X(�u) :=
∫
�t

x
(�t)exp

(−j2π�uT�t) d�t (8.5)

where
∫
�t
:=
∫ ∞

t1=−∞

∫ ∞
t2=−∞

· · ·
∫ ∞

tN=−∞
(8.6)

and

d�t := dt1 dt2 · · · dtN . (8.7)

A short hand notation for a Fourier transform pair in (8.5), as was the case in one
dimension, is

x
(�t)←→ X (�u) .
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The inverse of the N dimensional Fourier transform is

x
(�t) =

∫
�u

X(�u)exp(j2π�uT�t)d�u (8.8)

Table 8.1 contains a list of multidimensional Fourier transforms theorems.
The Fourier transform in N = 2 dimensions can be written

X(u1, u2) =
∫ ∞
−∞

x(t1, t2)e−j2π (u1t1+u2t2)dt1dt2 (8.9)

TABLE 8.1. Properties of the multidimensional Fourier transform

(a) Transform

x
(�t)←→ X (�u) =

∫
�t

x
(�t)exp(−j2π�uT�t)d�t

(b) Linearity
∑

k

akxk
(�t)←→∑

k

akXk(�u)

(c) Inversion

x
(�t) =

∫
�u

X(�u)exp( j2π�uT�t)d�u←→ X(�u)

(d) Shift

x
(�t − �τ)←→ X(�u)exp(−j2π�uT �τ )

(e) Separability

N∏
n=1

xn(tn)←→
N∏

n=1

Xn(un)

(f) Rotation, Scale and Transposition

x
(
A�t)←→ X(A−T �u)

|detA|
(g) Convolution

x
(�t) ∗ h

(�t) =
∫
�τ

x(�τ )h(�t − �τ )dτ ←→ X(�u)H(�u)

(h) Modulation

x
(�t)h(�t)←→ X(�u) ∗ H(�u)
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FIGURE 8.4. Illustration of a shift operation in N = 3 dimensions. The function is shown on the left.
The function, shifted by the vector �τ , is shown on the right.

8.4.1 Linearity

The Fourier transform in (8.5) is linear.4

8.4.2 The Shift Theorem

A function x
(�t) is shifted by the fixed vector �τ to form the shifted function x

(�t − �τ). The
process can be interpreted as repositioning the origin to the point �t = �τ . This is illustrated
in Figure 8.4 in N = 3 dimensions. On the left, a function x

(�t) is one inside the cube and
zero outside. The cube is shifted by the vector �τ on the right. The cube has been shifted so
that it’s previous value at the origin is now positioned at the position �t = �τ .

If the cube, starting as shown at the left in Figure 8.4, moves with component velocities
given by the vector �v = [v1 v2 v3]T , then the position of the cube at time s is the shift
x
(�t − �vs

)
.

The shift theorem in Table 8.1 is a straightforward generalization of the one dimensional
counterpart.

x
(�t − �τ)↔

∫
�ξ

x
(�ξ − �τ) exp

(
−j2π�uT �ξ

)
d�ξ

=
∫
�t

x
(�t) exp

(−j2π�uT (�t + �τ )
)

d�t

= X(�u) exp
(−j2π�uT �τ)

8.4.3 Multidimensional Convolution

The multidimensional convolution integral is

y
(�t) = x

(�t) ∗ h
(�t)

=
∫
�τ

x(�τ )h
(�t − �τ)d �τ . (8.10)

4. See Exercise 8.5.
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In one dimension, the kernel h is referred to as the system impulse response or, in optics,
as the system line spread function. In higher dimensions, h is also termed the system point
spread function or Green’s function. In one dimension, systems that can be characterized
by convolution integrals are said to be time invariant. In higher dimensions, they are shift
invariant or, in the case of optics, isoplanatic.

Proof of the convolution theorem in Table 8.1 follows.

Y (�u) =
∫
�t

y
(�t)e−j2π�uT�td�t

=
∫
�t

[∫
�τ

x
(�τ)h(�t − �τ)d �τ

]
e−j2π�uT�td�t

=
∫
�τ

x(�τ )

[∫
�t

h
(�t − �τ)e−j2π�uT�td�t

]
d �τ

=
∫
�τ

x(�τ )
[
H(�u)e−j2π�uT �τ] d �τ .

=
[∫
�τ

x(�τ )e−j2π�uT �τd �τ
]

H(�u)

= X(�u)H(�u)

Between the third and fourth lines we have applied the shift theorem.

8.4.3.1 The Mechanics of Two Dimensional Convolution

In one dimension, convolution mechanics consists of the operations of “flip and shift”.
Similar mechanics hold in higher dimensions.

In two dimensions, the convolution integral in (8.10) is

y(t1, t2) =
∫ ∞

t1=∞

∫ ∞
t2=∞

x(τ1, τ2)h(t1 − τ1, t2 − τ2) dτ1dτ2 (8.11)

For two dimensions, the mechanics of convolution are illustrated in Figure 8.5. In
Figures 8.5(1) and 8.5(2) are pictured the functions, x(t1, t2) and h(t1, t2), to be convolved.
Since the integral in (8.11) is with respect to τ1 and τ2, we show, in Figure 8.5(3), the
function h(τ1, τ2). For a fixed (t1, t2), we shift in Figure 8.5(4) to form the function

k(τ1, τ2) = h(τ1 − t1, τ2 − t2).

The transposition of k in both variables, as shown in Figure 8.5(5), gives

k(−τ1,−τ2) = h(t1 − τ1, t2 − τ2).

Note that the argument of h here is exactly to the form required in the convolution
integral in (8.11). Therefore, in lieu of the one dimensional “flip and shift”, two
dimensional convolution requires a “transposition and shift” of the impulse response. The
“transposition and shift” manipulates the impulse response in Figure 8.5(3) into that in
Figure 8.5(5). Evaluation of the two dimensional convolution integral in (8.11) is now
straightforward. The function h(t1 − τ1, t2 − τ2) is multiplied by x(τ1, τ2) and the product
integrated. The result is the output y(t1, t2) for the value of (t1, t2) used in the shift. For
our running example, the output is equal to the overlapping area, shown as black, in
Figure 8.5(6).
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1 2

3 4

5 6

t2
t2

t2

t1

t1

t2

t2

t1t1

t1

x(t1, t2)

h(t1,  t2)

h(t1− t1, t2− t2) = k (t1, t2)

k (−t1,−t2) = h (t1−t1, t2−t2) x (t1,t2) h(t1−t1, t2−t2)

h(t1, t2)

t2
t2

t1

t1

−t1
−t1−t2 −t2

FIGURE 8.5. Convolution mechanics. The functions are one in the shaded areas and are otherwise zero.

8.4.4 Separability

A function x
(�t) is said to be separable if it can be written as the product of one dimensional

functions:

x
(�t) =

N∏
n=1

xn(tn) (8.12)

The separability theorem states that the corresponding multidimensional Fourier transform
is the product of the one dimensional Fourier transforms of the one dimensional signals.

x
(�t)↔ X(�u) =

N∏
n=1

Xn(un)

where

xn(tn)↔ Xn(un) =
∫ ∞
−∞

xn(tn)exp(−j2πuntn)dtn

is a one dimensional transform pair.

Proof . Substitute (8.12) into (8.5) and separate integrals.

Example 8.4.1. A Sum of Separable Functions. The separability theorem allows evaluation
of certain multidimensional transforms using one dimensional transforms. Consider the N =
2 dimensional example in Figure 8.6 where a function is one inside the two symmetrically
spaced squares and is zero outside. We can write

x(t1, t2) = �
(

t1
c
− 1

2

)
�

(
t2
c
− 1

2

)
+�

(
t1
c
+ 1

2

)
�

(
t2
c
+ 1

2

)
(8.13)
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FIGURE 8.6. A two dimensional signal is equal to one inside the two squares and is otherwise zero.

From the separability theorem

�

(
t1
c
± 1

2

)
�

(
t2
c
± 1

2

)
↔ c2sinc(cu1)sinc(cu2)e± jπc(u1+u2) (8.14)

Superimposing the+ and− components of (8.14) and using the linearity property of Fourier
transformation gives us the transform of (8.13):

x(t1, t2)↔ 2c2sinc(cu1)sinc(cu2) cos (πc(u1 + u2)) (8.15)

The above example is a case where a function is the difference of two separable functions.
One can establish that, for any two dimensional function, we can always find one
dimensional functions such that

x(t1, t2) =
∞∑

m=−∞
x(1)

m (t1)x(2)
m (t2)

That is, any two dimensional function can be expressed as the superposition of separable
functions. More generally, in N dimensions,

x
(�t) =

∞∑
m=−∞

N∏
n=1

x(n)
m (tn). (8.16)

The choices of the one dimensional functions are not unique.

Example 8.4.2. Fourier Series. As a two dimensional example of (8.16), consider the set
of functions, x(t1, t2), that are zero outside the interval 0 ≤ t1 ≤ T . For a fixed t2, we can
write the Fourier series

x(t1, t2) =
∞∑

m=−∞
αm(t2)e j2πmt1/T ; 0 ≤ t1 ≤ T

where

αn(t2) = 1

T

∫ T

t1=0
x(t1, t2)e−j2πmt1/T dt1.

Comparing with (8.16),

x(1)
m (t1) = e j2πmt1/T ; 0 ≤ t1 ≤ T ,
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and

x(2)
m (t2) = αm(t2).

Application of the linearity and separability properties of the multidimensional Fourier
transform to (8.16) gives

x
(�t)↔

∞∑
m=−∞

N∏
n=1

X (n)
m (un) (8.17)

where

x(n)
m (t)←→ X (n)

m (u).

8.4.5 Rotation, Scale and Transposition

For any nonsingular matrix A, the function x
(
A�t) can be envisioned as a rotation, scaling,

and/or transposition5 of the function x(�t). All operations are performed about a stationary
origin, since �t = �0→ A�t = �0.

We can illustrate simple linear distortion with the unit square at the right side of Figure 8.7.
The (t1, t2) axis on the right are distorted to A�t on the left, where

A =
[

a11 a12

a21 a22

]
.

The t1 = constant axis is now along the line a11t1 + a12t2 = constant. Likewise, the
t2 = constant axis is now along the line a21t1 + a22t2 = constant. This is illustrated in
Figure 8.7. The unit square on the left is thus distorted into the parallelogram on the right.
The more general mapping of two dimensional functions for the matrix A is evident in
Figure 8.8. Each small square on the left is mapped to a parallelogram on the right.

The examples in Figures 8.7 and 8.8 assume the elements of A are positive.

FIGURE 8.7. Illustration in two dimensions of the effect of the coordinate transfer of �t to A�t.

5. In multidimensions, transposition occurs when the function is reversed in one or more axes. For x(t1, t2, t3),
for example, x(t1,−t2, t3), x(−t1, t2,−t3) and x(−t1,−t2,−t3) are all referred to as transpositions.
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FIGURE 8.8. Mapping of a two dimensional function from coordinates �t to coordinates A�t.

8.4.5.1 Transposition

Negative elements in the A matrix impose transposition. For the matrix,

A =
[ −1 0

0 1

]
,

the t1 axis is reversed corresponding to a horizontally flipped coordinate system.

8.4.5.2 Scale

Scaling the unit square, shown at the left of Figure 8.7, is performed by S�t where the scaling
matrix is

S =
⎡
⎢⎣

1

M1
0

0
1

M2

⎤
⎥⎦ . (8.18)

The horizontal scaling replaces t1 by t1/M1. The coordinate (t1, t2) = (1, 0) is therefore
replaced by (t1, t2) = (M1, 0) thereby effecting a magnification of M1 in the horizontal
direction.

More generally, in N dimensions, multidimensional scaling is performed using

S = diag

[
1

M1

1

M2
· · · 1

MN

]
(8.19)

where diag denotes a diagonal matrix.

8.4.5.3 Rotation

To rotate a function counterclockwise by an angle of θ , we use the rotation matrix

R =
[

cos(θ ) sin(θ )

− sin(θ ) cos(θ )

]
(8.20)

Note that R−1 = RT .
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8.4.5.4 Sequential Combination of Operations

Care must be taken in sequential application of rotation, scale, transposition and shift
operations. One might suppose that a rotation followed by a scale operation would
be accomplished by SR�t. The proper operation is, however, RS�t. We illustrate with
an example.

Example 8.4.3. Sequential Operations. The mechanics of sequential application of linear
distortions and shifts is illustrated in Figure 8.10. Beginning with the function x

(�t) =
�(t1)�(t2) on the left, we desire to generate the function z

(�t) on the right. The shaded areas
correspond to values of one while unshaded areas are zero.

In the first operation, we rotate the function 45◦ to form w
(�t) = x

(
R�t)where the rotation

matrix, R, uses θ = 45◦. Next, to form y
(�t), the w function is scaled and

y
(�t) = w

(
S�t)

= x
(
RS�t).

FIGURE 8.9. Illustration in two dimensions of (left) scaling by magnification factors M1 and M2, and
(right) counterclockwise rotation by an angle of θ .

t1

t2
t2

x(t )
t2

w(t ) = x (Rt )

y(t ) = w(St )= x(RSt ) z(t ) = y(t −t)= x{RS(t −t)}

t2

t1 t1

t1

FIGURE 8.10. Steps for generating shifted diamond on the right from the square on the left.
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t1

t3

t3

t3

t2

t2 t2

t1 t1

q

f

x(t ) z(t ) = y(Rq t )= x(RqRft )y(t ) = x(Rqt )

FIGURE 8.11. Illustration of rotation in three dimensions.

Thus, for rotation followed by scale, the proper sequence of matrix operations is RS. Lastly,
we form

z
(�t) = y

(�t − �τ)

= w
(
S(�t − �τ )

)

= x
(
RS(�t − �τ )

)
.

8.4.5.5 Rotation in Higher Dimensions

The rotation matrix in (8.20) is for two dimensions. Sequential application of two
dimensional rotations in planes, however, can be applied to effect rotations in higher
dimensions. An illustration for extension to three dimensions is shown in Figure 8.11.
A three dimensional function, x

(�t) = x(t1, t2, t3), is shown in the left hand of the figure. We
first rotate counterclockwise in the (t1, t2) plane to form y

(�t) = x
(
Rθ�t
)

where, keeping the
t3 coordinate fixed and, in accordance to the rotation matrix in (8.20),

Rθ =
⎡
⎣

cos(θ ) sin(θ ) 0
− sin(θ ) cos(θ ) 0

0 0 1

⎤
⎦ .

Next, we rotate y
(�t) in Figure 8.11 in the (t3, t1) plane to form

z
(�t) = y

(
Rφ�t
)

where

Rφ =
⎡
⎣
− sin(φ) 0 cos(φ)

0 1 0
cos(φ) 0 sin(φ)

⎤
⎦ .

Therefore, we conclude that z
(�t) = x(R�t) where

R = RθRφ =
⎡
⎣
− cos(θ ) sin(φ) sin(θ ) cos(θ ) cos(φ)

sin(θ ) sin(φ) cos(θ ) − sin(θ ) cos(φ)
cos(φ) 0 sin(φ)

⎤
⎦ . (8.21)
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8.4.5.6 Effects of Rotation, Scale and Transposition on
Fourier Transformation

To determine the effects of rotation and scale on a function’s Fourier transform, we evaluate

x
(
A�t)←→

∫
�t

x
(
A�t)exp

(− j2π�uT�t)d�t

= 1

| det A|
∫
�τ

x
(�τ)exp(−j2π (A−T �u)T �τ )d �τ

= X(A−T �u)

| det A| (8.22)

where we have made the substitution �τ = A�t and | det A| is the transformation Jacobian.
We assume A is not singular. The superscript−T denotes inverse transposition, i.e., A−T =
(A−1)T = (AT )−1.

Example 8.4.4. Scaling. For the scaling matrix in (8.18), we conclude

x

(
t1

M1
,

t2
M2

)
←→ M1M2 X(M1u1,M2u2)

More generally, if S is the diagonal matrix in (8.19), we have

x
(
A�t)←→ M1M2 . . .MN X(M1u1,M2u2, . . . ,MN uN )

Example 8.4.5. Rotation. For the rotation matrix in (8.20),

R−1 = RT . (8.23)

Therefore,

x
(
R�t)↔ X(R�u) (8.24)

and, in two dimensions, rotating a function simply rotates its transform by the same angle.
This is also true in higher dimensions.

The rotated square in Figure 8.10 is w
(�t) = x

(
R�t)where the rotation angle is 45◦. Then,

if x
(�t) = �(t1)�(t2)↔ sinc(u1)sinc(u2),

w
(�t) = x

(
R�t)

←→ X(R−1�u)

= X(RT �u)

= X

(
u1 − u2√

2
,

u1 + u2√
2

)

= sinc

(
u1 − u2√

2

)
sinc

(
u1 + u2√

2

)

Example 8.4.6. Sequential Operation. The rotated square is shown on the right of
Figure 8.9, call it z

(�t), can be obtained from x
(�t) = �(t1)�(t2) by (1) first translating to the
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first quadrant to form y
(�t) = x

(�t − �τ) where �τ = [ 12 1
2 ]T , and then (2) rotating to form

z
(�t) = y(R�t) = x(R�t − �τ ). Applying the shift theorem

y
(�t)↔ X(�u)e−j2π�uT �τ .

Step (2) gives

z
(�t)↔ Y (RT �u)

= X(RT �u)e−j2π (RT �u)T �τ .

Since

RT �u =
[

u1 cos(θ )− u2 sin(θ )

u1 sin(θ )− u2 cos(θ )

]
,

and

(
RT �u)T �τ = [u1 cos(θ )− u2 sin(θ )] τ1 + [u1 sin(θ )+ u2 cos(θ )] τ2

then, since X(�u) = sinc(u1)sinc(u2), we conclude

Z(�u) = sinc (u1 cos(θ )− u2 sin(θ )) sinc (u1 sin(θ )− u2 cos(θ ))

× exp (−jπ {(u1 (cos(θ )+ sin(θ ))+ u2 (cos(θ )− sin(θ ))}) (8.25)

The results of the above examples illustrate visualization of the effects of rotation and
scaling on a function’s transform. Rotation in the time domain corresponds to an equivalent
rotation in the transform domain whereas, for scaling, a compression in one dimension in
the time domain is countered by an expansion along the corresponding frequency domain
dimension.

8.4.6 Fourier Transformation of Circularly
Symmetric Functions

A function is said to be circularly symmetric or, in higher dimensions, spherically
symmetric if,

x
(�t) = f (r) (8.26)

where

r = ||�t|| =
√
�tT �t. (8.27)

That is, the multidimensional function varies only with the radial variable, r. An illustration
in two dimensions is in Figure 8.12.

The two dimensional polar equivalent of the multidimensional Fourier transform in (8.9)
can be obtained by the variable substitutions

t1 = r cos(θ ); t2 = r sin(θ )

dt1dt2 = rdrdθ
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FIGURE 8.12. On the left is the one dimensional function f (r) = �
(

r − 3
2

)
. The annulus x(t1, t2) =

f (||�t||) is shown on the right.

and the polar frequency coordinates, (ρ, φ), related by

u1 = ρ cos(φ); u2 = ρ sin(φ). (8.28)

We will interchangeably write r = ∣∣∣∣�t∣∣∣∣ and ρ = ||�u||. It follows that

x
(�t) = f (r)←→

∫ 2π

θ=0

∫ ∞
r=0

f (r)exp ( j2πrρ cos(θ − φ)) rdrdθ

where we have used a trigonometric identity. Note that the integrand in θ is a periodic
function of θ with period of 2π . Since the integral over any period of a periodic function
independent of the starting point of the integration,

x
(�t)←→

∫ 2π

θ=0

∫ ∞
r=0

f (r)exp (j2πrρ cos(θ )) rdrdθ. (8.29)

From this expression, we see the two dimensional Fourier transform of a circularly
symmetric function in also circularly symmetric, i.e., (8.29) is not a function of φ. Hence,
we can write the two dimensional Fourier transform property

x
(�t) = f (r)←→ X(�u) = F(ρ). (8.30)

A useful Bessel function identity here is6

Jn(z) = 1

2π

∫ π

−π
e jnte jz sin(t)dt. (8.31)

Application of the n = 0 case to (8.29) gives our desired result for the transform for two
dimensional circularly symmetric functions in (8.30) as

f (r)←→ F(ρ) = 2π
∫ ∞

r=0
r f (r)J0(2πrρ)dr. (8.32)

6. This integral is that used to find the Fourier series coefficients of a periodic function, in this case e jz sin(t)

with period 2π .
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This relation is named a Fourier-Bessel or (zeroth order) Hankel transforms. The transform
is commonly written as

Hf (r) = F(ρ) (8.33)

where H is the Hankel transform operator.
In summary, given a circularly symmetric function, f (r), we can compute the two

dimensional Fourier transform using (8.9) and evaluating

∫ ∞
−∞

∫ ∞
−∞

f

(√
t2
1 + t2

2

)
e−j2π (u1t1+u2t2)dt1dt2

or we can use the Hankel transform in (8.32). The results will be the same. Use of the Hankel
transform is usually more straightforward.An exception is the Gaussian in Exercise 8.14(a).

Hankel transform theorems are the topic of Exercise 8.13.

8.4.6.1 The Two Dimensional Fourier Transform of a Circle

Consider the unit radius circle

f (r) = �
( r

2

)
. (8.34)

Substituting into (8.32) gives

F(ρ) = 2π
∫ 1

0
rJ0(2πrρ)dr.

Since

d

dα
αJ1(α) = αJ0(α)

we conclude that

F(ρ) = 2 jinc(ρ). (8.35)

A plot of F(ρ) is in Figure 8.13.

8.4.6.2 Generalization to Higher Dimensions

In N dimensions, spherically symmetric functions still obey (8.26) and (8.27). The
N dimensional Fourier transform of x

(�t)= f (r) is spherically symmetric with radial variable
ρ = ||�u||. Hence, in N dimensions,

x
(�t) = f (r)←→ X(�u) = F(ρ).

In lieu of computing the N dimensional transform in (8.5), we can evaluate the Hankel
transform generalized to N dimensions [149].

F(ρ) = 2π

ρ
N
2 −1

∫ ∞
0

f (r) r
N
2 J N

2 −1(2πρr)dr. (8.36)
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FIGURE 8.13. A plot of 2 jinc(ρ). An optically generated jinc is shown in Figure 13.19.

8.4.6.3 Polar Representation of Two Dimensional
Functions that are Not Circularly Symmetric

Any two dimensional function can be expressed in polar coordinates as x(r, θ ). The two
dimensional function is periodic in θ with a period of 2π and can therefore be represented
as a Fourier series

x(r, θ ) =
∞∑

n=−∞
cn(r)e jnθ (8.37)

where

cn(r) = 1

2π

∫ 2π

0
x(r, θ )e−jnθdθ (8.38)

are referred to as circular harmonics.
As in the circularly symmetric case, we express the two dimensional Fourier transform

in (8.5) in polar form. The result is

X(ρ, φ) =
∫ 2π

θ=0

∫ ∞
r=0

x(r, θ )exp ( j2πrρ cos(θ − φ)) rdrdθ. (8.39)

Substituting the circular harmonic expansion in (8.37) and using the Bessel function identity
in (8.31), we obtain after some manipulation,

X(ρ, φ) =
∞∑

n=−∞
jne jnφHn[cn(r)] (8.40)
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where the nth order Hankel transform is defined by

Hn[f (r)] = 2π
∫ ∞

0
rf (r) Jn(2πrρ)dr (8.41)

Note, in particular, that (8.40) is a polar Fourier series of the spectrum of X(ρ, φ) with
circular harmonics (−j)nHn[cn(r)]. The nth order Hankel transform of an image’s nth
circular harmonic therefore gives the nth circular harmonic of the image’s two dimensional
Fourier transform.

The special case of the zeroth order Hankel in (8.33) is H0 = H. Indeed, the circularly
symmetric Fourier-Bessel transform in (8.33) is a special case of the nonsymmetric
transform in (8.40). This follows from the observation that, for circularly symmetric
functions, the spherical harmonics are such that

cn(r) = f (r)δ[n].
There are no circular harmonics except for the zero frequency component n = 0.

8.5 Characterization of Signals from their
Tomographic Projections

In tomography, information of an image’s tomographic projections is used to reconstruct
the image. The mathematics for doing this from planar projections using the inverse Radon
transform is the topic of this section.

8.5.1 The Abel Transform and Its Inverse

An illustration of the tomographic projection of a circularly symmetric object, f (r), is in
Figure 8.14. For each fixed t2, the area of the one dimensional slice as a function of t2 is
computed. The result is the tomographic projection, p(t2). Specifically,

p(t2) =
∫ ∞
−∞

f (r) dt1

= 2
∫ ∞

0
f (r) dt1

where, in the second step, we have recognized that the integrand is an even function. To
change the integration to a function of r, we make the variable substitution

t1 =
√

r2 − t2
2 for r ≥ t2 → dt1 = rdr√

r2 − t2
2

.

Then, abandoning the subscript on t2, we have

p(t) = 2
∫ ∞

r=t

f (r)dr√
r2 − t2

(8.42)

This, the Abel transform, is simply the tomographic projection of a circularly symmet-
ric function. The inverse problem is finding the function, f (r), from its tomographic
projection, p(t). This is the inverse Abel transform.
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FIGURE 8.14. The Abel transform, p(t2), is the projection of a circularly symmetric function, f (r).

To invert the Abel transform in (8.42), we will first massage the forward Abel transform
into a convolution integral [148]. The first step is to explicitly place the the integration
limits in the integrand as a unit step

p(t) = 2
∫ ∞
−∞

f (r)μ(r − t)dr√
r2 − t2

.

Make the variable substitutions

ρ = r2 → r = √ρ → dr = dρ

2
√
ρ

τ = t2 → t = √τ (8.43)

Since μ
(√
ρ −√τ) = μ (ρ − τ ), the result of the substitution is

p
(√
τ
) = 2

∫ ∞
−∞

f
(√
ρ
)√

ρμ (ρ − τ )√
ρ − τ

dρ

2
√
ρ

=
∫ ∞
−∞

μ(ρ − τ )√
ρ − τ f

(√
ρ
)

dρ.

We have therefore expressed the Abel transform as the convolution

p
(√
τ
) = μ(−τ )√−τ ∗ f

(√
τ
)
. (8.44)

We will find it useful to use the variable ρ in lieu of τ in this convolution.

p
(√
ρ
) = μ(−ρ)√−ρ ∗ f

(√
ρ
)
. (8.45)

Let F denote the Fourier transform operator that maps the variable ρ into the frequency
variable, u. From the Fourier transforms listed in Table 2.4, we find

ρ−1/2μ(ρ)←→ ( j2u)−1/2.
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Imposing the transpose theorem (see Table 2.3), we have

(−ρ)−1/2μ(−ρ)↔ (−j2u)−1/2 (8.46)

and, applying the convolution theorem, (8.45) becomes

F [p (√ρ)] = (−j2u)−1/2F [f (√ρ)] .
Multiplying both sides by j2πu and applying the derivative theorem gives

F
[

d

dρ
p
(√
ρ
)] = −π√−j2u F [f (√ρ)] .

Solving gives

F [f (√ρ)] = − 1

π
(−j2u)−1/2F

[
d

dρ
p
(√
ρ
)]
.

Inverse transforming and again using (8.46) gives

f
(√
ρ
) = − 1

π

μ(−ρ)√−ρ ∗
d

dρ
p
(√
ρ
)
. (8.47)

From the chain rule of differentiation,

d

dρ
p
(√
ρ
) = 1

2
√
ρ

p′
(√
ρ
)
,

and the convolution can be written as

f
(√
ρ
) = − 1

2π

∫ ∞
−∞

μ(τ − ρ)√
τ (τ − ρ)

p′
(√
τ
)

dτ

To make this expression in terms of its original variables, we apply the substitutions
in (8.43). Since dτ = 2tdt and μ(t2 − ρ2) = μ(t − ρ), we obtain the inverse Abel
transform.

f (r) = − 1

π

∫ ∞
t=r

p′(t)dt√
t2 − r2

. (8.48)

This is the inverse Abel transform. Equivalently, integrating by parts gives

f (r) = − 1

π

∫ ∞
t=r

√
t2 − r2 d

dt

(
p′(t)

t

)
dt. (8.49)

8.5.1.1 The Abel Transform in Higher Dimensions

To extend the Abel transform to higher dimensions, define the radial variable r N = ||�tN ||
where �tN = [t1 t2 t3 . . . tN ]T . The projection of the function fN (r N ) to one dimension is

f1(r1) =
∫

t2

∫
t3

∫
t4
. . .

∫
tN

fN (rN )dtN . . . dt4dt3dt2. (8.50)
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This integration can be done in stages, the nth of which is

fn−1(rn−1) =
∫

tn
fn (rn) dtn

=
∫

tn
fn

(√
r2

n−1 + t2
n

)
dtn

Clearly, fn−1(rn−1) is the Abel transform of fn (rn). Multidimensional Abel transforms can
therefore be performed as sequential one dimensional Abel transforms. The same is true for
the inverse Abel transform.

8.5.2 The Central Slice Theorem

The central slice theorem says that the one dimensional Fourier transform of a tomographic
projection of a two dimensional function is equal to a slice of the function’s two dimensional
Fourier transform along a line. Consequently, knowledge of all projections at all angles
suffices to fill in all values in the frequency plane. Since the Fourier transform of the image
is known, the image is thus totally defined by its projections. This property, illustrated in
Figure 8.15, will now be derived.

The projection, p(t1), in Figure 8.15 is obtained by vertical line integrals of the image
x
(�t). Thus

p(t1) =
∫ ∞
−∞

x(t1, t2) dt2.

The one dimensional Fourier transform of the projection is

P(u1) =
∫ ∞
−∞

p(t1)e−j2πu1t1dt1

=
∫ ∞
−∞

∫ ∞
−∞

x(t1, t2)e−j2πu1t1dt1dt2. (8.51)

FIGURE 8.15. Illustration of the central slice theorem.
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The two dimensional Fourier transform of the image is

X(u1, u2) =
∫ ∞
−∞

∫ ∞
−∞

x(t1, t2)e−j2π (u1t1+u2t2)dt1dt2.

Comparing with (8.51) yields the central slice theorem.

X(u1, 0) = P(u1).

Thus, as illustrated in Figure 8.15, the Fourier transform of the projection is equal to the
slice of X along the u1 axis.

Information about X along the u2 axis is obtained by Fourier transforming a horizontal
projection of the image. To find X along a 45◦ line, we Fourier transform the image
projection at a 45◦ angle. The value of X at any point (u1, u2) can therefore be obtained by
Fourier transforming an appropriate projection. The central slice theorem clearly illustrates
sufficient information exists in the tomographic projections of an image to reconstruct the
image.

8.5.3 The Radon Transform and Its Inverse

The central slice theorem convinces us that an image can be reconstructed from its
projections. The inverse Radon transfom gives us the algorithm to do so.

Geometry illustrating the Radon transform is in Figure 8.16. As was the case in
Figure 8.15, we preform a projection except the image is now rotated clockwise by an
angle of θ . Recall, from (8.24), rotation of an image in two dimensions is equivalent to
rotating its Fourier transform by the same angle. Let the projection parallel to t2 be

pθ (t1) =
∫ ∞
−∞

x
(
Rθ�t
)
dt2. (8.52)

This mapping of the two dimensional image, x
(�t), to the two dimensional function, pθ (t)

is the Radon transform. An image and its Radon transform are shown in Figure 8.17. The
reconstruction problem is finding the two dimensional image from its projections. This is
the inverse Radon transform.

FIGURE 8.16. Illustration of the geometry behind the Radon transform.
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FIGURE 8.17. An image (left - the Shepp-Logan phantom) and its Radon transform.

The Fourier transform, Pθ (u1), is, by the central slice theorem, equal to the horizontal
slice on the Fourier transform plane. Rotating back to the original coordinate system, shown
on the rightmost figure in Figure 8.16, we find that

Pθ (u1) = X(u1 cos(θ ), u1 sin(θ )). (8.53)

Note

Pφ+π (ρ) = X(ρ cos(θ + π ), ρ sin(θ + π ))

= X(−ρ cos(θ ),−ρ sin(θ )) (8.54)

= Pφ(−ρ).

Consider, then, the inverse Fourier transform using the polar coordinates in (8.28).

x(t1, t2) =
∫ 2π

φ=0

∫ ∞
ρ=0

X (ρ cos(φ), ρ sin(φ)) e−j2πρ(t1 cos(φ)+t2 sin(φ))ρdρdφ.

Substitute (8.53),

x(t1, t2) =
∫ 2π

φ=0

∫ ∞
ρ=0

Pφ(ρ)e−j2πρ(t1 cos(φ)+t2 sin(φ))ρdρdφ

=
[∫ π

φ=0
+
∫ 2π

φ=π

] ∫ ∞
ρ=0

Pφ(ρ)e−j2πρ(t1 cos(φ)+t2 sin(φ))ρdρdφ. (8.55)

Using (8.55) applied to the integral from φ = π to 2π gives

∫ 2π

φ=π

∫ ∞
ρ=0

Pφ(ρ)e−j2πρ(t1 cos(φ)+t2 sin(φ))ρdρdφ

=
∫ π

φ=0

∫ ∞
ρ=0

Pφ(−ρ)e−j2πρ(t1 cos(φ+π )+t2 sin(φ+π ))ρdρdφ
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=
∫ π

φ=0

∫ ∞
ρ=0

Pφ(−ρ)e j2πρ(t1 cos(φ)+t2 sin(φ))ρdρdφ

=
∫ π

φ=0

∫ 0

ρ=−∞
Pφ(ρ)e−j2πρ(t1 cos(φ)+t2 sin(φ))(−ρ)dρdφ.

Then (8.55) becomes

x(t1, t2) =
∫ π

φ=0

∫ ∞
ρ=0

Pφ(ρ)e−j2πρ(t1 cos(φ)+t2 sin(φ))ρdρdφ

+
∫ π

φ=0

∫ 0

ρ=−∞
Pφ(ρ)e−j2πρ(t1 cos(φ)+t2 sin(φ))(−ρ)dρdφ (8.56)

=
∫ π

φ=0

[∫ ∞
ρ=−∞

|ρ|Pφ(ρ)e−j2πρ(t1 cos(φ)+t2 sin(φ))dρ

]
dφ

Define the filtered projection by the Fourier transform pair

p̂(t)↔ |u|Pφ(u) (8.57)

where

pφ(t)↔ Pφ(u).

The function p̂(t) is therefore obtained by passing the projection through a filter with a
frequency response of |u|. It is therefore appropriately dubbed a filtered projection. Equation
(8.56) can be expressed in terms of the filtered projection.

x(t1, t2) =
∫ π

φ=0
p̂ (t1 cos(φ)+ t2 sin(φ)) dφ. (8.58)

This is the inverse Radon transform.
Since

|u| = sgn(u)( j2πu)

j2π
,

and

j

π t
↔ sgn(u),

the filtered projection in (8.57) can then be expressed as the convolution

p̂φ(t) = 1

2π2t
∗ dpφ(t)

dt
.

Equivalently, in terms of the Hilbert transform, the filtered projection can be written as

p̂φ(t) = − 1

2π
H
(

dpφ(t)

dt

)
= − 1

2π

d

dt
Hpφ(t).
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The inverse Radon transform in (8.58) requires knowledge of projections at all angles. In
practice, only a finite number of projections is known and we approximate (8.58) by N
projections.

x(t1, t2) ≈
N−1∑
n=0

p̂ (t1 cos(φn)+ t2 sin(φn))�φ, (8.59)

where φn = n�φ and �φ = π/N . Each projection is filtered and smeared back into two
dimensions along the angle where the original projection was obtained. This process is
referred to as back projection. All of the back projected filtered projections are summed to
obtain an approximation to the original image. The reconstruction process is appropriately
termed filtered back projection.

Tomography variations and modelling are developed extensively beyond the introductory
treatment given here [711].

8.6 Fourier Series

Multidimensional periodic functions can be expanded in a multidimensional generaliza-
tion of the Fourier series. First, we must establish some formality for characterizing
multidimensional periodicity.

8.6.1 Multidimensional Periodicity

The geometry of multidimensional periodicity in N dimensions can be dictated by N
periodicity vectors, {�pn|1 ≤ n ≤ N}, that map the set of all N dimensional vector of
integers, �m, to a grid of points. This is illustrated in two dimensions in Figure 8.18 for the

vectors �p1 = [1, 1]T and �p2 = [2, 0]T . The integer vector �m1 = [2,−1]T , marked (2, −1)

in Figure 8.18, corresponds to the point �t = 2�p1 − �p2. Likewise, each of the points in
Figure 8.18 is assigned a vector of integers in accordance to the multiplicity of times each
vector contributes to the point.

FIGURE 8.18. Illustration of how periodicity vectors generate a grid of points such that each point is
assigned a vector of integers.
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The matrix comprised of the columns equal to the periodicity vector,

P = [�p1|�p2| · · · |�pN ],
is referred to as the periodicity matrix. For the example in Figure 8.18, the periodicity
matrix is

P =
[

1 2
1 0

]
. (8.60)

Requiring that the �pn’s not be collinear is equivalent to requiring that P not be singular
(det P �= 0). The set of all points can be written as

{P �m| �m = all vectors of integers} .
A given replication geometry does not have a unique periodicity matrix. Besides the
periodicity vectors shown in Figure 8.18, any of the periodicity vector pairs in Figure 8.19
will generate the same replication geometries. The P vector’s in this figure are

P1 =
[

1 −1
1 1

]
; P2 =

[
2 −1
0 1

]

P3 =
[

1 0
1 2

]
; P4 =

[
2 3
0 1

]
. (8.61)

The area, T , of the multidimensional parallelogram defined by periodicity vectors is
T = | det P|. For the example in Figure 8.18, evaluating the parallelogram, and computing
the magnitude of the determinate of (8.60), both yield an area of T = 2. This is also the
area of all the parallelograms in Figure 8.19 as defined by the periodicity matrices. The
determinants of the four matrices in (8.61) is likewise, in each case, equal to 2.

FIGURE 8.19. For a given periodicity, there exist numerous periodicity matrices. Each, though, has the
same determinant.
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Definition 8.6.1. Multidimensional Periodicity.
An N dimensional function, S(�u), is said to be periodic if there exists a set of N non-

collinear vectors, {�pn|1 ≤ n ≤ N}, such that, for all �u,

S(�u) = S(�u− �p1) = S(�u− �p2) = · · · = S(�u− �pN ). (8.62)

Alternately, if

S(�u) = S(�u− P �m)

for all vectors of integers, �m, the function is periodic.

A periodic N = 2 signal with the periodicity matrix in (8.60) is shown in Figure 8.20.
The concept of a period is not as straightforward as in one dimension since we now

must deal with geometrical forms rather than with simple intervals. A tile is any region
that, when replicated in accordance with the periodicity matrix, will fill the entire space
without gaps. Parallelograms defined by the periodicity vectors always generate a tile.
The parallelogram example, illustrated in Figure 8.21 for the two dimensional periodic
replication of crosses in Figure 8.20, generalizes straightforwardly into higher dimensions.
Rectangular and hexagonal tiles for the same periodicity are shown in Figures 8.22 and 8.23.
Tiles, as illustrated in Figure 8.24, can even be disjoint. For a given periodicity matrix, the
choices for tiles shapes is endless. As we will shortly show, however, all tiles share the
property of equal area.7

Note that there exists one replication point per tile. The number of periods per unit
area, T , is thus equal to the area of a cell which can be calculated from the parallelogram
configuration as

T = | det P|
The periodicity in Figure 8.21, for example, has an area of 2 units.

FIGURE 8.20. A periodic function in two dimensions with the periodicity matrix in (8.60). The function
is one inside the shaded area and is otherwise zero.

7. In this chapter, area means, in general, multidimensional area, e.g., for N = 3, volume.
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FIGURE 8.21. Completing the parallelogram using the periodicity vectors as legs always generates a
tile. The shaded parallelogram is a tile for the periodic replication of crosses in Figure 8.20.

FIGURE 8.22. The shaded rectangle is a tile for the periodic replication of crosses in Figure 8.20.

FIGURE 8.23. The shaded hexagon is a tile for the periodic replication of crosses in Figure 8.20.
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FIGURE 8.24. The shaded area, a rectangle minus the circle plus the circle in the adjacent rectangle,
is a tile for the periodic replication of crosses in Figure 8.20.

8.6.2 The Multidimensional Fourier Series Expansion

In this section, we derive the Fourier series for a periodic function, S(�u), with given
periodicity matrix P. The periodic function will be assumed to exist in the �u domain for
reasons that will become obvious shortly. First, we establish the following.

Multidimensional Comb Lemma
∑
�m
δ
(�t −Q �m)↔ | det P|

∑
�m
δ(�u− P �m) (8.63)

where

QT = P−1 (8.64)

and the multidimensional Dirac delta is

δ
(�t) = δ(t1)δ(t2) · · · δ(tN )

Proof . If we define

λ
(�t) =∑

�m
δ
(�t −Q �m)

then

λ
(
Q�t) =

∑
�m
δ
(�t − �m)

| det Q| = | det P|
N∏

n=1

comb(tn)

where we have used the identities

| det P| = 1

| det Q|
and

δ
(
A�t) = δ

(�t)
| det A| . (8.65)
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Using the last entry in Table 2.4 and the separability theorem, we conclude that

λ
(
Q�t)↔ | det P|

N∏
n=1

comb(un) = | det P|
∑
�m
δ(�u− �m)

Using the rotation and scale theorem, we find that

λ
(�t)↔∑

�m
δ(QT �u− �m)

from which (8.63) immediately follows.

Multidimensional Fourier Series
Using (8.63), we can now show that a periodic function, S(�u) with periodicity matric P can
be expressed via the Fourier series expansion

S(�u) =
∑
�m

c[ �m]exp(−j2π�uT Q �m) (8.66)

where the Fourier coefficients are

c[ �m] = | det Q|
∫
�u∈C

S(�u)exp( j2π�uT Q �m)d�u (8.67)

and C is any tile.

Proof . Let X(�u) = S(�u)/| det P| over any tile and be zero elsewhere. This function
X(�u)| det P| is a period of S(�u). We can therefore replicate it to form S(�u).

S(�u) = | det P|X(�u) ∗
∑
�m
δ(�u− P �m) (8.68)

Using the modulation theorem in Table 8.1, and the multidimensional comb lemma in (8.63),
we conclude

s
(�t) = x

(�t)∑
�m
δ
(�t −Q �m) =∑

�m
x(Q �m)δ

(�t −Q �m)

where

x
(�t)↔ X(�u) (8.69)

and

s
(�t)↔ S(�u).

Transforming gives

S(�u) =
∑
�m

x(Q �m)exp(−j2π�uT Q �m) (8.70)

and, after noting that c[ �m] = x(Q �m), our proof is complete.
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FIGURE 8.25. A periodic function equal to one within the circles and zero without.

Example 8.6.1. Consider the periodic function, S(�u), shown in Figure 8.25.
The function is zero in the circles and one outside.Aperiodicity matrix for this function is

P =
[

6 3
0 5

]

We choose the rectangular periodicity cells shown with the dashed lines. To find the Fourier
coefficients, we choose the cell centered at (3, 0). Correspondingly,

| det P|X(�u) = �
(

u1 − 3

6

)
�
(u2

5

)
−�

⎛
⎜⎝
√

(u1 − 3)2 + u2
2

4

⎞
⎟⎠ .

Therefore

| det P|x(�t) = [30 sinc(6t1) sinc(5t2)− 8 jinc(2
√

t2
1 + t2

2)] exp(−j6π t1)

and, since

Q �m =
[ m1

6−m1
10 + m2

5

]

we conclude that our desired Fourier series coefficients are

c[m1,m2] = (−1)m1
{
δ[m1]sinc

(m1

2
− m2

)

− 4

15
jinc

(
2

√(m1

6

)2 +
(m1

10
− m2

5

)2)}
.

The resulting Fourier series using these coefficients is

S(u1, u2) =
∞∑

m1=−∞

∞∑
m2=−∞

c[m1,m2]exp
[
−j2π

(m1u1

6
− m1u2

10
+ m2u2

5

)]
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8.6.3 Multidimensional Discrete Fourier Transforms

The DTFT of an M dimensional discrete signal, x[�n], is

X
(�f
)
=
∑
�n

x[�n]e−j2π�f T �n

This is recognized as a Fourier series with an identity matrix as the periodicity matrix. The
inverse is thus

x[�n] =
∫

box
X(�f )e j2π�f T �nd�f

where8

∫
box
:=
∫ 1

2

f1=− 1
2

∫ 1
2

f2=− 1
2

· · ·
∫ 1

2

fM=− 1
2

.

Let x[�n] be defined in a rectangular box with length Nm in the mth dimension, i.e.,
{0 ≤ nm ≤ Nm; 1 ≤ m ≤ M}. The DFT of the multidimensional signal follows as

X
[�k
]
=
∑
�n∈ box

x[�n]e−j2π�kT N−1�n

where the M ×M diagonal matrix is

N := diag[N1 N2 · · · NM ].
and

∑
�n∈ box

=
N1−1∑
n1=0

N2−1∑
n2=0

· · ·
NM−1∑
nM=0

.

Equivalently

X
[�k
]
=
∑
�n

x[�n]
M∏

m=1

e−j2πkmnm/NM .

The inverse DFT follows as

x[�n] = 1

det N

∑
�n∈ box

X
[�k
]

e−j2π�kT N−1�n.

In the special case of M = two dimensions, the DFT and inverse DFT are

X[k1, k2] =
N1−1∑
n1=0

N2−1∑
n2=0

x[n1, n2]e−j2π
(

n1k1
N1
+ n2k2

N2

)
.

(8.71)

8. Alternately, integration can be over any unit interval tile cube.
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and

x[n1, n2] = 1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

X[k1, k2]e j2π
(

n1k1
N1
+ n2k2

N2

)
.

8.6.3.1 Evaluation

The FFT (fast Fourier transform) [160, 322, 323, 625, 1111] is an efficient method for
evaluating the one dimensional DFT. It can be used to efficiently evaluate higher order
DFT’s. For two dimensions, we can take the FFT of each of the rows of x[n1, n2] to form
the N1 × N2 matrix

x̃[k1, n2] =
N1−1∑
n1=0

x[n1, n2]e−j2πn1k1/N1 .

Evaluating the FFT of each column of x̃[k1, n2] gives the 2D DFT in (8.71). More generally,
sequential application of a one dimensional DFT or FFT to a multidimensional function
one dimension at a time will result in a multidimensional DFT.

8.6.3.2 The Role of Phase in Image Characterization

In this section, we explore the role of the magnitude and phase of a 2D DFT in the
characterization of an image. We will show that, the phase of the DFT of an image is
more important than the magnitude of the DFT.

Two images are shown at the top of Figure 8.26. We will call them Josh and Family.
Both images are Fourier transformed and the magnitude of the transform is set to one. The
inverse transform of the phase only functions is shown in the second row of Figure 8.26.9

The nature of the original images is still present. Indeed, the phase images are akin to high
pass filtered versions of the original images. This is because the magnitude of the Fourier
transform of the images have much of their mass around the low frequencies. By setting
the magnitude to one, the high frequencies are essentially amplified as they would be by a
high pass filter.

In the third row of Figure 8.26 is the inverse Fourier transform when the transform phase
is set to zero.10 Close examination reveals no relationship to the original images.

In the bottom row, the magnitudes and phases are swapped. On the left, the magnitude
of the Fourier transform of Family and the phase of the transform of Josh was mixed and
inverse transformed. The Josh picture clearly emerges. On the right is the mixture of the
phase of the Fourier transform of family with the magnitude of the transform of Josh. The
Family picture emerges.

The images in Figure 8.26 clearly demonstrate the dominate importance of the phase of
the Fourier transform over magnitude in preservation of the original image.

8.7 Discrete Cosine Transform-Based Image Coding

The two dimensional discrete cosine transform (DCT) is a common tool in image
compression. The two dimensional DCT [116] on an N × N array is the straightforward

9. The inverse transform is normalized [0, 1] to allow display as an image.
10. No normalization is applied here. When a pixel value exceeded one (white), it is displayed as one.
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FIGURE 8.26. Illustration of the importance of amplitude and phase in a two dimensional Fourier
transform. Josh is shown in the upper left and Family in the upper right. The phase of the Fourier
transform Josh using the magnitude of the Fourier transform of Family is shown at the bottom left. On
the bottom right is the result of using the phase of Family and the magnitude of Josh. This illustrates
the phase of transform has more of an effect on the image than the magnitude.
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generalization of the one dimensional DCT case of (2.121) in Section 2.7.

Xcos[k1, k2] = 1

4
C[k1]C[k2]

N−1∑
n1=0

N−1∑
n2=0

x[n1, n2]

× cos

(
π (2n1 + 1)k1

2N

)
cos

(
π (2n2 + 1)k2

2N

)
; (8.72)

0 ≤ k1 < N, 0 ≤ k2 < N

where, for convenience, we rewrite (2.122)

C[k] =
{

2− 1
2 ; k = 0

1 ; otherwise.
(8.73)

The inverse 2-D DCT is

x[n1, n2] = 1

4

N−1∑
k1=0

N−1∑
k2=0

C[k1]C[k2] Xcos[k1, k2]

× cos

(
π (2n1 + 1)k1

2N

)
cos

(
π (2n2 + 1)k2

2N

)
; (8.74)

0 ≤ n1 < N, 0 ≤ n2 < N .

8.7.1 DCT Basis Functions

The 2-D DCT is used in image compression, including JPEG11 (a.k.a. JPG) image
compression. Images are separated into 8 × 8 square blocks of pixels. An example 8 × 8
block is shown in the gray scale image in Figure 8.27. Each of these blocks is subjected
to an N = 8 DCT using (8.72). The basis functions for the DCT are the orthogonal basis
functions

φk1,k2 [n1, n2] = cos

(
π (2n1 + 1)k1

2N

)
cos

(
π (2n2 + 1)k2

2N

)
;

0 ≤ n1 < N, 0 ≤ n2 < N,

0 ≤ k1 < N, 0 ≤ k2 < N .

These 64 functions are shown in Figure 8.28.

8.7.2 The DCT in Image Compression

DCT coding is effective for image encoding. If the image across the 8×8 block, for example,
is constant, then only one entry in the DCT is nonzero.

11. Joint Photographic Experts Group.
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FIGURE 8.27. An 8× 8 block of pixels in this 345× 363 pixel is shown on the left as black square. A
zoomed version of the image is shown on the right.

FIGURE 8.28. The 64 orthogonal basis functions used in DCT image encoding.
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Here is an example of lossy image compression for gray scale images. Consider the 8× 8
block from a one byte per pixel image12

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 11 58 37 26 39 188 212
13 15 69 45 23 36 185 215
50 54 87 37 38 52 196 216
53 56 81 37 45 59 198 216
62 60 38 48 116 129 210 216
50 49 32 71 151 159 213 216
24 24 47 127 188 192 215 216
34 34 65 141 193 196 213 214

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.75)

The gray level block for this matrix is shown on the left in Figure 8.29. The typical DCT
encoding process consists of the following steps.

(a) Subtraction. 128 is subtracted from each of the elements in the block in (8.75). The
result is

X− =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−119 −117 −70 −91 −102 −89 60 84
−115 −113 −59 −83 −105 −92 57 87
−78 −74 −41 −91 −90 −76 68 88
−75 −72 −47 −91 −83 −69 70 88
−66 −68 −90 −80 −12 1 82 88
−78 −79 −96 −57 23 31 85 88
−104 −104 −81 −1 60 64 87 88
−94 −94 −63 13 65 68 85 86

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.76)

(b) Perform DCT. The DCT of X−, rounded to the nearest integer, is

DCT (X−) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−199 −177 5 −10 −1 −2 9 17
−487 65 −42 −31 10 1 12 −5

153 143 −77 −3 11 −2 15 −8
−74 −134 −9 42 −1 −13 8 17

10 −37 22 9 −4 −3 −6 2
40 46 16 −17 0 6 −7 −6
−48 1 9 −10 −1 2 −2 −1

64 33 −15 −6 2 3 5 −2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.77)

(c) Quantization. The image compression occurs at this, the quantization step. A fixed
quantization matrix Q is used. An example quantization matrix is

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.78)

Each matrix element in (8.77) is divided by the corresponding matrix element in
the quantization matrix. The larger the element in the quantization matrix, the more

12. One byte = 8 bits suffices to specify 28 gray levels from black (0) to white (255).
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FIGURE 8.29. Example of DCT encoding of a gray scale image. On the left is the original 8× 8 block
and, on the right, the result of encoding.

quantization and, hence, the more information loss. If each element of Q is one,
there is no quantization.

The result of quantization in our running example, rounded, is

D = [DCT (X−)] ./Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 −16 1 −1 0 0 0 0
−41 5 −3 −2 0 0 0 0

11 11 −5 0 0 0 0 0
−5 −8 0 1 0 0 0 0

1 −2 1 0 0 0 0 0
2 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.79)

where the notation “./ ” denotes element by element matrix division. It is this matrix
in which the image block is encoded. Due, in part, to the preponderance of zeros, the
information in this matrix requires less transmission time than that of the original
image block, X. The cost of this property is information loss in the original image
block. The block X in (8.75) cannot be reconstructed with precision from D, but, as
outlined in the following steps, can be done so approximately.

(d) Coding, Transmission, Receiving and Decoding. The matrix is encoded and
transmitted. Huffman coding, for example, encodes each number as a binary string
according to their frequency of occurrence. The coded signal is received and decoded
at the receiver end to reconstruct the D matrix in (8.79)[116].

(e) Inverse quantization. At the receiver, each element of the D matrix is multiplied by
the corresponding element in the quantization matrix, Q. For our running example,
this inverse quantization results in

B = Q . ∗ D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−192 −176 10 −16 0 0 0 0
−492 60 −42 −38 0 0 0 0

154 143 −80 0 0 0 0 0
−70 −136 0 29 0 0 0 0

18 −44 37 0 0 0 0 0
48 35 0 0 0 0 0 0
−49 0 0 0 0 0 0 0

72 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (8.80)

where the notation “.*” denotes element by element matrix multiplication.
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(f) Inverse DCT. The received matrix is subjected to an inverse DCT. Since 128 was
subtracted from each pixel in Step 1, 128 is now added to each pixel. For our
example, the result is

Y = DCT−1B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13 15 53 50 51 63 193 219
26 31 64 52 48 61 192 218
44 49 73 51 50 67 194 217
53 54 68 50 66 87 203 217
53 44 54 55 96 116 213 216
47 32 47 73 134 143 219 216
42 27 53 100 168 158 217 215
40 28 62 120 187 163 213 214

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.81)

This is our final decoded image block which should be close to the original image
block X in (8.75). The ratio of the absolute error as a percent of the full pixel range
of 255 is

%E = 100|Y− X|
255

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 2 5 10 9 2 3
5 6 2 3 10 10 3 1
2 2 5 5 5 6 1 0
0 1 5 5 8 11 2 0
4 6 6 3 8 5 1 0
1 7 6 1 7 6 2 0
7 1 2 11 8 13 1 0
2 2 1 8 2 13 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.82)

The maximum error is thus 13% of the full gray scale range.13 More important
than numerical values is the perception of the decoded image to the eye. The matrix
Y is shown in gray scale form on the right in Figure 8.29 next to the original image
block, X. Although the reproduction is not perfect, it is close.

8.8 McClellan Transformation for Filter Design

There are a wealth of designs available for one dimensional FIR filter design [650, 991,
1054]. The McClellan transform [387, 970, 971, 980, 976] allows extension and variation
in these designs to higher dimensions [270, 277, 833, 1003, 1034, 1035, 1145, 1146, 1301,
1413].

The DFT of the impulse response, h[n], of an FIR filter can be written14

H(f ) =
N∑

n=−N

h[n]e−j2π fn.

We restrict attention to zero phase filters, i.e filters where the frequency response is real.
This imposes Hermetian symmetry on the impulse response.

h[n] = h∗[−n].

13. A more commonly used measure of goodness of one byte image restoration is the peak signal-to-noise ratio
(PSNR) in (11.35) of Section 11.4.6. The higher the PSNR, the better the match. For our example, PSNR = 25 dB.

14. This impulse response is not causal but can be easily made so by a shift. It is used in this form to avoid
unnecessarily complicated notation.
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If we further assume the impulse response is real, then the frequency response becomes

H(f ) =
−1∑

m=−N

h[m]e−j2π fm + h[0] +
N∑

n=1

h[n]e−j2π fn

=
N∑

n=1

h[−n]e j2π fm + h[0] +
N∑

n=1

h[n]e−j2π fn

= h[0] +
N∑

n=1

h[n]
(

e j2π fm + e−j2π fn
)

= h[0] + 2
N∑

n=1

h[n] cos(2π fn).

Equivalently, we can write the frequency response of the zero phase filter as

H(f ) =
N∑

n=0

a[n] cos(2π fn) (8.83)

where

a[n] =
{

h[0] ; n = 0

2h[n] ; 1 ≤ n ≤ N

In the McClellan transform, we dub H(f ) the prototype filter. The choice of the a[n]’s and
the constraint on the size of N dictate the frequency response of the filter.

The McClellan transform maps one dimensional filter designs into higher dimensions. It
makes use of Chebyshev polynomials of the first kind defined in (2.84) which, for reference,
we rewrite here

Tn(cos θ ) = cos nθ. (8.84)

The frequency response in (8.83) can then be written as

H(f ) =
N∑

n=0

a[n] Tn (cos(2π f )) (8.85)

We now introduce the transformation function, �( f1, f2), for the McClellan transform.
The transformation function is typically realized with a small, e.g., 3× 3, impulse response.
The McClellan transform of the one dimensional to two dimensional filter with frequency
response, H(f1, f2), is

H(f1, f2) =
N∑

n=0

a[n] Tn (�( f1, f2)) . (8.86)

The transformation is therefore

cos(2π f ) = �(f1, f2). (8.87)
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FIGURE 8.30. The impulse response for a 3× 3 transformation function.

A 3× 3 transformation function impulse response, pictured in Figure 8.30, is

φ[n1, n2] = A δ[n1]δ[n1] + 1

2
B (δ[n1 − 1] + δ[n1 + 1]) δ[n2]

+ 1

2
C δ[n1] (δ[n2 − 1] + δ[n1 + 1])

+ 1

2
D (δ[n1 − 1]δ[n2 + 1] + δ[n1 + 1]δ[n2 − 1])

+ 1

2
E (δ[n1 + 1]δ[n2 + 1] + δ[n1 − 1]δ[n2 − 1]) .

The transformation function follows as

�(f1, f2) = A+ B cos(2π f1)+ C cos(2π f2)

+ D cos (2π (f1 − f2))+ E cos (2π (f1 + f2)) . (8.88)

The choice of the parameters, {A,B,C,D,E} dictate the shape of the transformation
function. Parameters initially proposed by McClellan [970] are

A = −1

2
, B = C = 1

2
, D = E = 1

4
. (8.89)

Then

�(f1, f2) = 1

2
(−1+ cos(2π f1)+ cos(2π f2)+ cos(2π f1) cos(2π f2)) . (8.90)

As with the 2-D DTFT of any signal, this function is rectangularly periodic with unit
periodicity in both dimensions. The contour plot of (8.90), shown in Figure 8.31 on the
(− 1

2 ,
1
2 ) × (− 1

2 ,
1
2 ) square, is nearly circular near the origin and grows more and more

square away from the origin. This structure proves to be very important in the McClellan
transform design of numerous 2-D filters.

An important characteristic of multidimensional signals is the conservation of contours
property. The contour plot of � in Figure 8.31 is the same as the contour plots of �2,
e� and �2 + e�. The values assigned to the contours change, but the contour shapes
remain the same. The contour corresponding to � = 1

2 , for example, will be the contour
for�2 = 1

4 . Thus, the contours of�( f1, f2) will generally15 be the same as for the function

15. There are counter examples. g(�) = 1, for example, has no defined contours.
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FIGURE 8.31. Contour plot of the transformation function in (8.90).

g (�( f1, f2)). A key observation in the McClellan transform in (8.86) is that the contours
of the transformation function, �( f1, f2), are the same as the contours of the frequency
response, H( f1, f2).

Thus, the key points about the McClellan transform are

(a) The contours of the transformation function, �, are the same as the contours of the
filter, H( f1, f2).

(b) The values along these contours are determined solely by the coefficients, a[n].

Example 8.8.1. For proper choices of a[n] coefficients, the transformation function, �,
with the contours in Figure 8.31 can be used to design 2-D

(a) low pass filters equal to one inside a specified contour and zero outside,
(b) high pass filters with a frequency response equal to the complement of the low pass

filter,
(c) bandpass filters equal to one between two of the contours and zero otherwise, and
(d) band stop filters, equal to the complement of the bandpass filter.

A remarkable property of the transformation function in (8.90) is

�(f1, 0) = cos(2π f1). (8.91)

With attention to (8.85) and (8.83), along the f1 axis, the McClellan transform in (8.86) then
becomes

H(f1, 0) =
N∑

n=0

a[n] Tn (�( f1, 0))

=
N∑

n=0

a[n] Tn (cos(2π f1))

=
N∑

n=0

a[n] cos(2πnf1) (8.92)

= H(f1)



[13:08 7/10/2008 5165-Marks-Ch08.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 370 326–408

370 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

Thus, the slice of H( f1, f2) along the f1 axis is the prototype filter, H( f1). The values along
this slice will follow the contours of the transformation function in Figure 8.31. Hence,
if we design H( f ) to be a low pass filter and use the coefficients a[n] in the McClellan
transform, then, as described above, H( f1, f2) will be a low pass filter. The same is true for
high pass, bandpass and band stop filters.

An example of a low pass filter from the McClellan transform is shown in Figure 8.32.
Asimple Fourier series for X(f )=�(f /α) on the interval |f | ≤ 1

2 is used. The corresponding
Fourier series coefficients are h[n] = α sinc(αn). The 1-D prototype filter is shown in
Figure 2.1 for α = 1

3 and N = 10, 25, 50 and 100. The corresponding McClellan transform
filters are shown in Figure 8.32.

A 2-D bandpass filter designed using the McClellan transform is shown in Figure 8.33.
Cutoff frequencies are α1 = 0.2 and α2 = 0.4. Again, a simple Fourier series filter with
Fourier coefficients of h[n] = α2 sinc(α2n)− α1 sinc(α1n) are used. Filters corresponding
to N = 10 and 25 are shown.

The coefficients in (8.89) giving rise to the transformation function contours correspond
to only one case where prototype filters can be applied. There are numerous other
possibilities, many much more subtle.

Example 8.8.2. Two Dimensional Hilbert Transform. We seek a McClellan transform
that generates a frequency response

H( f1, f2) = sgn(f1)sgn(f2); |f1| ≤ 1

2
; |fq| ≤ 1

2

=
{

1 ; (f1, f2) ∈ quadrants I and II in the unit square

−1 ; (f1, f2) ∈ quadrants II and IV in the unit square
(8.93)

10
1

0

1

0

1

0

1

0

50

25

100

FIGURE 8.32. McClellan transform low pass filter design for N = 10, 25, 50 and 100.
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10

1

0

25

1

0

FIGURE 8.33. McClellan transform bandpass filter design for N = 10 and 25.

FIGURE 8.34. Contour plot of the 3 × 3 prototype with transformation function �(f1, f2) =
sin(2π f1) sin(2π f2).

We choose a transformation function corresponding to A = B = C = 0, D = −E = 1
2 .

From (8.88), we have

H(f1, f2) = 1

2
cos (2π (f1 − f2))− 1

2
cos (2π (f1 + f2))

= sin(2π f1) sin(2π f2)

The contour plot of this transformation function is shown if Figure 8.34. It is positive in
quadrants I and III and negative in quadrants II and IV. To find an appropriate prototype
filter, we examine the McClellan transform which, from (8.87), is

cos(2π f ) = sin(2π f1) sin(2π f2t). (8.94)

On the interval [− 1
2 ,

1
2 ], the cosine term is positive of |f | < 1

2 and−1 otherwise. Therefore,
the prototype filter desired is one for |f | < 1

4 and −1 otherwise. Using a Fourier series,
let h[n] = 0 for n = 0 and 2 sinc(n/2) otherwise. The McClellan transform using these
parameters is shown in Figure 8.35 for N = 10, 25, 50 and 100.
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0

−1

25

1

0

−1

50

1

0

−1

100

1

0

−1

FIGURE 8.35. Synthesis of the two dimensional Hilbert transform frequency response in (8.93) using
a McClellan transform for N = 10, 25, 50 and 100.

8.8.1 Modular Implementation of the McClellan
Transform

The McClellan representation in (8.86) contains Chebyshev polynomials that obey the
recurrence relation in (2.85) which, for convenience, we repeat her.

Tn+1(t) = 2tTn(t)− Tn−1(t). (8.95)

This recursion relationship can be used to characterize the sum in (8.86) in the modular
form shown in Figure 8.36. The first two terms in the sum, T0(�) = 1 and T1(�) = �, are
multiplied, respectively, by h[0] and 2h[1] and are fed to the summing bus at the bottom.
The term T2(�) = 2�T1(�) − T0(�) is formed from the first two stages and has a tap of
2h[3]. T3(�) through T5(�) are similarly formed.

FIGURE 8.36. Modular implementation of the McClellan transform based on the recurrence relationship
of the Chebyshev polynomials in (8.95).
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8.8.2 Implementation Issues

There are alternative methods to perform filtering. For a low pass filter, for exam-
ple, applying a two dimensional FFT to an image, multiplying the low pass filter,
and performing an inverse FFT, can also achieve the filtering operation. For cer-
tain implementations, polynomial synthesis of filters using transformation functions,
such as the McClellan transform, can be very sensitive to small computational
perturbations [387].

8.9 The Multidimensional Sampling Theorem

The sampling theorem in higher dimensions was first proposed by Peterson and Middleton
in 1962 [1112].

We have established in one dimension that the Shannon sampling theorem is the Fourier
dual of a Fourier series.16 The same is true in higher dimensions. Indeed, we can glean
important insight into the multidimensional sampling theorem from our development of the
Fourier series in Section 8.6.

The sampling theorem will be developed in N dimensions and illustrated in two
dimensions in Figures 8.37 and 8.38. In the left column in Figure 8.37 is pictured
functions in �t and the right their corresponding Fourier transforms are shown in the
right column as a function of �u. For the left column, row (1) times row (2) equals
row (3). This means that on the right column, row (3) is the convolution of rows
(1) and (2). Row (3) at the bottom of Figure 8.37 is repeated on the top of 8.38.
In the right column, row (3) is multiplied by row (4) to obtain row (5). This means
that, in the left column, row (5) is the convolution of rows (3) and (4). Let’s look
at these operations more closely to see how the multidimensional sampling theorem
emerges.

In row (1) of Figure 8.37, a function x
(�t) has a Fourier transform X(�u) that is

zero outside a tile C. The tile shape is arbitrary. All that is required is existence of a
periodicity matrix, P, such that replication of the tile fills the entire �u space. In row
(2), in the �t space on the left, Dirac deltas are placed periodically in accordance with
the matrix Q = P−T In the placement of the Dirac deltas, the Q matrix acts as a
periodicity matrix. We repeat the results of the multidimensional comb lemma in (8.63)
which relates this array of Dirac deltas on the left in row (2) to its Fourier transform on
the right.

∑
�m
δ
(�t −Q �m)↔ | det P|

∑
�m
δ(�u− P �m). (8.96)

Let the function s
(�t) be the product of the signal with the array of Dirac deltas.

s
(�t) = x

(�t)∑
�m
δ
(�t −Q �m)

=
∑
�m

x(Q �m)δ
(�t −Q �m).

(8.97)

16. See Section 5.3.2.
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FIGURE 8.37. Illustration of multidimensional sampling. Continued in Figure 8.38.

The function s
(�t) therefore is a function only of the sample points of x

(�t). Its Fourier
transform, using (8.96), is

S(�u) = | det P|X(�u) ∗
∑
�m
δ(�u− P �m)

= | det P|
∑
�m

X(�u− P �m)

Therefore, the signal’s spectrum, X(�u), is replicated in the �u space on tiles with a periodicity
matrix P. This is illustrated in row (3) of Figure 8.37. We have assumed that X(�u) is zero
outside of the tile. If this were not the case, the sampling would be aliased. Thus, from S(�u)
we can regain the original signal spectrum by

X(�u) = S(�u)�C(�u)

| det P| (8.98)

where

�C(�u) =
{

1 ; �u ∈ C
0 ; otherwise.

The function S(�u) is clearly periodic with periodicity matrix P. Its Fourier series is obtained
by the Fourier transform of (8.97).

S(�u) =
∑
�m

x(Q �m)e−j2π�uT Q �m.
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FIGURE 8.38. Illustration of restoration from multidimensional samples. The top row, (3), is the same
as the bottom row in Figure 8.37.

Thus, from (8.98),

X(�u) = 1

| det P|
∑
�m

x(Q �m)e−j2π�uT Q �m�C(�u).

Inverse Fourier transformation gives the desired expression for the multidimensional
sampling theorem.

x
(�t) =∑

�m
x(Q �m)fC

(�t −Q �m) (8.99)

where the interpolation function, fC
(�t), is defined by the transform pair

fC
(�t)←→ �C(�u)

| det P| . (8.100)

Equivalently

fC
(�t) = | det Q|

∫
�u∈C

e−j2π�uT�td�t. (8.101)
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FIGURE 8.39. An example of a sampling matrix, Q and its corresponding periodicity matrix, P = Q−T .

The Q matrix is called the sampling matrix and dictates the geometry of the uniform
sampling. We decompose Q into vector columns.

Q = [�q1|�q2| . . . |�qN ]. (8.102)

As with the periodicity matrix, each component vector is a basis vector for sampling. An
example is shown in Figure 8.39 for N = 2 with

Q = 1

24

[
4 0
−3 6

]
; P =

[
6 3
0 4

]
.

Consider the parallelogram defined by the column vectors of Q. Visualize replication to fill
the entire space. Clearly, there is a one to one correspondence of a sample to a parallelogram.
Since the area of the parallelogram is | det Q|, we conclude that the sampling density
corresponding to Q is

SD = 1

| det Q| = | det P| samples/unit area.

The sampling geometry in Figure 8.39, for example, has a density of 24 samples per unit
area.

We call the region A, over which a spectrum X(�u) is not identically zero, the spectral
support. In order for x

(�t) to follow our definition of bandlimitedness, A must be totally
contained within an N dimensional sphere of finite radius.

8.9.1 The Nyquist Density

The lowest rate at which a temporal bandlimited signal can be uniformly sampled without
aliasing is the Nyquist rate. This measure can be generalized to higher dimensions. For
a given spectral support, A, the Nyquist density is that density resulting from maximally
packed unaliased replication of the signal’s spectrum. Equivalently, for a given spectral
support, the Nyquist density corresponds to the replication tile with minimum area.

For some spectral supports, numerous sampling geometries can achieve the Nyquist
density. An example is shown in Figure 8.40. A rectangular spectral support is shown in the
upper left of the figure. Three different tilings are shown that achieve the Nyquist density.
Periodicity vectors are shown as bold arrows.

In other cases, there is a single sampling geometry to achieve the Nyquist density. An
example is when the support is an equalateral hexagon as shown in Figure 8.41.
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FIGURE 8.40. An example of a rectangular support (upper left) and three different sets of periodicity
vectors that will achieve the Nyquist density.

FIGURE 8.41. The support of maximally packed circles is a hexagon. The periodicity vectors are shown
as bold arrows.

8.9.1.1 Circular and Rectangular Spectral Support

Any imaging system that uses lenses with circular pupils will generate images the spectra
of which have a circular spectral region of support if the monochromatic illumination is
either coherent or incoherent [493, 518]. Consider, then, the case where the support of an
N = 2 dimensional spectrum is a circle of radius W . If we limit ourselves to rectangular
sampling (i.e., restrict Q to be a diagonal matrix), then the closest we can pack circles is in
Figure 8.42.

The periodicity and sampling matrices are, respectively,

P =
[

2W 0
0 2W

]

Q =
[

T 0
0 T

]
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FIGURE 8.42. A rectangular array of circles.

FIGURE 8.43. Maximally packed circles, shown here, achieve the Nyquist density. The hexagonal tile
for this optimal periodic replication is shown at the right of Figure 8.45.

where

T = 1

2W
.

The tile, C, corresponding to rectangular sampling is the square shown on the left of
Figure 8.45.

Rectangular packed circles, however, do not achieve the Nyquist density. This, rather,
is achieved by the packing shown in Figure 8.43.

The corresponding periodicity matrix is

P =
[

W −W√
3W
√

3W

]
. (8.103)

The sampling matrix for (8.103) follows as

Q =
⎡
⎣

T −T
T√

3

T√
3

⎤
⎦ (8.104)

The tiles for the hexagonal geometries for the periodicity matrix and the sampling matrix
in (8.104) are shown in Figure 8.44. Note the rotation of the hexagons. On the left hand
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FIGURE 8.44. An optimal sampling strategy achieving the Nyquist density when an image’s spectral
support is a circle with radius W . The hexagonal tiling on the right is achieved with the periodicity
matrix in (8.103). This dictates the hexagonal sampling shown on the left. The corresponding sampling
matrix is given in (8.104).

FIGURE 8.45. On the left is the tile C corresponding to the circular support A when the circles are
packed rectangularly as shown at the left in Figure 8.42. On the right, maximally packed circles, as
shown on the right in Figure 8.42, require a hexagonal tile.

side of Figure 8.44, the pointed ends of the hexagons point up and down. On the right, they
point left to right.

8.9.1.2 Sampling Density Comparisons

What is the savings in sampling density of the hexagonal geometry in over the rectangular
sampling geometry? For hexagonal sampling, the (Nyquist) sampling density is equal to
the area of the hexagon shaded on the right of Figure 8.45 which in turn, is equal to the
determinant magnitude of (8.103).

SDnyq = 2
√

3W2. (8.105)

The corresponding density for rectangular sampling is clearly

SDrect = 4W2.

The ratio of these densities is

r2 = SDnyq

SDrect
= 0.866

where the subscript denotes N = 2 dimensions. Thus, use of hexagonal sampling reduces
the sampling density by 13.4% over rectangular sampling.

This result has been extended to higher dimensions for an N dimensional hypersphere
of radius W [387, 984]. The minimum rectangular sampling density is SDrect = (2W )N .
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FIGURE 8.46. For maximally packed spheres of radius W in N dimensions, the table of the left is the
ratio of area of the multidimensional tiles to (2W )N . This is the tile area corresponding to when the
spheres are packed rectangularly. On the right is a plot of these numbers.

The Nyquist density, SDnyq, can be evaluated from the geometry of maximally packed
spheres. The ratio

rN = SDnyq

SDrect

is plotted in Figure 8.46 up to eight dimensions.

8.9.2 Generalized Interpolation Functions

In this section, we extend some of the results of Section 6.2 on generalized interpolation
functions to higher dimensions.

8.9.2.1 Tightening the Integration Region

If the spectral support of a signal, when replicated, has regions that are identically zero,
then there exists alternate interpolation functions than fC( �t ) in (8.101). Furthermore, we
will later show forms of these alternate interpolation functions, in comparison to fC( �t ), can
have greater immunity to noise in the interpolation process.

In the sampling mechanics illustrated in Figure 8.38, a single spectrum is extracted
from the replicated spectra by multiplying the replicated spectra by a function constant
within a tile and zero otherwise. The choice of a tile, however, may not be necessary if
the replications leave regions that are identically zero. Tighter integration regions may be
possible.

To illustrate interpolation functions with tighter integration regions, consider a spectral
replication in accordance to the rotated rectangle tile on the left of Figure 8.47. A single
tile is shown in the left. The region covered by the tile is denoted by C. Within the tile
on the right is the spectral support of the replicated spectra. It is shown shaded and is
assumed to be identically zero outside of a region A. Also shown by a dashed line is the
boundary of a region, B, that encloses the spectral support (i.e., A ∈ B), but excludes
higher order spectra. Although not shown in Figure 8.47, the B region can extend beyond
the tile region. Multiplication of the replicated spectra by a function equal to one inside
B and zero outside will yield the isolated spectrum. Clearly, both A and C are special
cases of B.
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FIGURE 8.47. Illustration of three regions in a spectral replication. B is any region that isolates the
spectral support. Special cases are the tile region, C and the spectral support region, A.

Thus, in lieu of the multidimensional sampling theorem in (8.99), we have

x
(�t) =∑

�m
x(Q �m)fB

(�t −Q �m) (8.106)

where the interpolation function with a tighter integration region is

fB
(�t) = | det Q|

∫
�u∈B

e−j2π�uT�td�t ↔ �B(�u)

| det P| . (8.107)

Note that, in one dimension, A = B = C at the Nyquist rate. In higher dimensions, such an
equality is not assured at the Nyquist density.

8.9.2.2 Allowing Slower Roll Off

In one dimension, we were able to allow the spectrum of the interpolation function to
be any desired function over those intervals where the signal’s spectrum was identically
zero. This allowed use of interpolation functions whose spectra had a slower roll off
(see Figure 6.2). An analogous freedom occurs in higher dimensions. We can write,
for example

x
(�t) =∑

�m
x(Q �m)f +B (�t −Q �m) (8.108)

where

f +B
(�t) = fB

(�t)+
∫

B∩Ā
�(�u)exp(j2π�uT�t)d�u (8.109)

where �(�u) is any convenient function and ∩ denotes intersection. B ∩ Ā denotes any
region, B, with the spectral support, A region excluded. Thus, integration is over all points
in B not contained in A. Equivalently,

f +B
(�t)↔ | det P| �A(�u)+ [ �B(�u)−�A(�u)]�(�u).
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8.10 Restoring Lost Samples

In this section, we will show that an arbitrarily large but finite number of lost samples can
be regained from those remaining for certain band-limited signals even when sampling is
performed at the Nyquist density [911].

8.10.1 Restoration Formulae

Let M denote a set of M integer vectors corresponding to the M lost-sample locations in
an N- dimensional bandlimited signal sampled in accordance with a sampling matrix, Q.
As an example, consider Figure 8.48 where the sampling matrix is

Q =
[

1 −1
1 1

]
.

A total of M = 3 lost samples are shown by hollow dots. It follows that

M =
{[

0
0

]
,

[
0
1

]
,

[
1
−2

]}
.

8.10.1.1 Lost Sample Restoration Theorem

If x
(�t) is a bandlimited signal and the sampling matrix, Q, is chosen to ensure that there is

no aliasing, then the missing samples can be regained from solution of the M equations

∑
�n �∈M

x(Q�n)
[
δ
[�k − �n

]
− fB(Q

(�k − �n))
]

=
∑
�n∈M

x(Q�n)fB
(
Q
(�k − �n)); �k ∈M

(8.110)

assuming that the solution is not singular. The left-hand side of (8.110) contains the unknown
samples. The right-hand side can be found from the known data.

Proof . We can write (8.107) as

x
(�t) =

⎡
⎣∑
�n �∈M
+
∑
�n∈M

⎤
⎦ x(Q�n)fB

(�t −Q �m)

FIGURE 8.48. Illustration of the three lost samples in the set M = {�m1, �m2, �m3}. The location of the
three lost samples is Q �mk; k = 1, 2, 3.
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This expression can be evaluated at M points, and we can solve for the sample set
{x(Q�n|�n ∈M}. Let these M points be the �t = Q�k, where �k ∈M:

x
(
Q�k) =

⎡
⎣∑
�n �∈M
+
∑
�n∈M

⎤
⎦ x(Q�n)fB{Q

(�k − �n)} ; �k ∈M

Rearranging gives (8.110).

8.10.1.2 Restoration of a Single Lost Sample

For a single lost sample at the origin, if fB(�0) �= 1, then

x(�0) =
[
1− fB

(�0)
]−1∑

�n �=�0
x(Q�n) fB(−Q�n) (8.111)

This follows from (8.110) for M = 1 and M containing only the origin. Note that the
signal’s interpolation can then be written directly void of the sample at the origin.

x
(�t) =∑

�n �=�0
x(Q�n)

(
fB
(�t −Q�n)+

[
1− fB

(�0)
]−1

fB(−Q�n)fB
(�t)
)

8.10.1.2.1 A Sufficient Condition for Singularity
A sufficient condition for (8.110) to be singular is when the integration region, B, is over a
tile, C.

Proof . On a tile, the functions {exp( j2π�uT Q�n)} form an orthogonal basis set. From (8.99)
with B = C we have

fB(Q�n) = | det Q|
∫

C
exp( j2π�uT Q�n)d�u = δ[�n].

The left-hand side of (8.110) is thus zero and the resulting set of equations singular.

8.10.2 Noise Sensitivity

Our purpose here is investigation of the lost sample restoration algorithm’s performance
when inaccurate data are used. In general, the algorithm becomes more unstable when (1) M
increases and/or (2) the area corresponding to B increases with respect to that of the area
of the tile C. Indeed, restoration is no longer possible when B = C.

The restoration algorithm in (8.110) is linear. Let ξ
(�t) denote a zero mean stochastic

process. If x
(�t) is uncorrelated with ξ

(�t), then the use of {x(Q�n)+ ξ (Q�n)|�n �∈M} in (8.110)
instead of {x(Q�n)|�n �∈M} will result in {x(Q�n)+ η(Q�n)|�n ∈M}, where {η(Q�n)|�n ∈M}
is the response to {ξ (Q�n)|�n �∈M} alone.

∑
�n �∈M

η(Q�n){δ[�k − �n]− fB{Q
(�k − �n)}

=
∑
�n∈M

ξ (Q�n)fB{Q
(�k − �n)}�k ∈M.

(8.112)
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The restoration noise, η, depends linearly on the data noise, ξ . Thus the cross correlation
between these two processes and the autocorrelation of η can be determined from a given
input data noise autocorrelation.

Our treatment will be limited to the case when a single sample is lost and the data noise
is white i.e.,

E[ξ (Q�n)ξ∗(Q �m)] = ξ2δ[�n− �m] (8.113)

where ξ2 is the data noise level (variance) and E denotes expectation. With no loss in
generality, we place the lost sample at the origin, and (8.112) becomes

η(�0) = [1− fB
(�0)]−1

∑
�n �=�0

ξ (Q�n)fB(−Q�n).

Taking the square of the magnitude, expectating, and using (8.113) gives

η2
(�0)

ξ2
= [1− fB

(�0)]−2
∑
�n �=�0
|fB(−Q�n)|2 (8.114)

where the restoration noise level is then

η2
(�0) = E[|η2(�0)|].

The sum in (8.114) can be evaluated through (8.111) with x
(�t) = f ∗(−�t). Since FB(�u) is

real, f ∗(−�t) = f
(�t). The result is

η2
(�0)

ξ2
= fB

(�0)

1− fB
(�0) . (8.115)

This result has a fascinating geometrical interpretation. From (8.107)

fB
(�0) = | det Q|

∫
B

d�u.

But, with an illustration in Figure 8.47,

B =
∫

B
d�u = area of integration, B.

and

C =
∫

C
d�u = | det P| = area of a tile.

Thus (8.115) can be written as

η2
(�0)

ξ2
=
(

C

B
− 1

)−1

. (8.116)
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The restoration noise level is thus directly determined by the area of the integration
region for fB

(�t) and the area of a tile. Equation (8.116) is a strictly increasing function of
B. Thus, for minimum restoration noise level, we choose B = A = the region of support of
the transform of the signal x

(�t).
For Nyquist density sampling in one dimension, A = B = C. In this case oversampling

is required to restore lost samples. For higher dimensions, the restoration capability is
dependent on the region of support of the signal’s spectrum. If the support is in the shape of
a tile (e.g., rectangular, hexagonal), then restoration is not possible at the Nyquist density.

8.10.2.1 Filtering

Discrete white noise has a uniform spectral density and thus significant high-frequency
energy. Once lost data have been restored, the data noise level can be reduced by filtering
the result through B assuming that B < C. The noise level at the lost sample location
remains the same. The noise level at locations far removed from the lost-sample locations
will asymptotically be the same as that for the filtered noisy samples if no data were lost. If
ξ (Q�n) is zero mean and stationary, then after filtering, the process�(Q�n) is also stationary.
If the data noise is white as in (8.113), its spectral density is uniform in C. Thus if we filter
the noise through B, the resulting normalized noise level is

�2

ξ2
= B

C
. (8.117)

To minimize, we clearly would choose B = A.
For a single lost sample in discrete white noise, the ratio of the restoration noise level to

that of data far removed is, after filtering through B,

η2
(�0)

�2
=
(

1− B

C

)−1

(8.118)

where we have used (8.116) and (8.117). To minimize, we again would choose B = A. Note
that (8.118) exceeds both one and (8.116). Indeed, elementary manipulation reveals

η2
(�0)

�2
= η2

(�0)

ξ2
+ 1.

8.10.2.2 Deleting Samples from Optical Images

The Nyquist sampling density for images whose spectra have circular support is achieved
when the circles in the frequency domain are densely packed as is shown in Figure 8.43.

Note, as is shown at the right in Figure 8.45, the area of A is less than that of C. Thus, in
the absence of noise, an arbitrary number of lost image samples can be restored from those
(infinite number) remaining. For B = A, the interpolation function here is

fA(t1, t2) = 2W2| det Q| jinc(Wr) = jinc(Wr)√
3

.

We can numerically illustrate the effects of discrete white noise on restoring a lost sample
from an image that has a spectrum with circular support. Suboptimal rectangular sampling
is considered first, followed by the optimal hexagonal case. Both cases are extended to
higher dimensions.
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Rectangular Sampling
If limited to rectangular sampling, the restoration noise level from (8.116) follows as

η2
(�0)

ξ2
=
(

4

π
− 1

)−1

≈ 3.66. (8.119)

After filtering through the A circle, the ratio of the restoration noise level to the data noise
level at points far removed from the origin is

η2
(�0)

�2
=
(

1− π
4

)−1 ≈ 4.66 (8.120)

where we have used (8.118) with B = A = πW2. The lost-sample noise is thus 6.7 dB
above the filtered data noise at infinity.

The results can easily be extended to higher dimensions. Assume that the spectrum
has support within an N- dimensional hypersphere of radius W . The sphere area (volume)
is [1513]

Asphere(N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2Nπ
N−1

2
(N−1

2

)!WN

N ! ; odd N

π
N
2 WN

(N
2

)! ; even N .
(8.121)

For rectangular sampling, C = (2W )N . The corresponding plots of η2(�0)/ξ2 and η2(�0)/�2

are shown as solid lines in Figure 8.49.
A single hexagonal tile is shown on the right of Figure 8.45 for minimum density

sampling. If the radius of the inscribed circle is W , the area of the hexagon is

C = 2
√

3W2

Thus, from (8.116) for B = A = πW2

η2
(�0)

ξ2
=
[

2
√

3

π
− 1

]−1

≈ 9.74

and, similarly, from (8.118)

η2
(�0)

�2
=
[

1− π

2
√

3

]−1

≈ 10.74

As one would expect, these values (≈ 10dB) are greater than those of the corresponding
rectangular sampling cases in (8.119) and (8.120).

In higher dimensions, Nyquist sampling corresponds to densely packing hyperspheres
in the frequency domain. We use the table in Figure 8.46 in conjunction with (8.121) to
generate the restoration noise level plots in Figure 8.49 for Nyquist density sampling when
the signal’s spectrum support is a hypersphere. The plots are shown with broken lines and,
as we would expect, exceed the corresponding rectangular sampling results.
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FIGURE 8.49. Plots of η2/ξ2 (filled circles) and η2/�2 (open circles) in dB [10log10(·)]. The solid lines
are for minimum density rectangular sampling and the dashed for Nyquist (hexagonal) sampling.

8.11 Periodic Sample Decimation and Restoration

In the previous section, we showed that if gaps exist in the replication of spectra, then an
arbitrarily large but finite number of lost samples can be regained from those remaining. In
this section, we show that under the same circumstances, certain periodic sample decimation
can be reversed from knowledge of the remaining samples. Thus, an infinite number of lost
samples can be restored in certain scenarios. This procedure is applicable in certain cases
even at the Nyquist density. The overall sampling density can thus be reduced to below the
Nyquist density.

Fundamentally, we will distinguish between the Nyquist and minimum sampling densities
which, in one dimension, are the same. The Nyquist density is the area of a tile when the
replicated spectra are most densely packed. The minimum sampling density, we will show,
is equal to the area of the support of a signal’s spectrum. With reference to the right side of
Figure 8.45, we showed, for example, that the Nyquist density for a signal with a circular
spectrum is, 2

√
3W2. We will show that the minimum sampling density is the area of the

circle, πW2, a sampling density reduction of over 9%. In practice, this reduction can be
achieved by the decimation procedure described in this section.

8.11.1 Preliminaries

Before a discussion of the procedure to restore decimated samples, we need to establish a
formality for decimation notation. Consider sampling geometry at the top of Figure 8.50
with sampling matrix

Q =
[

T −T
T T

]
.
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FIGURE 8.50. (Top) Samples are divided into four subgroups. (Bottom) A tile for all the samples is
the large square diamond. Each diamond contains four subtiles. A subtile is a tile for any one sample
subgroup.

As shown, the samples are divided into four groups labelled one through four. The sampling
matrix for the group of solid dots is clearly

D =
[

2T −2T
2T 2T

]
.

Each of the other subgroups has the same sampling matrix, but with a different offset vector.
Rather than the origin, replication is centered about the offset vector. Using the four samples
in the bold square diamond, these offset vectors are

Q�e1 =
[

T
−T

]
; Q�e2 =

[
0
0

]

Q�e3 =
[−T
−T

]
; Q�e4 =

[
0
−2T

]
.
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Correspondingly, we define the offset matrix

E = [ �e1 | �e2 | �e3 | �e4 ] =
[

0 0 −1 −1
−1 0 0 −1

]
.

Let’s examine the frequency domain periodicity generated by these sampling geometries.
The periodicity matrix for all of the samples is

P = Q−T =
[

W −W
W W

]
.

The large square diamonds shown at the bottom of Figure 8.50 are corresponding tile.
(Each contains four smaller square diamonds.) For any one of the sample subgroups, the
periodicity matrix is

PD = D−T =

⎡
⎢⎢⎢⎣

W

2
−W

2

W

2

W

2

⎤
⎥⎥⎥⎦.

The smaller square diamonds at the bottom of Figure 8.50 outlined by broken lines can serve
as periodicity subtiles for a sample subgroup. A tile, C, and subtile, CD, for this example are
shown in Figure 8.51.

We can generalize our observations. For a given Q, we have

D = QM

where M is a nonsingular matrix of integers. For our previous example

M =
[

2 0
0 2

]
.

The E matrix of offset vectors is obtained through examination of any period of sample
subgroups. There are

L = | det M|
subgroups and L subtiles per tile.

FIGURE 8.51. A diamond shaped tile divided into four subtiles.
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The spectrum of all of the samples is

s
(�t) =∑

�n
x(Q�n)δ

(�t −Q�n)

↔ S(�u) =
∑
�n

x(Q�n) exp(−j2π�uT Q�n).

The samples can be recovered via

x(Q�n) = | det M|
∫

C
S(�u) exp(j2π�uT Q�n)d�u

where C is any tile.
The ith sample subgroup has a spectrum of

si
(�t) =∑

�n
x(D�n−Q�ei)δ(�t − D�n+Q�ei)←→

Si(�u) = exp(−j2π�uT Q�ei)
∑
�n

x(D�n−Q�ei) exp(−j2π�uT D�n);

1 ≤ i ≤ L. (8.122)

A sample subgroup can be obtained from

x(D�n−Q�ei) = | det D|
∫

CD

Si(�u) exp
(
j2π�uT (D�n−Q�ei)

)
d�u (8.123)

where CD is any subtile. Clearly

S(�u) =
L∑

i=1

Si(�u). (8.124)

8.11.2 First Order Decimated Sample Restoration

Consider unaliased replication of a spectrum in such a manner that gaps occur. As we have
seen, this can even occur at Nyquist densities. We will show that if a subtile is totally
subsumed in a gap contained within a tile, then any sample subgroup can be expressed as a
linear combination of those sample subgroups remaining. Thus, a sample subgroup can be
lost and the signal can still be interpolated from those samples remaining.

Proof . If a subtile, CD, lies in a gap, then S(�u) is identically zero there. Thus, for �u within
the subtile we have from (8.124)

S(�u) = 0 = SL(�u)+
L−1∑
i=1

Si(�u)

or

SL(�u) = −
L−1∑
i=1

Si(�u).
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Substituting into (8.123) and simplifying gives

x(D�n−Q�eL) = −| det D|
L−1∑
i=1

∫
CD

Si(�u) exp
(
j2π�uT (D�n−Q�eL)

)
d�u.

Substituting (8.122) and simplifying gives

x(D�n−Q�eL) = −
L−1∑
i=1

∑
�m

x(D�n−Q�ei)f (D(�n− �m)+Q(�ei − �eL)) (8.125)

where

f
(�t) = −| det D|

∫
CD

exp( j2π�uT�t)d�u (8.126)

is the interpolation kernel. Equation (8.125) shows the manner by which the Lth sample
subgroup can be recovered from the remaining L − 1 subgroups.

Example 8.11.1. We reconsider the minimum regular rectangular sampling density of N =
2 dimensional signals whose spectrum has a circular support. The spectral replication of
Figure 8.42 is redrawn in Figure 8.52 with a bold outlined tilted rectangle shown as a tile.
We divide the tile into eight identical square diamond subtiles. One of the tiles clearly falls
into the gap among the replications. Using the periodicity matrix in (8.102), we find such
subtiles can be generated by using

M =
[

2 −2
2 2

]
.

A sample grouping that will achieve these subtiles is shown in Figure 8.53. The deleted
samples are shown as solid dots.

FIGURE 8.52. A tile for the replicated circles shown is the bold outlined tilted rectangle. The rectangle
can be divided into eight square diamond subtiles one of which, shown shaded, lies within a gap
among the circles.
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FIGURE 8.53. The decimation shown with solid dots achieves the periodicity subtile structure shown
in Figure 8.52. Therefore, the samples at the locations of the solid dots can be deleted and restored as
a linear combination of those remaining.

The interpolation function for this example follows from (8.126) using the square diamond
in Figure 8.52 as the integration period, CD. The result is

f (t1, t2) = −sinc

(
t1 + t2

4T

)
sinc

(
t1 − t2

4T

)
e

jπ (t1+t2)
T

This decimation geometry reduces the sampling rate to 7
8 (2W )2 = 3.50W2 which is still

higher than the Nyquist density of 2
√

3W2 ≈ 3.46W2.

8.11.3 Sampling Below the Nyquist Density

If there are gaps among spectral replications at the Nyquist density, then first order sample
decimations can always be applied thereby reducing the overall sampling density below
that of Nyquist [284, 288, 916]. We offer two examples.

8.11.3.1 The Square Doughnut

A spectral support is shown in Figure 8.54 that is zero inside the small square and zero
outside the large square.

The Nyquist density is clearly (2W )2. The large square, however, can be divided into a
three by three array of smaller squares, the center one of which falls within an identically
zero region. We may therefore decimate every ninth sample as shown in Figure 8.55.

The decimated samples can be recovered using (8.126) with CD as the small square in
Figure 8.54. The required interpolation function follows as

f (t1, t2) = −sinc

(
2Wt1

3

)
sinc

(
2Wt2

3

)
.

The resulting sampling density is 8/9 that of Nyquist and, since the sampling density is
equal to the spectral support of the square doughnut, the minimum sampling density has
been achieved.
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FIGURE 8.54. A “square doughnut” spectral support for which a sub-Nyquist sampling density is
possible. Indeed, we show how to achieve the minimum sampling density.

FIGURE 8.55. If a signal has the spectral support shown in Figure 8.54, then every ninth sample can
be decimated as shown here. The composite sampling density is the minimum sampling density and
is sub-Nyquist.

8.11.3.2 Sub-Nyquist Sampling of Optical Images

We return to the example of maximally packed circles as illustrated in Figure 8.43. A tile for
this replication follows from choosing midpoints at four gaps and forming the parallelogram
shown in Figure 8.56.

The tile is divided into four congruent parallelogram subtiles. The upper right
parallelogram is divided into four smaller parallelograms. The process is repeated one
final time. A small parallelogram, shown in black, is totally contained in a gap among the
circles. Using this as a subtile, we see that we can reduce the overall sampling density to
63
64 that of Nyquist. A sample decimation procedure to achieve this is shown in Figure 8.57.

8.11.4 Higher Order Decimation

First order decimation restoration can be straightforwardly generalized. If M < L
nonoverlapping subtiles lie in a gap within one tile, then M sample subgroups can be
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FIGURE 8.56. The small black parallelogram subtile lies totally in the gap among maximally packed

circles. Since the subtile is 1
64

th
the area of the larger parallelogram tile, the (Nyquist) sampling density

can be reduced by a factor of 63
64 . A corresponding sample decimation strategy is shown in Figure 8.57

FIGURE 8.57. A sampling decimation procedure that will achieve the subtile structure shown in
Figure 8.56. The solid dots represent the decimation locations.

represented as linear combinations of the remaining L − M. The analysis procedure
is identical to that in the previous section, except that one solves for the M sample
subgroups’ spectra corresponding to M functional equations. The analysis is similar to a
multidimensional extension of Papoulis’ generalization as presented in Section 6.3. Details
are given elsewhere [284, 287, 288].

Higher order decimation can be used to establish that the minimum sampling density
for a bandlimited signal is equal to the area of its support. In Figure 8.58, for example,
we have replication of circular support resulting from rectangular sampling. Each large
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FIGURE 8.58. Higher order decimation can be used to illustrate that the sampling density for a
bandlimited image can be reduced to the area of its spectral support and, therefore, the minimum
sampling density.

square tile is divided into 441 square subtiles. In each tile, 68 of these subtiles (shown
shaded) lie in a gap. Thus, if the circular radius is W , the sampling rate is reduced
from (2W )2 to 373

441 (2W )2 = 3.38W2, which is below the Nyquist density of 3.46W2.
Ultimately, by increasing the number of subtiles, the sampling density can be reduced to
3.46W2, the area of the circular support and, for the circular spectral support, the minimum
sampling density.

8.12 Raster Sampling

Raster sampling of a two dimensional signal, x(t1, t2), is illustrated in Figure 8.59. The
most familiar application of raster scanning is in analog (CRT) television images. The set
of functional slices, {x(nT , t2)|∞ < n <∞}, serve as the raster sample set. The problem
is, from this set, to reconstruct the original signal.

The sampled function of one dimensional vertical slices can be expressed via

s(t1, t2) = x(t1, t2)× 1

T
comb

(
t

T

)

=
∞∑

n=−∞
x(nT , t2)δ(t1 − nT ) (8.127)

where T is the sampling interval. From the separability theorem, in two dimensions,

f (t1) = f (t1)× 1↔ F(u1)δ(u2).
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FIGURE 8.59. Illustration of raster sampling. Shown on the right is the one dimensional sample,
x(3T , t2), taken from the slice of x(t1, t2) along the line t1 = 2T .

Thus, in two dimensions,

comb(t1)↔ comb(u1)δ(u2)

and the Fourier transform of (8.127) gives

S(u1, u2) = X(u1, u2) ∗ [comb(Tu1)δ(u2)]

= 1

T

∞∑
n=−∞

X
(

u1 − n

T
, u2

) .

This is illustrated in Figure 8.60. The spectrum on the left is replicated in one dimension at
intervals or 1

T . Let the width of the spectrum, as illustrated in Figure 8.60, be B2. In order
for there to be no aliasing in the raster sampled signal, the signal spectra must not overlap.
To do so, we make the familiar requirement

T ≤ 1

2B2
.

The Nyquist rate for raster sampling is thus

2B2 = 1

2T
.

Note, in Figure 8.60, the spectral support need not be finite in the u2 direction.

FIGURE 8.60. Spectral replication as a consequence of raster sampling.
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Assuming no aliasing, to interpolate the original signal from the raster samples, the
sampled signal must be run through a filter that isolates the zeroth order spectrum in the
replication. This can be, for example, the region B shown in Figure 8.60. Then

X(u1, u2) = S(u1, u2)× T�B(u1, u2).

Choices for �B(u1, u2) are � (T�u) and B = A = the spectral support. The interpolation
follows as

x(t1, t2) =
∞∑

n=−∞
x(nT , t2)fB(t1 − nT , t2)

where the interpolation function is found by

fB(t1, t2)↔ T�B(u1, u2).

8.12.1 Bandwidth Equivalence of Line Samples

Here we establish the interesting property that, if x(t1, t2) is bandlimited, all of its one
dimensional parallel slices have the same bandwidth. As a consequence, every slice in a
raster scan has the same bandwidth. We can establish this by inspection of Figure 8.61
where the support of a bandlimited signal, X(u1, u2), is shown in the bottom right corner. Its
inverse, x(t1, t2), is in the upper left. The function, χ (t1, u2) shown in the lower left corner.
It can be computed as the one dimensional inverse Fourier transform of each horizontal
slice of X(u1, u2).

χ (t1, u2) =
∫ ∞

u1=−∞
X(u1, u2)e j2πu2t2du1.

FIGURE 8.61. A two dimensional signal, x(t1, t2), can be Fourier transformed by first transforming
each vertical slice to form χ (t1, u2) in the bottom left corner. Each horizontal slice of χ (t1, u2) can be
Fourier transformed to form the two dimensional Fourier transform, X(u1, u2), in the bottom right hand
corner. This perspective helps establish that all parallel one dimensional slices of two dimensional
functions have the same bandwidth.
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Since X(u1, u2) = 0 for |u2| > B2, it follows that χ (t1, u2) is also zero for |u2| > B2. The
χ function can also be determined by the one dimensional Fourier transformation of each
vertical slice of x(t1, t2)

χ (t1, u2) =
∫ ∞

t2=−∞
x(t1, t2)e−j2πu2t2dt2,

For a fixed slice t1 = τ , this is a one dimensional Fourier transform.

x(τ, t)←→ χ (τ, u).

Clearly, the slice x(τ, t2) is bandlimited with bandwidth B2. This is true for any choice of τ .
We thus conclude any two parallel slices of a two dimensional bandlimited function have
the same spectral support (e.g., bandwidth.)

8.13 Exercises

8.1. What is a one dimensional sphere? What is a one dimensional cube?
8.2. § In Figure 8.62, the distance from point A to B on the unit square is

√
2. If we

travel, as shown on the left, horizontally to the southeast corner, and then north, we
travel a total of two units. If the trip is broken as shown in the middle figure, yet
all steps are either horizontal or vertical, the distance is still two units. This is even
true when, as shown on the right, the steps are made smaller. The distance travelled
from A to B is still two units. Take this to the limit as the step size approaches zero.
We then have the diagonal connecting A to B and the distance travelled is still two,
not
√

2. Expose the faulty reasoning here.
8.3. The superposition integral in two dimensions mapping the contents in a �1 ×�2

region to a T1 × T2 region is

y(t1, t2) =
∫ �1

τ1=0

∫ �2

τ2=0
h(t1, t2; τ1, τ2)x(τ1, τ2)dτ1dτ2;

0 ≤ t1 ≤ T1 and 0 ≤ t1 ≤ T1.

This is a continuous version of the superposition sum in (8.3). For the discrete case,
the two dimensional mapping can be expressed as the one dimensional mapping in
(8.4). Explore a similar dimensional reduction for the continuous case.

FIGURE 8.62. A flawed illustration that
√

2 = 2.
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8.4. § In the game of three dimensional tic tac toe in Figure 8.1, is it possible to have a
tie game? If so, illustrate one.

8.5. Show that the multidimensional Fourier transform in (8.5) is linear.
8.6. Equation (8.23) states the inverse of a rotation matrix is the transposition of the

rotation matrix. Verify this for the rotation matrix in (8.21).
8.7. For a given x

(�t ), interpret x
(
A�t) when A is singular.

8.8. Pitch, roll and yaw. The pitch, roll and yaw of an aircraft is illustrated in Figure 8.63.
The roll is the angular displacement of the aircraft on the (t1, t2) plane rotated about
the t3 axis. Pitch and yaw are analogously defined.
(a) Evaluate the three rotation matrices for pitch, roll and yaw angles of,

respectively, θp, θr and θy.
(b) Compute the composite rotation matrix. Scaling matrices generally do not

commute. Do these matrices commute?
(c) If x(t1, t2, t3) = 1 inside the plane and zero outside at time zero with no rotation,

compute the function at time s assuming speed c with θp = θr = θy = 45◦.
8.9. On the (t1, t2) plane, form the line connecting t2 = 2 on the t2 axis to the point t1 = 1

on the t1 axis. Let the right triangle defined by this segment and portions of the two
positive axes form a triangle in the first quadrant. Let x

(�t) be equal to one inside
this triangle and zero outside. Also, let �τ = [ 1 2 ]T and Rθ be a rotation matrix
for θ = π/4. Let S be a scaling matrix with diagonal elements [ 1

2
2
3 ]T . Provide

detailed sketches of

(a) x
( �t )

(b) x
( �t − �τ)

(c) x
(
Rθ�t
)

(d) x
(
S�t)

(e) x
(
SRθ�t

)

(f) x
(
RθS�t)

(g) x
(
SRθ

( �t − �τ))

(h) x
(
SRθ�t − �τ

)

(i) x
(
S
(
Rθ�t − �τ

))

( j) x
(
RθS

( �t − �τ))

(k) x
(
RθS�t − �τ)

(l) x
(
Rθ
(
S�t − �τ))

FIGURE 8.63. Illustration of the angular variable definitions for pitch, roll and yaw.
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8.10. Consider three points on the (t1, t2) plane.

�t1 =
[

0
0

]
; �t2 =

[
0
2

]
; �t3 =

[
1
0

]
.

Using a “+” for �t1, a “o” for �t2 and an “×” for �t3, plot the location of the following
points.

(a) �t
(b) �t − �τ
(c) Rθ�t
(d) S�t
(e) SRθ�t
(f) RθS�t

(g) SRθ
(�t − �τ)

(h) SRθ�t − �τ
(i) S

(
Rθ�t − �τ

)
( j) RθS

(�t − �τ)
(k) RθS�t − �τ
(l) Rθ

(
S�t − �τ)

The matrices and vectors are defined in Exercise 8.9. The transformations here
correspond to those in Exercise 8.9.

8.11. Evaluate the areas of the triangles
(a) in Exercise 8.10.
(b) in Exercise 8.9.

8.12. Compute the Fourier transform of the two dimensional functions shown in
Figure 8.64. All are one inside and zero outside the curves shown. The ellipses
in (c) and (d) are identical.

8.13. Let f (r)↔ F(ρ) denote Hankel transform pairs. Prove the following theorems.
(a) Linearity.
(b) Scaling

f (ar)←→ 1

|a|2 F
(ρ

a

)
.

(c) Inversion

f (r) = 2π
∫ ∞

0
ρF(ρ)J0(2πrρ)dρ. (8.128)

FIGURE 8.64. The ellipse in (d) is rotated 45◦ and had the same dimension as the ellipses in (c).
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8.14. Compute the Hankel transform of
(a) f (r) = exp(−πr2).
(b) the function f (r) illustrated in Figure 8.12.

8.15. Show that the Hankel transform in N dimensions in (8.36) reduces to the one
dimensional Fourier transform when N = 1 and the two dimensional Hankel
transform when N = 2. Hint: For the N = 1 case, consider using a lower order
spherical Bessel function.

8.16. What is the relation between the Abel transform and the Hankel transform of a
circularly symmetric function, f (r)? HINT: Apply the central slice theorem.

8.17. Consider the three dimensional probability density function, fV1,V2,V3 (v1, v2, v3),
describing the equilibrium velocity of particles in an ideal gas. The particle velocity
in any one dimension is not dependent on the velocity in any perpendicular direction.
Thus, V1, V2, and V1 and independent random variables and the density function is
separable.

fV1,V2,V3 (v1, v2, v3) = fV1 (v1) fV2 (v2) fV2 (v2).

The marginal densities will be identical so

fV1 (v) = fV2 (v) = fV3 (v) = fV (v).

Since the statistics of the probability density function are independent of direction,
the probability density function will also be spherically symmetric so that the density
can be written as

fV1,V2,V3 (ρ) = fV (v1) fV (v2) fV (v3)

where

ρ2 = v2
1 + v2

2 + v2
3.

There only exists one function type, fV (v), that can satisfy both the required
separability and spherical symmetric properties for this problem. What is it?

8.18. Show that the magnitudes of the circular harmonics of x(r, θ ) are the same as those
for the rotated image x(r, θ − φ).

8.19. Fractional derivatives. The inverseAbel transform touches on the idea of fractional
derivatives. The derivative theorem states

(
d

dt

)n

x(t)↔ ( j2πu)nX(u).

If n is not an integer, we have a fractional derivative. Express the fractional derivative

(
d

dt

)1/2

x(t)

as a convolution integral.
8.20. Derive the inverse Abel transform expression in (8.48) using (8.49).
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8.21. (a) If a projection, p(t), is zero for |t| > T , show that the inverse Abel transform
in (8.49) can be written as

f (r) = 1

π

∫ ∞
t=r

√
t2 − r2 d

dt

(
p′(t)

t

)
dt − p′(T )

πT

√
T2 − r2. (8.129)

(b) Evaluate the inverse Abel transform of the Parzen window in Table 9.2.
8.22. In the Radon transform, the function pθ (t1) in (8.52) is referred to as a sinogram.

To show why, evaluate the Radon transform of a single point.

x(t1, t2) = δ(t1 − τ1)δ(t2 − τ2).

8.23. Compute the Fourier series coefficients for the periodic functions
(a) S(�u) =∑�n G(�u−P�n) where G(�u) is a given function that is not a period of S(�u)
(b) S(u1, u2) = cos[2π (sin u1 + sin u2)]

8.24. What is the frequency response, H( f1, f2), for the transformation function in (8.8.2)
when the prototype filter, on the interval | f | ≤ 1

2 , is

(a) H( f ) = � (4f ), (c) H( f ) = � (4f ),

(b) H( f ) = � (2f ), (d) H( f ) = � (3f ).
8.25. A sampling geometry is denoted by Q. Show that QM produces the same geometry

when M is a matrix of integers and | det M| = 1.
8.26. Replace the multidimensional sample data, x(Q �m), by the noisy data x(Q �m) +

ξ (Q �m). The interpolation result is x
(�t) + �(�t). Assume that ξ (Q �m) is zero mean

and wide sense stationary with variance ξ2.

(a) Show for B = C, that �2
(�t) = ξ2. Thus the interpolation noise level is the

same as the data noise level.
(b) Show that when the data noise is discrete white noise, that the interpolation

noise level is given by (8.117).
8.27. A signal x(t1, t2) is known to have a spectrum that is identically equal to zero outside

of an equilateral triangle. If a side of the triangle is B, what is a sampling matrix that
we can use to minimize the sampling density? Draw the replicated spectra resulting
from this sampling geometry.

8.28. A signal x(t1, t2) is known to have a spectrum that is identically zero outside of
a circle of finite radius in the (u1, u2) plane. The signal is sampled at its Nyquist
density corresponding to this circle and the sample at the origin is lost. If all of the
known samples are zero, what is the value of the lost sample?

8.29. For what dimension is the volume of a hypersphere in (8.121), for fixed radius, W ,
maximum? What happens to the volume of a hypersphere for fixed W as N →∞?

8.30. For a fixed x
(�t) and Q, numerically investigate the convergence rate of (8.111) for

various B’s.
8.31. Instead of x(D �m−Q�ei) on the right side of (8.125), suppose we had x(D �m−Q�ei)+

ξ (D �m −Q�ei) where ξ is zero mean discrete white noise with variance ξ2. Thus

E[ξ (D �m −Q�ei)ξ (D�n−Q�ei)] = ξ2δ[�n− �m]δ[i − j].
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Let the response to this noisy data be

x(D �m −Q�eL)+ η(�n).

Clearly, η(�n) is zero mean and has the same variance,

E[|η(�n)|2] = η2

for all �n. Find a closed form expression for the NINV, η2/ξ2.
8.32. Consider the parallelogram periodicity cell for maximally packed circles pictured

in Figure 8.65. The parallelogram can be divided into two equilateral triangles. One
triangle is positioned, as shown, with its three vertices centered in gaps. The triangle
is divided into four smaller equilateral triangles. The center triangle is again divided.
Note that the small equilateral triangle falls completely in a gap.
(a) Using this observation, describe a second order decimation scheme to reduce

sampling below the Nyquist rate. (Note: as shown, the periodicity cell can be
oriented as to contain these two gaps.)

(b) What is the overall density of this decimation scheme?
(c) For your choice of subgroup decimation, derive the required interpolation

functions.
8.33. Assume that functions in Figure 8.64 are functions of (u1, u2) rather than (t1, t2).

We wish to raster sample N = 2 dimensional signals that have spectra with supports
illustrated in Figure 8.64(a), (b) and (d). We have the freedom to choose the sense
of sampling. All sample slices, for example, can be horizontal, all can be at 45◦
or 30◦, etc.
(a) In each case, specify a sampling sense that produces the minimum number of

line samples per unit interval. Also, give this minimum rate.
(b) Sketch the resulting spectral replication.

FIGURE 8.65. Geometry for Exercise 8.32.
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8.34. Multidimensional system theory is a straightforward generalization of the one
dimensional systems theory presented in Section 3. The response to an input x(t1, t2)
is S[x(t1, t2)] = y(t1, t2). Classify each system below as isoplanatic and/or linear.
If linear, specify its point-spread function, h(t1, t2; τ1, τ2). If linear and isoplanatic,
specify h(t1, t2).
(a) Magnifier.

y(t1, t2) = 1

M2
x

(
t1
M
,

t2
M

)
; 0 �= M �= 1.

(b) Let f (z) be a nonlinear function.

y(t1, t2) = f [x(t1, t2)].
(c) Rotation by an angle θ .

y(t1, t2) = x(t1 cos θ + t2 sin θ, t2 cos θ − t1 sin θ ).

(d) Translation.

y(t1, t2) = x(t1 − ξ1, t2 − ξ2).

(e) Fourier transform.

y(t1, t2) =
∫ ∞
τ1=−∞

∫ ∞
τ2=−∞

x(τ1, τ2)e−j2π (t1τ1+t2τ2)dτ1dτ2.

8.14 Solutions for Selected Chapter 8 Exercises

8.1. In one dimension, both a cube and a sphere are line segments.
8.2. The distance of two is the �1 norm between A and B. The diagonal measure of

√
2

is the �2 or Euclidian norm.
8.4. An example of a tie game in three dimensional tic tac toe is shown in Figure 8.66.
8.8. From (8.21), R = RθRφ . Hence, RT = RT

φRT
θ and

RRT = [RθRφ
] [

RT RT
φRT

θ

]

= Rθ
[
RφRT

φ

]
RT
θ

= Rθ IRT
θ

= I

FIGURE 8.66. A tie game.
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FIGURE 8.67. The solution to Exercise 8.9.

verifying

RT = R−1.

8.9. See Figure 8.67.
8.10 See Figure 8.68.
8.11 In two dimensions, the area of a parallelogram formed by vectors �t1 and �t2 is the

determinate
∣∣∣∣
[
�t1
...�t2
]∣∣∣∣ .

For two square matrices, A and B, we have the identity

|AB| = |A||B|.
Since

|S| = 1

3
,

|Rθ | = 1,

and the area of the original triangle in is one, it is straightforward to show in
Exercise 8.10 that each transformation not containing S (cases (a) through (c))
resulted in triangles with unit area, whereas all transformations containing Rθ (cases
(d) through (l)) resulted in triangles

with an area of 1
3 . The areas of the triangles in Exercise 8.9 are the reciprocal. In

cases (a) through (c), the area is one. In cases (d) through (l), the area is

|S−1| = 1

|S| = 3.
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FIGURE 8.68. The solution to Exercise 8.10.

8.13. (b) The scaling theorem for the Hankel transform follows directly from the scaling
theorem applied to the two dimensional Fourier transform.
(c) The most obvious approach to derive the inverse Hankel transform is substitution
of the inversion formula into the Hankel transform and manipulation of the
mathematics to obtain an identity. Although correct, the approach requires use of
Bessel function identities. A more straightforward approach begins with writing the
inverse Fourier transform in two dimensions using (8.8).

x(t1, t2) =
∫ ∞
−∞

∫ ∞
−∞

X(u1, u2)e j2π (u1t1+u2t2)du1du2.

Following steps analogous to Section 8.4.6 immediately results in the inversion
formula for the Hankel transform given in (8.128).

8.14. (a) In two dimensions, we know from the separability theorem that

e−πr2 = e−π (t2
1+t2

2 ) = e−π t2
1 e−π t2

2 ←→ e−πu2
1 e−πu2

2 = e−πρ2
.

Thus, the Hankel transform of e−πr2
is e−πρ2

.
(b) The function f (r) in Figure 8.12 is the difference between two circles. Its Hankel
transform will thus be the difference between two jinc’s.

8.16. The Abel transform is the projection of f (r). From the central slice theorem,
we know that the Fourier transform of a tomographic projection is a slice of the
two dimensional Fourier transform. Since the two dimensional Fourier transform
of f (r) is circularly symmetric and all slices are identical, we conclude that
the one dimensional Fourier transform of the Abel transform is the Hankel
transform of f (r). Equivalently, the inverse Hankel transform of the one dimensional
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Fourier transform of the Abel transform returns the original function. In other
words[149]

f ( y) =
∫ ∞

0

⎧⎨
⎩
∫ ∞

x=−∞

⎡
⎣
⎛
⎝
∫ ∞
ξ=x

2ξ f (ξ )
(
ξ2 − x2

) 1
2

dξ

⎞
⎠ e−j2πρxdx

⎤
⎦ ρ J0(2πρy)

⎫⎬
⎭ dρ.

8.17. Since, for c and C constants,

Ce−cv2
1 e−cv2

2 e−cv2
3 = Ce−cρ2

,

our answer is the Gaussian random variable. Details of the constants are determined
by the mass of the particle, m, and temperature, T . The result is the Maxwell-
Boltzmann velocity distribution for ideal gases.

fV1,V2,V3 (v1, v2, v3) =
√(

1

2πmkT

)3

e
−m(v2

1+v2
2+v2

3)
2kT .

where k is Boltzmann’s constant.17

8.19.

(
d

dt

)1/2

x(t)↔ ( j2πu)1/2X(u)

= j

(−j2πu)1/2
( j2πu)X(u)

= j√
π

(−j2u)−1/2( j2πu)X(u)

Using (8.46),

(
d

dt

)1/2

x(t) = 1√
π

(
t−1/2μ(−t)

)
∗ d

dt
x(t)

8.20. Integrate the inverse Abel transform in (8.48) by parts. Using standard notation

u = p′(t)
t

dv = t√
t2 − r2

dt

du = d

dt

(
p′(t)

t

)
dt v =

√
t2 − r2.

Equation (8.49) follows directly.
8.21. (b) The inverse Abel transform of the Parzen window is, for T = 1 [1515],

f (r) =
{

f1(r) ; 0 ≤ r ≤ 1
2

f2(r) ; 1
2 ≤ r ≤ 1

17. See Section 4.4.3.1.
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where

f1(r) = 9

π

(
b

2
− r2 ln

(
1
2 − b

r

))
+ 6

π

(
9b

4
− 3a

2
+ c ln

(
1+ a
1
2 + b

))
,

f2(r) = 6

π

(−3a

2
+ c ln

(
1+ a

4

))
,

and

a =
√

1− r2,

b =
√

1

4
− r2,

c = 1+ r2

2
.

8.24. In all figures in this exercise, N = 25.
(a) For H( f ) = � (4 f ), see Figure 8.69.
(b) For H( f ) = � (2 f ), see Figure 8.70.
(c) For H( f ) = � (4 f ), see Figure 8.71.
(d) For H( f ) = � (3 f ), a plot of −H( f1, f2) is shown in Figure 8.72.

8.29. A plot of the volume of a unit radius hypersphere given by (8.121) is shown in
Figure 8.73. The maximum of 5.263789014 occurs at N = 5 dimensions. Clearly,
as the dimension N increases, the volume approaches zero.

8.33. (a) The minimum raster sampling rate occurs when sampling with parallel lines
with a slope of 9/5 (or −9/5). The resulting minimum sampling rate is equal
to the shortest distance between two parallel sides of the parallelogram which
can be shown, after a bit of work, to be 1/T = 2

√
56.

(b) Use horizontal lines at a sampling interval T = 1/2.
(c) Sample with lines of unit slope separated by T = 1 intervals. Corresponding

spectral replications are shown in Figure 8.74.

FIGURE 8.69. Solution to Exercise 8.24 (a). A Fourier series was used with h[n] = α sinc(αn) for
α = 1

4 .
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FIGURE 8.70. Solution to Exercise 8.24 (b). A Fourier series was used with h[n] = α sinc2(αn)
for α = 1

2 .

FIGURE 8.71. Solution to Exercise 8.24 (c). A Fourier series was used with h[n] = α sinc2(αn)
for α = 1

4 .
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FIGURE 8.72. Solution to Exercise 8.24 (d) The negative of H(f1, f2) is plotted. A Fourier series was
used with h[n] = α sinc2(αn) for α = 1

3 .

FIGURE 8.73. The volume of a unit radius hypersphere as a function of dimension, N .

FIGURE 8.74. See the solution to Exercise 8.33.
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9

Time-Frequency Representations

God exists since mathematics is consistent, and the Devil exists since we cannot prove it.
Andre Weil (1906–1998) [423]

Medicine makes people ill, mathematics makes them sad, and theology makes
them sinful.

Martin Luther (1483–1546) [1287]

The good Christian should beware of mathematicians, and all those who make empty
prophecies. The danger already exists that the mathematicians have made a covenant

with the devil to darken the spirit and confine man in the bonds of Hell.1

Saint Augustine [38]

9.1 Introduction

The Fourier transform is not particularly conducive in the illustration of the evolution of
frequency with respect to time. A representation of the temporal evolution of the spectral
content of a signal is referred to as a time-frequency representation (TFR). The TFR, in
essence, attempts to measure the instantaneous spectrum of a dynamic signal at each point
in time.

Musical scores, in their most fundamental interpretation, are TFR’s. The fundamental
frequency of the note is represented by the vertical location of the note on the staff. Time
progresses as we read notes from left to right. The musical score shown in Figure 9.1 is an
example. Temporal assignment is given by the note types. The 120 next to the quarter note
indicates the piece should be played at 120 beats per minute. Thus, the duration of a quarter
note is one half second.

The frequency of the A above middle C is, by international standards, 440 Hertz.
Adjacent notes notes have a ratio of 21/12. The note, A#, for example, has a frequency
of 440 × 21/12 = 466.1637615 Hertz. Middle C, nine half tones (a.k.a. semitones or
chromatic steps) below A, has a frequency of 440 × 2−9/12 = 261.6255653 Hertz. The
interval of an octave doubles the frequency. The frequency of an octave above A is twelve
half tones, or, 440 × 212/12 = 880 Hertz.2 The frequency spacings in the time-frequency
representation of musical scores such as Figure 9.1 are thus logarithmic. This is made more
clear in the alternate representation of the musical score in Figure 9.2 where time is on

1. During the fourth century, mathematicians were often equated with astrologers.
2. For more details, see Section 13.1.

411
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FIGURE 9.1. A simple musical score is a TFR.

FIGURE 9.2. A representation of the musical score in Figure 9.1 as a function of time and frequency.

the horizontal axis and frequency on the vertical. At every point in time where there is
no rest, a frequency is assigned. To make chords, numerous frequencies can be assigned
to a point in time. Further discussion of the technical theory of western harmony is in
Section 13.1.
If each of the notes in the musical score were represented by a sinusoid, the corresponding
signal, x(t), will consist of a sequence of sinusoids of the form

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(2π × 523.2511306t) ; 0 ≤ t < 1.25

sin(2π × 391.995436t) ; 1.25 ≤ t < 1.5

sin(2π × 440t) ; 1.5 ≤ t < 1.75

sin(2π × 391.995436t) ; 1.75 ≤ t < 2.0

sin(2π × 329.6275569t) ; 2.0 ≤ t < 2.25

sin(2π × 261.6255653t) ; 2.25 ≤ t < 2.75.

(9.1)

How do we transform a one dimensional temporal waveform of the type in (9.1) to a TFR
of the type in Figure 9.2? Doing so is the fundamental problem addressed in TFR synthesis.
The signals are generally much more complex than sinusoids and consist of numerous
frequency components at each point in time.
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9.2 Short Time Fourier Transforms and Spectrograms

TFR’s can be computed at every instance in time or at specified intervals of time. For the case
of specified intervals, the TFR is said to be decimated 3 in time. Decimation is appropriate
when the TFR is either not changing quickly in time, or the TFR is unable to track rapid
changes.

One way to generate an undecimated TFR display of a temporal signal, x(t), is by placing
the signal into a bank of bandpass filters, each filter being tuned to a different frequency. It
is in this spirit that the short time Fourier transform is formulated. The short time Fourier
transform, S(t; u), of a signal, x(t), is defined as

S(t; u) =
∫ ∞
−∞

w(τ )x(t − τ )e−j2πuτdτ (9.2)

where w(t) is a sliding window.
The discrete time equivalent of the short time Fourier transform is

S[n; f ] =
∞∑
−∞

w[k]x[n− k]e−j2π fk (9.3)

where w[n] is the discrete time window and f is the discrete time frequency. Typically, the
window is assumed to be of finite duration and is zero, say, for | n |> L.

9.3 Filter Banks

A filter bank [451, 805, 977, 1348, 1429, 1430] can be used to generate short time Fourier
transforms for specific frequency values of the form S(t, fn) for some set of fn.

Alinearly calibrated filter bank using ideal bandpass filters is illustrated in Figure 9.3. The
center frequencies are separated as fn = fn+1+ 2B and are of width 2B. We can show this is
a sampled version of the short time Fourier transform in (9.2). For an input x(t)←→ X(u),
the output of the nth filter is

S(t, fn) =
∫ fn+B

u=fn−B
X(u)e j2πutdu

or, equivalently

S(t, fn) =
∫ ∞
−∞

X(u)�

(
u− fn

2B

)
e j2πutdu.

Using the convolution theorem

S(t, fn) = x(t) ∗ 2B sinc(2Bt) e−j2π fnt,

3. The deci prefix in decimate has long been abandoned to mean one tenth, as it does in the measure decibel
(dB) meaning one tenth of a bel. The term has its origin in the Roman empire where, in a regiment of soldiers to
be disciplined, one soldier in ten was chosen for punishment. In battle, soldiers had the choice between engaging
in spirited battle or being disciplined after. The Greek historian Polybius of Megalopolis describes the procedure
[1133] “The tribune assembles the legion, and brings up those guilty of leaving the ranks, reproaches them sharply,
and finally chooses by lots sometimes five, sometimes eight, sometimes twenty of the offenders, so adjusting the
number thus chosen that they form as near as possible the tenth part of those guilty of cowardice. Those on whom
the lot falls are bastinadoed [beating of the soles of the feet with a stick as a form of torture or punishment]
mercilessly.”
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FIGURE 9.3. A filter bank for generating linearly spaced frequency samples the short time Fourier
transform.

or

S(t, fn) =
∫ ∞
−∞

2B sinc(2Bt)x(t − τ ) e−j2π fnt . (9.4)

Comparing with (9.2), we see this is the short time Fourier transform of x(t) sampled at
u = fn = f0 + 2nB with window

w(t) = 2B sinc(2Bt).

Our choice of block orthogonal4 filters assures that the sum of the signals S(t, fn) over n
will give the signal x(t) over the band of frequencies considered.

Filter banks need not be linearly calibrated. If, for example, we desire 10 equally spaced
samples per decade, we would generate samples of the type

S(t, fn) =
∫ 101/10fn

u=fn
X(u)e j2πutdu (9.5)

in reference to a fundamental frequency, f0. Equivalently, fn = f010n/10. Likewise, if we
would like twelve notes per octave as is the case in music,5 then for some reference
frequency, f0,

S(t, fn) =
∫ 21/12fn

u=fn
X(u)e j2πutdu. (9.6)

Thus fn = f02n/12.

4. Two functions �(u) and �(u) are block orthogonal if �(u)�(u) = 0.
5. See Section 13.1.
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TABLE 9.1. Some commonly used windows. t̂ = t/T and I0 denotes a modified Bessel
function of the first kind. (See Exercize 2.18.) The number β is a parameter of the Kaiser
window

boxcar �
(
t̂
)

Bartlett (1− | t̂ |)�
(

t̂
2

)

Parzen (1− 6t̂2 + 6 | t̂ |3) �
(

t̂
2

)
+ 2[1− | t̂ |3] � (| 2t̂ − 3

2 |
)

Hanning9 cos2(π t̂/2)�( t̂
2 )

Hamming [0.54+ 0.46cos(π t̂)]�
(

t̂
2

)

Blackman
[
0.42+ 0.5cos+ 0.08cos(2π t̂)

]
�

(
t̂
2

)

Lanczos sinc(t̂) �
(

t̂
2

)

Welch
(
1− |t̂|2)�

(
t̂
2

)

Kaiser I0(πβ(1−t̂)
1
2 )

I0(πβ) �
(

t̂
2

)

The filter banks in (9.5) and (9.6), however, are not special cases of the short time Fourier
transform in (9.2).6

9.3.1 Commonly Used Windows

Typically, w(t) is of finite duration

w(t) = w(t) �

(
t

2T

)
. (9.7)

We will also assume a normalization of w(0) = 1. Some commonly used windows are listed
in Table 9.1.

Windows are chosen for their leakage-resolution tradeoff.7 This is illustrated in Figure 9.4
for the case of a continuous time window, w(t).Alog plot of the normalized Fourier transform
of a typical window is shown. Ideally, we would W (u)

W (0) = δ(u). Since, however, w(t) is of
finite duration, this is not possible. The best we can do is design the window to minimize the
size of its main lobe,	. To avoid the leaching of adjacent frequencies, we also desire to keep
the height of the first side lobe, δ, as small as possible. For a fixed window length, however,
decreasing	 increases δ and visa versa. The boxcar window, for example, has superb resolu-
tion but terrible leakage. For the windowing approach, we are left with choosing a tradeoff.8

9.3.2 Spectrograms

We refer to the function | S(t; u) |2 as the spectrogram.

| S(t; u) |2=
∣∣∣∣
∫ ∞
−∞

w(τ )x(t − τ )e−j2πuτdτ

∣∣∣∣
2

(9.8)

6. They are, however, constant Q filter banks. See Exercises 9.3 and 9.4
7. In optics, windowing is referred to as apodization. See Section 13.2.5.
8. The same tradeoff is encountered in beamforming with a finite aperture. See Section 13.2.5.1.
9. Also known as the Hann window
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FIGURE 9.4. Illustration of the leakage-resolution tradeoff in a window.

Note that the spectrogram can be written as

| S(t; u) |2=
∣∣∣∣
∫ ∞
−∞

w(τ )x(t − τ )e−j2πu(τ−ϕ)dτ

∣∣∣∣
2

(9.9)

where ϕ is an arbitrary phase. The arbitrariness of the choice of ϕ allows for simplification
in some computational architectures for the spectrogram.

Similarly, for discrete time signals, the spectrogram may be defined by

| S[n; f ] |2=
∣∣∣∣∣
∞∑
−∞

x[k]w[n− k]e−j2π f (k−φ)

∣∣∣∣∣
2

(9.10)

where φ is arbitrary.

9.3.3 The Mechanics of Short Time Fourier
Transformation

The mechanics of the short time Fourier transform are pictured in Figure 9.5. Illustrated is
a window, w(τ ), and a signal x(τ ). Motivated by (9.2), we picture the functions w(τ ) and
x(t − τ ) for a specific value of t. The product of these two functions, zero outside of the
window, is Fourier transformed. This transform is the spectral representation used for x(t)
at time t = τ . As t increases, the function slides to the right and the spectrum is generated
for each point in time. In a relative sense, the signal can alternately be considered stationary
and the window moving. This observation makes clear why the short time Fourier transform
is also referred to as a sliding window Fourier transform.

9.3.3.1 The Time Resolution Versus Frequency
Resolution Trade Off

The traditional scaling theorem of Fourier analysis states that coordinate compression in
the time domain corresponds to inverse expansion in the frequency domain and visa versa.
In the short time Fourier transform, this theorem unfortunately manifests itself as a time
resolution versus frequency resolution trade off.10 We can have good resolution in time but
not frequency with the spectrogram, or good frequency resolution at the cost of poorer time
resolution.

10. In the context of this section, the time resolution versus frequency resolution trade off differs from
Heisenberg’s uncertainty principle with which it is sometimes confused. See Section 13.3.
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FIGURE 9.5. Mechanics for generating the short time Fourier transformation and spectrogram of a
signal.

Visualize a sinusoid of one frequency abruptly changing to a sinusoid of another
frequency. Far from the transition point, we best estimate the frequency of either sinusoid
with the use of a long window corresponding to a large value of T . A long window will
contain a large number of cycles and will Fourier transform into a very sharp and narrow
frequency band. Using a long window, however, does not allow us to readily identify the
point of transition. In its sliding, the long window contains this portion of the signal for
a significantly long period of time. The preponderance of the signal within the window
during the attempt to measure the signal, in effect, clouds identification from the short
time Fourier transform of the exact time the frequency transition occurs. The answer,
of course, is to shorten the duration of the window. This, however, increases the time
resolution but at the cost of the frequency resolution. This, as illustrated in Figure 9.6,
is the time resolution versus frequency resolution trade off. This limitation is one of
the motivations for investigation of other time-frequency distributions such as Cohen’s
generalized time-frequency representations (GTRF’s) [309, 310, 312].

9.3.4 Computational Architectures

There are a number of useful computational architectures for short time Fourier transforms.
In most cases, the approach can be used effectively on both discrete time and continuous
time signals.
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FIGURE 9.6. Illustration of the time resolution versus frequency resolution trade off for the short time
Fourier transform and the spectrogram. A sinusoid with frequency v1 makes a transition to a sinusoid
of frequency v0 at time t = ξ. For a window of short duration, as shown on the left, the frequency
resolution will be poor since, for good frequency resolution, a large number of cycles must be present
within the window. The thick horizontal swaths centered around v1 and v0 indicate a high uncertainty
of the frequency values. If the window is narrow, on the other hand, the time resolution is high. The
narrow window contains the transition point, t = ξ , for only a short period of time. Time resolution,
indicated by the short vertical swath centered at t = ξ on the left hand figure, is therefore high for
a narrow window. The converse is true for a window of long duration. This is shown on the right
side. Wide windows contain a larger number of cycles thereby allowing high frequency resolution.
The horizontal swaths centered about v1 and v0 in the right hand figure, are therefore narrow. Time
resolution, on the other hand, is poor. The transition at t = ξ is contained in the wide window for a
long period of time. Therefore, there is a large vertical swath on the right centered at t = ξ .

9.3.4.1 Modulated Inputs

Generation of the short time Fourier transform using a modulated version of the signal is
best introduced by rewriting (9.2) as

S(t; u) = {[x(t)e j2πut] ∗ w(t)}e−j2πuτ (9.11)

where ∗ denotes convolution. The straightforward implementation of (9.11) is shown in
Figure 9.7. For purposes of discussion, assume that x(t) is a signal with significant spectral
content at the frequency f . The Fourier transform of x(t)exp( j2πuτ ) translates the u
component of the spectrum of x(t) to be shifted to the origin. The window filter acts as
a low pass filter to extract this low frequency component which, by multiplication by
exp( j2πuτ ), is modulated back into a bandpass signal.

FIGURE 9.7. A system to evaluate the short time Fourier transform of a continuous time signal at
frequency u. The impulse response of the LTI filter is the window, w(t).
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FIGURE 9.8. A system to evaluate the short time Fourier transform of a discrete time signal at
frequency f . The impulse response of the LTI filter is the window, w[N] which, for finite duration
windows, can be implemented with an FIR filter.

In order to generate a TFR across the frequency spectrum, a number of processors of the
type in Figure 9.7 can be used, each with the multiplicative oscillator tuned to a different
frequency.

The discrete implementation, shown in Figure 9.8, is identical in concept. We rewrite
(9.3) as

S[n; f ] = {(x[n]e j2π fn) ∗ w[n]}e−j2π fn. (9.12)

When the window filter, w[n], is of finite duration, it can be implemented using a standard
finite impulse response (FIR) filter [1149].

The spectrogram is achieved by simply performing the magnitude squared of the short
time Fourier transform. Thus, since | exp( jθ ) |= 1, the output sinusoid multiplication is
not needed in Figures 9.7 and 9.8. Furthermore, the phase of the multiplicative complex
exponential is no longer important when computing the spectrogram.

9.3.4.2 Window Design Using Truncated IIR Filters

Convolution of rectangles. A truncated IIR filter is an IIR filter configured with additional
circuitry to require the composite impulse response to be of finite extent [919]. An example
is shown in Figure 9.9. The first stage of the filter, from x[n] to v[n], is an IIR filter with
an impulse response of a unit step. The second filter, from v[n] to y[n], is an FIR filter with
impulse response δ[n] − δ[n− (L + 1)]. The composite impulse response is a convolution
of the two component impulse responses, and is equal to one for 0 ≤ n ≤ L and is otherwise
zero-a shifted boxcar window of length L + 1.

When filters are cascaded, their impulse responses are convolved. Since the triangular
Bartlett window is the convolution of two rectangles, cascading two of the filters in
Figure 9.9 and a multiplier of 1

L+1 will implement a Bartlett window of length 2L + 1.
Similarly, the Parzen window, equal to the auto-convolution of four rectangles, can be
implemented by cascading four of the boxcar windows shown in Figure 9.9. Generating a
spectrogram at frequency f using a Parzen window is shown in Figure 9.10.

FIGURE 9.9. A boxcar window implemented as a truncated IIR filter. Cascading two of these windows
gives a Bartlett window. Cascading four of them gives a Parzen window. (See Figure 9.10.)
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1 11 1 1 1

−z−L −z−L −z−L −z−L z−1 z−1 z−1 z−1
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FIGURE 9.10. Using the architecture in Figure 9.5 with four cascaded boxcar windows depicted
in Figure 9.9 generates a spectrogram of a signal x[n] at frequency f with a Parzen window of
length 2a = 2(L − 3). (The output is proportional to the spectrogram because the window was not
normalized.)

TABLE 9.2. Cosine component decomposition of some commonly used causal windows, w[n], of
length L + 1

Type Function q0 q1 q2

boxcar 1 1

Hanning 1
2

[
1− cos

( 2πn
L

)] 1
2 − 1

2

Hamming 0.54− 0.46 cos
( 2πn

L

)
0.54 –0.46

Blackman 0.42− 0.5 cos
( 2πn

L

)+ 0.08 cos
( 4πn

L

)
0.42 –0.5 0.08

Truncated Sinusoid Impulse Responses. Sinusoid impulse responses can also be used
in truncated IIR filters. If a causal sine wave is added to the same wave shifted by
half a period, only the first hump of the original sine wave remains. A number of such
filters can be placed in parallel to implement windows with multiple cosine components.
In principal, any window can be thus implemented since any even function of finite
duration can be characterized by a Fourier series of cosines. In practice, the number of
cosine components should be small. Three such windows are the Hanning, Hamming
and Blackman windows. These are summarized in Table 9.2. The windows each have
a duration of L and have been shifted into positive time territory to allow for causal
implementation.

Each of the filters in Table 9.2 can be expressed as a special case of the following causal
window11 of length L + 1.

w[n] =
⎧⎨
⎩
β0 +∑Q

q=1 βq cos
(

2πnq
L

)
; 0 ≤ n ≤ L

0 ; otherwise
(9.13)

The term with the constant β0 can be implemented using a truncated IIR boxcar window
of the type in Figure 9.9. In order to synthesize the other terms in (9.13), we will use filters
with a marginally stable impulse response of

h[n] = cos(nθ )μ[n]. (9.14)

11. A discrete time causal window is zero for n < 0. Any window can be made causal by shifting it into positive
territory.



[16:27 9/9/2008 5165-Marks-Ch09.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 421 411–446

TIME-FREQUENCY REPRESENTATIONS 421

The z transform of this cosine filter is

Hz(z) =
∞∑

n=0

h[n]z−n

=
∞∑

n=0

cos(nθ )z−n

= �
∞∑

n=0

e jnθ z−n

= �
∞∑

n=0

(
e jθ z−1

)n

= � 1

1− e jθ z−1

1− e−jθ z−1

1− e−jθ z−1

= � 1− e−jθ z−1

1− 2z−1 cos(θ )+ z−2

= 1− cos(θ )z−1

1− 2z−1 cos(θ )+ z−2
.

Review the general transfer function in (2.136) and the IIR schematic in Figure 2.29. We
can implement the impulse response in (9.14) as shown on the left hand side of Figure 9.11.
The left hand side filter, from x[n] to v[n], has the impulse response of (9.14).

The second portion of the filter in Figure 9.11, from v[n] to y[n], subtracts v[n − L]
from v[n]. To effect truncation of the sinusoid impulse response, we set

θ = 2πq

L
.

The composite impulse response and z transform transfer function of the filter in Figure 9.11
is then

hq[n] = k[n] − k[n− L]

=
⎧⎨
⎩

cos
(

2πqn
L

)
; 0 ≤ n < L

0 ; otherwise

(9.15)

FIGURE 9.11. A truncated IIR filter for implementing a finite duration sinusoid impulse response.
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and

Hq(z) =
∞∑

n=0

hq[n]z−n

=
z−1 cos

(
2πq

L

)
(1− z−2L)

1− 2z−1 cos
(

2πq
L

)
+ z−2

. (9.16)

Thus, filters of the type in (9.15) can be connected in parallel to achieve cosine series type
windows. An example is shown in Figure 9.12 where the short time Fourier transform
is performed at frequency f . It follows the architecture in Figure 9.8 with a truncated
IIR filter inserted. The filter implements windows of the type in (9.13) for Q ≤ 2,
including, for appropriate choices of the β’s in Table 9.2, the Blackman window. For
the Hanning and Hamming windows, only Q = 1 is required. They can therefore be
implemented by deleting the bottom (β2) filter component and appropriate choices of
β0 and β1.

The parallel connection of −z−L and a unit gain, common to all of the filters, can be
factored from the filters. Only one such circuit is needed and is in the upper right of the

FIGURE 9.12. Generating the short time Fourier transform of a signal, x[n] at the frequency f . For
appropriate choices of the β’s, any of the filters in Table 9.2 can be implemented. If a β is zero, the
stage can be omitted.



[16:27 9/9/2008 5165-Marks-Ch09.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 423 411–446

TIME-FREQUENCY REPRESENTATIONS 423

circuit in Figure 9.12. Additional circuitry is added for end point correction of the window.
In (9.15), the cosine filter is implemented for 0 ≤ n < L rather that the desired 0 ≤ n ≤ L.
The window at the end point, w[L], is therefore not included in the implementation and in
added explicitly in Figure 9.12. For the Hanning window, w[L] = 0 and this portion of the
circuit is not required.

9.3.4.3 Modulated Windows

The short time Fourier transform in (9.3) can also be written as

S[n; f ] =
L∑

k=−L

x[n− k]ω[k; u]

= x[n] ∗ ω[n; f ] (9.17)

where the modulated window is

ω[n; f ] = w[n]e−j2πnf .

First, consider the case where the window is a causal boxcar window of length L. Then

ω[n; f ] =
{

e−j2πnf ; 0 ≤ n < L

0 ; otherwise.
(9.18)

We can implement this as a truncated IIR filter. The transfer function of the impulse
response of

k[n] = e−j2π fnμ[n]
has a z transform of

Kz(z) = 1

1− z−1e j2π f
.

This can be implemented by the simple IIR filter shown on the left of Figure 9.13, from
x[n] to v[n]. To cancel the impulse response at times L and after, the right stage is used. The
impulse response is delayed L units and multiplied by e−j2πLf. After time L, the composite
impulse response of the filter is the difference

k[n] − e−j2πLf k[n− L] = e−j2π fnμ[n] − e−j2πLf
(

e−j2π f (n−L)μ[n− L]
)

= e−j2π fn (μ[n] − μ[n− L])

=
{

e−j2π fn ; 0 ≤ n < L

0 ; otherwise

= ω[n; f ]
and we have the modulated boxcar window in (9.18).

More generally, the modulated window using a cosine series is

ω[k; f ] =
{∑Q

q=0 βq cos(2πνqn)e−j2πnf ; 0 ≤ n ≤ �T	
0 ; otherwise

(9.19)
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FIGURE 9.13. Modulated boxcar window implementation.

where T is an arbitrary rational time and the νq’s arbitrary frequencies. To emulate the
cosine series in (9.13), we would choose T = L and νq = q/L. For 0 ≤ n ≤ �T	, (9.19)
can be written as

ω[k; f ] = β0e−j2πnf + 1

2

Q∑
q=1

βq

[
e−j2πn(f−νq) + e−j2πn(f+νq)

]
. (9.20)

The β0 term can be implemented as in Figure 9.13. Each other q term can be implemented
using two filters of the type in Figure 9.13 connected in parallel. Details are left as an
exercise.

9.4 Generalized Time-Frequency Representations

Improvement of the performance of the spectrogram has a long history dating back to the
work of Gabor [474]. Leon Cohen [309, 310, 312] introduced the analytically appealing
generalized time-frequency representation (GTFR) of a temporal signal. Forms of the GTFR
have been applied to bioengineering [271, 272, 273, 392, 985], biomedical signal processing
[118, 132, 632, 975, 1195, 1498], fault diagnosis [1529], feature extraction [844], geophysics
[265], music [1120, 1121], neurophysiology, [98], nondestructive testing [1090], parameter
estimation [1191], radar [495], signal detection [804], sonar [495, 1125], speech [816, 1019,
1587], tomography [1523], ultrasound [923, 1029, 1030, 1194], and vibration analysis
[276, 852, 1021, 1058, 1589].

The GTFR of a signal, x(t), is [281, 405, 406, 554, 555, 766, 805, 853, 1019, 1067,
1464, 1480, 1522, 1584, 1585]

C(t, u) =
∫ ∞
−∞

∫ ∞
−∞

φ̂(t − ξ, τ )x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
e−j2πuτdξdτ. (9.21)

where φ̂(t, τ ) is the kernel of the GTFR and u is the frequency variable. The choice of
the kernel dictates the performance of the GTFR, akin to the effect of a window in the
spectrogram. Constraints are placed on the kernel in order to enhance various characteristics
of the GTFR [64, 65, 292, 293, 299, 309, 310, 312, 1587].

The discrete equivalent of (9.21) is

C[n, u] =
∞∑

k=−∞

∞∑
m=−∞

φ̂[n− m, k]x
[

m − |k|
2

]
x∗

[
m + |k|

2

]
e−j2πuk . (9.22)
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TABLE 9.3. Fourier transform relationships
among the various GTFR kernel forms

t f

τ φ̂(t, τ ) → φ(f , τ )

↓ ↓
u �̂(t, u) → �(f , u)

We can define Fourier transforms on the kernel. The variables t and f denote time and
frequency in a Fourier transform relation. So do τ and u.12 The kernel forms are

φ( f , τ ) =
∫ ∞

t=−∞
φ̂(t, τ )e−j2π ftdt, (9.23)

�̂(t, u) =
∫ ∞
τ=−∞

φ̂(t, τ )e−j2πuτdτ,

and

�(f , u) =
∫ ∞
−∞

∫ ∞
−∞

φ̂(t, τ )e−j2π (uτ+ft)dtdτ

=
∫ ∞
−∞

φ( f , τ )e−j2πuτdτ

=
∫ ∞
−∞

�̂(t, u)e−j2π ftdt.

Note that φ̂(t, τ ) and �( f , u) are two dimensional Fourier transform pairs.13

The various forms of the kernel are summarized in Table 9.3. Alternate albeit equivalent
expressions for the GTFR using these different kernel forms are14

C(t, u) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

φ( f , τ )

× x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
e j2π ( ft−τu−f ξ )dξdτdf (9.24)

and15

C(t, u) =
∫ ∞
−∞

∫ ∞
−∞

� ( f , u− ν) X

(
ν − f

2

)
X∗

(
ν + f

2

)
e j2π ftdνdf . (9.25)

9.4.1 GTFR Mechanics

A geometrical interpretation of the continuous time GTFR in (9.21) is shown in Figure 9.14.
The signal x

(
ξ − τ

2

)
on the (ξ, τ ) plane is the signal x(t) “smeared” along the line ξ = τ

2 .

12. This notation temporarily departs from our convention of using f as a frequency variable for discrete time
and u for continuous time.

13. Multidimensional Fourier transforms are discussed Section 8.4.
14. See Exercise 9.12b.
15. See Exercise 9.12b.
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FIGURE 9.14. Illustration of the mechanics of computing a GTFR using (9.21).

Similarly, x∗
(
ξ + |τ |2

)
is x∗(t) “smeared” along the line ξ = − τ2 . The two smears are

multiplied to give x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
on the (ξ, τ ). This is shown on the left in Figure 9.14.

For a fixed t, the kernel φ̂(ξ − t, τ ) can be visualized on the (ξ, τ ) plane. The notation
dictates that, as t increases, the kernel moves along the ξ axis and, at time t, is centered on
ξ = t. This is pictured on the right side of Figure 9.14.

To implement the GTFR in (9.21), the product of the smeared signals on the left of
Figure 9.14 is multiplied, at time t, by the kernel on the right. This product is projected onto
a one dimensional signal on the τ axis by integrating over all ξ . This projection at time t is

c(t, τ ) =
∫ ∞
ξ=−∞

φ̂(t − ξ, τ )x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
dξ.

The Fourier transform of this function with respect to τ gives the signal’s GTFR in (9.21).

9.4.2 Kernel Properties

Using the kernels summarized in Table 9.3, we can straightforwardly state some of the
commonly used constraints imposed on the GTFR and their corresponding interpretation
as kernel constraints. These constraints are used in Section 11.4.10 to synthesize GTFR
kernels under different design criteria.Oh et al. have shown no GTFR can simultaneously
obey all constraints16 [1037, 1043]. Therefore, use of the GTFR requires the adopting of
performance trade offs.

16. This is the topic of Section 11.4.10
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9.4.3 Marginals

Cohen reasoned that a valid TFR should have meaningful marginals. If we integrate over
frequency, we should obtain the signal power.

∫ ∞
−∞

C(t, u)du = |x(t)|2. (9.26)

Integrating over time should result in the signal’s power spectral density.

∫ ∞
−∞

C(t, u)dt = Sx(u) (9.27)

where

Rx(t)←→ Sx(u) (9.28)

and the signal’s autocorrelation is

Rx(τ ) =
∫ ∞
−∞

x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
dξ. (9.29)

Substituting (9.29) and (9.28) into (9.27) gives

∫ ∞
−∞

C(t, u)dt =
∫ ∞
τ=−∞

[∫ ∞
ξ=−∞

x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
dξ

]
e−j2πuτdτ. (9.30)

Equations 9.26 and 9.30 are known, respectively, as the time marginal and frequency
marginal constraints of the GTFR. These constraints are satisfied if the GTFR kernel
has certain properties. Establishing these properties is our next task.

For the time marginal constraint, we integrate (9.21) over u and obtain

∫ ∞
−∞

C(t, u)du =
∫ ∞
−∞

∫ ∞
−∞

φ̂(t − ξ, τ )x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
δ(τ )dξdτ

=
∫ ∞
ξ=−∞

φ̂(t − ξ, 0)|x(ξ )|2dξ. (9.31)

The time marginal constraint in (9.26) is therefore satisfied if the kernel has the property

φ̂(t, 0) = δ(t). (9.32)

For the frequency marginal, we similarly have

∫ ∞
−∞

C(t, u)dt =
∫ ∞
τ=−∞

∫ ∞
ξ=−∞

[∫ ∞
t=−∞

φ̂(t − ξ, τ )dt

]

× x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
e−j2πuτdξdτ. (9.33)

The frequency marginal in (9.30) is then satisfied if

∫ ∞
t=−∞

φ̂(t, τ )dt = 1. (9.34)
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9.4.3.1 Kernel Constraints

There are many constraints that can be imposed on the kernel of the GTFR. We begin with
restatement of the time and frequency marginal constraints.

(a) Time Marginal Constraint
The time marginal constraint in (9.26) is satisfied when the kernel satisfies (9.32).
From the Fourier transform in (9.23), this is true when

φ( f , 0) = 1. (9.35)

(b) Frequency Marginal Constraint
Evaluating (9.23) at f = 0 reveals that satisfying the frequency marginal constraint
in (9.34) is equivalent to requiring that

φ(0, τ ) = 1. (9.36)

(c) Time Resolution Constraint
The requirement that the input on the interval −T ≤ t − ξ ≤ T contribute to the
GTFR only on the same interval can be cast as a cone constraint [1587]. This requires
that φ̂(t, τ ) be identically zero outside of the cone shown on the left in Figure 9.15.
In other words,

φ̂(t, τ ) = φ̂(t, τ )�

(
t

τ

)
�

( τ
2T

)
. (9.37)

(d) Frequency Resolution Constraint
Comparing (9.25) with (9.21) immediately suggests a frequency resolution con-
straint that is the dual of the cone constraint in (9.37).

�( f , u) = �( f , u)�

(
f

u

)
�

(
f

2B

)
(9.38)

where B is the frequency dual of T . This constraint is shown on the right hand
side of Figure 9.15. For finite B and T , the constraints in (9.37) and (9.38) cannot

FIGURE 9.15. Left: The signal, x(t), on the interval −T ≤ t − ξ ≤ T should contribute to the GTFR
only on the same interval. When the GTFR kernel φ̂(t, τ ) lies within the shaded cone area, this
constraint is satisfied. Right: The dual bow tie constraint applied in the frequency domain. The cone
kernel GTFR is discussed in Section 9.4.4.4.
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be satisfied simultaneously. We are therefore motivated to formulate the following
relaxed version of (9.38)

0 ≤ �( f , u) ≤ α( f , u) (9.39)

where α( f , u) is a given positive function such as

α( f , u) = α(0, 0)exp (−β| f | + γ |u|) (9.40)

where β and γ are given constants. The bandwidth, B, can here be interpreted as the

point 3dB from the maximum, or B= ln 2
β

. Note, also, that the interference constraint
in (9.45) can be imposed by the bound in (9.39), possibly in a relaxed form.

(e) Interference Suppression Constraint
The GTFR contains the product of the signal with itself. When the signal is
sinusoidal, there will be undesirable beat frequencies. A proper choice of GTFR
kernel can reduce these beat frequencies. To see this, consider a signal consisting
of two sinusoids of frequencies f1 and f2.

x(t) = exp( j2π f1t)+ exp( j2π f2t). (9.41)

The GTFR of this signal is17

C(t, u) = �(0, u− f1)+�(0, u− f2)

+�
(

f1 − f2, u− f1 + f2
2

)
e j2π ( f1−f2)t (9.42)

+�
(

f2 − f1, u− f1 + f2
2

)
e j2π ( f2−f1)t .

The first two terms are those desired. The first,�(0, u− f1), is a function centered at
u= f1 for all time, t, and the desired TFR for exp( j2π f1t). Likewise for�(0, u− f2).
The two remaining terms are at the beat frequency ( f1 + f2)/2 and requires
suppression. Assuming �( f , u) = �∗(−f , u), the beat frequency is suppressed
when

�

(
f1 − f2, u− f1 + f2

2

)
= 0. (9.43)

With attention focused on the u variable of �( f , u), this constraint is met if

�( f , u) = �(u)δ( f )

where �(u) is an arbitrary one dimensional function and δ( f ) is the Dirac delta.
This is equivalent to requiring that φ̂ not be a function of t.

φ̂(t, τ ) = θ (τ ). (9.44)

A relaxed interference constraint is

�( f , u) = �( f , u)�

(
f

2	

)
(9.45)

where 	 is the interference bandwidth.

17. See Exercise 9.13.
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(f) Realness Constraint
A sufficient condition for C(t, u) to be real is that the kernel be conjugately
symmetric.

φ( f , τ ) = φ∗(−f ,−τ ). (9.46)

This is equivalent to requiring that �̂(t, u) is real.

��̂(t, u) = �̂(t, u) (9.47)

where � denotes the real part of.
(g) Time Symmetry Constraint

At a given point temporal point, past and future time are symmetrically tre-
ated if

φ( f , τ ) = φ∗( f ,−τ ). (9.48)

Note that, assuming differentiability, it follows that

∂φ( f , τ )

∂τ

∣∣∣∣
τ=0

= 0.

This and (9.35) constitute the instantaneous frequency constraint.
(h) Frequency Symmetry Constraint

Similarly, for frequency symmetry, we impose the constraint

φ( f , τ ) = φ∗(−f , τ ). (9.49)

Again, assuming differentiability, this requires that

∂φ( f , τ )

∂f

∣∣∣∣
f=0

= 0. (9.50)

Note that imposition of any two of the previous three constraints imposes the third.
Equation (9.50) and (9.36) constitute the group delay constraint.

(i) Non-negativity Constraint
We may wish to require that the kernel is positive in the sense that

φ̂(t, τ ) = �φ̂(−t, τ )μ[�φ̂(−t, τ )] (9.51)

where μ(·) is the unit step. In other words, the real part of φ̂( f , τ ) is non-negative.
(j) Finite Area Constraint

A property that in useful in the iterative synthesis procedure of the GTFR kernel in
Section 11.4.10.2. is

�(0, 0) = γ > 0 (9.52)

or, equivalently,

∫ ∞
−∞

∫ ∞
−∞

φ̂(t, τ )dtdτ = γ.
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9.4.4 Example GTFR’s

The literature on GTFR’s is vast [312]. Some special cases are summarized in Table 9.4.
We here present a select few examples.

9.4.4.1 The Spectrogram

Although not obvious by inspection of the equation, the spectrogram in (9.8) is a GTFR
with a diamond shaped kernel. To show this, we expand (9.8) into

|S(t, u)|2 =
∫ ∞
α=−∞

w(α)x(t − α)e−j2παudα

×
∫ ∞
β=−∞

w(β)x∗(t − β)e−j2πβudβ

=
∫ ∞
α=−∞

∫ ∞
β=−∞

w(α)w(β)

× x(t − α)x∗(t − β)e−j2π (α−β)udαdβ

where we assume the window is real. Fixing α and setting τ = α − β in the β integral
produces

|S(t, u)|2 =
∫ ∞
α=−∞

[∫ ∞
τ=−∞

w(α)w(α − τ )e j2πuτdτ

]
dα.

TABLE 9.4. Examples of some special cases of Cohen’s GTFR. Others include [312]
the Margenau-Hill distribution [879] (φ( f , τ ) = cos(πuf )), the Kirkwood-Rihaczek
distribution [741, 1178] (φ( f , τ ) = exp(jπ f τ )) the Choi-Williams distribution [299]
(φ(f , τ ) = exp(−(2π f τ )2/σ )) and the Page distribution [1070]
(φ( f , τ ) = exp( j2π f |τ |)).
GTFR Kernel: φ( f , τ ) C(t, u) =

Cohen’s GTFR φ( f , τ )
∫∞
−∞

∫∞
−∞

∫∞
−∞ φ(f , τ )

[309]
× exp( j2π ( ft − τu− f ξ ))

× x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
dξdτdf

Wigner distribution 1
∫∞
−∞ x

(
t − τ

2

)
x∗

(
t + τ

2

)
[1491]

× exp(−j2πuτ )dτ

Spectrogram
∫∞
−∞ w

(
ξ + τ

2

)
w∗

(
ξ − τ

2

) | ∫∞−∞ x(τ )w(t − τ )

See Section 9.2 × exp(−j2πξ f )dξ × exp(−j2πτu)dτ |2

Born-Jordon sinc( f τ )
∫∞
−∞

1
|τ | exp(−j2πτu)

[309]
× [∫∞

−∞ x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
dξ

]
dτ

Cone Kernel g(τ )|τ |sinc(2af τ )
∫∞
−∞ g(τ ) exp(−j2πτu)

[1587]
×

[∫ t+ |τ |2
t− |τ |2

x
(
ξ + τ

2

)
x∗

(
ξ − τ

2

)
dξ

]
dτ
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Reversing integration order and setting

ξ = α − τ
2

gives, assuming an even window,

|S(t, u)|2 =
∫ ∞
τ=−∞

∫ ∞
ξ=−∞

w
(

(t − ξ )− τ
2

)
w
(

(t − ξ )+ τ
2

)

× x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
e−j2πuτdξdτ.

Comparing with the GTFR in (9.21) reveals the spectrogram is a GTFR with a kernel

φ̂(t, τ ) = w
(

t − τ
2

)
w
(

t + τ
2

)
.

If w(t) is zero for −T ≤ t ≤ T , then w(t) = w(t)�
( t

2T

)
and

φ̂(t, τ ) = φ̂(t, τ ) d(t, τ )

where

d(t, τ ) = �
(

t − τ
2

2T

)
�

(
t + τ

2

2T

)
.

This support is one inside the diamond shown on the left in Figure 9.16 and zero otherwise.
The spectrogram therefore has a diamond shaped kernel.

Two chirps with linear increasing and decreasing frequencies have a spectrogram as
shown in Figure 9.17. The spectrogram of on-off sinusoids of various frequencies is
illustrated in Figure 9.18.

FIGURE 9.16. The diamond kernel on the left is that of a spectrogram using a window zero outside the
interval−T ≤ t ≤ T . The two diamonds in the middle are generated using spectrograms of the same
signal on (−T , 0) and (0,T ). For judicious choice of windows, the subtraction of the two shorter
duration spectrograms from the longer results in the double diamond kernel GTFR on the right.
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FIGURE 9.17. The spectrogram of two chirps. A waterfall plot is on the top and a gray level plot on the
bottom.
Source: [1043] S. Oh, R.J. Marks II and L.E. Altas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No.7, July 1994. pp. 1653–1661.

FIGURE 9.18. The spectrogram of simultaneous switching tones. A waterfall plot is on the top and a
gray level plot on the bottom.
Source: [1043] S. Oh, R.J. Marks II and L.E. Altas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No.7, July 1994. pp. 1653–1661.
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FIGURE 9.19. The Wigner distribution of two chirps. A waterfall plot is on the top and a gray level plot
on the bottom. Compare with the spectrogram in Figure 9.18.
Source: [1043] S. Oh, R.J. Marks II and L.E. Altas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No.7, July 1994. pp. 1653–1661.

9.4.4.2 The Wigner Distribution

As defined in Table 9.4, the Wigner distribution is a special case of Cohen’s GTFR. It has
better resolution than the spectrogram but, as illustrated in Figures 9.19 and 9.20, at the
cost of cross frequency interference.

9.4.4.3 Kernel Synthesis Using Spectrogram Superposition

Easily computed spectrograms can be superimposed to synthesize GTFR’s with various
kernels.18 We illustrate synthesis of the double diamond kernel [1038] shown on the right
in Figure 9.16. The diamond kernel, shown on the left in Figure 9.16, is the support of a
spectrogram over −T ≤ t ≤ T . Next, a spectrogram is generated on −T ≤ t ≤ 0. This has
a support in the small diamond on the left in the middle of Figure 9.16. A spectrogram on
0 ≤ t ≤ T is the small triangle on the right. If the windows are chosen properly, the shorter
duration spectrograms can be subtracted from the spectrogram over the longer interval to
form the double diamond kernel on the right.

9.4.4.4 The Cone Shaped Kernel

The continuous time GTFR with a cone shaped kernel [338, 339, 492, 704, 923, 1038, 1042,
1043, 1126, 1451, 1587] has been applied to bioengineering [271, 272, 273, 392, 985],
biomedical signal processing [632, 975], geophysics [265], nondestructive testing [1090],
sonar [1125], speech [1587], ultrasound [923, 1194], and vibration analysis [276]. It is
defined as

C(t; u) =
∫ T

τ=−T

∫ t+ |τ |2
ξ=t− |τ |2

ϕ(τ )x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
e−j2πuτdξdτ (9.53)

18. Doing so is an unpublished idea of Seho Oh.



[16:27 9/9/2008 5165-Marks-Ch09.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 435 411–446

TIME-FREQUENCY REPRESENTATIONS 435

FIGURE 9.20. The Wigner distribution of simultaneous switching tones. A waterfall plot is on the top
and a gray level plot on the bottom. There is high interference. Compare with the spectrogram in
Figure 9.18.
Source: [1043] S. Oh, R.J. Marks II and L.E. Altas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No.7, July 1994. pp. 1653–1661.

where ϕ(t) is a window that is zero outside of the interval −T ≤ t ≤ T . The kernel is said
to be cone shaped because the integration in (9.53) is over the cone shown on the left of
Figure 9.15.

The discrete time equivalent is

C[n, f ] =
L∑

k=−L

n+ |k|2∑

m=n− |k|2

ϕ[k]x
[

m − k

2

]
x∗

[
m + k

2

]
e−j2πkf (9.54)

where ϕ[n] is a discrete window that is zero outside of the interval −L ≤ k ≤ L. We will
assume the window is real and even

ϕ[k] = ϕ[−k]. (9.55)

Examples of spectrograms versus a cone shaped kernel GTFR are shown in Figures 9.21
and 9.22. The time and frequency resolutions are much better, but beat frequency artifacts
appear [312, 1042].

9.4.4.5 Cone Kernel GTFR Implementation Using Short
Time Fourier Transforms.

One advantage of the cone kernel GTFR19 is its ease in computing for undecimated time.20

For the discrete case, the cone kernel GTFR can be computed as illustrated in Figure 9.23 for

19. Also called the ZAM GTFR using the initials of the last name of the three authors who initially proposed
the cone kernel GTFR [276, 729, 975, 1042, 1587].

20. The temporal resolution was so good, decimation of the cone kernel GTFR in Figure 9.22 resulted in the
missing of transitions.
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FIGURE 9.21. The spectrogram and cone kernel GTFR for a frequency transition. The cone kernel
GTFR is on the bottom and the spectrogram is immediately above. The frequency transition for the
cone kernel GTFR is remarkably better, but artifacts are apparent in the transition. For the spectrogram,
better frequency resolution corresponds to thinner horizontal lines. This can be achieved by making
the window longer. Doing so, though, will make the interval of frequency transition longer. This
illustrates the frequency versus time resolution tradeoff in spectrograms.
Source: [1587] Yunxin Zhao, L.E. Atlas and R.J. Marks II. “The use of cone-shape kernels
for generalized time- frequency representations of nonstationary signals”. IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 38, pp. 1084–1091 (1990).

FIGURE 9.22. The spectrogram and cone kernel GTFR for switched frequency pulses. The cone kernel
GTFR is on the bottom and the spectrogram is immediately above. The frequency transition for the
cone kernel GTFR is remarkably better. The GTFR is decimated. The frequency transition apparent
in the GTFR of the first and third pulses are not in the second and fourth. The transition times in the
second and fourth frequency pulses skipped due to decimation.
Source: [1587] Yunxin Zhao, L.E. Atlas and R.J. Marks II. “The use of cone-shape kernels
for generalized time- frequency representations of nonstationary signals”. IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 38, pp. 1084–1091 (1990).

real signals. This nonlinear filter produces the GTFR at a single frequency. The short time
Fourier transform can be generated straightforwardly using an FFT or using the methods
described in Section 9.2.

To show the validity of Figure 9.23, we begin by defining the difference

	C[n, f ] = C[n, f ] − C[n− 1, f ].
If we can evaluate 	C[n, f ], the GTFR can be easily updated using the recursion

C[n, f ] = C[n− 1, f ] +	C[n, f ]. (9.56)
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FIGURE 9.23. Evaluation of the GTFR for a cone shaped kernel for frequency f .

Using (9.54),

	C[n, f ] =
L∑

k=−L

⎡
⎢⎣

n+ |k|2∑

m=n− |k|2

−
n−1+ |k|2∑

m=n−1− |k|2

⎤
⎥⎦ϕ[k]

× x

[
m − k

2

]
x∗

[
m + k

2

]
e−j2πkf . (9.57)

Since

Q∑
m=P

(z[m] − z[m − 1]) = z[Q] − z[P − 1]

the sum in (9.57) becomes

	C[n, f ] =
L∑

k=−L

ϕ[k]
{

x

[
n+ |k|

2
− k

2

]
x∗

[
n+ |k|

2
+ k

2

]

−x

[
(n− 1)− |k|

2
− k

2

]
x∗

[
(n− 1)− |k|

2
+ k

2

]}
e−j2πkf .

Breaking the sum into k = 0, k > 0 and k < 0 components allows simplification.

	C[n, f ] = ϕ[0]
(
|x[n]|2 − |x[n− 1]|2

)

+
L∑

k=1

ϕ[k] {x[n]x∗[n+ k] − x[(n− 1)− k]x∗[n− 1]} e−j2πkf

+
−1∑

k=−L

ϕ[k] {x[n− k]x∗[n] − x[n− 1]x∗[(n− 1)+ k]} e−j2πkf . (9.58)
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In the third line, replace k by−k. Using (9.55), the second and third lines of (9.58) are then
recognized as complex conjugates of each other. Thus, (9.58) becomes

	C[n, f ] = ϕ[0]
(
|x[n]|2 − |x[n− 1]|2

)

+ 2�x[n]
L∑

k=1

ϕ[k]x∗[n− k]e−j2πkf

− 2�x∗[n− 1]
L∑

k=1

ϕ[k]x∗[(n− 1)− k]e−j2πkf . (9.59)

The sums here are recognized as short time Fourier transforms that can be generated using
FFT’s or the filtering methods discussed in Section 9.2.

9.4.4.6 Cone Kernel GTFR Implementation for Real Signals.

We will now demonstrate the architecture in Figure 9.23 for computing the cone
kernel GTFR when the signal and the window, ϕ[k], are real. In such a case, (9.59)
becomes

	C[n, f ] = ϕ[0]
(
|x[n]|2 − |x[n− 1]|2

)

+ 2x[n]
L∑

k=1

ϕ[k]x[n− k] cos(2πkf )

− 2x[n− 1]
L∑

k=1

ϕ[k]x[(n− 1)− k] cos(2πkf )

or, equivalently,

	C[n, f ] = x[n] S[n, f ] − x[n− 1] S[n− 1, f ] (9.60)

where the short time Fourier transform is

S[n, f ] =
L∑

k=0

ϕ̂[k]x[n− k] cos(2πkf )

and the window, ϕ̂, is

ϕ̂[k] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ[0] ; k = 0

2ϕ[k] ; 1 ≤ k ≤ L

0 ; otherwise.

The cone kernel GTFR is implemented in Figure 9.23 using (9.56) where (9.60) generates
	C[n, f ].

9.4.4.7 Kernel Synthesis Using POCS

Signal synthesis using alternating projection onto convex sets (POCS) is the topic of
Chapter 11. Kernel synthesis for Cohen’s GTFR using POCS is the topic of Section 11.4.10.2.
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9.5 Exercises

9.1. Let x(t) have units of volts. What are the units of the short time Fourier transform?
Of the GTFR?

9.2. Compute the short time Fourier transform of the signal

x(t) = cos(2π f− t)μ(−t)+ cos(2π f+ t)μ(t).

Explore the time resolution versus frequency resolution tradeoff as a function of
the window parameter, 2T .

9.3. Filter Banks
(a) Show that, unlike the linearly calibrated filter bank in (9.4), the nonlinearly

calibrated filter banks in (9.5) and (9.6) do not reduce to the sampled short time
Fourier transform in (9.2).

(b) If windows are allowed to vary for different values of frequency, we can
generalize (9.2) to

S(t; u) =
∫ ∞
−∞

w(τ, u)x(t − τ )e−j2πuτdτ. (9.61)

Show the nonlinearly calibrated filter banks in (9.5) and (9.6) reduce to
frequency samples from this generalized form of the sampled short time Fourier
transform. What are the sampled windows?

(c) The sum of the filter outputs from the filter bank in (9.4) give the signal
x(t) over the band of frequencies considered. Is the same true of (9.5)
and (9.6)?

(d) Is the generalized spectrogram |S(t; u)|2 using S(t; u) in (9.61) a GTFR?
9.4. Constant Q Filter Banks. The Q or quality factor of a bandpass filter is

Q = u0

2B
.

where u0 is the resonant frequency and the bandwidth is 2B. If all of the filter Q’s
in a filter bank are identical, the filter bank is called constant Q [382, 1425].
(a) Show that the linearly calibrated filter bank in (9.4) is not constant Q. Assume

the resonant frequency is the arithmetic mean (i.e., the average) of the upper
and lower limits of the frequency band.

(b) Show that the nonlinearly calibrated filter banks in (9.5) and (9.6) are constant
Q filter banks. Assume the resonant frequency is the geometric mean (i.e., the
root of the product) of the upper and lower limits of the frequency band. What
is the constant Q of these two filter banks?

9.5. Chirp Fourier Transform. A signal, x[n], is multiplied by e jπn2v and is passed
through a linear time-invariant filter the output of which is multiplied by e jπn2v.
This is shown in Figure 9.24.
(a) When21

h[n] = e jπn2v (9.62)

21. Signals like cos(2π f0t) have a constant frequency, f0. Thus, cos(2πνt2) can be thought of as having a
linearly increasing frequency νt. For this reason, signals like (9.62) are called chirps in accordance to its sound in
the audio band. Since the frequency in (9.62) increases linearly, this is a linear chirp.
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FIGURE 9.24. See Exercise 9.5.

show that

s[n] =
[(

x[n]e−jπn2v
)
∗ e jπn2v

]
e−jπn2v

reduces to a Fourier transform.
(b) For real time implementation, the filter in Figure 9.24 must be causal. Redefine

h[n] =
{

e jπn2v ; n ≥ 0

0 ; n < 0.

Does the system still perform a Fourier transform?
(c) Let x[n] be zero outside of the interval 0 ≤ n ≤ L − 1. Using the impulse

response in (9.62) and v = 1/L, demonstrate how the system in Figure 9.24
can compute the discrete Fourier transform of x[n].

X[k] =
L−1∑
n=0

x[n]e−j2πkn/L. (9.63)

9.6. Alter the discrete time processor shown in Figure 9.7 as follows. Replace the input
sinusoid by exp( j2π [{n − φ}u + ϕ]) where φ and ϕ are arbitrary and the output
sinusoid multiplication stage by a modulus squared operation. Show that the result
is the spectrogram of the input signal.

9.7. Consider the impulse response of the LTI system implementing Goertzel’s algorithm
in Section 3.5 which we repeat here.

hG[n] = e j2π (n+1)k/N . (9.64)

(a) Evaluate the transfer function for this impulse response.
(b) Design an IIR filter to implement this transfer function.

9.8. We have not allowed for the required causality of the filters in Figure 9.8. The w[n]
filter at time n, for example, requires information about the input data L units into the
future to compute the current output. For real time implementation, the fastest short
time Fourier transform that we can compute is S[n − L; u]. Alter the architecture
in Figure 9.8 so that the required filter is causal and the output of the processor is
S[n− L; u].

9.9. (a) Derive the following bound for the spectrogram in (9.9).

| S(t; u) |2≤ Ew

∫ t+T

τ=t−T
|x(τ )|2dτ (9.65)

where Ew is the energy of w(t). Use Schwarz’s inequality.22

(b) Derive the dual expression for (9.65) for the discrete time spectrogram in (9.10).

22. See Appendix 14.1.
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9.10. The window in Figures 9.11, 9.12, and 9.13 are marginally stable. Implement
the windows and note any stability issues. Will the marginal stability impact
implementation? If so, what are some variations that will address these problems?

9.11. Draw the modulated window implementation of a Q= 2 filter in (9.20) for T = L and
νq = q/L. Simplify the circuit including factoring out filter components common
to each stage. Make certain end point correction is addressed.

9.12. There are numerous alternate forms in which the GTFR can be written.
(a) Show that the alternate GTFR expression in (9.24) reduces to (9.21).
(b) Derive the frequency domain representation of the GTFR in (9.25) from the

definition in (9.21).
9.13. Show that the GTFR of the two sinusoids in (9.41) is (9.43).
9.14. Derive a similar expression for computing the continuous time cone kernel GTFR

that was derived in Section 9.4.4.4 for the discrete case. Specifically, when ϕ(τ )
is real and even, show the derivative of the continuous time cone kernel GTFR in
(9.53) is

dC(t, u)

dt
= 2� x(t)

∫ T

−T
ϕ̃(τ )x∗(t + τ )e−j2πuτdτ (9.66)

where

ϕ̃(τ ) = ϕ(τ ) sgn(τ ). (9.67)

The integral in (9.66) is recognized as a continuous short time Fourier transform. The
cone kernel GTFR can be obtained by running dC(t,u)

dt through an analog integrator.
Note that, when x(t) is real, (9.66) becomes

dC(t, u)

dt
= 2 x(t)

∫ T

−T
ϕ̃(τ )x∗(t + τ ) cos(2πuτ )dτ.

9.15. The ambiguity function, used in radar and sonar [282, 291, 1510], is a measure
of a signal to simultaneously measure the range and velocity of a moving target
[39, 894, 1207, 1229, 1372]. It is given by the Fourier transform

χ (ν, τ ) =
∫ ∞
−∞

f (t) f (t − τ )e−j2πνtdt.

(a) Perform an inverse Fourier transform of the ambiguity function in ν followed
by a forward Fourier transform on τ . How does this relate to the GTFR?

(b) Compute the ambiguity function of a rectangular pulse of duration 2T .

f (t) = �
(

t

2T

)
. (9.68)

(c) Provide a sketch in the (ν, τ ) plane of the locus of points where the solution in
(b) is identically zero.

(d) Repeat (b) and (c) for the double pulse

f (t) = �
(

t

6T

)
−�

(
t

2T

)
.
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9.6 Solutions for Selected Chapter 9 Exercises

9.7. (a) The transfer function is

H(z) =
∞∑

n=0

hG[n] z−n

=
∞∑

n=0

e j2π (n+1)k/N z−n

= e j2πk/N
∞∑

n=0

(
z−1e j2πk/N

)n
.

Using the geometric series,

H(z) = e j2πk/N 1

1− z−1 e j2πk/N

= e j2πk/N 1

1− z−1e j2πk/N

1− z−1e−j2πk/N

1− z−1e−j2πk/N
(9.69)

= e j2πk/N 1− z−1e−j2πk/N

1− 2 cos(2πk/N)+ z−2
.

(b) See Figure 9.25.
9.9. (a)

| S(t; u) |2 =
∣∣∣∣
∫ ∞
−∞

w(τ )x(t − τ )e−j2πu(τ−θ )dτ

∣∣∣∣
2

= Ew

∫ t+T

τ=t−T
|x(τ )|2dτ.

9.12.

C(t, u) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

φ(f , τ )e j2π (ft−τu−f ξ )

× x
(
ξ + τ

2

)
x∗

(
ξ − τ

2

)
dξdτdf

x [n ] y [n ]z −1

−z −1

z −1

−1

ej2pk/N

2 cos (2pk/N )

FIGURE 9.25. IIR filter implementing the Goertzel’s algorithm transfer function in (9.69) in
Exercise 9.7.
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=
∫ ∞
−∞

∫ ∞
−∞

[∫ ∞
−∞

φ(f , τ )e j2π f (t−ξ )df

]
(9.70)

× x
(
ξ + τ

2

)
x∗

(
ξ − τ

2

)
e−j2πτudξdτ

The inverse Fourier transform of (9.23) is

φ̂(t, τ ) =
∫ ∞

t=−∞
φ(f , τ )e j2π ftdf .

Application to (9.71) gives the desired result in (9.21)
9.13. The GTFR in (9.25) can be written as

C(t, u) =
∫ ∞

f=−∞

[
�( f , u)

u∗ X

(
u+ f

2

)
X∗

(
u− f

2

)]
e j2π ftdf (9.71)

where
u∗

indicates convolution with respect to u. Given x(t) in (9.41), we have

X(u) = δ(u− f1)+ δ(u− f2)

and

X

(
u+ f

2

)
X∗

(
u− f

2

)
= δ

(
u− f

2
+ f1

)
δ

(
u+ f

2
− f1

)

+ δ
(

u− f

2
+ f1

)
δ

(
u+ f

2
− f2

)

+ δ
(

u− f

2
+ f2

)
δ

(
u+ f

2
− f1

)

+ δ
(

u− f

2
+ f2

)
δ

(
u+ f

2
− f2

)
. (9.72)

Since

�( f , u)
u∗ δ(u− θ1)δ(u− θ2) = �( f , u− θ1)δ(θ2 − θ1),

substituting (9.72) into (9.71) gives

C(t, u) =
∫

f
�

(
f , u+ f

2
− f1

)
δ( f )e j2π ftdf

+
∫

f
�

(
f , u+ f

2
− f1

)
δ ( f − ( f1 − f2)) e j2π ftdf

+
∫

f
�

(
f , u+ f

2
− f2

)
δ ( f − ( f2 − f1)) e j2π ftdf

+
∫

f
�

(
f , u+ f

2
− f2

)
δ( f )e j2π ftdf .

Equation (9.42) follows immediately from the Dirac delta’s sifting property.
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9.14. Using Leibniz’s rule,23 the derivative of the cone kernel GTFR in (9.53) is

dC(t, u)

dt
=

∫ T

τ=−T

d

dt

{∫ t+ |τ |2
ξ=t− |τ |2

ϕ(τ )x
(
ξ − τ

2

)
x∗

(
ξ + τ

2

)
dξ

}

× e−j2πuτdτ

=
∫ T

−T
ϕ(τ )

[
x

(
t + |τ |

2
− τ

2

)
x∗

(
t + |τ |

2
+ τ

2

)

−x

(
t − |τ |

2
− τ

2

)
x∗

(
t − |τ |

2
+ τ

2

)]
e−j2πuτdτ.

Breaking the integration into τ < 0 and τ > 0 sections gives

dC(t, u)

dt
=

∫ T

τ=0
ϕ(τ )

{
x(t)x∗(t + τ )− x(t − τ )x∗(t)

}
e−j2πuτdτ

+
∫ 0

τ=−T
ϕ(τ )

{
x(t − τ )x∗(t)− x(t)x∗(t + τ )dτ

}
e−j2πuτdτ

The integrands are similar and the integral can be recombined, using (9.67), into

dC(t, u)

dt
=

∫ T

−T
ϕ̃(τ )

{
x(t)x∗(t + τ )− x(t − τ )x∗(t)

}
e−j2πuτdτ.

Equivalently

dC(t, u)

dt
= x(t)

∫ T

−T
ϕ̃(τ )x∗(t + τ )e−j2πuτdτ

− x∗(t)
∫ T

−T
ϕ̃(τ )x(t − τ )e−j2πuτdτ.

In the second integral, substitute −τ for τ . If ϕ(τ ) is even, ϕ̃(τ ) is odd and

dC(t, u)

dt
= x(t)

∫ T

−T
ϕ̃(τ )x∗(t + τ )e−j2πuτdτ

+ x∗(t)
∫ T

−T
ϕ̃(τ )x(t + τ )e j2πuτdτ.

Since ϕ̃(τ ) is real, the terms are complex conjugates of each other and

dC(t, u)

dt
= 2� x(t)

∫ T

−T
ϕ̃(τ )x∗(t + τ )e−j2πuτdτ

which is the desired result in (9.66).

23. See Appendix 14.2.
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FIGURE 9.26. The zero locus plot for the ambiguity function of a single rectangular pulse. See the
solution to Exercise 9.15(b).
Source: [886] R.J. Marks II, J.F. Walkup, and T.F. Krile. Ambiguity function display: An improved
coherent processor. Applied Optics Vol. 16, pages 746–750, 1977.

9.15. The ambiguity function
(b) The ambiguity function for the pulse in (9.68) is

χ (ν, τ ) = (2T − |τ |) sinc (ν(2T − |τ |)) e−j2πντ�
( τ

4T

)
.

This is zero when the argument of the sinc is a nonzero integer, n and |τ | ≤ T .
Thus

ν = n

2T − |τ | ; |τ | ≤ T .

The corresponding zero locus plot is shown in Figure 9.26.
(c) For the double pulse, a bit of work gives the ambiguity function

χ (ν,τ )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

4(2T−|τ |)sinc(ν(2T−|τ |))cos(4πTν)e−j2πντ ;|τ |≤2T

−(2T−|τ |)sinc(ν(2T−|τ |))e−jπντ ;2T≤|τ |≤4T

(6T−|τ |)sinc(ν(6T−|τ |))e−jπντ ;4T≤|τ |≤6T

0 ;|τ |≥6T .

FIGURE 9.27. The zero locus plot for the ambiguity function of a double rectangular pulse. See the
solution to Exercise 9.15(c).
Source: [886] R.J. Marks II, J.F. Walkup, and T.F. Krile. Ambiguity function display: An improved
coherent processor. Applied Optics Vol. 16, pages 746–750, 1977.
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The zero locus follows from when either the sinc or the cos is zero. We use
m ∈ Z to parameterize the cosine and n = 0 for the sincs. The result is

ν =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2m + 1

8T
; |τ | ≤ 2T

n

|τ | − 2T
; |τ | ≤ 4T

n

6T − |τ | ; 4T ≤ |τ | ≤ 6T

The corresponding zero locus plot is shown in Figure 9.27.
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10

Signal Recovery

There exists, if I am not mistaken, an entire world which is the totality of mathematical
truths, to which we have access only with our mind, just as a world of physical reality

exists, the one like the other independent of ourselves, both of divine creation,
Charles Hermite (1822–1901)

One merit of mathematics few will deny: it says more in fewer words than any other
science. The formula, eiπ = −1 expressed a world of thought, of truth, of poetry, and of

the religious spirit ‘God eternally geometrizes.’
David Eugene Smith [1189]

The imaginary number is a fine and wonderful recourse of the divine spirit, almost an
amphibian between being and not being.

Gottfried Whilhem Leibniz (1646–1716) [468]

He who can properly define and divide is to be considered a god.
Plato [468]

10.1 Introduction

The literature on the recovery of signals and images is vast (e.g., [23, 110, 112, 257, 391,
439, 791, 795, 933, 934, 937, 945, 956, 1104, 1324, 1494, 1495, 1551]). In this Chapter,
the specific problem of recovering lost signal intervals from the remaining known portion
of the signal is considered. Signal recovery is also a topic of Chapter 11 on POCS.

10.2 Continuous Sampling

To this point, sampling has been discrete. Bandlimited signals, we will show, can also be
recovered from continuous samples. Our definition of continuous sampling is best presented
by illustration. A signal, f (t), is shown in Figure 10.1a, along with some possible continuous
samples. Regaining f (t) from knowledge of ge(t) = f (t)�(t/T ) in Figure 10.1b is the
extrapolation problem which has applications in a number of fields. In optics, for example,
extrapolation in the frequency domain is termed super resolution [2, 40, 367, 444, 500, 523,
641, 720, 864, 1016, 1099, 1117].

Reconstructing f (t) from its tails [i.e., gi(t) = f (t){1 − �(t/T )}] is the interval
interpolation problem. Prediction, shown in Figure 10.1d, is the problem of recovering
a signal with knowledge of that signal only for negative time.

447
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FIGURE 10.1. Illustration of continuous sampling (a) the original signal; (b) extrapolation;
(c) interpolation; (d) prediction; (e) periodic continuous sampling.

Lastly, illustrated in Figure 10.1e, is periodic continuous sampling. Here, the signal is
known in sections periodically spaced at intervals of T . The duty cycle is α. Reconstruction
of f (t) from this data includes a number of important reconstruction problems as special
cases.

(a) By keeping αT constant, we can approach the extrapolation problem by letting T
go to∞.

(b) Redefine the origin in Figure 10.1e to be centered in a zero interval. Under the same
assumption as (a), we can similarly approach the interpolation problem.

(c) Redefine the origin as in (b). Then the interpolation problem can be solved by
discarding data to make it periodically sampled.

(d) Keep T constant and let α → 0. The result is reconstructing f (t) from discrete
samples as discussed in Chapter 5. Indeed, this model has been used to derive the
sampling theorem [246].

Figures 10.1b-e all illustrate continuously sampled versions of f (t). In this chapter,
we will present techniques by which the signal can be reconstructed assuming that f (t)
is bandlimited. In the absence of noise, any finite energy bandlimited signal can be
reconstructed from any continuous sample. Such signals are analytic (or entire) everywhere
[125]. Thus, if we know the signal within an arbitrarily small neighborhood centered at t = τ ,
we can compute the value of the function and all its derivatives at τ and generate a Taylor
series about t = τ that converges everywhere.

f (t) =
∞∑

n=−∞

(t − τ )n f (n)(τ )

n! . (10.1)
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FIGURE 10.2. Illustration that a sample value far removed from an interval has an effect on the signal
in that interval.

In practice, of course, this can only be done to an approximation. We could, for example,
empirically determine f (τ ) and f (1)(τ ) and maybe even f (2)(τ ). But higher order derivatives
will eventually become critically muddled by measurement inexactitude. Thus, in our
example using two derivatives, we could at best fit a quadratic to the signal at t = τ .
In the absence of uncertainty, however, restoration can be performed from any continuously
sampled bandlimited signal.

Intuitively, one should not be surprised that a known portion of a bandlimited signal can
be extended at least near to where the signal is known. Bandlimited signals are smooth.
The extension of such a signal must be similarly smooth. Simply continuing the curve will
in general yield a good estimate “near” to where the signal is known. If, for example, we
are given f (t)�(t/T ) in Figure 10.2, and told that it is a portion of a bandlimited signal,
we then know that the signal is smooth. We could, with pencil in hand, extend the signal
a bit beyond the known portion |t| ≤ T/2 and have confidence that our estimation of the
extension of known portion of the signal was fairly accurate. If we were asked to pencil in
the signal far removed from the known signal, however, we would not be able to do so with
the information we have.

For the extrapolation problem, Pask [1099] explained the relationship between the
known interval and those samples far removed from the interval using the cardinal series
interpolation. In Figure 10.2, the sample f (n/2W ) is assumed to be outside of the known
interval. From the sampling theorem, the interpolation contribution of this sample is a sinc
function whose tails will intersect the interval |t| ≤ T and thus make a contribution to the
known portion of the signal. Thus, the known portion of the signal contains information
about the unknown part of the signal. Note, however, as we go farther and farther away
from the known portion of the signal, the contribution from the wiggles of the sinc becomes
less and less.

Unlike the Taylor series treatment that examines a signal and its derivatives at a
single point, most of the restoration algorithms in this chapter make use of all of the
known continuous portion of the signal. Like the Taylor series treatment, the sensitivity
of these algorithms to inexactitude must be considered. Indeed, a number of the algorithms
are ill-posed. This means that a small amount of noise on the known data can render
the reconstruction unstable. In such cases, further a priori information about f (t) must
be included in the algorithm i.e., the original problem statement is too vague. If we assume
only that f (t) is bandlimited with finite energy, the extrapolation and prediction problems are
ill-posed whereas restoration from periodic continuous samples and interpolation problems
are not.
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10.3 Interpolation From Periodic Continuous Samples

The given data for the periodic continuously sampled signal in Figure 10.1e is

gc(t) = f (t)rα

(
t

T

)
(10.2)

where the duty cycle, α, lies between zero and one and the pulse train is

rα(t) =
∞∑

n=−∞
�

(
t − n

α

)
. (10.3)

Given that f (t) is bandlimited, the problem is to find f (t) given gc(t) and the signal’s
bandwidth, B.

The degradation process described by (10.2) is illustrated by the top three functions in
Figure 10.3. The corresponding operation in the frequency domain, shown in the bottom
three functions in Figure 10.3 is

Gc(u) = F(u) ∗ TRα(Tu) (10.4)

where the upper case letters denote the Fourier transforms of the corresponding functions in
(10.2) and the asterisk denotes convolution. Expanding (10.3) in a Fourier series followed
by transformation gives

TRα(Tu) =
∞∑

n=−∞
Cnδ(u− nT ) (10.5)

where

Cn = α sinc(αn).

Then the spectrum of the degradation in (10.4) can be written:

Gc(u) =
∞∑

n=−∞
CnF(u− nT ).

FIGURE 10.3. Illustration of the degradation of f (t) to g(t) (top row) in t and (bottom row) in the
frequency domain.



[16:35 2/9/2008 5165-Marks-Ch10.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 451 447–494

SIGNAL RECOVERY 451

10.3.1 The Restoration Algorithm

Clearly, if the sampling rate 1/T exceeds 2B, the replicated spectra do not overlap and
F(u) can be regained from G(u) by a simple low pass filter. We are interested in restoration
when the data is aliased. If one of the spectra overlaps the right half zero order spectrum
as in Figure 10.4a, we have first order aliasing. If two overlap, as in Figure 10.4b, we have
second order aliasing, etc. In general, the order of aliasing is

M = �2BT�.

Consider Figure 10.5 in which 2M + 1 shifted versions of Gc(u) are shown, i.e., the set

{
Gc

(
u− m

T

)∣∣∣−M ≤ m ≤ M
}
.

The interfering component spectra in each shifted Gc are shown not overlapping for
presentation clarity. We now simply need to weight the mth shifted Gc by a coefficient
bm so that

M∑
m=−M

bm Gc

(
u− m

T

)
�
( u

2B

)
= F(u). (10.6)

With attention again to Figure 10.5, this is equivalent to summing the weights of the
component spectra in each column to give zero for the interfering spectra and one for
the zero order spectrum. That is, find the bm’s which satisfy

M∑
m=−M

bmCn−m = δ[n] ; −M ≤ n ≤ M. (10.7)

FIGURE 10.4. Illustration of (top) first order aliasing and (bottom) second order aliasing.



[16:35 2/9/2008 5165-Marks-Ch10.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 452 447–494

452 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

C0

b−M ×

bM ×

b−M+1 ×

b0 ×

C1

C0 CM

C−M C0

CM C2M

G u +

u

u

u

u

u

0100

=

m
—
T

C−1 CM−1 C2M−1

C−M C−M+1

C−2M C−2M+1

C0

G u −
m
—
T

G u +
m
—
T

G

G(u)

u +
m − 1
——

T

FIGURE 10.5. Illustration of the methodology of restoring Mth order aliased data by summing 2M + 1
shifted and weighted versions for the degraded spectrum.

Viewing this as a matrix operation,
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C0 C−1 · · · C−M · · · C−2M

C1 C0 · · · C−M+1 · · · C−2M+1
...

...
...
...

...
...

CM CM−1 · · · C0 · · · C−M
...

...
...
...

...
...

C2M C2M−1 · · · CM · · · C0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b−M

b−M
...

b0
...

b−M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10.8)

it is clear the bm’s can be solved for by solution of a Toeplitz1 set of equations.
Inverse transforming (10.6) gives the time domain restoration formula

f (t) =
[

gc(t)�M

(
t

T

)]
∗ 2Bsinc(2Bt) (10.9)

1. The nmth element of the matrix is a function only of n− m.
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where �M (t) is the trigonometric polynomial

�M (t) =
M∑

m=−M

bm e j2πmt . (10.10)

Note, however, that since

gc(t) = gc(t)rα

(
t

T

)

we only require knowledge of�M (t) where rα is unity. Thus we define the periodic function

ψM (t) = �M (t)rα(t). (10.11)

In lieu of (10.9), the restoration algorithm now becomes [902]

f (t) =
[

gc(t)ψM

(
t

T

)]
∗ 2B sinc(2Bt). (10.12)

This is illustrated in Figure 10.8.
Expanding ψM (t) in a Fourier series gives

ψM (t) =
∞∑

n=−∞
dn e j2πnt

The coefficients are

dn =
∫ 1

2

− 1
2

ψM (t) e−j2πntdt

=
∫ α

2

− α2
�M (t) e−j2πntdt

= α
M∑

m=−M

bm sinc (α(n− m))

where, in the last step we have used (10.10). From (10.7), we conclude that

dn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α

M∑
m=−M

bm sinc (α(n− m)) ; | n | ≥ M

δ[n] ; | n | ≤ M.

Note that the dn’s are also the weights of the remaining spectra after restoration. Plots of
ψM (t) for α = 0.5 are shown in Figure 10.6. Plots of ψ2(t) for various duty cycles are
shown in Figure 10.7.

This is our desired result.

10.3.1.1 Trigonometric Polynomials

If f (t) is the trigonometric polynomial,

f (t) =
N∑

n=−N

βn e j2πnt/T
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104

yM(t)

103

102

10

1

0

M = 4

M = 5

M = 5

M = 4

M = 3

M = 2

M = 1

−10

−102

−103

−104

0 0.1 0.2

t

FIGURE 10.6. Plots of ψM (t) = ψM (−t) for α = 0.5 and M = 1, 2, 3, 4, and 5. The vertical scale is
linear for | ψM (t) |< 1 and logarithmic otherwise.

then, for | t |< T/2, the restoration algorithm in (10.12) becomes

f (t) =
[

f (t) �

(
t

αT

)
ψM

(
t

T

) ]
∗ 1

T
h

(
t

T

)
(10.13)

where

h(t) = (2N + 1) array2N+1(t)

←→H(u) =
N∑

n=−N

δ(u− n).

This restoration process is illustrated in Figure 10.9. Note that H(uT ) acts as a sampler in
the frequency domain. Plots of h(t) are shown in Figure 10.10 for various N .

Proof . We can write (10.12) as

f (t) = 2B
∞∑

n=−∞

∫ (n+ α2 )T

(n− α2 )T
gc(τ ) ψM

( τ
T

)
sinc (2B(t − τ )) dτ.

Since both gc and ψM are periodic, setting ξ = τ − nT gives

f (t) =
∫ αT/2

−αT/2
gc(ξ ) ψM

(
ξ

T

)
k(t − ξ ) dξ
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FIGURE 10.7. Plots of ψ2(t) for various α. The vertical scale is linear for | ψ2(t) |< 1 and logarithmic
otherwise.

FIGURE 10.8. Restoration of continuously sampled signals. The periodic function ψM (t) is
parameterized by the duty cycle and the severity of aliasing. The low-pass filter has the same
bandwidth, B, as the restored signal.

where

k(t) = 2B
∞∑

n=−∞
sinc (2B(t − nT )).

Recognizing that B = N/T , we can evaluate this sum in the same manner we evaluated
(6.81). The result is

k(t) = sin
(
π (2N + 1) t

T

)
T sin

(
π t
T

) = 2N + 1

T
array2N+1

(
t

T

)
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FIGURE 10.9. Restoration of a period of a trigonometric polynomial known only over the subperiod
of | t |< 1

2 .

FIGURE 10.10. Plots of the convolution kernels h(t). When a trigonometric polynomial of period T is
known for | t |< T

2 , the convolution of this function with the known portion of the polynomial (after
weighting with ψM (t)) results in a whole period of the trigonometric polynomial.

and (10.13) results. Note that we must have the strict inequality M > 2N since, at M = 2N ,
we have first order aliasing due to the Dirac delta nature of the spectrum of f (t).

10.3.1.2 Noise Sensitivity

Here, we explore the performance of the restoration algorithm in (10.13) in the presence of
additive wide sense stationary zero mean noise, ξ (t) [903]. Because of linearity, an input
of gc(t)+ ξ (t) into the restoration algorithm will yield an output of f (t)+ η(t), where η(t)
is the algorithm response to ξ (t) alone. Using (10.12), it follows that

η(t) =
[
ξ (t) ψM

(
t

T

)]
∗ 2B sinc(2Bt).

The interpolation noise, η(t), is also zero mean although it is not stationary.
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The restoration noise level follows as

η2(t) = E
[
η2(t)

]

= E

[∫ ∞
τ=−∞

ξ (τ ) ψM

( τ
T

)
2Bsinc (2B(t − τ )) dτ

×
∫ ∞
λ=−∞

ξ (λ) ψM

(
λ

T

)
2Bsinc (2B(t − λ)) dλ

]

= 4B2
∫ ∞
−∞

∫ ∞
−∞

Rξ (τ − λ)ψM

( τ
T

)
ψM

(
λ

T

)

× sinc (2B(t − τ )) sinc (2B(t − λ)) dτdλ.

By straightforward integral manipulation we obtain

η2(t) =
∫ ∞
−∞

Rξ (γ )h(t; γ )dγ (10.14)

where

h(t; γ ) = 2B ψM

(γ
T

)
sinc (2B(t − γ )) � 2B ψM

(γ
T

)
sinc (2B(t − γ )) . (10.15)

The � denotes deterministic autocorrelation2 with respect to γ . The output noise level in
(10.14) is an even periodic function with period T .

White Noise. For continuous white noise

Rξ (τ ) = ξ2δ(τ ). (10.16)

Equation (10.14) becomes

η2(t)

ξ2
= h(t; 0)

= (2B)2sinc2(2Bt) ∗ ψ2
M

(
t

T

)
. (10.17)

From (10.11)

ψ2
M (t) = rα(t)�2

M (t)

where, from (10.10)

�2
M (t) =

M∑
k=−M

M∑
r=−M

bkbr e j2π (k+r)t . (10.18)

Fourier transforming both sides of (10.17) gives

η2(t)

ξ2
←→2B�

( u

2B

)
F ψ2

M

(
t

T

)

= 2B�
( u

2B

) [
TRα(Tu) ∗ F�2

M

(
t

T

)]
(10.19)

2. See Table 2.3 for the definition of deterministic correlation.
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where F denotes the Fourier transform operator. Substituting (10.5) and the transform of
(10.18) into (10.19) gives

η2(t)

ξ2
= 2B�

( u

2B

) ∞∑
p=−∞

cp

M∑
k=−M

bk

M∑
r=−M

brδ

(
u+ (k + r − p)

T

)

= 2B �
( u

2B

) M∑
k=−M

bk

M∑
r=−M

br

M∑
q=−M

ck+r−qδ
(

u− q

T

)

where q = k + r − p and we have recognized that the finite extent of the triangle function
lets through only 2M + 1 of the Dirac delta functions. Evaluating�(u/2B) at u = q/T and
inverse transforming gives the desired result:

η2(t)

ξ2
=

M∑
k=−M

bk

M∑
r=−M

br

M∑
q=−M

(
2B− | q |

T

)
ck+r−q e−j2πqt/T. (10.20)

An illustration of the restoration noise level for various duty cycles for first degree aliasing
is shown in Figure 10.12. The effects of variation of the aliasing order are illustrated in
Figure 10.11.

Colored Noise. With the aim of placing (10.15) in more tractable form for colored
noise, we Fourier transform with respect to γ using the correlation theorem of Fourier
analysis

H(t; ν) =
∫ ∞
−∞

h(t; γ ) e−j2πνγ dγ

=
∣∣∣T �M (Tν) ∗

[
e−j2πνt �

( ν
2B

)]∣∣∣2 (10.21)

where �M (ν) is the Fourier transform of ψM (γ ) and convolution is with respect to ν.
Clearly

�M (ν) =
∞∑

n=−∞
dnδ(ν + n).

Thus (10.21) becomes

H(t; ν) =
∣∣∣∣∣
∞∑

n=−∞
dn exp

(
−j2π (ν + n

T
)t
)
�

(
ν + n/T

2B

)∣∣∣∣∣
2

=
∣∣∣∣∣
∞∑

n=−∞
dn exp

(−j2πnt

T

)
�

(
ν + n/T

2B

)∣∣∣∣∣
2

. (10.22)

Since

�

(
ν + n

T

2B

)
�

(
ν + m

T

2B

)
= �

(
m − n

4BT

)
�

(
ν + m+n

2T

2B− |n−m|
T

)
,
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FIGURE 10.11. NINV for additive white noise for various orders of aliasing M. The values of T
corresponding to M = 1, 2, 3 are T = 0.9, 1.4, 1.9, respectively. Because of symmetry, plots are
needed only for 0 < x < T

2 . (2B = 2 and α = 0.6.)

FIGURE 10.12. NINV for additive white noise for various duty cycles. 2B = 2 and T = 0.9, giving
M = first-order aliasing.
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substituting into (10.22) and further recognizing from (10.7) that dm = δ[m] for |m| < M
gives

H(t; ν) = �
( ν

2B

)

+
M∑

n=−M

∑
|m|>M
|n−m|≤M

dndm�

(
ν + m+n

2T

2B− |m−n|
T

)
exp

(−j2π (n− m)t

T

)

= �
( ν

2B

)

+
M∑

n=−M

∑
|m|≤M
|n−m|>M

dndn−m�

(
ν + 2n−m

2T

2B− |m|T

)
exp

(−j2πmt

T

)
. (10.23)

Using the power theorem, (10.14) can be written as

η2(t) =
∫ ∞
−∞

Sξ (u)H(t; u) du (10.24)

where the power spectral density, Sξ (u), is the Fourier transform of Rξ (t). Define the odd
indefinite integral

Iξ (u; t) =
∫ u

0
Sξ (ν)H(t; ν) dν.

Then substituting (10.23) into (10.24) and recognizing that η2(t) is real gives the Fourier
series

η2(t) = 2Iξ (B; t)

+
M∑

n=−M

∑
|m|≤M
|n−m|>M

dndn−m cos

(
2πmt

T

)

×
[

Iξ

(
m− | m | −2n

2T
+ B; t

)

− Iξ

(
m+ | m | −2n

2T
− B; t

)]
. (10.25)

For white noise, as in (10.16), Iξ (u; t) = ξ2. The equivalent result in (10.20), however, is
in closed form.

Laplace autocorrelation. For an example application of (10.25), consider the Laplace
autocorrelation

Rξ (τ ) = ξ2 e−λ|τ |

where λ is a specified positive parameter. Then

Iξ (u; t) = ξ2 arctan(2πu/λ)

π
.
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In the numerical examples to follow, B is set to one. Figure 10.13 shows the dependence
of output noise level on the duty cycle α for first-order aliasing. The dependence of the
Laplace parameter is shown in Figure 10.14 for a fixed duty cycle. As λ increases, adjacent
points of the input noise become less correlated and the interpolation noise level decreases.
Dependence of the output noise level on order of aliasing is illustrated in Figure 10.15.

10.3.2 Observations

10.3.2.1 Comparison with the NINV of the Cardinal Series

For certain combinations of the parameters T , 2B, and α, the continuously sampled signal
can be discretely sampled uniformly at or in excess of the Nyquist rate. Let this rate be

FIGURE 10.13. NINV for input noise with Laplace autocorrelation for various duty cycles α. 2B = 2
and T = 0.9, giving M = first-degree aliasing. The Laplace parameter is λ = 2.

FIGURE 10.14. NINV for additive input noise with Laplace autocorrelation for various Laplace
parameters λ. 2B = 2 and T = 0.9, giving M = first-degree aliasing. The duty cycle is α = 0.6.
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FIGURE 10.15. NINV for additive input noise with Laplace autocorrelation for various degrees of
aliasing. The T values corresponding to M = 1, 2, 3 are T = 0.9, 1.4, 1.9, respectively. Because of
symmetry, plots are needed only for 0 < x < T/2. (2B = 2 and α = 0.6, and λ = 2).

denoted by 2W > 2B. The result is the same as if we had discretely sampled the original
signal at a rate of 2W .

Let T , 2B, and α be such that this uniform sampling can be performed. Assume that, as
in the previous section, each sample point is perturbed by additive Laplace autocorrelation
noise with parameter α. When the noisy samples are interpolated and passed through a filter
unity on | u |< B and zero otherwise, the resulting NINV is given by (7.14). One would
expect that the periodic continuous sample restoration would yield a lower noise level since
more data are used in the recovery. As the results in Table 10.1 indicate, this is indeed
the case.

10.3.2.2 In the Limit as an Extrapolation Algorithm

Keeping αT constant and letting T tend to ∞ alters our algorithm to an extrapolation
algorithm if f (t)→ 0 as t → ∞. As a consequence, the degree of aliasing, M, becomes
unbounded. It is clear from Figures 10.13 and 10.17 that the noise sensitivity in this case
increases enormously. This is our first empirical observation that the extrapolation problem
is ill-posed.

TABLE 10.1. Comparison of noise levels for some cases in which the signal can be restored using
either the continuously sampled signal-restoration algorithm or the conventional sampling theorem
(followed by filtering). The former, in each case, has a lower level. In each case, the Laplace
parameter is λ = 2

Example T 2B α 2W min η2(t)/ξ2 max η2(t)/ξ2 η2
0/ξ

2

(a) 1 1.5 0.90 5 0.7460 0.7478 0.7647

(b) 1 1.5 0.70 3 0.7768 0.7842 0.8020

(c) 5 0.3 0.96 1 0.2810 0.2822 0.3754
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FIGURE 10.16. Forming a continuously sampled signal, gc(t), from a known interpolation problem
signal, gi(t).

10.3.2.3 Application to Interval Interpolation

Use of the periodic continuous sample restoration algorithm for interval interpolation is
shown in Figure 10.16. The known data, shown in the top figure, consists of the signal’s
tails. By selectively throwing away portions of the known data, we can form the continuously
sampled signal shown. Our algorithm can be applied and the signal restored.

The unknown interval of length (1 − α)T must stay fixed. Note, however, that we
have freedom in our choice of T . If we choose T to be small, then we have a small
duty cycle and, as is illustrated in Figure 10.12, a correspondingly large restoration noise
level. If we choose T to be large, then the order of aliasing increases and, as witnessed by
Figures 10.11 and 10.14, the restoration noise level is also large. These observations suggest
that there might exist some intermediate value of T that has optimal restoration noise
properties [908].

An example where this is the case is pictured in Figure 10.17, where the normalized
interpolation noise variance (NINV) at the origin is plotted versus T for the additive
white noise in (4.74). As T increases, the restoration noise level decreases until T is
sufficiently large to increase the order of aliasing. Then, as shown, the noise level makes
a quantum leap and begins decreasing again until the next order of aliasing is reached.
(Values of M are given at the top of the plot.) Note that in this case, the relative minima
increase with T and, for minimum restoration noise level, the best choice for T is 1 − ε
where 0 < ε 
 1.

As is shown in Figure 10.18, the relative minima can also increase with T . Here, the
noise has a Laplace autocorrelation with parameter λ = 2. All other parameters are the
same. Increasing λ to 10 again yields decreasing minima as shown in Figure 10.19. Note
that, in any case, the interpolation noise level is finite. By this measure, the interpolation
problem is thus well posed.

10.4 Interpolation of Discrete Periodic
Nonuniform Decimation

Discrete periodic nonuniform decimation occurs then a discrete time signal, f [n], is
periodically set to zero over a specified interval. The problem is the discrete time version of
continuous sampling presented in Section 10.2. Let the period of the decimation be P and
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FIGURE 10.17. Continuous sample restoration of the interval interpolation problem yields this η2(0)/ξ2

curve when the data are perturbed by white noise. The optimum choice of T is a bit below one
(2B = 2, (1− α)T = 0.4).

FIGURE 10.18. Same as Figure 10.17, except the noise has a Laplace autocorrelation with parameter
λ = 2. The best choice of T is a bit below 1.5.
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FIGURE 10.19. Same as Figure 10.18, except λ = 10. The minima here decrease.

FIGURE 10.20. Illustration of discrete periodic nonuniform decimation. Here, the period is P = 5. Each
of the first N = 3 values are kept and the remaining P − N = 2 are discarded. This is the discrete
time version of continuous sampling illustrated in Figure 10.1.

let N < P. Within a period, the first N values are known and the remaining P−N are set to
zero. This periodic decimation is repeated for all values of n. The periodically nonuniformly
decimated signal is denoted by g[n]. Given that the original signal, f [n], is bandlimited, the
problem is, given g[n] and the bandwidth B, to find, if possible, f [n]. This is illustrated in
Figure 10.20 for P = 5 and N = 3.

Analysis in this section is restricted to the case where the first N of P values are known in
each period. The discrete periodic nonuniform decimation problem, though, is more general
than this. In a period of P = 5, for example, the identity of the first, third and fifth values
may be known and the others not. Interpolation in the case of these more general problems
follows straightforwardly from the analysis to follow.
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10.4.1 Problem Description

To generate the decimated signal, g[n], define the discrete rectangular pulse train

rN
P [n] =

∞∑
p=−∞

�[pP ≤ n < pP + N] (10.26)

where �[n− ≤ n < n+] = 1 for n− ≤ n < n+ and is otherwise zero. Then

g[n] = f [n]rN
P [n]. (10.27)

Our task is, when possible, to find f [n] given its bandwidth and g[n].
Taking the DTFT3 of both sides of (10.27) gives the circular convolution4

G(v) = F(v) ∗ (RN
P (v)�(v)

)
(10.28)

where RN
P (v) is the DTFT of rN

P [n]. From (10.26)

RN
P (v) =

∞∑
p=−∞

pP+N−1∑
n=pP

e−j2πnv.

In the n sum, let m = n− pP. Then

RN
P (v) =

∞∑
p=−∞

e−j2πpPv
N−1∑
m=0

e−j2πmv. (10.29)

The p sum is recognized as the Fourier series of comb(Pv) and, using a geometric series,
we can show

N−1∑
m=0

e−j2πmv = Ne−jπ (N−1)varrayN (v). (10.30)

Equation (10.29) therefore becomes

RN
P (v) = Ncomb(Pv)e−jπ (N−1)varrayN (v)

=
∞∑

p=−∞
apδ
(

v − p

P

)

where

ap = N

P
e−jπ (N−1)p/ParrayN

( p

P

)
. (10.31)

3. See Equation (2.112).
4. See Table 2.6.
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10.4.1.1 Degree of Aliasing

The function f [n] is assumed to have bandwidth B < 1
2 so that5

F(v) = F(v)r2B(v).

The convolution replicates this periodic spectrum in a possibly aliased fashion. An example
is shown in Figure 10.21 for P = 3. Since one spectrum from the right overlaps the zeroth
order spectrum, the degree of aliasing is M = 1. In general, the lowest frequency component
of the Mth spectrum is at v = M

P − B. We wish to determine the largest value of M that
infringes on the interval of the zeroth order spectrum, i.e., the largest value of M such that
M
P − B ≤ B. The degree of aliasing follows as

M = �2PB� (10.32)

where �x� denotes the largest integer not exceeding x.

10.4.1.2 Interpolation

For Mth order aliasing, as is the case for continuous sampling, a total of 2M overlapping
spectra must be eliminated from their overlap of the zeroth order spectrum. We desire
coefficients {βq| − M ≤ q ≤ M} such that superimposing 2M + 1 versions of G(u) with
various shifts eliminates the aliasing spectra and reconstructs the zeroth order spectrum
exactly. We therefore seek the coefficients that solve

⎡
⎣

M∑
q=−M

βqG
(

v − q

P

)⎤⎦�
( v

2B

)
= F(v) ; |v| ≤ B. (10.33)

This is illustrated in Figure 10.22 for the spectra aliasing the zeroth order spectra. If these
overlaps are cleared, then, due to the periodicity of DTFT spectra, all aliasing spectra will

FIGURE 10.21. Illustration of M = 1st order aliasing corresponding to B = 1
4 and P = 3. The

spectrum, F(u), is shown with solid lines and the aliasing spectra with broken lines. From (10.32),
M = 3

2 = 1.

5. Recall that

rα(t) =
∞∑

n=−∞
�

(
t − n

α

)
.
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G(n)
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M/p− p/p

p/p− 1/p
1/p

0
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0
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P
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—
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P

n

n

n

n

n

FIGURE 10.22. Weighting each of 2M+1 shifted versions of the aliased signal in the frequency domain
can, in certain instances, be used to remove the aliased spectra. Compare with Figure 10.5 which is
for the continuous case.

be eliminated. From Figure 10.22, the βq coefficients are solutions to the following system
of 2M + 1 linear equations.

M∑
q=−M

βqap−q =
{

1 ; p = 0
0 ; 1 ≤ |p| ≤ M.

(10.34)

In matrix-vector notation (10.34) is

A[N,P] �β = �δ (10.35)

where A is a (2M + 1)× (2M + 1) matrix with elements

(A[N,P])nm = an−m

= N

P
e−jπ (N−1)p/ParrayN

( p

P

)
, (10.36)

�β is a vector of the βq’s and �δ is a matrix of zeros except with a single “1” in the middle.
The vector �β is therefore equal to the middle column of A−1.
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Assuming these equations do not contain colinear terms, the values of {βq| −M ≤ q ≤ M}
can be solved numerically. Since

f [n] =
∫ 1

2

− 1
2

F(v)e j2πvndv,

=
∫ B

−B
F(v)e j2πvndv, (10.37)

we have, from (10.33),

f [n] =
∫ B

−B
F(v)e j2πvndv

=
∫ 1

2

− 1
2

⎡
⎣

M∑
q=−M

βqG
(

v − q

P

)
�
( v

2B

)⎤⎦ e j2πvndv (10.38)

=
M∑

q=−M

βq

∫ 1
2

− 1
2

[
G
(

v − q

P

)
�
( v

2B

)]
e j2πvndv.

Since

f [n] =
∫ 1

2

− 1
2

[X(v)H(v)] e j2πvndv

= x[n] ∗ h[n]
where ∗ denotes discrete convolution, x[n] ↔ X(v), and h[n] ↔ H(v).And since

2B sinc(2Bn)↔ �
( v

2B

)
,

and

g[n]e j2πnp/P ↔ G
(

v − q

P

)
, (10.39)

(10.38) becomes

f [n] =
[
�M

( n

P

)
g[n]

]
∗ 2B sinc(2Bn) (10.40)

where we define the trigonometric polynomial

�M (v) =
M∑

q=−M

βqe j2πqv.

Since, however, g[n] = g[n]rN
P [n], knowledge of�M

( n
P

)
is required only when rN

P [n] = 1.
Therefore, define the periodic function

�M

( n

P

)
= �M

( n

P

)
rN

P [n]
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FIGURE 10.23. Signal flow diagram for restoring a periodic nonuniform decimated discrete signal. The
bandwidth of the low pass filter is B.

and (10.40) becomes

f [n] =
[
g[n]�M

( n

P

)]
∗ 2B sinc(2Bn). (10.41)

This procedure for regaining f [n] from g[n] is illustrated in Figure 10.23.

10.4.1.3 The A[N, P] Matrix

The ability to solve the set of equations in (10.35) is dependent on the condition6 of the
matrix A[N,P]. Here are some special cases

• A[1,P] has a zero determinate and is therefore singular. Thus, interpolation is not
possible when N = 1. To show this, we note that, since array1(x) = 1, each element
of the A[1,P] matrix in (10.36) is

anm = N

P
.

• A[N,P] is singular when7 B ≥ 1
2 .

• Here are the numerically computed condition numbers for A[N,P] when M = 1.

P⇒ 2 3 4 5 6 7 8
N = 1 ∞ ∞ ∞ ∞ ∞ ∞ ∞

2 ∞ ∞ ∞ ∞ ∞ >1016 >1016

3 − ∞ 4 13.1 34.0 73.7 141
4 − − ∞ 2.50 6.00 13.0 25.3
5 − − − 1 2.00 4.00 7.58
6 − − − − 1 1.75 3.09
7 − − − − − 1 1.60
8 − − − − − − 1

A plot of the condition number for M = 1 for P up to 40 is shown in Figure 10.24.
A similar plot for second order aliasing (M = 2) is shown in Figure 10.25.

10.4.2 The Periodic Functions, �M(v)

The periodic functions, �M (v), needed to interpolate the periodic nonuniformly decimated
signal in (10.41) cannot always be computed. The A[N,P] matrix must have a sufficiently

6. See Appendix 14.5.
7. See Exercise 10.4.
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FIGURE 10.24. A plot of matrix condition number for first order (M = 1) aliasing for various N and P.
(Values for N < P are shown set to zero).

FIGURE 10.25. A plot of matrix condition number for second order (M = 2) aliasing for various N and
P. (Values for N < P are shown set to zero.)
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)
for M = 20, P = 100 and 95 ≤ N ≤ 100.

small condition number.8 An example of the resulting periodic functions are shown in
Figure 10.26 for (M,P) = (20, 100).

10.4.3 Quadrature Version

If f [n] is real, its DTFT is conjugately symmetric. That is, F(v) = F∗(−v). Therefore, if
f [n] is bandlimited, knowledge of F(v) is only required on the interval 0 ≤ v ≤ B. With
reference to Figure 10.22, only the aliasing for positive v must be removed. There are M
aliasing spectra to the right of the zeroth order spectra. In addition, there are spectra to the
left of the zeroth order spectrum. The maximum frequency component of the−mth spectrum
is −m

P + B. Let−M2 be the minimum value of−m for which this value is positive. Solving
−m
P + B > 0 gives

M2 = �BP�.

Note, for M even, 2M2 = M. Instead of the equation in (10.33), we desire to solve

M∑
q=−M2

β̂qG
(

v − q

P

)
= F(v) ; 0 ≤ v ≤ B. (10.42)

To find the β̂ coefficients, instead of (10.34), we solve the following set of M + M2 + 1
linear equations.

M∑
q=−M2

β̂qap−q =
{

1 ; p = 0

0 ; −M2 ≤ p ≤ −1 and 1 ≤ p ≤ M.
(10.43)

8. See (14.10).
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10.5 Prolate Spheroidal Wave Functions

A set of orthogonal functions which prove useful in the extrapolation and interval
interpolation problems are the prolate spheroidal wave functions (PSWF’s). Their use in
these problems was initially reported by Slepian and Pollak [1285] in the first of a classic
series of papers [1280, 1281, 1282, 1284, 1285, 1286].

The PSWF’s can be defined as the solution of the integral equation

λnψn(t) = 2B
∫ T/2

−T/2
ψn(τ ) sinc(2B(t − τ )) dτ (10.44)

where 0 ≤ n <∞ and the λn’s are the eigenvalues. Equivalently

λnψn(t) =
[
ψn(t) �

(
t

T

)]
∗ 2Bsinc(2Bt). (10.45)

The PSWF’s can thus be viewed as the eigenfunctions of low pass filtering signals of finite
support.

Although not explicitly stated in the notation, bothψn(t) and λn are continuous functions
of the time-bandwidth product

c = 2BT . (10.46)

Plots of some PSWF’s are shown in Figure 10.27

10.5.1 Properties

Here we present without proof some significant properties of the PSWF’s and their
eigenvalues [1076].

(a) The eigenvalues of the PSWF’s are real. Note from (10.45), that energy in ψn(t) is
reduced first by truncation and then by filtering. Thus, each λn has a magnitude less

0.6

0.4

0.2

0

0

n = 1

n = 2

n = 0

c = 0.6

1

2Bt
−0.2

FIGURE 10.27. PSWF’s ψ0(t), ψ1(t), and ψ2(t) vs. 2Bt for c = 0.6.
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than unity. We will choose them to be positive and will index them in decreasing
order.

1 > λ0 > λ1 > · · · > 0. (10.47)

(b) From (10.45), the PSWF’s are clearly bandlimited and thus are not affected by low
pass filtering.

ψn(t) = ψn(t) ∗ 2Bsinc(2Bt). (10.48)

(c) For a given c, the PSWF’s are orthonormal on (−∞,∞).
∫ ∞
−∞

ψn(τ )ψm(τ )dτ = δ[n− m]. (10.49)

Furthermore, they form a complete basis set for finite energy bandlimited signals.
Thus, if f (t) is bandlimited, then

f (t) =
∞∑

n=0

anψn(t) (10.50)

where

an =
∫ ∞
−∞

f (t)ψn(t)dt. (10.51)

Like the sampling theorem, convergence of (10.50) is uniform [478].
(d) For a given c, the PSWF’S are orthogonal on the interval | t |≤ T/2.

∫ T/2

−T/2
ψn(τ )ψm(τ ) dτ = λn δ[n− m]. (10.52)

Furthermore, the PSWF’s are a complete basis set for finite energy functions on the
interval | t |≤ T/2. Specifically

h(t) =
N∑

n=−N

bnψn(t); | t |≤ T

2
(10.53)

where

λnbn =
∫ T/2

−T/2
h(t)ψn(t)dt.

Like the Fourier series, convergence of (10.53) is assured in the mean square sense.
(e) The PSWF’s are also eigenfunctions of a sort for the Fourier transform. Specifically

ψn(t)←→
√

T

2Bλn
ψn

(
Tu

2B

)
�
( u

2B

)
. (10.54)

Similarly, for the truncated PSWF,

ψn(t) �

(
t

T

)
←→

√
Tλn

2B
ψn

(
Tu

2B

)
. (10.55)

This follows from (10.54) and duality.
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(f) The PSWF’s are difficult to deal with numerically. For our purposes, they will prove
to be primarily an analytic tool. Their detail structure, shown in Figure 10.27, is of
secondary interest.

10.5.2 Application to Extrapolation

Let f (t) be bandlimited with known bandwidth B. The extrapolation problem is to regain
f (t) from

ge(t) = f (t) �

(
t

T

)
. (10.56)

A solution to this problem is obtained by expanding g(t) into a PSWF series:

ge(t) =
∞∑

n=0

anψn(t) �

(
t

T

)
(10.57)

where

λnan =
∫ T/2

−T/2
ge(t) ψn(t) dt. (10.58)

Also, since f (t) is bandlimited, it can be expanded as in (10.50). The coefficients of
an orthogonal function expansion are unique. Thus, the coefficients in (10.50) and (10.58)
are the same. The significant point is that these coefficients can be determined only with
knowledge of ge(t) via (10.58). Then f (t) can be found from (10.50) and our extrapolation
is complete.

This result should bother our intuition. For example, telephone conversation waveforms
can be considered bandlimited. Our result says that the entirety of a phone conversation
can be determined if we know only a word or two in the middle. This, of course, is an
unacceptable conclusion.

The resolution of this apparent paradox between mathematics and intuition lies in the
fact that our analysis has been to this point deterministic. In practice, the known portion of
the signal will be accompanied by some type of noise. To understand how noise affects the
algorithm, we must examine the structure of the eigenvalues shown in Figure 10.28. Fix
c. For n below a certain number, the eigenvalues are essentially one. Above that threshold,
they are close to zero. A typical plot of λn versus n is shown in Figure 10.29.

Consider, then, the evaluation of the coefficients in (10.58) when either the integral
computation and/or ge(t) is accompanied by a small degree of inexactitude. If n is above the
threshold, then division by λn 
 1 will greatly magnify this error. Thus, the an coefficients
can be only computed reliably up to that threshold which we will call S.

To get a feeling for the value of S, consider again, ge(t). If we sample this known portion
at the Nyquist rate, 2B, over a time interval of duration T , then the total number of non-
zero samples is about 2BT . This is the time-bandwidth product discussed in Section 5.4.3.
It is also roughly the number of discrete values required to specify ge(t) to a “good”
approximation. We can show empirically that this is the threshold we seek. The value

S = 2BT

has also been called the Shannon number [1407] or time-bandwidth product. Note that
S = c. Thus, we conclude that in most any practical situation, ge(t) can be represented by
roughly S numbers, be they samples or PSWF coefficients. In very high signal-to-noise ratio
situations, however, it is possible to add a few degrees of freedom to a truncated signal.
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FIGURE 10.28. Eigenvalues, λn, of the PSWF integral equation.
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FIGURE 10.29. Eigenvalues for the PSWF for c = 10. The points are connected for clarity.

10.5.3 Application to Interval Interpolation

Mathematically, the interpolation problem is similar to extrapolation with a significant
difference- interval interpolation is well posed. As is shown in Figure 10.1c, our given data
here is

gi(t) = f (t)

[
1− �

(
t

T

)]
. (10.59)

From (10.44) and (10.48), we conclude that

(1− λn)ψn(t) = 2B
∫
τ>
|T |
2

ψn(τ )sinc(2B(t − τ ))dτ. (10.60)
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It follows that the PSWF’s are complete for gi(t) when f (t) is bandlimited. Equation (10.50)
applies and the expansion coefficients can be found with knowledge only of gi(t):

an = (1− λn)−1
∫
τ>
|T |
2

gi(τ )ψn(τ )dτ.

Here, we are dividing the integral by a small number when n is less than S. The difference
here is that the number is finite. Thus, finite data error yields a finite amount of interval
interpolation error and the problem is well posed.

10.6 The Papoulis-Gerchberg Algorithm

The Papoulis-Gerchberg algorithm (PGA) [500, 1084] is an ingenious technique for
restoring any continuously sampled bandlimited signal without directly using PSWF’s.
Indeed, the algorithm requires only the operations of filtering and truncation [263, 440,
469, 924, 1144, 1218, 1375, 1518, 1527].

The PGA was first discovered by Papoulis [1084] but was first published in an archival
journal, independently, by Gerchberg [500]. DeSantis and Gori [367], also independently,
published Papoulis’ algorithm proof shortly after Gerchberg’s paper appeared.

The PGA is applicable to each of the continuous sampling problems illustrated in
Figure 10.1 when f (t) is bandlimited [263, 440, 1218]. The algorithm is most easily proved
for the cases of extrapolation and interval interpolation. Since most of the work performed
has been on the extrapolation problem, this will be our main focus. As before, our results
will be ill-posed. Problems-not algorithms-are well or ill-posed.

10.6.1 The Basic Algorithm

The PGA is illustrated in Figure 10.30 for the case of extrapolation. The known portion
of the signal is ge(t) as shown in Figure 10.1b. We know, secondly, that our signal to be
restored, f (t), is bandlimited with bandwidth B. The PGA iterates back and forth between
the time and frequency domains reinforcing these criteria.

Beginning with ge(t), the first step in the algorithm is Fourier transformation. Since
ge(t) is of finite extent, its transform will be identically zero nowhere. This is contrary to
our knowledge that the signal to be restored is bandlimited. Thus, we make the spectrum
that of a bandlimited function in step 2 by multiplying by �(u/2B). Step 3 is inverse
transformation back to the time domain. This signal, shown at the bottom of Figure 10.30,
is clearly bandlimited. It is not, however, equal to ge(t) on the interval | t |< T/2. To
impose this criterion, we first set the signal to zero on | t |≤ T/2 in step 4 by multiplying
by 1− �(u/2B). Then, in step 5, the known portion of the signal, ge(t), is inserted in the
dead space. We will call this signal f1(t).

In general, f1(t) will be a discontinuous function which, in turn, cannot be bandlimited.
Thus, we need to reimpose the criterion of bandlimitedness. Thus, in step 6, we begin the
set of the same operations again.

Denote the results of the Nth iteration by fN (t). We will show in the next section that

lim
N→∞ fN (t) = f (t).

Thus, our extrapolation is performed.
Note that, by simple alteration, the algorithm can be applied to the interval interpolation,

prediction and, indeed, to any continuously sampled bandlimited signal.
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FIGURE 10.30. Illustration of the PGA applied to extrapolation.

Let’s operationally compress the PGA of Figure 10.30. Steps 1, 2 and 3 are simply a low
pass filtering operation. We define the low pass filter operator by

BBh(t) = h(t) ∗ 2B sinc(2Bt).

The operation of discarding the center can be modelled by 1 − DT where the duration
limiting operator is defined by

DT h(t) = h(t) �

(
t

T

)
.

With this notation, the PGA can be written as

fN+1(t) = ge(t)+ [1− DT ]BBfN (t) (10.61)

with initialization

f0(t) = ge(t). (10.62)

The PGA using operators is illustrated in Figure 10.31.
A numerical example of the PGA for extrapolation is shown in Figure 10.32 for the case

of a sinc. The function sinc(t) for |t| ≤ 0.1 is the known portion of the signal. “Good”
convergence takes place in only eight iterations. We must remark, however, that sincs
extrapolate well. Furthermore, the only noise in the unknown signal is computational round
off error.
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FIGURE 10.31. An equivalent illustration of the PGA algorithm.

FIGURE 10.32. Numerical results of the PGA for extrapolation.

10.6.1.1 An Alternate Derivation of the PGA
Using Operators

An alternate derivation of the PGA makes use of the identity

BBf (t) = f (t).

This follows from the bandlimitedness of f (t). Thus

ge(t) = [1− (1− DT )BB] f (t). (10.63)

If the operator in square brackets can be inverted, then we have

f (t) = [1− (1− DT )BB]−1ge(t). (10.64)
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For inversion, we generalize the geometric series in (14.6) and write:

f (t) =
∞∑

n=0

[(1− DT )BB]nge(t).

In the spirit of truncation, define

fN (t) =
N∑

n=0

[(1− DT )BB]nge(t). (10.65)

Equations (10.61) and (10.62) follow as a direct consequence.

10.6.1.2 Application to Interpolation

The PGA can be used in principle for restoration of any bandlimited signal that is
continuously sampled in the absence of noise. The algorithm for interval interpolation
is, for example

fN+1(t) = gi(t)+ DT BB fN (t) (10.66)

where

ge(t) = (1− DT ) f (t)

= f0(t). (10.67)

The interpolation equivalents of (10.64) and (10.65) are, respectively,

f (t) = [(1− DT )BB]−1gi(t) (10.68)

and

fN (t) =
N∑

n=0

[DT BB]ngi(t). (10.69)

10.6.2 Proof of the PGA using PSWF’s

Here, we offer a proof of the PGA using PSWF’s for the case of extrapolation. [367, 907,
1085]

We begin by noting that (10.44) and (10.48) can be respectively written as

BBDTψn(t) = λnψn(t)

and

BBψn(t) = ψn(t).

Also, from (10.57) we can write the known portion of the signal as

ge(t) =
∞∑

n=0

anDTψn(t). (10.70)
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From (10.61) and (10.62), the first iteration of the PGA can be written:

f1(t) = ge(t)+ (1− DT )BB +
∞∑

n=0

anDTψn(t)

= ge(t)+ (1− DT )
∞∑

n=0

anλnψn(t). (10.71)

Expanding ge(t) via (10.70) and applying the second iteration gives:

f2(t) = ge(t)+ (1− DT )
∞∑

n=0

an(2λn − λ2
n)ψn(t).

Repeating

f3(t) = ge(t)+ (1− DT )
∞∑

n=0

an(3λn − 3λ2
n + λ3

n)ψn(t)

f4(t) = ge(t)+ (1− DT )
∞∑

n=0

an(4λn − 6λ2
n + 4λ3

n − λ4
n)ψn(t).

This is a sufficient number of iterations to recognize that the coefficients of the eigenvalues
are binomial. We can show by induction that

fN (t) = ge(t)+ (1− DT )
∞∑

n=0

an

[
1−

N∑
k=0

(
N

k

)
(−λn)k

]
ψn(t)

or, using the binomial series,9

fN (t) = ge(t)+ (1− DT )
∞∑

n=0

an[1− (1− λn)N ]ψn(t). (10.72)

Proof . From (10.71), the result is true for N = 1. We will assume (10.72) and show the
corresponding equation for N + 1 follows. An additional iteration gives

ge(t)+ (1− DT )BB fN+1(t)

= ge(t)+ (1− DT )
∞∑

n=0

an[λn + (1− λn){1− (1− λn)}N ]ψn(t).

After some algebra, this relationship becomes (10.72) for N + 1. The validity of (10.72) is
thus proved.

Since, from (10.47),

0 < λn < 1 (10.73)

9. See Equation 14.4.
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we conclude that

lim
N→∞[1− (1− λn)N ] = 1

and thus, in the limit,

lim
N→∞ fN (t) = ge(t)+ (1− DT )

∞∑
n=0

anψn(t)

= �(t/T ) f (t)+ [1− �(t/T )] f (t)

where we have used (10.56) and (10.50). This completes our proof of the PGA.

10.6.3 Remarks

A fundamental problem of the PGA is the ill-posed nature of the extrapolation problem.
We note, however, that extrapolation is ill-posed in the sense that the restoration noise level
cannot be bounded. This makes sense. The uncertainty of restoration should in general
increase as we remove ourselves farther and farther from the known portion of the signal.
Clearly, the uncertainty of restoration with knowledge of a signal only on a interval of length
T will be enormous at a distance of, say, 1010 × T away. Thus, extrapolation is ill-posed
in a global manner. As has been mentioned, however, one might expect “good” results near
to where the (smooth) signal is known.

A problem is ill-posed because insufficient information about the restored signal has
been provided. To regularize such problems, either additional information about the signal
must be provided, or the class of allowable solutions restricted.

The PGA, as is shown in Section 11.4.3, is a special case of the POCS paradigm. POCS
affords great flexibility for introducing additional constraints in the restoration algorithm.

10.7 Exercises

10.1. § Slepian’s Paradox
(a) Why can a causal signal never be bandlimited?
(b) David Slepian presents a scenario whereby a causal signal must also be

bandlimited. He wrote [1283]
“[A] pair of solid copper wires will not propagate electromagnetic
waves at optical frequencies, and so the signals I receive over such a
pair must be bandlimited. In fact, it makes little physical sense to talk
of energy received over wires at frequencies higher than some finite
cutoff W , say 1020 Hertz. It would seem, then, that signals must be
bandlimited.
“On the other hand, however, signals of limited bandwidth W are
finite Fourier transforms … and irrefutable mathematical arguments
show them to be extremely smooth. They possess derivatives of all
orders. Indeed, such integrals are entire [analytic] functions of t,
completely predictable from any little piece, and they cannot vanish
on any t interval unless they vanish everywhere. Such signals cannot
start or stop, but must go on forever. Surely real signals start and stop,
and so they cannot be bandlimited!”

Can you resolve Slepian’s paradox?
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10.2. The periodic continuously sampled signal at the bottom of Figure 10.16 can be
written:

gc(t) = f (t)

[
1− r1−α

(
t

T

)]
.

Assume f (t) has bandwidth B. Specify how to find the trigonometric polynomial,
�M (t), such that

f (t) = [gc(t)ψM (t)] ∗ 2B sinc(2Bt)

where

ψM (t) = �M (t) [1− r1−α(t)].

10.3. (a) If f (t) is real, F(u) is conjugately symmetric.

F(u) = F∗(−u)

Thus, knowledge of F(u) for u ≥ 0 is sufficient to uniquely specify f (t). Write
the formula for f (t) in terms of F(u) for u > 0.

(b) Consider, then, first order aliasing for periodic continuous sampling of a
bandlimited signal. As shown in Figure 10.33, we add two weighted versions
of G(u) to rid ourselves of the positive frequency overlap. Specify F(u) for
positive u in terms of G(u) and G

(
u− 1

T

)
.

(c) Find f (t) directly from g(t).

C1

C0
C1

C2

C0

G(u)

G(u – 1/T)

u

C−1

C−1

C0G(u) + C1G(u – 1/T)

C0
2−C1C−1

−B B 1/T

C−2

C−3
C−2

C0 µ

+C1 µ u

u=

FIGURE 10.33. Removing the first order spectrum by subtracting two weighted and shifted versions of
the degraded spectrum.
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10.4. (a) Derive the relationship in (10.30).
(b) Coefficient periodicity.

(i) Show that the coefficient ap in (10.31) is periodic with period P.
(ii)Are there cases where the periodicity of ap will render the set of equations

in (10.34) singular? Use this with the inequality M ≤ 2BP to show A is
singular when B > 1

2 .
10.5. Generalize the analysis for restoration of f [n] from g[n] = f [n]pP[n] where pP[n]

is a given periodic function with period P [910].
10.6. Are there cases where the A matrix is singular and the set of equations in (10.43)

are not?
10.7. For M = 1, the A matrix is

A =
⎡
⎣

a0 a1 a2

a−1 a0 a1

a−2 a−1 a0

⎤
⎦

Alternate shifting can be used. We can, for example, use10

A =
⎡
⎣

a52 a53 a54

a−5 a−4 a−3

a7 a6 a5

⎤
⎦ .

For (a) fixed but arbitrary M, and (b) for the case of no two equal rows of coefficients,
can such alternate shifts be used to generate nonsingular A matrices for some shifts
and singular for others?

10.8. Find the PSWF expansion of 2B sinc (2B(t − τ )).
10.9. The cardinal series can be viewed as an orthogonal expansion using {sinc(2Wt−n) |

−∞ < n <∞} as the basis function set.
(a) Show these functions form an orthogonal set.
(b) Express the PSWF expansion coefficients, an, in terms of the samples f (n/2B)

assuming f (t) is bandlimited. The result is an infinite sum. Is it well-posed?
(c) Similarly, express, f (n/2B) as a weighted sum of PSWF coefficients, an. Is it

well-posed?
10.10. (a) Show that (10.52) follows as a consequence of (10.49) and (10.44).

(b) Show that (10.55) follows as a consequence of (10.49) and (10.54).
10.11. The Extrapolation Matrix

Consider the discrete implementation solution of the operator equation in (10.63).
The discretized operators become matrices. For an arbitrary signal, z(t), we have

w(t) := BBz(t) = 2B sinc(2Bt) ∗ z(t) = 2B
∫ ∞
−∞

z(τ ) sinc(2B(t − τ ))dτ

which, for a sample interval of �, can be discretized as

�w = B̂B�z

where (�w)n = w(n�), (�z)n = z(n�), and the matrix B̂B contains elements
(

B̂B

)
nm
= 2B� sinc (2B(n− m)�).

10. Note the indices of the third row decrease as we move to the right.
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Likewise, the operator DT in (10.63) can be discretized as a matrix D̂T of all zeros
except for ones on the diagonal at locations corresponding to where the signal is
passed and zeros otherwise. The discretized version of (10.63) then becomes

�ge =
[
I−
(

I− D̂T B̂B

)] �f .

We can then solve for �f and write

�f = Ê �ge

where the extrapolation matrix [899, 897, 907, 1205, 1289] is the matrix inverse

Ê = [I− (I− D̂T )B̂B]−1.

(a) Simulate application of the performance of the extrapolation matrix for various
bandlimited signals.

(b) Try the alternate expression BB = IDFT × D̂2B × DFT where IDFT and
DFT correspond to inverse discrete Fourier transform and discrete Fourier
transform matrices.

(c) Repeat (a) and (b), but for interpolation.
(d) Evaluate the condition11 of the extrapolation and interpolation matrices in

(a), (b) and (c). Comment on the relationship between performance and the
condition number.

10.12. Clearly, if ψn(t) is a solution of (10.44), then so is const × ψn(t). Is there an
ambiguity in the definition of the PSWF? If not, how have we removed it?

10.13. Parseval’s Theorem for PSWF’s
(a) For the expansion in (10.50), show that the energy of f (t) is

E =
∞∑

n=0

| an |2 .

(b) Derive a similar expression for the energy of h(t) in (10.53).
10.14. We pass a signal, x(t) = x(t) �(t/T ), through a low pass filter with bandwidth B.

The output is y(t). Assuming x(t) has unit energy, what input will yield an output
with the maximum energy? What is this energy?

10.15. Using the PSWF’s, prove the PGA as applied to interval interpolation.
10.16. For the extrapolation problem, ge(t) in (10.56) can be expressed in terms of a Fourier

series:

ge(t) =
∞∑

n=−∞
gn exp

(
j2πnt

T

)
�

(
t

T

)
.

(a) Find the an’s in (10.58) directly as an infinite weighted sum of the Fourier
coefficients, gn. Is this restoration well-posed or ill-posed?

(b) Conversely, find the gn’s. Comment again on the posedness.
10.17. Show that (10.61) follows as a consequence of (10.65).

11. See (14.10).
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10.18. (a) Assume we know apriori that the signal to be restored is non-negative, i.e.,
f (t) ≥ 0. Incorporate this constraint into the PGA for extrapolation.

(b) Suppose f (t) = Rξ (t) is an autocorrelation. Incorporate this information into
the PGA for extrapolation.

10.19. The geometric series,
∑∞

n=0 zn = 1/(1 − z), converges if | z |< 1. Similarly, a
sufficient condition for the equivalent equation:

(1−H)−1h(t) =
∞∑

n=0

Hnh(t)

is that

|| H ||< 1.

The operator norm can be defined by

|| H ||= sup
|| h(t) ||= 1

|| Hh(t) ||

where the L2 norm is defined by

|| y(t) ||2=
∫ ∞
−∞
| y(t) |2 dt

and sup denotes ‘supremum.’
(a) For the extrapolation algorithm, from (10.64), H= (1−DT )BB. Compute || H ||.
(b) For interval interpolation, from (10.66), H = DT BB. Compute || H ||.

10.20. We apply the PGA to the restoration of a single lost sample at the origin of an over-
sampled signal. The given signal, g(t), is shown in Figure 10.34. It can be written as

g(t) = r
∑
n �=0

f (nT )sinc(2Wt − rn)

where T = 1/2W and f (t) has bandwidth of B < W . From g(t) we wish to find f (0).
As is shown in Figure 10.34, we first Fourier transform this sequence and multiply
by �(u/2B) to form SN (u). The inverse Fourier transform of this expression is
evaluated at the origin and used as an estimate for the lost sample. After the Nth

iteration, we have

sN (t) = T fN (0)+ g(t).

The iteration is repeated. Evaluate f∞(0) and compare your answer with (6.11).
10.21. Generalize the analysis in Section 10.4 for restoration of f [n] from g[n] = f [n]pP[n]

where pP[n] is a given periodic function with period P [910].

10.8 Solutions for Selected Chapter 10 Exercises

10.1. Slepian’s Paradox
(a) A causal signal cannot be bandlimited. Since all bandlimited signals are

analytic, they can be expressed using the Taylor series expansion in (10.1) about
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FIGURE 10.34. Application of the PGA to the restoration of a single lost sample at the origin of an
oversampled signal.

any point in the signal. For a causal signal, we choose a negative value of time
where the signal and all of its derivatives are zero. The Taylor series converges
to identically zero. This, indeed, is the only signal that is both bandlimited and
causal.

(b) The resolution of the paradox is more philosophical than mathematical. Slepian
writes “My solution to this dilemma will certainly not please all of you: it rests
on matters I do not fully understand myself” [1283]. Basically, models are often
inappropriately equated to reality.12 Finite precision measurements also play
a role. Slepian notes there are innumerable causal and bandlimited signals so
close that we are unable to empirically measure the difference. From this point
of view, the answer to (a) is “yes”. There are signals that are both bandlimited
and causal in the sense that, empirically, we can’t tell the difference.

10.2.
gc(t) = f (t)

[
1− r1−α

(
t

T

)]

1− r1−α
(

t

T

)
=

∞∑
n=−∞

cne−j2πnt/T

ĉn =
{

1− α ; n = 0
−(1− α) sinc ((1− α)n) ; n �= 0

12. See, for example, Slepian’s quote at the beginning of Chapter 2.
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The bn coefficients are solutions of

M∑
m=−M

b̂m ĉn−m = δ[n] ; |n| ≤ M.

and

θ̂M (t) =
M∑

m=−M

b̂m e−j2πmt

ψ̂M (t) = θ̂M (t)

(
1− r1−α

(
t

T

))
.

10.3. (a) f (t) = 2�
[∫ ∞

0
F(u) e−j2πut du

]
. If f (t) is bandlimited, the upper integration

limit is B.
(b) From Figure 10.33, we have

F(u) = c0 G1(u)− c1 G(u− 1/T )

c2
0 − c−1 c1

.

(c) f (t) = 2

(c2
0 − c−1c1)

�
[

g(t)
(

c0 − c1 e j2π t/T
)]

∗ [B sinc(Bt) e jπBt]

= 2

(c2
0 − c−1c1)

[{
g(t)

[
c0 cosπBt

− c1 cos

(
π

(
B− 2

T

)
t

)]}
∗ BsincBt

]
cosπBt

+ 2

(c2
0 − c−1c1)

[{
g(t)

[
c0 sin πBt

− c1 sin

(
π

(
B− 2

T

)
t

)]}
∗ BsincBt

]
sin πBt.

(d) See Figure 10.35.
10.4. (a) Write

S =
N−1∑
m=0

e−j2πmv =
N−1∑
m=0

ϕm

where

ϕ = e−j2πv.
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FIGURE 10.35. Restoration of first order aliased data from the shift method illustrated in Figure 10.33,
using the conjugate symmetry property of the spectrum of a real signal. The filters are one for
| u | < B/2 and zero elsewhere.

This is a geometric series in (14.5). Thus

S = 1− ϕN

1− ϕ

= ϕ N−1
2
ϕ−N/2 − ϕN/2

ϕ− 1
2 − ϕ 1

2

= e−jπ (N−1)v sin(πNv)

sin(πv)
(10.74)

from which (10.30) readily follows.
(b) (i) From (10.31), it follows that

ap+�P = N

P
e−jπ (N−1)(p+�P)/ParrayN

(
p+ �P

P

)
. (10.75)

Since

e−jπ (N−1)(p+�P)/P = e−jπ (N−1)p/P × e−jπ (N−1)�

= (−1)(N−1)�e−jπ (N−1)p/P, (10.76)

and

arrayN

(
p+ �P

P

)
= sin(πN(p+ �P)/P)

Nsin(π (p+ �P)/P)

= (−1)�N sin(πN(p+ �P)/P)

(−1)�Nsin(p+ �P)/P

= (−1)(N−1)�arrayN

( p

P

)
, (10.77)

it follows, after substitution of (10.76) and (10.77) into (10.75), that

ap+�P = ap

and periodicity is established.
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(ii) Yes. Consider the first row of the matrix A. It is of length 2M + 1 and
is a window of the periodic function ap. As we go down row by row, the
periodic sequence ap is shifted one interval. If sufficient shifts occur to
result in duplication of the first row, the matrix is singular. This occurs if
there are enough matrix rows to allow P shifts. Since there are 2M + 1
rows allowing for a maximum of 2M shifts (the first row is zero shifts), the
singularity thus occurs when

2M ≥ P.

Combining this inequality with 2BP ≥ M, we conclude that the A matrix
is always singular when 2B > 1

2 .

10.8. 2B sinc (2B(t − τ )) =
∞∑

n=0

an ψn(t)

where

an = 2B
∫ ∞
−∞

sinc (2B(t − τ )) ψn(τ ) dτ

= ψn(t).

Thus

2B sinc (2B(t − τ )) =
∞∑

n=0

ψn(t)ψn(τ ).

10.9. (a) From the power theorem

∫ ∞
−∞

sinc(2Bt − n) sinc(2Bt − m) dt

=
∫ ∞
−∞

[
1

2B
e−jπnu/B �

( u

2B

)] [ 1

2B
e−jπmu/B �

( u

2B

)]
du

= 1

2B
δ[n− m].

(b) Clearly

f (t) =
∞∑
−∞

f
( n

2B

)
sinc(2Bt − n)

=
∞∑

n=0

an ψn(t).

Multiply both sides by ψn(t) and integrate. Using (10.49) and (6.52) gives:

am = 1

2B

∞∑
n=0

f
( n

2B

)
ψm

( n

2B

)
.
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(c) Here, multiply by sinc(2Bt − m) and integrate

f
( m

2B

)
= 2B

∞∑
n=0

an ψn

( m

2B

)
.

Both are well–posed.
10.10. (a) Since ψn(t) in bandlimited, we know that ψn(t) = ψn(t) ∗ 2B sinc(2Bt). Thus

∫ T
2

− T
2

ψn(t) ψm(t) dt

= 2B
∫ T

2

− T
2

ψn(t)
∫ ∞
−∞

ψm(τ ) sinc (2B(t − τ )) dτ dt

= 2B
∫ ∞
−∞

ψm(τ )
∫ T

2

− T
2

ψn(t) sinc (2B(t − τ )) dt dτ

= λn

∫ ∞
−∞

ψn(τ ) ψm(τ ) dτ

= λn δ[n− m].
10.12. The ambiguity is removed by requiring each PSWF to have unit energy.

10.13. (a)
∫ ∞
−∞
| f (t) |2 dt =

∫ ∞
−∞

( ∞∑
n=0

anψn(t)

)2

dt

=
∞∑

n=0

∞∑
m=0

anam

∫ ∞
−∞

ψn(t)ψm(t)dt

=
∞∑

n=0

∞∑
m=0

anamδ[n− m]

=
∞∑

n=0

a2
n.

(b)
∫ ∞
−∞
| h(t) |2 dt =

∞∑
n=0

λn | bn |2.

10.14. x(t) = x(t) �

(
t

T

)

=
∞∑

n=0

bn ψn(t)

y(t) = x(t) ∗ 2B sinc(2Bt)

= 2B
∫ ∞
−∞

x(τ ) sinc (2B(t − τ )) dτ
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= 2B
∞∑

n=0

bn

∫ ∞
−∞

ψn(τ ) sinc ((2B(t − τ )) dτ

=
∞∑

n=0

bn λn ψn(t).

From (6.23), the energies of x and y are

Ex =
∞∑

n=0

λn | bn |2 =
∞∑

n=0

(
√
λn bn)2

and

Ey =
∞∑

n=0

(λnbn)2 =
∞∑

n=0

λn(
√
λnbn)2.

We wish to maximize Ey subject to Ex = 1. Since λ0 is the largest eigenvalue, we
choose bn = √λ0 δ[n] and

x(t) = ψ0(t) � (t/T )√
λ0

.

The output thus has energy Ey = λ0.
10.15. The results are the same as for extrapolation except that, λn becomes (1− λn) and

(1− DT ) replaces DT . Thus, instead of (10.72), we have

fN (t) = gi(t)+ DT

∞∑
n=0

an(1− λN
n )ψN (t).

As with the extrapolation case, the validity of this equation can be proven by
induction. Convergence again follows due to (10.73).

10.16. ge(t) =
∞∑

n=0

gn e j2πnt/T

=
∞∑

n=0

an ψn(t) ; | t | ≤ T/2.

(a) Multiplying both sides by ψm(t) and integrate over | t | ≤ T/2.

λm am =
∞∑

n=0

gn

∫ ∞
−∞

ψm(t) e−j2πnt/T dt

or, using (10.55),

am = 1

λm

∞∑
n=−∞

gn

√
T λm

2B
�m

( n

2B

)

=
√

T

2Bλm

∞∑
n=−∞

gn ψm

( n

2B

)
.

The restoration is ill–posed due to the 1/
√
λm coefficient.
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(b) Using the top equation, multiply both sides by e j2πnt/T and integrate over
| t | ≤ T/2.

Tgm =
∞∑

n=0

an

∫ T
2

− T
2

ψm(t) e j2πnt/T dt.

Again, using (10.55)

gm = 1

T

∞∑
n=0

an

√
T λn

2B
ψm

(−n

2B

)

= 1√
S

∞∑
n=0

√
λnan ψm

(−n

2B

)
.

The result is well–posed.
10.18. (a) Instead of (10.61), we have

fN+1(t) = ge(t)+ R(1− DT)BB fN (t)

where the nonlinear half wave rectifier operator is defined by

R h(t) = h(t) μ[h(t)].
(b) Here we know Sξ (u) ≥ 0. Since

BB = F−1 DB F

our altered algorithm could be:

fN+1(t) = ge(t)+ (1− DT) F−1 R DB F fN (t).

This is Howard’s minimum negativity constraint restoration algorithm. See
Section 11.4.4.

10.19. (a) Let h(t) have finite energy. Then BB h(t) = f (t) is bandlimited and can be
written as

f (t) =
∞∑

n=0

an ψn(t).

(Note that maximum energy occurs when h(t) is chosen to be bandlimited.)
Thus,

‖ H ‖ = sup
‖f (t)‖=1

‖ Hf (t) ‖

‖ H ‖ = sup
‖f (t)‖=1

‖ (1− DT) f (t) ‖

where f (t) is bandlimited. Now

(1− DT) f (t) =
∞∑

n=0

an (1− DT) ψn(t)
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and

‖ (1− DT)f (t) ‖2 =
∞∑

n=0

∞∑
m=0

an a∗m
∫
|t|≥ T

2

ψn(t) ψm(t) dt

=
∞∑

n=0

(1− λn) | an |2

where we have used (5.41). Since, from Exercise 7.7a,

∞∑
n=0

| an |2 = 1

we choose a∞ = 1 (since λ∞ = 0) and ‖ H ‖= 1.
(b) Same as above, except

‖ H ‖= sup
‖ f (t)‖=1

‖ DT f (t) ‖ .

Since

‖ DT f (t) ‖2=
∞∑

n=0

λn | an |2,

we choose | an | = 1 since λ0 is max and ‖ H ‖= √λ0 < 1.
10.20. Clearly

xN (0) =
∫ ∞
−∞

XN (u)du

= T
∫ ∞
−∞

∫ ∞
−∞

[
xN−1(0)δ(t) +

∞∑
n=0

x(nT ) δ(t − τ )

]
e−j2πut dtdu

= T
∫ ∞
−∞

[
xN−1(0)

∞∑
n=0

x(nT ) e−j2πnut

]
du

= r xN−1(0)+ r
∞∑

n=0

x(nT ) sinc(rn)

where r = 2BT . Letting N −→∞ gives

x∞(0) = rx∞(0)+ r
∞∑

n=0

x(nT ) sinc(rn).

Solving for x∞(0) therefore results in (6.11). Note also that xN (t) −→ x(t).
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Signal and Image Synthesis:
Alternating Projections
Onto Convex Sets

I had a feeling once about Mathematics-that I saw it all. Depth beyond depth was
revealed to me-the Byss and Abyss. I saw-as one might see the transit of Venus or even
the Lord Mayor’s Show-a quantity passing through infinity and changing its sign from
plus to minus. I saw exactly why it happened and why the tergiversation was inevitable

but it was after dinner and I let it go.
Sir Winston Leonard Spencer Churchill (1874–1965) [424]

11.1 Introduction

Alternating projections onto convex sets (POCS)1 [319, 918, 1324, 1333] is a powerful tool
for signal and image restoration and synthesis.2 The desirable properties of a reconstructed
signal may be defined by a convex set of constraint parameters. Iteratively projecting onto
these convex constraint sets can result in a signal which contains all desired properties.
Convex signal sets are frequently encountered in practice and include the sets of bandlimited
signals, duration limited signals, causal signals, signals that are the same (e.g., zero) on some
given interval, bounded signals, signals of a given area and complex signals with a specified
phase.

POCS was initially introduced by Bregman [156] and Gubin et al. [558] and was
later popularized by Youla & Webb [1550] and Sezan & Stark [1253]. POCS has been
applied to such topics as acoustics [300, 1381], beamforming [426], bioinformatics [484],
cellular radio control [1148], communications systems [29, 769, 1433], deconvolution
and extrapolation [718, 907, 1216], diffraction [421], geophysics [4], image compression
[1091, 1473], image processing [311, 321, 470, 471, 672, 736, 834, 1065, 1069, 1093,
1473, 1535, 1547, 1596], holography [880, 1381], interpolation [358, 559, 1266], neural
networks [1254, 1543, 909, 913, 1039], pattern recognition [1444, 1588], optimization
[598, 1359, 1435], radiotherapy [298, 814, 1385], remote sensing [1223], robotics [740],
sampling theory [399, 1334, 1542], signal recovery [320, 737, 1104, 1428, 1594], speech
processing [1450], superresolution [399, 633, 654, 834, 1393, 1521], television [736, 786],
time-frequency analysis [1037, 1043], tomography [1103, 713, 1212, 1213, 1275, 916,
1322, 1060, 1040], video processing [560, 786, 1092], and watermarking [19, 1470].

1. The alternating term is implicit in the POCS paradigm, but traditionally not included in the acronym.
2. Portions of this chapter follow closely the development by Marks [918].

495
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11.2 Geometical POCS

Although signal processing applications of POCS use sets of signals, POCS is best visualized
viewing the operations on sets of points. In this section, POCS is introduced geometrically
in two and three dimensions. Such visualization of POCS is invaluable in application of the
theory.

11.2.1 Geometrical Convex Sets

A set, A, is convex if for every vector �x1 ∈ A and every �x2 ∈ A, it follows that α�x1 + (1−
α)�x2 ∈ A for all 0 ≤ α ≤ 1. In other words, as illustrated in Figure 11.1, the line segment
connecting �x1 and �x2 is totally subsumed in A. If any portion of the cord connecting two
points lies outside of the set, the set is not convex. This is illustrated in Figures 11.2 and
11.3. Examples of geometrical convex sets include balls, boxes, lines, line segments, cones
and planes.

Closed convex sets are those that contain their boundaries. In two dimensions, for
example, the set of points

A1 =
{

(t1, t2)| t2
1 + t2

2 < 1
}

(11.1)

FIGURE 11.1. If a set A is convex, the line segment formed by connecting any two points, �x1 and �x2,
in the set is totally subsumed within the set. Thus, if �x1 ∈ A and �x2 ∈ A, then ∀α � 0 ≤ α ≤ 1, we
require that α�x1 + (1− α)�x2 ∈ A for A to be convex.

FIGURE 11.2. Examples of three convex sets of points in three dimensions: a cube, a sphere and a solid
cylinder. In all three cases, the line connecting any two points in the object is totally subsumed in the
object.
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FIGURE 11.3. Examples of three sets of points in three dimensions that are not convex: a cross, a hollow
cylinder and a crescent. In each case, there are at least two points in the set that, when connected with
a line, lie outside of the set.

is not closed since the points on the circle t2
1 + t2

2 = 1 are not in the set. The set,

A =
{

(t1, t2)| t2
1 + t2

2 ≤ 1
}

is a closed convex set. A is referred to as the closure of A1. Henceforth, all convex sets will
be considered closed.

Strictly convex sets are those that do not contain any flat boundaries. A ball is strictly
convex whereas a box is not. Neither is a line.3

11.2.2 Projecting onto a Convex Set

The projection onto a convex set is illustrated in Figure 11.4. For a given �x /∈ A, the
projection onto A is the unique vector �y ∈ A such that the distance between �x and �y is
minimum. If �x ∈ A, then the projection onto A is �x. In other words, the projection and the
vector are the same. Projections are idempotent in that two projection operators are the same
as one. If the projection of �x onto A is denoted PA�x, then the idempotent property can be
written as

PA = P2
A (11.2)

FIGURE 11.4. The oval, A, is convex. The projection of �x onto A is the unique element in A closest
to �x, and is denoted PA�x.

3. Rigorously, a set A is strictly convex if for any distinct �x1, �x2 ∈ A, (�x1 + �x2)/2 is an interior point of A.
A vector �x is called an interior point of closed set A if �x ∈ A and �x /∈ Closure[E − A] where E is the universal set.
In other words, an interior point does not lie on the boundary of a closed convex set.
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11.2.3 POCS

There are three outcomes in the application of POCS. Each depends on the various ways
that the convex sets intersect.

1. The remarkable primary result of POCS is that, given two or more convex sets
with nonempty intersection, alternately projecting among the sets will converge to
a point included in the intersection [1324, 1550]. This is illustrated in Figure 11.5.
Two convex sets are shown. The oval shaped collection of points is A and the line
segment is B. The intersection of the two convex sets, A ∩ B, is the portion of the
line segment lying within the oval. POCS will always converge to an element of
A ∩ B. Start with the point �y0. This point is first projected onto B, then onto A,
onto B, etc. This repeated iteration converges to the point �y∞ which, as advertised,
lies on A∩B. Starting at different initializations results in convergence to different
points on A∩B. If an initialization point is chosen on A∩B, POCS will “converge”
to the initialization point.As another example, starting at the point �x0 in Figure 11.5
converges to the point �x∞ ∈ A ∩ B.
The result extends to three or more convex sets with nonempty intersection. For
N convex sets, {An|1 ≤ n ≤ N}, define the intersection

� =
N⋂

n=1

An.

If � is not empty, then repeated alternated projections among the N sets, in any
order, will result in a limit point in �.

This is illustrated in Figure 11.6 for three convex sets that intersect in a
single point. Thus, no matter where the iteration begins in the plane, alternating
projections among the three convex sets will converge to that point.

FIGURE 11.5. Alternating projection between two or more convex sets with nonempty intersection
results in convergence to a fixed point in the intersection. The oval, A, and the line segment B, are
convex. Initializing the iteration at �y0 results in convergence to �y∞ ∈ A ∩ B. Similarly, the vector �x0
results in convergence to �x∞ ∈ A ∩ B.



[13:25 7/10/2008 5165-Marks-Ch11.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 499 495–569

SIGNAL AND IMAGE SYNTHESIS: ALTERNATING PROJECTIONS ONTO CONVEX SETS 499

FIGURE 11.6. Shown are three convex sets. A in an oval, B is a line segment and C is a rectangle. The
three sets intersect in a single point. Alternating projections will converge to the point �x∞ independent
of initialization. The initialization point �y0 converges to �x∞. So does initialization at �x0.

FIGURE 11.7. If two convex sets, A and C, do not intersect, POCS converges to a limit cycle, here
between the points �a and �c. The point �c ∈ C is the point in C closest to the set A and �a ∈ A is the point
in A closest to the set C. POCS will converge to this limit cycle for all points of initialization.

2. If two convex sets do not intersect, convergence is to a limit cycle that is a mean
square solution to the problem. Specifically, the cycle is between points in each set
that are closest in the mean square sense to the other set [509]. This is illustrated
in Figure 11.7.

3. Conventional sequential alternating POCS breaks down in the important case
where three or more convex sets do not intersect [1552]. POCS, rather, converges
to greedy limit cycles that are dependent on the ordering of the projections and
do not display any desirable optimality properties. This is illustrated in Figure 11.8.
When the projection order is A → B → C, the limit cycle is �a ∈ A, �b ∈ B,
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FIGURE 11.8. If three or more convex sets do not intersect, POCS converges to greedy limit cycles.
As illustrated here, the limit cycles can differ for different orders of set projection.

FIGURE 11.9. Four convex sets with a nonempty intersection and two possible limit cycles.

and �c ∈ C. When the projection order is C → B→ A, the limit cycle is �γ ∈ C,
�β ∈ B, and �α ∈ A.

This greedy limit cycle can also occur when some of the convex sets intersect
and others don’t. This is illustrated in Figure 11.9.4

The POCS paradigm, however, is useful when three or more convex sets do not
intersect if, rather than sequential alternating projections, one uses simultaneous

4. Oh et.al. [1041, 917] have applied Zadeh’s ideas on fuzzy convex sets [1562] to the case where the convex
sets do not intersect. The idea is to find a point that is ‘near’ to each of the sets. The term ‘near’ is referred to as a
fuzzy linguistic variable.
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weighted projections. For a set of N convex sets, S = {An|1 ≤ n ≤ N}, the
simultaneous weighted projections5 of an arbitrary point, �x, is defined as

PS�x :=
N∑

n=1

wnPn�x

where Pn is the projection of �x onto the convex set An and the wn’s are weights
of the importance of each projection. These N projection results are summed in a
weighted fashion to give the next element of the iteration. The iteration is repeated
until convergence, i.e.,

�xi+1 = PS�xi.

where i is the iteration index. Repeated applications of sequential weighted
projections converges to a point that minimizes the weighted sum of square of
weighted distances [1552]. Specifically, the iteration converges to �x∞
such that

dS =
N∑

n=1

wn‖�x∞ − Pn�x∞‖2

is minimum where ‖�y − �x‖ is the distance between �y and �x. This is illustrated in
Figure 11.10.

11.3 Convex Sets of Signals

The geometrical view introduced in the previous section allows powerful interpretation of
POCS applied in a Hilbert space, H. The concepts can be applied to functions in both
continuous and discrete time.6

5. The sequential weighted projections is not, itself, a projection. It is not, for example, idempotent since, with
reference to (11.2), PS �= P2

S .

6. i.e., from an L2 to an �2 space. One advantage of discrete time is the guaranteed strong convergence of
POCS. Denote the nth element of a sequence x by x[n] and let o(k)[n] be the kth POCS iteration. Let o[n] be the
point of convergence and x[n] is any point (including the origin) in �2, then

lim
k→∞‖x[n] − o(k)[n]‖2 = ‖x[n] − o[n]‖2

for all x[n]. The square of the �2 norm of a sequence x[n], is

‖x[n]‖2 =
∞∑

n=−∞
|x[n]|2.

In continuous time, only weak convergence can generally be assured [1550]. Specifically

lim
n→∞

∫ ∞
−∞

x(t)o(n)(t)dt =
∫ ∞
−∞

x(t)o(t)dt

for all x(t) in L2. Strong convergence subsumes weak convergence.
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FIGURE 11.10. If three or more convex sets do not intersect, simultaneous weighted projections can
be used to find a representative solution. In this example, all weights are the same. The solution
corresponding to the three convex sets is �x∞. The weighted sum of distance squared is minimized.
Here, all of the distances are the same.

11.3.1 The Hilbert Space

An image, x(t), is in H if 7

‖x(t)‖ <∞
where the norm of x(t) is

‖x(t)‖ =
√∫ ∞
−∞
|x(t)|2dt. (11.3)

The energy of x(t) is (see (2.1))

E = ‖x(t)‖2. (11.4)

The space thus consists of all finite energy signals. Geometrically, �x = x(t) can be visualized
as a point in the Hilbert space a distance of ‖x(t)‖ from the origin, x(t) ≡ 0. Similarly, the
(mean square) distance between two points x(t) and y(t) is ‖x(t)− y(t)‖.

Two objects, w(t) and z(t), are said to be orthogonal if their inner product is zero, i.e.,
∫ ∞
−∞

w(t)z∗(t)dt = 0 (11.5)

where the superscript asterisks denotes complex conjugation.

7. Signals in a Hilbert space are also required to be Lebesgue measurable.



[13:25 7/10/2008 5165-Marks-Ch11.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 503 495–569

SIGNAL AND IMAGE SYNTHESIS: ALTERNATING PROJECTIONS ONTO CONVEX SETS 503

The concept applies directly to a Hilbert space of finite energy discrete time signals.8

The signal norm is now

‖x[n]‖ =
√√√√

∞∑
n=−∞

|x[n]|2.

The discrete time signal’s energy9 is E = ‖x[n]‖2. The mean square distance between two
points x[n] and y[n] is ‖x[n] − y[n]‖. Two objects, w[n] and z[n], are orthogonal if their
discrete time inner product is zero.

∞∑
−∞

w[n]z∗[n]dt = 0. (11.6)

Some examples of signal sets follow.

11.3.1.1 Convex Sets

Analogous to the definition given for sets of vectors, a set of signals, A, is convex if, for
0 ≤ α ≤ 1, the signal

αu1(t)+ (1− α)u2(t) ∈ A (11.7)

when u1(t), u2(t) ∈ A.

11.3.1.2 Subspaces

Subspaces (a.k.a. linear manifolds) can be visualized as hyperplanes in the space. A set of
signals, S, is a subspace if

βu1(t)+ γ u2(t) ∈ S (11.8)

when u1(t), u2(t) ∈ S, and β, γ are any finite real numbers. Subspaces are convex.10 The
origin, u(t) ≡ 0, is an element of all subspaces.11

11.3.1.3 Null Spaces

We denote a null space corresponding to a subspace S, as S⊥. The null space consists of all
signals orthogonal to all elements in S.

S⊥ =
{

x(t)

∣∣∣∣
∫

x(t)u∗(t)dt = 0 for all u(t) ∈ S

}
.

In three dimensions, the null space of a line is the plane (subspace) perpendicular to the
line. Note that

(
S⊥
)⊥ = S.

8. i.e., the space of all �2 signals.
9. See (2.2).

10. See Exercise 11.3.
11. If u(t) ∈ S, then, with u1(t) = u(t) = −u2(t) and β = γ = 1, we have, from (11.8) that 0 = u(t)− u(t) ∈ S.



[13:25 7/10/2008 5165-Marks-Ch11.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 504 495–569

504 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

11.3.1.4 Linear Varieties

A linear variety [854] is any hyperplane in the space. It need not go through the origin. All
subspaces are linear varieties. A linear variety, L, can always be defined as

L = {u(t) = uS(t)+ d(t) | uS(t) ∈ S
}

(11.9)

where S is a subspace and d(t) /∈ S is a fixed displacement vector. The formation of a linear
variety from a subspace is illustrated in Figure 11.11.

All linear varieties are convex.

11.3.1.5 Cones

A set C containing is a cone if x(t) ∈ C implies αx(t) ∈ C for all α > 0. A convex cone is
a cone that also obeys the properties of a convex set. Orthants12 and line segments drawn
from the origin to infinity in any direction are examples of convex cones.

11.3.1.6 Convex Hulls and Convex Cone Hulls

The convex hull of a collection of points is the smallest convex set containing the points.
This is illustrated in two dimensions in Figure 11.12. If the plane were a board in which
nails were driven, the convex hull would be the shape of a rubber band placed around the
nails. Interior points in the hull do not contribute to its shape.

Similarly, a convex cone hull of a collection of points is the smallest convex cone
containing the points. This is illustrated in Figure 11.13. Each edge contains a point in
the set. As is the case for the convex hull, there can be additional interior points inside the
cone that do not contribute to the shape of the cone.

11.3.2 Some Commonly Used Convex Sets of Signals

A number of commonly used signal classes are convex. In this section, examples of these
sets and their projection operators are given.

FIGURE 11.11. The subspace, S, is shown here as a line. The function d(t), assumed not to lie in the
subspace, S, is a displacement vector. The tail of the vector, d(t) is at the origin (u(t) ≡ 0). The set of
all points in S added to d(t) forms the linear variety, L.

12. In two dimensions, an orthant is a quadrant. In three, an octant.
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FIGURE 11.12. Illustration of the convex hull of a set of points.

FIGURE 11.13. Illustration of the convex cone hull of a set of points. The origin, at the lower left, is
marked with a hollow dot. Points interior to the cone are not shown.

Projection operators will be denoted by a P. The notation

x(t) = PK y(t)

is read “x(t) is the projection of y(t) onto the convex set AK ”. Note, if y(t) ∈ AK , then
PK y(t) = y(t). Most projections are intuitively straightforward. In many instances, the
projection is obtained simply by forcing the signal to conform with the constraint in the
most obvious way.

11.3.2.1 Matrix equations

To illustrate subspaces in matrix relationships, consider the matrix S and the degradation13

�i = S�o (11.10)

13. The vector �o is for object and �i for image.
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FIGURE 11.14. Illustration of a matrix, S, that is not full rank.

The vector, �i, is a linear combination of the columns of S ∈ R
M×N . Such a vector is said

to lie in the column space of S. Denote the column space by CS. We assume the M × N ,
M > N matrix, S, as illustrated in Figure 11.14, is not full rank. Our goal is to reconstruct
the object, �o, from the image,�i. If the image is corrupted by noise or other uncertainty, there
may not be an object that satisfies the matrix equation in (11.10).

From (11.10) we can write

ST �i = ST S�o
Formally solving for �o gives the pseudo inverse solution14

�oPI = [ST S]−1ST �i (11.11)

The vector �oPI will be equal to �o in (11.10) if �i is a linear combination of the rows of S.
Otherwise, it will not be. For an arbitrary �i that is not a linear combination of the columns
of S, the vector �oPI when substituted into the matrix equation in (11.10) cannot generate �i.
It, rather, generates the vector in the column space CS of the matrix S that is closest to �i in
the mean square sense.

The projection matrix follows from substituting the pseudo inverse in (11.11) into the
matrix equation in (11.10). The result is S�oPI = PS�i where the projection matrix is

PS = S[ST S]−1ST . (11.12)

As illustrated in Figure 11.15, the projection matrix projects an arbitrary vector �i onto
the column space of S. As is necessary for a projection operator, the projection matrix is
idempotent, i.e., projecting twice is the same as projecting once.

P2
S = PS.

Consider the signal space illustrated in Figure 11.15. The pseudo-inverse solution of
(11.10) lies on the subspace CS onto which PS projects. Denote the null space, a.k.a. the
orthogonal complement, of CS by C⊥S. The projection operator onto this space is simply

P⊥S = 1− PS

where 1 is an identity matrix. If the projection onto the orthogonal complement is

�i⊥ = P⊥S�i,

14. The solution, �oPI, is also referred to as the minimum norm solution.
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FIGURE 11.15. Geometrical illustration of the subspaces, linear varieties and projections in the matrix
equation in (11.10).

we are assured that

�i = (P⊥S + PS
)�i

Define the linear variety parallel to the column space of S as

CLV =
{�u | �u = �v +�i for all �i ∈ CS

}

where �v is a given vector not collinear with �i. The projection onto the linear variety for an
arbitrary vector, �z, is

PLV�z = PS�z + P⊥S�v.

11.3.2.2 Bandlimited Signal

The set of bandlimited signals with bandwidth B is

ABL =
{
x(t) |;X(u) = 0 for |u| > B

}
. (11.13)

where x(t)↔ X(u). The set, ABL, is a subspace since βx1(t)+ γ x2(t) is bandlimited when
both x1(t) and x2(t) are bandlimited. The projection of a signal, y(t), onto ABL, is obtained
by placing y(t) through a low pass filter.

x(t) = PBL y(t)

=
∫ B

−B
Y (u)e j2π tdω (11.14)

where y(t)↔ Y (u) are Fourier transform pairs.

11.3.2.3 Duration Limited Signals

The convex set of duration limited signals is, for a given T > 0,

ATL =
{

x(t)

∣∣∣∣ x(t) = 0 for |t| > T

2

}
. (11.15)
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Since the weighted sum of any two duration limited signals is duration limited, the set ATL
is recognized as a subspace. To project an arbitrary y(t) onto this set, the portion of y(t) for
|t| > T is simply set to zero.

x(t) = PTL y(t)

=
{

y(t) ; |t| ≤ T
2

0 ; |t| > T
2 .

(11.16)

11.3.2.4 Real Transform Positivity

The set of signals with real and nonnegative Fourier transform is

APOS =
{
x(t) | � X(u) ≥ 0

}
(11.17)

where � denotes ‘the real part of’ and x(t)↔ X(u). The set APOS is a cone.
To project y(t) onto this set, the Fourier transform, Y (u), is first evaluated. The projection

follows as

x(t) = PPOS y(t)

=
∫ ∞
−∞
[�Y (u)μ (�Y (u))+ j �Y (u)

]
e j2πutdu

where � denotes ‘the imaginary part of’. In other words, the Fourier transform is made to
be real and nonnegative and is then inverse transformed to find the projection onto APOS.

11.3.2.5 Constant Area Signals

1. For continuous signals. Over an interval I, the set of signals with given area,ρ, are

ACA =
{

x(t)

∣∣∣∣
∫

I
x(t)dt = ρ

}
. (11.18)

Let the area of a signal on the interval I beρy =
∫
I y(t)dt and the interval I = ∫I dt.

Then the projection of a signal y(t) onto ACA is15

PCAy(t) =
{

y(t) ; t �∈ I
y(t)− 1

I (ρy − ρ) ; t ∈ I . (11.19)

As illustrated in Figure 11.16, the projection simply corresponds to raising or
lowering the function on I until the desired area is achieved.

2. For discrete signals. The discrete equivalent of the set is

ACA =
{
�x
∣∣∣∣∣
∑
I

x[n] = ρ
}

(11.20)

and the corresponding projection is

(
PCA�y

)
n =
{

yn ; n �∈ I
yn − 1

I (ρy − ρ) ; n ∈ I

15. See Exercise 11.4(h) for a generalization of this convex set from a plane to a convex slab, and the
corresponding projection.
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FIGURE 11.16. On the left is the signal y(t) over the interval I = {t|0 ≤ t ≤ T}. The area of y(t) on
this interval is ρy. To project onto the set of signals with area ρ on I, the function y(t) on the interval
I is simply raised or lowered to the point where the area is ρ. This is illustrated on the right.

FIGURE 11.17. Two dimensional example of projecting onto a signal with specified area over a given
interval.

where

ρy =
∑
I

y[n]

and

I =
∑
I

1.

To illustrate this set and its projection, consider the two points, x[1] and
x[2] in Figure 11.17. The set of all points where x[1] + x[2] = ρ is the
linear variety ACA corresponding to a 45◦ line intersecting each axis at ρ.
A vector, �y, lies off axis. The projection onto the line is shown. The pro-
jection is surrounded by a square. Each dimensionis reduced by the same
amount to achieve the projection. This extends to higher dimensions and to
continuous functions. To project onto the constant area subspace, the function
on the interval I is simply raised or lowered to the point where the desired area,
ρ, is achieved.
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3. Standard simplex. When ρ = 1, the intersection of ACA and the first orthant (i.e.,
the set of nonnegative signals) is called a standard simplex. All discrete probability
density functions lie on a standard simplex.

4. Weighted areas for discrete signals. A generalization of the constant area convex
set is the constant weighted area convex set defined as

ACA =
{�x ∣∣ �wT �x = ρ } . (11.21)

With no loss of generality, we require the weighting vector, �w, have unit norm.
Thus

‖�w‖2 = �wT �w = 1.

This set, ACA, is a linear variety. The projection onto this set is

PCA�y = �y − �w�wT�y + ρ �w. (11.22)

Note that right multiplying (11.22) by �wT gives

�wT PCA�y = ρ.

The projection in (11.22) is illustrated in two dimensions, x[1] and x[2], in
Figure 11.18. Shown is the unit vector, �w. The corresponding null space consists
of all vectors orthogonal to �w.

A⊥�w =
{�x | �wT �x = 0

}
.

The vector ρ �w is perpendicular to the null space. The translation of each element
in A⊥�w by ρ �w is the linear variety, ACA.

To project onto the linear variety, ACA, of weighted signals with constant area,
we will first project onto the null space, A⊥�w, and then add the perpendicular offset
vector, ρ �w. The projection of an arbitrary vector, �y, onto the line defined by the

FIGURE 11.18. Two dimensional example of projecting onto a signal with a weighted area over a given
interval.
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unit vector, �w, is �w (�wT�y). This vector, subtracted from �y, gives the projection of �y
onto the null space.

P⊥�w �y = �y − �w
(�wT�y).

Adding the offset vector gives the desired projection in Figure 11.22.
5. Weighted areas for continuous signals. The continuous version of the constant

area signals in (11.21) is

ACA =
{

x(t)

∣∣∣∣
∫ ∞
−∞

w(t)x(t)dt = ρ
}

(11.23)

where the weighting function has a unit norm

‖w(t)‖2 =
∫ ∞
−∞
|w(t)|2dt = 1.

The projection of a signal, y(t), onto this linear variety is

PCAy(t) = y(t)− w(t)
∫ ∞
−∞

w(τ )x(τ )dτ + ρw(t).

11.3.2.6 Bounded Energy Signals

The set of signals with bounded energy, for a given bound η, is

ABE =
{
x(t) | E ≤ η}

where E is defined in (11.4). The set ABE is a ball. If the signal is outside of the ball, we
project onto the ball. If the energy of the signal is less than η, the signal is in the ball and
we leave it as is. The projection follows as

x(t) = PBE y(t)

=
{

y(t) ; ‖y(t)‖2 ≤ η
√
η y(t)/‖y(t)‖ ; ‖y(t)‖2 > η.

11.3.2.7 Constant Phase Signals

The convex set of signals whose Fourier transform has a specified phase, φ(u), is

ACP =
{
x(t)| � X(u) = φ(u)

}

where X(u) = |X(u)|e j � X(u).
The projection onto this convex set is illustrated by geometry shown in Figure 11.19.

x(t) = PCPy(t)

↔ X(u) =
{ |Y (u)| cos (φ(u)− � Y (u)) e jφ(u) ; |φ(u)− � Y (u)| ≤ π

2

0 ; otherwise.
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FIGURE 11.19. Geometry for projection onto the convex set of signals whose Fourier transform has a
specified phase, φ(u).

11.3.2.8 Bounded Signals

1. Signal Bound. For a given real signal, a(t), the set of bounded signals

ABS =
{
x(t) | � x(t) ≤ a(t)

}

is convex. If a(t) ≡ constant, then ABS is a cube.
The choice of projection is obvious. The signal is set to �x(t) = z(t) if � y(t)

is too large. Otherwise, the signal remains as is.

x(t) = PBS y(t)

=
{

y(t) ; � y(t) ≤ a(t)

a(t)+ j � y(t) ; � y(t) > a(t).

2. Two Bounds. The upper and lower bounds, a�(t) and au(t), can be different. The set

ABS =
{
x(t) | a�(t) ≤ �x(t) ≤ au(t)

}

is convex.
3. Bounded Derivatives. For a fixed n, the set of signals with bounded derivatives

is convex.

ADB =
{

x(t)

∣∣∣∣
(

d

dt

)n

x(t) ≤ an(t)

}
.

where an(t) is the bound. The discrete equivalent for the set of bounded first
derivative is the bounded first difference. If the bound is constant, then for the first
difference,

ADB =
{
x[n] | |x[n+ 1] − x[n]| ≤ ε }. (11.24)

The set for two points is shown in Figure 11.20. The set for three points is shown
in Figure 11.21.
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FIGURE 11.20. The convex set, ADB in (11.24) for two points.

FIGURE 11.21. The convex set, ADB in (11.24) for three points. The set corresponds to |x[n + 1] −
x[n]| ≤ ε and |x[n+ 2] − x[n+ 1]| ≤ ε.

11.3.2.9 Signals With Identical Middles

Let a(x) be a given signal on the interval |t| ≤ T
2 . Define

AIM =
{

x(t)

∣∣∣∣ x(t) = a(x) for |t| ≤ T

2
; anything for |t| > T

2

}
(11.25)

This set is a linear variety. The parallel subspace corresponds to a(t) = 0 and the
displacement vector is d(t) = a(t). To project onto AIM, one merely inserts the desired
signal, a(t), into the appropriate interval.

x(t) = PIM y(t)

=
{

a(t) ; |t| ≤ T
2

y(t) ; |t| > T
2
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11.4 Example Applications of POCS

A number of commonly used reconstruction and synthesis algorithms are special cases of
POCS. In this section, we look at some specific examples.

11.4.1 Von Neumann’s Alternating Projection
Theorem

When all of the convex sets are linear varieties, POCS is equivalent to Von Neumann’s
alternating projection theorem [1025]. The solution of simultaneous linear equations in the
next section and the Papoulis-Gerchberg algorithm in Section 11.4.3 are two examples.

11.4.2 Solution of Simultaneous Equations

POCS can be used to solve the N simultaneous equations

zn = �sT
n �x ; 1 ≤ n ≤ N . (11.26)

These equations describe N distinct convex sets (planes) as defined in (11.21). We restate
here using the notation in (11.26).

An =
{ �x ∣∣ zn = �sT

n �x
}

(11.27)

Assuming the set of equations is not singular, these planes intersect in a single point, �x, that
solves the set of simultaneous equations in (11.26). Using (11.22) with the unit vector

�w = �sn

‖�sn‖
gives the projection of an arbitrary vector, �y, onto the nth plane as

Pn�y = �y − �sn�sT
n

‖�sn‖2 �y − zn
�sn

‖�sn‖ .

11.4.3 The Papoulis-Gerchberg Algorithm

D.C. Youla [1549] was the first to recognize the Papoulis-Gerchberg algorithm, described
in Section 10.6, is a special case of POCS between a subspace and a linear variety. The two
convex sets are

• The set of all signals equal to ge(t) on the interval |t| ≤ T/2.16

AIM =
{

f (t) | f (t) = ge(t) ; |t| ≤ T/2
}

• The set of all bandlimited signals, ABL, with a bandwidth B or less. This set is
defined in (11.13).

The alternating projections in the Papoulis-Gerchberg algorithm are performed between the
subspace ABL and the linear variety AIM.

16. Equivalent to the definition in (11.25) with middle a(x) = ge(t).
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FIGURE 11.22. D.C. Youla’s [1550, 1551] illustration of the convergence of the PGA algorithm in
Figure 10.31 in a Hilbert space.

A geometrical illustration of the PGA is shown in Figure 11.22 for the case of
extrapolation [1550, 1551]. The subspace on the horizontal axis consists of all duration
limited signals, ATL. The signal x(t) ∈ ATL if it is zero for |t| ≤ T

2 . Using the notation in
Section 10.6,

DT x(t) = x(t)→ x(t) ∈ ATL.

Thus, as shown, our known signal, ge(t), lies in this space.
The null space of ATL, denoted A⊥TL, consists of all signals equal to zero for t > T

2 . Thus

(1− DT ) x(t) = x(t)→ x(t) ∈ A⊥TL.

The spaces are clearly perpendicular. If x(t) ∈ ATL and u(t) ∈ A⊥TL, then
∫

x(t)u∗(t)dt = 0.
The null space is shown as a vertical line in Figure 11.22.

The space of bandlimited signals with bandwidths not exceeding B is shown as a line in
labelled ABL Figure 11.22. Then

BBx(t) = x(t)→ x(t) ∈ ABL.

The only signal common to ABL, ATL, and A⊥TL is x(t) ≡ 0. The three lines in
Figure 11.22 thus intersect at the origin.

For the PGA, the known portion of the signal, ge(t), is zero outside of the interval |t| ≤ T
2

and therefore, as shown in Figure 11.22, lies in the subspace ATL. In Figure 11.11, we form
the linear variety, L, by adding the signal d(t) to every point in the subspace S. Likewise, in
Figure 11.22, we form the linear variety AIM by adding ge(t) to every point in the subspace
A⊥TL. This linear variety is set of signals with an identical middle, the identical middle being

ge(t) on t ≤ T
2 .
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With our space established, we can now follow the POCS interpretation of the PGA in
Figure 10.31. Beginning with ge(t) at the top in Figure 10.31, we perform a low pass filter.
This is equivalent, in Figure 11.22, of projecting the point ge(t) onto the subspace ABL to
point ‘a’. The next step in is setting the middle of the signal to zero as is illustrated at the
bottom of Figure 10.31. The result is equivalent in Figure 11.22 to projecting the point ‘a’
onto the subspace of signals with no middles-namely A⊥TL. The point ‘a’ is thus projected
and becomes the point ‘b’. The next step in Figure 10.31 is to add ge(t) to the signal without
middle to form fN (t) for N = the first iteration. In Figure 11.22, we add the vectors ge(t)
and ‘a’ to obtain f1(t). Thus completes the first iteration of the PGA. Subsequent iterations,
as shown in Figure 11.22, produce f2(t), f3(t), etc. Because the bandlimited signal, f (t), is
analytic, the known portion of the signal, ge(t), uniquely determines f (t). The subspace of
bandlimited signals and the linear variety of identical middles, AIM, intersect at a single
point. The iteration continues to the fixed point f∞(t) = f (t). As is always the case with
extrapolation, the assumption of no noise can be fatal to the restoration process since the
problem is ill-posed.

11.4.4 Howard’s Minimum-Negativity-Constraint
Algorithm

Howard [626, 624] proposed a procedure for extrapolation of an interferometric signal
known in a specified interval when the spectrum of the signal was known (or desired) to be
real and non-negative. The technique was applied to experimental interferometric data and
performs well.

As shown by Cheung et al. [289], Howard’s procedure was a special case of POCS.
Iteration is between the cone of signals with non-negative Fourier transforms defined by
APOS in (11.17) and the set of signals with identical middles, AIM, as defined in (11.25).
As with the Papoulis-Gerchberg algorithm, the middle is equal to the known portion of the
signal.

The geometrical interpretation of Howard’s minimum-negativity-constraint algorithm
is similar to that of the Papoulis-Gerchberg algorithm, except that the subspace ABL is
replaced by a cone corresponding to APOS.

11.4.5 Associative Memory

POCS can be used to construct an associative memory, also called a content addressable
memory [912, 913, 914, 1039, 1333]. In a nutshell, conventional memory supplies an
address wherein information is stored. As associative memory, on the other hand, supplies
a portion of the information in the memory and requires construction of the remainder of
the information. One might, for example, be given a picture of a nose and desire, from a
data base, to find the corresponding face.

Let the data to be stored in the associative memory be encoded as N library vectors of
length M > N .

{ �fn | 1 ≤ n ≤ N
}
.

We stack these vectors into the library matrix

S =
[�f 1| �f2| · · · | �fN

]
. (11.28)
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11.4.5.1 Template Matching

A straightforward and effective method to implement an associative memory is template
matching. Let a vector, �y be equal to a library vector over P elements. For example, if �y is
associated with library vector �f1, we might have the following.

�f1 =
[

1 2 3 4 5 6 7 8 7 6 5 4 3 2 1
]T

�y = [− − 3 − − 6 7 − − − 5 4 − 2 − ]T

where the dash denotes unknown values. We do not know that the values in �y come from �f1
and, given the library matrix, wish to determine the unknown numbers. Let χ (for clamped)
denote the set of indices where �y is known, i.e., ( �y)m is known for all m ∈ χ . A simple
and effective method of template matching amounts to comparison of each of the clamped
elements to the corresponding elements of each of the library vectors and find the smallest
mean square error. That is, we wish to minimize over all N library vectors

∑
m∈χ

∣∣∣( �fn)m − ( �y)m

∣∣∣2.

In more conventional notation, the best matching library vector, �f � has index

� = arg min
1≤n≤N

∑
m∈χ

(
( �fn)m − (�y)m

)2
.

11.4.5.2 POCS Based Associative Memories

POCS can be used to implement associative memories. We will establish the convex sets
required for an associative memory. The library matrix in (11.28) is not full rank and we
can form the projection matrix in (11.12). This matrix projects any vector onto the subspace
defined by the library vectors. This is our first convex set. To initiate the associative search,
we require a portion of the information to be restored. The known portion of the signal
forms an identical middles linear variety. This is our second convex set. Alternating back
and forth will converge to the associative recall if the two linear manifolds converge at a
single point. The iteration is similar to the PGA except the associative memory subspace
replaces the bandlimited signal set.

11.4.5.3 POCS Associative Memory Examples

To illustrate the POCS associative memory, we use the N = 56 images shown in
Figures 11.23 and 11.24. Each image contains 225 × 226 gray level pixels normalized17

from − 1
2 to 1

2 .
The average of all 56 images, shown on the left in Figure 11.25, resembles a severely

blurred face.

17. All associative memory examples in this section are displayed as one byte gray level images. The − 1
2 to

1
2 normalization is used to form the image library matrix in order to improve convergence. If the normalization
(0,1) is used, all library vectors lie in the first orthant and no two vectors, unless they lie on planes defining the
orthant, can be orthogonal. If the library vectors are bipolar, they can be orthogonal or nearly orthogonal. POCS
converges more quickly for near orthogonal subspaces. Indeed, for two orthogonal lines, POCS converges in a
single step. For this reason, we have chosen the bipolar − 1

2 to 1
2 library.
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Joseph-Louis
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Pythagoras
(569 BC-475 BC)

Leonardo da Vinci
(1452-1519)
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Guillaume François Antoine
Marquis de L’Hôpital
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Johann Carl
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Abraham de
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(1667-1754)

Daniel
Bernoulli

(1700-1782)

Friedrich Wilhelm
Bessel

(1784-1846)
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(Lord Kelvin)
(1824-1907)
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(1791-1867)
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John Venn
(1834-1923)

FIGURE 11.23. Continued in next Figure.

An example of convergence of the POCS associative memory using the image of Fourier
is shown in Figures 11.26 and 11.27. Four different initializations on each of the four rows
corresponding to 1%, 4%, 9% and 16% of the original image. The columns show the
results of 2, 8, 32, 128 and 512 POCS iterations terminating on the identical middles linear
variety. The visually identified trend is numerically verified in Figure 11.28 where the error,
‖ �f1− �yp‖2, is shown where �f 1 is the original image of Fourier, �yp is the pth POCS iteration
on the linear variety of identical middles.

Noise imposed on the known portion of the image can also effect convergence. This is
shown in Figures 11.33 and 11.34 where zero mean white Gaussian noise is added to each
pixel. The standard deviations of the noise are σ = 0.15, 0.3, 0.45 and 0.60. In order to
keep the pixels within the (− 1

2 ,
1
2 ) interval, values above 1

2 are set to 1
2 and values below

− 1
2 are set to − 1

2 . This was in both the initialization and during each iteration. Doing
so is equivalent to adding a third convex set to the POCS recovery-the set of all signals
bounded by ± 1

2 ). In all cases, the iteration converges to an image clearly recognizable as
Fourier.

The larger the library, the slower the convergence. This is illustrated in Figures 11.29
and 11.30 where convergence of Fourier is shown for library sizes 56, 28, 14 and 7 library
vectors. The error plot is shown in Figure 11.31.

Convergence is shown in Figures 11.32 and 11.33 when the known portion of the
signal is corrupted by additive discrete white Gaussian noise with standard deviation σ .
The additive noise has standard deviations of σ = 0.15, 0.30. 0.45 and 0.60. When the signal
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Blaise Pascal
(1623-1662)

Pafnuty Lvovich
Chebyshev
(1821-1894)

Andrei Andreyevich
Markov

(1856-1922)

David Hilbert
(1862-1943)

Brook Taylor
(1685-1731)

Georg Friedrich Bernhard
Riemann

(1826-1866)

James Clerk
Maxwell

(1831-1879)

Joseph von
Fraunhofer
(1787-1826)

Niels
Henrik Abel
(1802-1829)

Rev. Thomas
Bayes

(1702-1761)

John Napier
(1550-1617)

Adrien-Marie
Legendre

(1752-1833)

Charles Hermite
(1822-1901)

Henri Léon
Lesbegue

(1875-1941)

Leonhard Euler
(1707-1783)

Carl Gustav Jacob Jacobi
(1804-1851)

Benjamin Franklin
(1706-17901)

FIGURE 11.24. Pictures of great mathematicians serve as elements of the associative member library.
Each image’s size is 226× 225 pixels.

FIGURE 11.25. (LEFT) The average of all of the mathematician pictures in Figure 11.24. (RIGHT) The
picture of Fourier from the library. This image will be used to illustrate convergence of the associative
memory.
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2

1%

4%

9%

16%

8

FIGURE 11.26. Continued in the next figure.

plus noise exceeds 1
2 , it is clamped to 1

2 . Values below − 1
2 are clamped to − 1

2 . The higher
the noise level, the greater the steady state error of the restored image in comparison to the
original Fourier picture. The error of the restoration for the different noise initializations
as a function of iteration is shown in Figures 11.32 and 11.33. The POCS iteration will not
converge to the exact image of Fourier. The error in Figure 11.34 does thus not approach
zero. Nevertheless, the image of Fourier in Figures 11.32 and 11.33 clearly emerges from
the POCS associative memory.

It is fun to initiate the POCS iteration with elements not in the library. An example,
shown in Figure 11.35, is initialized with Euler’s head and Jacobi’s mouth. Fifty iterations
result in an image that favors Jacobi. Termination is shown both at the linear variety of
identical middles (eye open) and the library subspace.

Another initialization with a portion of a picture not in the library is shown in
Figure 11.36.
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FIGURE 11.27. Associative memory convergence using Fourier using the library of pictures in
Figure 11.23 and 11.24. The greater the percentage (1%, 4%, 9%, 16%) of the known image, the
faster the convergence. An error curve is shown in Figure 11.28.

11.4.5.4 POCS Associative Memory Convergence

Here we analyze the performance of the POCS associative memory. Let �y be the initialization
of the iteration where

�y =
[�yχ
�0
]
. (11.29)

The vector component, �yχ , contains known values of the vector and �0 is a vector of zeros.
Any vector �v can be written as

�v =
[�vχ
�vχ
]
. (11.30)
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FIGURE 11.28. Plots of the error ‖�f 1 −�yp‖2 where �f 1 is the original image of Fourier and �yp is the pth
POCS iteration on the linear variety of identical middles. The library of pictures in Figure 11.23 and
11.24 was used. The columns show the results of 2, 8, 32, 128 and 512 POCS iteration. The greater
the percentage (1%, 4%, 9%, 16%) of the known image, the faster the convergence.

For an arbitrary vector of �v, the projection onto the linear variety of identical middles
corresponding to �yχ is

Pχ�v =
[�yχ
�vχ
]
.

The projection of a vector �v onto the library subspace is

PS�v = T�v.
The POCS iteration between the two iteration can then be written as

�yr+1 = PχT�yr . (11.31)

with initialization, from (11.29), of �y0 = �y. Note, however, that the lower portion of the
vector T�yr is always discarded in the next projection. To sharpen our analysis, we divide
the N × N projection matrix into submatrices.

T =
[

T2 T1

T3 T4

]
.

If �yχ is of length N − P, then T2 is (N − P)× (N − P) and T4 is P × P. The top of �yr is
always clamped to �yχ . Thus

�yr =
[�yχ
�φr

]
.
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where �φr (φ for floating) denotes the only portion of the vector that changes from iteration
to iteration. Equation (11.31) can be written as

[ �yχ
�φr+1

]
= Pχ

[
T2 T1

T3 T4

] [�yχ
�φr

]
.

Solving for the floating component gives the iteration

�φr+1 = T3�yχ + T4 �φr . (11.32)

There are at least two interesting uses of this equation.

1. Linear Convergence. Let the P × P matrix T4 have P eigenvalues, λp, and P
eigenvectors, �ψp, where 1 ≤ p ≤ P. Thus

λp �ψp = T4 �ψp.

Expand the result of the rth floating vector as

�φr =
P∑

p=1

αr[ p] �ψp

where αr[ p] = �φT
r
�ψp. The iteration in (11.32) is then

P∑
p=1

αr+1[ p] �ψp = T3�yχ +
P∑

p=1

λpαr[ p] �ψp.

Premultiplying by �ψT
q and invoking the orthonormality of the eigenvectors

�ψT
q
�ψp = δ[ p− q]

gives

αr+1[q] = βq + λqαr[q]
where

βq := �ψT
q T3�yχ .

This difference equation has a solution of

αr[q] =
1− λr

q

1− λq
βq + λr

qα0[q]

where α0[q] is the initialization. Since we have assumed zero initial conditions,
α0[q] = 0 and

αr[q] =
1− λr

q

1− λq
βq.
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FIGURE 11.29. Continued in the next figure.

If the magnitude of all eigenvalues is less than one, we have limr→∞ λr
q = 0 and

α∞[q] = 1

1− λq
βq.

The error in the rth iteration is then

εr[q] = α∞[q] − αr[q]
= λr

qβq/(1− λq).

We note that

εr+1[q]
εr[q] = λq. (11.33)
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FIGURE 11.30. Convergence of the POCS associative memory as a function of the library size. The
convergence of Fourier for 56, 28, 14 and 7 library vectors is shown. In each case, the Fourier is
included in the library. A plot of error is shown in the next figure (Figure 11.31). The larger the library,
the slower the convergence.

When the ratio of the error in two sequential iterations is a constant, as it is here,
the iteration is said to linearly converge. As a consequence, (11.33) has a solution

εr[q] = εr[0]λr
q.

We here see that the convergence of POCS is dominated by the largest eigenvalue
of T4. The closer the magnitude of this eigenvalue is to one, the longer it takes for
λr

q to go to zero and for the iteration to converge.
To illustrate, consider the error curve in Figure 11.31. The ratio of successive

errors, shown in Figure 11.37, approaches a constant. The largest eigenvalue is
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FIGURE 11.31. Convergence of the POCS associative memory as a function of the library size. The
error is shown as a function of iteration for 56, 28, 14 and 7 library vectors. Images of the convergence
are shown in the previous figure (Figure 11.30).

here dominating and the contributions of the smaller eigenvalues have decayed to
insignificance.

2. Noniterative Solution. The POCS iteration in (11.32) can be solved by solution
of P linear equations. Assuming convergence, we let r → ∞ in (11.32). Then
[721, 907, 1205]

�φ∞ = T3�yχ + T4 �φ∞.

and, assuming I− T4 is not singular, the iteration will converge to

�φ∞ = (I− T4)−1 T3�yχ .

11.4.5.5 POCS Associative Memory Capacity

The maximum number of vectors that can be placed in the POCS associative memory is,
in principle, M − 1 non-colinear library vectors when the length of the library vector is M.
The associative memory’s performance, however, degrades as the number of library vectors
is increased.

The number of elements in the library vector can be made greater than M thereby
increasing the capacity. This can be done by adding extra elements to each library
vector consisting of, say, randomly generated values or nonlinear combinations of other
elements [913].
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11.4.5.6 Heteroassociative Memory

A heteroassociative memory is one wherein a stimulus vector, say �sn, is configured to
produce a response vector, �rn. These stimulus and response vectors can be stacked into an
library vector

�fn =
[�sn

�rn

]
. (11.34)

A number of stimulus-response vector pairs can thus be construed as a library to which the
POCS associative memory can be applied. The input vector corresponding to the stimulus
is clamped and the floating portion, corresponding to the response vector, is reconstructed
using POCS.

11.4.6 Recovery of Lost Image Blocks

POCS can be used for block loss recovery. The block loss recovery problem is illustrated in
Figure 11.38. A compressed image is transmitted over a lossy digital channel. The received
image has missing blocks. Such might be characteristic, for example, of JPEG image
compression where the image is partitioned into 8 × 8 blocks of pixels and coded with
a discrete cosine transform (DCT). An intermediate corruption of transmission would result
in loss of a whole block. The block loss recovery problem is to fill in the loss blocks using
the known portions of the image without retransmitting the image.

Yang et al. propose a projection based spatially-adaptive reconstruction of images
[1533, 1534]. In Yang et al.’s algorithm, convex sets are developed for de-blocking or
capturing the smoothness properties of the desired image [1533, 1534]. We closely follow
the POCS approach of Park et al. [1091, 1092, 1093] who have applied POCS to the block
loss recovery problem with remarkable success.

Three convex sets are used. Assume an N × N block of pixels are lost.

1. The convex hull of adjacent blocks. The first convex set is the convex cone
hull of surrounding images. For an N × N block of missing pixels, there are 8N
touching N × N blocks of known pixels. This is illustrated by the left hand figure
in Figure 11.39 where four such adjacent blocks are shown. When the top left
block shifts one pixel to the right, we obtain a new N ×N , albeit with N × (N − 2)
common pixels. We expect the missing block to resemble, in texture and grey
level, these known images. The 8N points form the foundation for a convex hull
that serves as the first convex set in the POCS reconstruction of the missing block.

2. Range constraint. The reconstructed pixels are required to lie within a range of
xmin and xmax. In a gray scale image with black assigned zero and white one,
any realizable restoration must lie between zero and one. Signals satisfying this
constraint form the convex set of bounded signals.

3. Smoothness constraint. The smoothness constraint eliminates abrupt gray level
jumps between adjacent pixels. More about this shortly.

Rather than reconstructing the entire missing block at once, Park et al. opted to reconstruct
the block one column (or one row) at a time [815, 1416]. The horizontal case is illustrated
by the illustration on the right in Figure 11.39. Using the known pixels, the lost pixels
in, say, the left hand column, are reconstructed using POCS. Once found, these pixels are
fixed and the block is moved a pixel to the right to expose another column of lost pixels.



[13:25 7/10/2008 5165-Marks-Ch11.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 528 495–569

528 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

2

0.60

0.45

0.30

s = 0.15

8

FIGURE 11.32. Continued in the next figure.

The blocks on the left and right eventually meet in the middle and the reconstruction process
is complete.18

The smoothness constraint requires the difference between a reconstructed pixel and its
adjacent pixel be bounded. Thus, if a known pixel has a value of x, the reconstructed pixel
can take on only values in the range x± α where α is the maximum allowed deviation. This
convex set corresponds to a box of linear dimension 2α centered about the known pixel
values. The projection is straightforward. If the reconstructed pixel exceeds x + α, it is set

18. Should the blocks be moved in from the left and right wherein pixel columns are reconstructed as shown
on the right side of Figure 11.39, or from the top and bottom wherein rows of pixels are reconstructed? Park et al.
[1091, 1092, 1093] reasoned the blocks should slide along the same direction of any line like structure. Thus,
prior to reconstructing a block, the structure around the missing block is examined. If there is line like texture
running horizontally, the reconstruction shown on the right side of Figure 11.39 is used. If the lines run vertically,
the blocks are moved in from the top and the bottom.
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FIGURE 11.33. Associative memory convergence of Fourier using the library of pictures in
Figure 11.23 and 11.24. The lower the noise level, the lower the error. An error curve is shown
in Figure 11.34.

to x + α. If x − α exceeds the reconstructed pixel’s value, it is set to x − α. Otherwise, it
remains as is.

Projections in the POCS don’t always converge to a single point in this application, but
the difference in solutions is typically negligible.

To illustrate the effectiveness of the approach, the Healthy Girl image in Figure 11.40 was
subjected to the loss of 8× 8 pixel blocks as is shown in Figure 11.41. The reconstruction
using POCS is shown in Figure 11.42. A close-up of the reconstruction process along the
girl’s shoulder is shown in Figure 11.43. Although the restoration is quite good, the process
does have flaws as the close-up of the POCS restoration in Figure 11.44 reveals.

A second example is given in Figure 11.45 (original Masquerade image), Figure 11.46
(every forth 8× 8 block removed) and Figure 11.47 (the POCS restoration).
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FIGURE 11.34. Plots of the error ‖�f 1 − �yp‖2 where �f 1 is the original image of Fourier and �yp is the
pth POCS iteration on the linear variety of identical middles. The library of pictures in Figures 11.23
and 11.24 was used. The columns show the results of 1, 25, 50, 100 and 300 POCS iteration. The
lower the noise level, the closer POCS converges to the original picture of Fourier. (Note that the
error range is not shown full scale.)

FIGURE 11.35. Initialization with portions of elements in library of mathematicians Jacobi and Euler
shown in the last row in Figure 11.24. From left to right is (a) an initialization of POCS using portions
of both faces, (b) the POCS convergence on the linear variety, and (c) the projection of this image on
the library subspace. Fifty iterations are used.

An alternate lost block scenario is shown in Figure 11.48 where 16 × 16 pixel blocks
of the original image in Figure 11.40 are lost. The restoration, shown in Figure 11.49 is,
visually, not as good as the 8× 8 block size loss restored in Figure 11.42 even though the
total number of missing pixels in each case is approximately the same.

A smaller 16× 16 block loss POCS is shown in Figure 11.50.
Lastly, the Healthy Girl image in Figure 11.40 looses every other row of eight pixels as

shown in Figure 11.51. The restoration is shown in Figure 11.52.
There exist numerous other methods to restore missing blocks of pixels [20, 14, 20, 592,

1361, 1273]. A review is given by Wang and Zhu [1467]. A common metric for the goodness
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FIGURE 11.36. Initialization with an element not in the library of the great mathematicians in
Figure 11.24. In the top row from left to right is (a) an image not in the library and (b) an eyeball
from the image used as the known portion of the iteration. In the second row, we see (c) the result
of the POCS iteration ending on the linear variety of all images with the eyeball (open eye), and (d)
projection of this image on the library subspace (closed eye). One hundred iterations are used.
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FIGURE 11.37. The ratio of successive errors in Figure 11.31 approaches a constant thereby illustrating
linear convergence.
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FIGURE 11.38. Illustration of the block loss recovery problem.

FIGURE 11.39. (left) For an N ×N block of missing pixels, there are 8N blocks of N ×N pixel blocks
touching the missing block. Here, four are shown. (Right) Reconstructing the missing block of pixels
one column at a time. )
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

of restoration of a one byte (256 gray level) image of dimension N1 ×N2 pixels is the peak
signal-to-noise ratio [504] defined as

PSNR = 10 log

(
N1 · N2 · 2552

∑N1
m=1

∑N2
n=1

∣∣ f (m, n)− g(m, n)
∣∣2
)

(11.35)

where f is the original and g is the given degradation. Using this metric, Park et al. [1091,
1092, 1093] found the POCS restoration performed better than the other proposed techniques
[20, 14, 20, 592, 1361, 1273].

11.4.7 Subpixel Resolution

When the aperture of a photoreceptor is too large, high frequency information is lost. This is
illustrated in Figure 11.53 where an object is imaged through an integrating square aperture.
The aperture integrates, or sums, the object over the square aperture and returns a single
number. The subpixel restoration problem is construction of the original image from a
number of summed images.

11.4.7.1 Formulation as a Set of Linear Equations

The subpixel resolution problem can be interpreted as the solution to a large number of
simultaneous equations. Visualize the original image as a long column vector. An summed
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image is the sum of a subset of these values and can be viewed as the inner product of a row
vector of ones and zeros and the original image vector. The row vectors for a number of
different summed images, all containing either ones or zeros, can be stacked into a matrix.
The image vector, multiplied by this matrix of ones and zeros, gives a vector of summed
image values. The corresponding set of linear equations can be solved to find the original
image.

11.4.7.2 Subpixel Resolution using POCS

POCS can also be used to generate the subpixel resolution from summed images. The set of
all objects that has a sum over an aperture as shown in Figure 11.53 is a convex set. Indeed,
it is a constant area linear variety. To project onto this convex set, the set of all pixels in an
image are equally adjusted so the resultant sum is equal to the value measures.

As shown in Figure 11.54, placing the aperture in a plurality of locations, taking a
measurement of the sum, and projecting the image onto the convex set corresponding
to that sum, allows for reconstruction of the original object. On the top left is shown a
274× 401 pixel object and, on the top right, this image viewed though a sequence of 8× 8
pixel apertures. To generate this low resolution image, each 8× 8 pixel block is averaged.
Even with this low resolution imaging device, generation of high resolution pictures is
possible if the 8× 8 imaging aperture is moved to other places on the image. To illustrate,
we choose a random location in the 274× 401 image to place the center of the 8× 8 pixel
aperture. At this location, we read a single number equal to the average of the values of the
64 pixels. All images that have this average value over these pixels form a discrete version
of the constant area convex set in (11.18). The projection onto this set, from (11.19), is
performed by adding to (or subtracting from) each of the 64 pixels the same number so that
the resulting average is equal to the measured average.

The effects of repeatedly choosing 8 × 8 aperture locations in a uniformly random
manner and projecting the image onto the reading from this aperture is shown in the bottom
four images in Figure 11.54. In addition to the constant area convex sets, the images are
constrained to fall in the interval zero (black) to one (white).

11.4.8 Reconstruction of Images from
Tomographic Projections

In Section 8.5.3 in Chapter 8, the inverse Radon transform is shown as a methodology
to reconstruct images from their tomographic projections. We will show doing so is also
possible using POCS. Indeed, the convex sets are identical to those used for subpixel
resolution in Section 11.4.7. Consider the projection, pθ (t), of an image in (8.52) in
Section 8.5.3. An example is shown in Figure 11.55. The sample of the projection at t = τ ,
as shown, is equal to the sum of pixels along a line. As in the case of subpixel resolution,
we have a measure equal to the sum of pixels over a specified region of the image. Given
a number of such sums corresponding to numerous lines at different angles, the same
mathematics used in subpixel resolution can be used to reconstruct the image.

Illustration of convergence is shown in Figures 11.56 and 11.57. Projections are taken
along randomly chosen lines.19 Results are shown for various numbers of lines.

19. Due to the Bertrand paradox [1077], we must be careful how we define random. (See Exercise 11.6.)
A pixel is chosen at random within the image. An angle is then chosen on the interval (0, π ) to determine the slope
of the line.
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FIGURE 11.40. Original Healthy Girl image.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

FIGURE 11.41. The Healthy Girl image in Figure 11.40 subject to 8× 8 pixel block loss.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.
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FIGURE 11.42. POCS restoration of the degraded Healthy Girl image in Figure 11.41. Compare to the
original image in Figure 11.40.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

11.4.9 Correcting Quantization Error for
Oversampled Bandlimited Signals

A bandlimited signal with bandwidth B is sampled at a rate of 2W > 2B samples per second.
The signal can be recovered from the samples using (6.2) which we repeat here

x(t) = r
∞∑

n=−∞
x
( n

2W

)
sinc(2Bt − rn) ; r = B

W
.

Consider the case where the samples of x(t) are quantized as illustrated in Figure 11.59. Each
sample is rounded to the nearest quantization level. The quantization levels are separated
by an interval of 2�. Denote the quantization of the sample x

( n
2W

)
by qn.

POCS can be applied to correction of quantization error [1333]. Define the convex set

Cn =
{

x (t)
∣∣∣ Q
[
x
( n

2W

)]
= qn and x(t) is bandlimited with bandwidth B < W

}

where the quantization operator, Q, rounds the value on which it operates to the nearest
quantization level. The convex sets on which the solution lies is (a) the set of all Cn’s and
(b) the set of bandlimited signals with bandwidth B < W in (11.13).
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FIGURE 11.43. Aclose-up of four stages of the narrowing of the 8×8 missing block restoration process
along the Healthy Girl’s shoulder.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

FIGURE 11.44. A close-up of the restored Healthy Girl in Figure 11.42 shows minor flaws on the
edges.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.
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Let y(t) be a bandlimited signal20 with bandwidth W . If, at t = n
2W , the signal y(t)

quantizes to qn, then y(t) ∈ Cn. Otherwise, we need to project it onto Cn. If the sample
is too large, we need to change it to the largest value that quantizes to qn. If too small,
we choose the smallest value that quantizes to qn. This is accomplished by the following
projection onto Cn.

Pny(t) =

⎧⎪⎪⎨
⎪⎪⎩

y(t) ;Q [y ( n
2W

)] = qn

y(t)+ (qk +�− y
( n

2W

))
sinc(2Wt − n) ;Q [y ( n

2W

)]
> qn

y(t)+ (qk −�− y
( n

2W

))
sinc(2Wt − n) ;Q [y ( n

2W

)]
> qn

The projection onto bandlimited signals in (11.14) can be written

PBL y(t) = y(t) ∗ 2B sinc(2Bt).

It follows that

PBL Pny(t) =

⎧⎪⎪⎨
⎪⎪⎩

z(t) ;Q [y ( n
2W

)] = qn

z(t)+ r
(
qk +�− y

( n
2W

))
sinc(2Bt − rn) ;Q [y ( n

2W

)]
> qn

(t)+ r
(
qk −�− y

( n
2W

))
sinc(2Bt − rn) ;Q [y ( n

2W

)]
> qn

(11.36)

where

z(t) = PBL y(t) = y(t) ∗ 2B sinc(2Bt).

Repeated application of the projection sequence in (11.36) will converge to a signal that
satisfies the convex constraints. Clearly, if the quantization level is too large, a number of
signals will satisfy these constraints.

11.4.10 Kernel Synthesis for GTFR’s

Cohen’s generalized time-frequency distribution (GTFR), introduced in Section 9.4,
requires choice of a two dimensional kernel. The kernel directly effects many performance
attributes of the GTFR such as time resolution, frequency resolution, realness, and
conformity to time and frequency marginals. These are detailed in Section 9.4.2.Anumber of
different kernels may suffice for a given performance constraint (high frequency resolution,
for example). Interestingly, many sets of kernels satisfying commonly used performance
constraints are convex. In this Section, following the work of Oh et al. [1043], we describe a
method whereby kernels can be designed that satisfy two or more of these constraints. If there
exists a non-empty intersection among the constraint sets, POCS guarantees convergence
to a kernel that satisfies all of the constraints. If the constraints can be partitioned into
two sets, each with a nonempty intersection, then POCS guarantees convergence to a
kernel that satisfies the inconsistent constraints with minimum mean square error. We apply
kernels synthesized using POCS to generation of some example GTFR’s and compare their
performance to the spectrogram, Wigner distribution and cone kernel GTFR.

11.4.10.1 GTFR Constraints as Convex Sets

The generalized time-frequency representation is introduced in Section 9.4. Properties of the
GTFR can be controlled by imposition of constraints on the GTFR’s kernel. These propertis

20. If y(t) is not bandlimited, we feed it through a low pass filter with bandwidth W .
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FIGURE 11.45. Original Masquerade image.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

FIGURE 11.46. Every fourth 8 × 8 block of pixels is removed from the Masquerade image in
Figure 11.45.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.
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FIGURE 11.47. The POCS restoration of the degraded Masquerade image in Figure 11.46. Compare
with the original image in Figure 11.45.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

are listed in Section 9.4.3.1. We will now show that each of these constraints corresponds
to a convex set and that GTFR kernels can be synthesized using POCS [1037, 1043].

1. Time and Frequency Resolution Projections
For the time resolution constraint in Section 9.4.3.1, the signal outside of the cone,
shown on the left in Figure 9.15, simply set to zero.

PC1 φ̂(t, τ ) = φ̂(t, τ )�

(
t

τ

)
�
( τ

2T

)
.

Similarly, for frequency resolution constraint, the area outside of the bow tie,
shown on the right hand side shown on the left in Figure 9.15, is set to zero.

PC3,1�( f , u) = �( f ; u)�

(
f

u

)
�

(
f

2B

)
. (11.37)

A relaxed version of frequency resolution is

PC3,1�( f , u) =

⎧⎪⎪⎨
⎪⎪⎩

0 ; �( f , u) < 0

�( f , u) ; 0 ≤ �( f , u) ≤ α( f , u)

α( f , u) ; �( f , u) > α( f , u).
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FIGURE 11.48. The Healthy Girl image in Figure 11.40 subject to 16× 16 pixel block loss.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

FIGURE 11.49. The POCS restoration of the degraded Healthy Girl image in Figure 11.48. Compare
with the original image in Figure 11.40.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.
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FIGURE 11.50. Original (left), degraded with 16 × 16 pixel block loss (middle) and POCS restored
image.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

2. Realness and Symmetry Constraint
The realness constraint in Section 9.4.3.1 can be imposed by the projection operator

PC6�̂(t, u) = ��̂(t, u)

or, equivalently, in the (f , τ ) plane,

PC6φ( f , τ ) = 1

2

[
φ( f , τ )+ φ∗(−f ,−τ )

]
.

Similarly, for the symmetry constraints in (9.48) and (9.49), the respective
projection operators can be written as

PC7φ( f , τ ) = 1

2

[
φ( f , τ )+ φ∗( f ,−τ )

]

and

PC8φ( f , τ ) = 1

2

[
φ( f , τ )+ φ∗(−f , τ )

]
. (11.38)

3. Relaxed Interference Projection
Motivated by (9.45), the projection operator corresponding to the relaxed
interference term is

PC2�( f , u) = �( f , u)�

(
f

2�

)

Note that if � is large enough and B is small enough, the frequency resolution
projection in (11.37) subsumes this projection.

4. Non-negative Projection
The non-negativity constraint can be imposed by the projection

PC9 φ̂(t, τ ) = φ̂(t, τ )μ[φ̂(t, τ )].

5. Marginal and Cone Constraint
In some cases, projections can be best described by the intersection of two or
more convex constraints. Combining the time resolution constraint and the



[13:25 7/10/2008 5165-Marks-Ch11.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 542 495–569

542 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

FIGURE 11.51. The Healthy Girl image in Figure 11.40 looses every other row of 8 pixels.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

frequency marginal constraint in Section 9.4.3.1, we can write the projection on
the intersection of the three sets as the convex set operator

PC1∩C4∩C5 φ̂(t, τ ) =
⎧⎨
⎩
δ(t) ; τ = 0
[
φ̂(t, τ )+ ϕ(τ )

]
�( t

τ
)�( τ2T ) ; otherwise

where ∩ denotes intersection, δ(·) is Dirac delta function and

ϕ(τ ) = 1

|τ |

[
1−
∫ |τ |

2

− |τ |2
φ̂(t, τ )dt

]
.

Combining the time resolution and the finite area constraints, we have the
projection

PC1∩C10 φ̂(t, τ ) =
[
φ̂(t, τ )+ ϕ

]
�

(
t

τ

)
�
( τ

2T

)

where

ϕ = 1

T2

[
1−
∫ T

τ=−T

∫ |τ |
2

t=− |τ |2
φ̂(t, τ )dtdτ

]
.
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FIGURE 11.52. Restoration of the degradation of the Healthy Girl image in Figure 11.51. Compare
with the original image in Figure 11.40.
Source: [1093] Jiho Park, Dong Chul Park, R.J. Marks II and M.A. El-Sharkawi, “Recovery of
Image Blocks using the Method of Alternating Projections.” IEEE Transactions on Image Processing,
March 2005.

11.4.10.2 GTFR Kernel Synthesis Using POCS

The use of POCS in the design of GTFR kernels is now evident. We choose from a menu
of convex constraints that we desire our GTFR to obey. By alternately projecting between
the corresponding convex sets, we hope to synthesize a corresponding kernel. If the convex
sets intersect, a kernel meeting all constraints will be generated. If the constraint sets do not
intersect, the iteration may break into a limit cycle. The result may or may not be acceptable
depending on the magnitude of the mean square error.

We present two preliminary examples. Both are presented on a 128 × 128 grid. The
kernels in both examples used both the cone and bow tie constraints. The value of T in each
case corresponded to truncating the grid so that the cone was a peak to peak height of 64.
Both examples resulted in a kernel that was positive and symmetric.

Example 11.4.1. uses, in addition, both marginal constraints. We take the alternating
projection between the set C3,1 ∩ C3,2 and C1 ∩ C4 ∩ C5 ∩ C9. The resulting kernel is
pictured in Figure 11.60. It resembles a truncated Born-Jordan kernel [309, 310, 312] which
has a 1

|τ | taper within the cone. Indeed, for B = ∞ and T = ∞, the Born-Jordan kernel
satisfies all the constraints. Specifically,

φ̂(t, τ ) = 1

|τ |�
(

t

τ

)
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FIGURE 11.53. The square imaging aperture integrates the object in the picture and returns a single
number equal to the sum of all the pixels within the aperture. As the aperture moves, this number
changes.

satisfies the cone constraint. Furthermore, the marginal constraints are met as are the
symmetry constraints of (9.46), (9.48) and (9.49), the realness constraint of (9.47) and
the nonnegativity constraint in (9.51). Furthermore,

�( f , u) = 1

| f |�
(

u

f

)

satisfies the untruncated bow tie constraint.
The iterative POCS synthesis of this kernel does not converge. This empirically proves

that, for the kernel dimensions used, there does not exist a kernel that satisfies all of the
constraints.

Application of this kernel to two converging linear chirps resulted in the 25dB waterfall
and 30dB gray level display in Figure 11.61 and the two tone signal with transition is in
Figure 11.62. From floor to peak is 25dB.

Example 11.4.2. removes the marginal constraints. We take the alternating projection
between C3,1 ∩ C3,2 and C1 ∩ C9 ∩ C10. This resulted in the kernel in Figure 11.63. The
outcome of the POCS design, smoothed with a Hanning window, was applied to the same
linear chirp and two tone signal problem. The result of linear chirp and two tone signal are
shown in Figures 11.64 and 11.65 respectively.
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FIGURE 11.54. Subpixel resolution using POCS and the constant area convex set. After a half million
projections, the image at the bottom left resembles the original image at the upper left.

11.4.11 Application to Conformal Radiotherapy

The concept of fundamental radiotherapy is illustrated in Figure 11.66. We follow closely
the development of Lee et al. [814].

On the left in Figure 11.66, a tumor is shown imbedded in healthy tissue. The tumor is
to be destroyed using externally applied radiation. The radiation, though, destroys both the
tumor and the healthy tissue. Therefore, as illustrated on the right hand side of Figure 11.66,
beams of radiation are introduced through the tumor at different angles. Thus, the tumor is
zapped with every beam and the surrounding healthy tissue is exposed less. Radiotherapy
is made more complex by the existence of critical organs in the vicinity of the tumor, e.g.,
a tumor around the spinal cord. The critical organs are less resilient to radiation and their
exposure must be minimized.

Conformal radiotherapy allows beams to be sculpted. Thus, beam cross sections can be
made more intense in the middle than the edges, or more intense on one side than the other.
Given the locations of critical organs and tumor, the beam design problem in conformal
radiotherapy is determination of beam profiles to best capture such features.
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FIGURE 11.55. The function pθ (t) is a projection of the image. For discrete images, the sample of the
projection, pθ (τ ), is equal to the sum of the pixels along a line.

Synthesis of beam profiles for a given dose prescription is a central problem in
radiotherapy. Care must be taken in the beam design to expose the tumor volume at a
high level, to avoid significant irradiation of critical organs, and to minimize exposure of
all other tissue. POCS, we will show, is a viable approach to beam design.

Note that the conformal radiotherapy problem is closely related to tomographic
reconstruction from projections.21 For tomography, an image is reconstructed from its
projections. In conformal radiotherapy, the image of the tumor and surrounding tissue
is given, and the beam projections must be constructed.

The POCS method for synthesizing pencil beam cross sections to produce desired dose
prescriptions consists of the following steps.

1. Specify convex constraints the prescribed dose must satisfy. These constraints can
originate from either dose prescription, physics or mathematical concerns.

2. Establish the projection onto each of these convex sets.
3. Alternately project among the constraint sets. Iterate until convergence is achieved.

The result is a beam profile synthesis for the dose prescription.

Design will be described and examples given for all beams lying in a plane. Extension to
the three dimensions is straightforward. Also, the physics of dose synthesis is a continuous
problem. We will discretize it to allow application of digital analysis. Let b(x, θ ), the
beam intensity function, correspond to the intensity discretized at angle θ crossing the

21. See Sections 8.5 and 11.4.8.
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axis perpendicular to θ at the beam element position x. Assume there are Q linear beam
arrays at fixed equal angular intervals,

bk(x) := b

(
x,

2πk

Q

)
; 1 ≤ k ≤ Q.

The kth array is discretized into N pencil beam elements that can be expressed by the vector

�bk = [ bk1 bk2 · · · bkN ]T .

The same spatial interval between adjacent pencil beam elements is assumed. The dose
domain is discretized into M pixels. The dose contribution to the point m from the nth beam
element in the kth beam array (bkn) is (amn)k . The corresponding dose computation matrix,
A ∈ R

M×N , is defined for M tissue points. The dose from the kth beam array is

�dk = [ dk1 dk2 · · · dkM ]T

= Ak�bk . (11.39)

The contributions from all Q beam arrays must be summed to give the total dose delivered
to each pixel. Physically, the matrix Ak = (amn)k is the discretized kernel, A(γ, x, 2πk/Q)
that specifies the dose to point γ from the pencil beams in the kth linear array. The vector, γ ,
is discretized into the M pixels. This geometry is illustrated in Figure 11.67.

For Q discretized beam arrays, there are Q dose vectors,
{ �dk | 1 ≤ k ≤ Q

}
.

These Q vectors are stacked to form the parent dose vector

�d =
[ �dT

1
�dT

2 · · · �dT
Q

]
(11.40)

where �d ∈ R
MN×1. This is the space in which the dose constraint sets, all convex, are

defined.
The total dose vector at M tissue points, t, is the sum of dose vectors from every incident

beam and can be computed from the parent dose vector in (11.40).

�t = [ t1 t2 · · · tM ]T =
Q∑

k=1

�dk =
Q∑

k=1

Ak�bk

11.4.11.1 Convex Constraint Sets

To synthesize the beam elements, the following constraint sets are used. Each is convex.
The projection operation is given for each set.

1. Beam dose constraint set. Given the dose computation matrix, Ak , and the beam
vector, �bk , for the kth beam vector, the resulting dose vector is given by (11.39).
The dimension of the dose vector exceeds the number of beam elements. In other
words, the dose vector has a larger number of degrees of freedom than the beam
vector. The matrix, Ak , is thus not full rank. We therefore use the pseudo inverse22

22. See Section 11.3.2.1.
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FIGURE 11.56. Illustration of convergence of reconstruction of an image from tomographic projections
along a line. Each figure is labelled with the number of line projections. The original image is shown
on the bottom right in Figure 11.57. (Continued in Figure 11.57.)

to find the �bk’s. The corresponding convex set can be expressed as

CB =
{ �d | �dk = Ak�bk, 1 ≤ k ≤ Q

}
.

The projection onto this convex set is

PB�d =
[[

PB�d
]T

1

[
PB�d
]T

2
· · ·
[
PB�d
]T

Q

]T

. (11.41)

where the projection of the kth component is

[PB�d ]k = Tk �d,
and Tk is the projection matrix

Tk = Ak
(
AT

k Ak
)−1

AT
k . (11.42)

2. Target dose constraint set. This constraint set requires the delivered dose to match
the prescribed dose in the target volume. Let T denote a subset of numbers from
1 to M corresponding to indices of the target volume. Let the prescribed dose
vector be

(�p)k =
{

pk ; k ∈ T

0 ; otherwise.
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FIGURE 11.57. (Continued from Figure 11.56.)

These values are determined by sampling the continuous prescribed dose. In our
simulations, each pk is set to one. The target dose constraint set is then defined by

CT =
{
�d
∣∣∣∣∣

Q∑
i=1

dij =
{

pj ; j ∈ T

don’t care ; otherwise.

}
.

The projection onto CT is23

PT �d =
[[

PT �d
]T

1

[
PT �d
]T

2
. . .
[
PT �d
]T

Q

]T

(11.43)

where

[PT �d ]k = �dk + 1

Q
IT

(
�p−

Q∑
i=1

�di

)
.

The diagonal matrix, IT , serves as a spatial discriminator and is given by

(IT )jj =
{

1 ; j ∈ T

0 ; otherwise.

Thus only the projection components intersecting the target dose are affected

23. This is the projection onto constant area in Section 11.3.2.5.
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FIGURE 11.58. A plots of the error ‖�f − �yp‖2 versus number of tomographic line projections, where
�f is the original image and �yp is the pth POCS iteration. As is the case with the associative memory,
the convergence is linear.

FIGURE 11.59. Illustration of quantization and quantization error for samples of an oversampled
bandlimited signal.
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FIGURE 11.60. One quadrant of the symmetric cone kernel in the (t, τ ) plane synthesized using POCS.
Source: [1043] S. Oh, R.J. Marks II and L.E. Atlas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No. 7, July 1994. pp. 1653–1661.

FIGURE 11.61. Waterfall and gray-level display of two linearly converging chirps using the POCS
designed kernel in Figure 11.60. Compare with the spectrogram and Wigner distribution of the same
signal in Figures 9.17 and 9.19.
Source: [1043] S. Oh, R.J. Marks II and L.E. Atlas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No. 7, July 1994. pp. 1653–1661.
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FIGURE 11.62. Waterfall and gray-level display of a two tone signal using the POCS designed kernel in
Figure 11.60. Compare with the spectrogram and Wigner distribution of the same signal in Figures 9.18
and 9.20.
Source: [1043] S. Oh, R.J. Marks II and L.E. Atlas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No. 7, July 1994. pp. 1653–1661.

FIGURE 11.63. One quadrant of the symmetric cone kernel in the (t, τ ) plane synthesized using POCS
without use of the marginal constraints.
Source: [1043] S. Oh, R.J. Marks II and L.E. Atlas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No. 7, July 1994. pp. 1653–1661.
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FIGURE 11.64. Waterfall and gray-level display of two linearly converging chirps using the POCS
designed kernel in Figure 11.63 where marginals are not a required constraint. Compare with more
constrained POCS kernel in Figure 11.61 and the spectrogram and Wigner distribution of the same
signal in Figures 9.17 and 9.19.
Source: [1043] S. Oh, R.J. Marks II and L.E. Atlas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No. 7, July 1994. pp. 1653–1661.

FIGURE 11.65. Waterfall and gray-level display of a two tone signal using the POCS designed kernel
in Figure 11.63 where marginals are not a required constraint. Compare with more constrained POCS
kernel in Figure 11.62 and the spectrogram and Wigner distribution of the same signal in Figures 9.18
and 9.20.
Source: [1043] S. Oh, R.J. Marks II and L.E. Atlas. “Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets.” IEEE Transactions on
Signal Processing, vol. 42, No. 7, July 1994. pp. 1653–1661.
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FIGURE 11.66. Illustration of radiotherapy for a tumor.

FIGURE 11.67. Geometry of the dose computation plane. There are Q beam positions, each beam
containing N beam elements. The dose computation matrix corresponding to the kth beam is Ak
whose dimension is M × N , where M is the number of tissue points.
Source: [814] S. Lee, P.S. Cho, R.J. Marks II and S. Oh. “Conformal Radiotherapy Computation
by the Method of Alternating Projection onto Convex Sets.” Phys. Med. Biol., vol. 42, July 1997,
pp. 1065–1086.

3. Organ dose constraint set. This constraint set controls the dose in risk where the
dose must be kept low. Let S denote a subset of numbers from 1 to M corresponding
to the indices of the critical organ region. The organ dose constraint set is

Co =
⎧⎨
⎩ �d
∣∣∣∣∣∣ 0 ≤

Q∑
i=1

∑
j∈S

dij ≤ E1, �d ∈ CB

⎫⎬
⎭

where E1 is the upper limit of allowable integrated dose in the critical region.
To show that Co is convex, let �f , �g ∈ Co. Then, from the definition of the set, Co,

0 ≤ α
Q∑

i=1

�cT�fi ≤ αE1
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and

0 ≤ (1− α)
Q∑

i=1

�cT �gi ≤ (1− α)E1.

Adding gives

0 ≤ α
Q∑

i=1

�cT�fi + (1− α)
Q∑

i=1

�cT �gi ≤ αE1.

Since the convexity of CB is already proved, the set, Co is convex.
The projection operator for the set Co is

Po�d =
[[

Po�d
]T

1

[
Po�d
]T

2
. . .
[
Po�d
]T

Q

]T

(11.44)

where

[Po�d ]k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tk

(
�dk +

E1 −∑Q
j=1 �rT

j Tj�dj∑Q
j=1 �rT

j Tj�dj

�r
)
;

Q∑
j=1
�rT

j Tj�dj > E1

Tk

(
�dk −

∑Q
j=1 �rT

j Tj�dj∑Q
j=1 �rT

j Tj�dj

�r
)

;
Q∑

j=1
�rT

j Tj�dj < E1

Tk �dk ; otherwise

and

(�r)k =
{

1 ; k ∈ S

0 ; otherwise

4. Non-negative beam constraint. Physics dictates that each beam element have a
non-negative value. This set requires adherence to this property. The corresponding
convex non-negative beam constraint sets, one for each beam, are24

Ck =
{ �d | �dk = Ak�bk, �bk ≥ 0

}; 1 ≤ k ≤ Q.

The set Ck can be expressed as the intersection of a number of convex
component sets.

Ck =
N⋂

n=1

Ckn,

where the component sets are

Ckn =
{�d | �dk = A�bk, (�bk)n ≥ 0

}; 1 ≤ n ≤ N .

24. The notation �bk > 0 means each element of �bk is non-negative.
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For a given �d, the sign of each (�bk)n can be found from the pseudo inverse

�bk =
(
AT

k Ak
)−1

AT
k
�dk .

The projection onto Ckn is

Pkn�d =
{

Tkn�dk ; (�bk)n < 0

�dk ; otherwise

and the matrix Akn ∈ R
M×(N−1) is formed by removing the nth column of Ak . In

lieu of projecting onto each Ck , projection is performed sequentially onto each
Ckn set. These projection operators can be concatenated into the single operator

�+ =
Q∏

k=1

N∏
n=1

Pkn.

Although �+ is composed of a string of projection operators, it, itself is not a
projection operator. It does not, for example, directly project onto the set

C+ =
Q⋂

k=1

Ck .

After a projection operator component of �+ is performed, the constraint
corresponding to the previous projection operator component may no longer be
satisfied. Thus, after�+ is applied, some of the beam elements can still be negative.

Using these convex constraint sets and corresponding projections, the dose can be
synthesized using POCS. Let � be the POCS iteration counter. Let bi[�] be the �th beam and
di[�] be the ith vector in d[�] at the �th iteration. Then d[�+ 1] is obtained by the recursion

d[�+ 1] = �+PBPT Pod[�].

POCS will also converge if some projections are used more than others [1324]. Lee et al.
[814] found faster convergence using

d[�+ 1] = �+(PBPT )LPod[�].

where (PBPT )L denotes L repeated projections.
Once the iteration has converged, the beam vector, bi[�], can be uniquely determined

using the minimum mean square error solution

bi[�] =
(
AT

i Ai
)−1

AT
i d[�]; 1 ≤ i ≤ Q.

Residual negative beam weights due to constraint set non-intersection or early iteration
truncation are set to zero. Lee et al. [814] found that if there were any negative beam
weights, they were relatively small in magnitude.
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FIGURE 11.68. (a) Brahme’s concave butterfly shaped tumor volume [152]. The matrix size of the dose
distribution plane is 35× 63. (b) and (c) Results of POCS dose synthesis applied to Brahmes butterfly
shaped tumor after 15 iterations. 31 beams, each containing 55 beam elements were used. (b) The
isodose contours in full curves and the tumor contour in broken curves. (c) A 3D plot of the relative
dose versus the transaxial coordinates.
Source: [814] S. Lee, P.S. Cho, R.J. Marks II and S. Oh. “Conformal Radiotherapy Computation
by the Method of Alternating Projection onto Convex Sets.” Phys. Med. Biol., vol. 42, July 1997,
pp. 1065–1086.

11.4.11.2 Example Applications

Here are three example simulations of POCS applied to the conformal therapy problem.

1. The first example, a target with concave regions, is the Brahme’s butterfly
shaped tumor volume [152]. This target shape, illustrated in Figure 11.68(a),
presents a potential challenge for treatment planning. The difficulty arises
because of the concave normal tissue regions above and below the tumor.
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Without intensity modulation, uniform delivery of the prescribed dose to the target
can be achieved only at the expense of undesirable escalation of dose to the concave
regions. The maximum width and height of the external contour are 40 cm and
22 cm, respectively, and corresponds to 63 by 35 tissue elements. Thirty-one
spaced beams spaced angularly uniformly, each containing 55 elements, are used.
The results of inverse planning after 15 iterations using the POCS algorithm are
shown in Figures 11.68(b) and (c). Sharp dose gradients around the target border are
observed. The organ dose constraint specified in terms of integrated limiting dose,
E1, to the concave regions was set to 50% of the maximum value. The intensity
profiles of the incident beams after 15 iterations is shown in Figure 11.69.

2. The second example is adopted from Bortfeld et al. [140]. As shown in
Figure 11.70(a), the irradiation volume consists of a horseshoe-shaped target and
a dose limiting organ within the concave region. The computation results after 15
iterations using 31 beams with 55 elements each and a 20% organ dose constraint
are shown in Figures 11.70(b) and 11.70(c). The dose falls off sharply outside the
target and dips further near the critical organ. The corresponding beam intensity
modulation profiles are shown in Figure 11.71.

3. Our final example contains two organs that are large relative to the target, as shown
in Figure 11.72(a). The external contour width, height, dose matrix size, and the
number of beam elements are the same as those used in the previous example.
The results after 30 iterations using 31 beams with a 30% organ dose constraint
are shown in Figures 11.72(b) and 11.72(c). The corresponding synthesized
beam profiles are shown in Figure 11.73. The complex target organ geometry
demonstrates the difficulty in achieving acceptable treatment planning. Although
we have applied a 30% value to both organ A and B, these values can be varied
independently according to the clinical requirement.

11.5 Generalizations

11.5.1 Iteration Relaxation

In certain instances, POCSc can converge painfully slowly. An example is shown in
Figure 11.74. One technique to accelerate convergence is relaxing the projection operation
by using a relaxed projection with parameter λ [1550].

Prelaxed = λP + (I − λ)I. (11.45)

11.5.2 Contractive and Nonexpansive Operators

An operator, O, is said to be contractive if, for all �w �= �z,

‖O �w−O�z‖ < ‖�w− �z‖. (11.46)

In other words, operating on the two vectors place them closer together. This is illustrated
in Figure 11.75. A useful property of contractive operators [1020] is, for any initialization,
the iteration

�o(N+1) = O�o(N) (11.47)
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FIGURE 11.69. Beam intensity profiles synthesized for Brahmes geometry. The upper left profile
corresponds to the beam which is incident horizontally from the right side of Figure 11.68(a). The
gantry rotates in a counterclockwise direction. Each beam consists of 55 elements spanning the width
of the external contour.
Source: [814] S. Lee, P.S. Cho, R.J. Marks II and S. Oh. “Conformal Radiotherapy Computation
by the Method of Alternating Projection onto Convex Sets.” Phys. Med. Biol., vol. 42, July 1997,
pp. 1065–1086.

converges to a unique fixed point

�o(∞) = O�o(∞).

A POCS projection is, however, not contractive.25 Projection operators, rather, are
nonexpansive. The O operator is nonexpansive if equality is allowed

‖O �w−O�z‖ ≤ ‖�w− �z‖.
For nonexpansive operators, the iteration in (11.47) can converge to a number of fixed
points.

A relaxed nonexpansive operator, as in (11.45), however, is contractive [509].
Applications of contractive operators do not have the elegant geometrical interpretation
of POCS.

11.5.2.1 Contractive and Nonexpansive Functions

A function, f (t), is contractive if

∣∣∣∣
df (t)

dt

∣∣∣∣ < 1. (11.48)

and a nonexpansive if

∣∣∣∣
df (t)

dt

∣∣∣∣ ≤ 1. (11.49)

25. If, for example, both �w and�z are in the convex set, and O is a projection operator, then‖O �w−O�z‖ = ‖�w−�z‖
and (11.46) is violated.
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FIGURE 11.70. (a) Bortfelds horseshoe-shaped target with an organ at risk. Matrix size of the dose
distribution plane is 39 × 39. (b) and (c) Results of the POCS dose synthesis applied to Bortfelds
geometry after 15 iterations. Thirty one beams, each containing 55 beam elements were used. The
value of 20% dose constraint was imposed on the critical structure. (b) The isodose contours in full
curve and the tumor-organ contours in broken curve. (c) A 3D plot of the relative dose versus the
transaxial coordinates.
Source: [814] S. Lee, P.S. Cho, R.J. Marks II and S. Oh. “Conformal Radiotherapy Computation
by the Method of Alternating Projection onto Convex Sets.” Phys. Med. Biol., vol. 42, July 1997,
pp. 1065–1086.
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FIGURE 11.71. Beam intensity profiles obtained for Bortfelds geometry. The upper left profile
corresponds to the beam which is incident horizontally from the right side of Figure 11.70(a). The
gantry rotates in a counterclockwise direction. Each beam consists of 55 elements spanning the width
of the square external contour.
Source: [814] S. Lee, P.S. Cho, R.J. Marks II and S. Oh. “Conformal Radiotherapy Computation
by the Method of Alternating Projection onto Convex Sets.” Phys. Med. Biol., vol. 42, July 1997,
pp. 1065–1086.
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FIGURE 11.72. (a) A tumor that is adjacent to two relatively large organs at risk. The matrix size of
the dose distribution plane is 35× 63. (b) and (c) Results of the POCS dose synthesis applied to the
geometry described in (a). Thirty one beams and 30 iterations were used. (b) The isodose contours in
full curve and the tumor-organ contours in broken curve. (c) A 3D plot of the relative dose versus the
transaxial coordinates.
Source: [814] S. Lee, P.S. Cho, R.J. Marks II and S. Oh. “Conformal Radiotherapy Computation
by the Method of Alternating Projection onto Convex Sets.” Phys. Med. Biol., vol. 42, July 1997,
pp. 1065–1086.
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FIGURE 11.73. Beam intensity profiles obtained after 30 iterations for the geometry described in
Figure 11.72(a). The upper left profile corresponds to the beam which is incident horizontally from
the right side of the Figure 11.72 (a). The gantry rotates in a counterclockwise direction. Each beam
consists of 55 elements spanning the width of the external contour.
Source: [814] S. Lee, P.S. Cho, R.J. Marks II and S. Oh. “Conformal Radiotherapy Computation
by the Method of Alternating Projection onto Convex Sets.” Phys. Med. Biol., vol. 42, July 1997,
pp. 1065–1086.

FIGURE 11.74. Ageometrical example of slowly converging POCS. The two linear varities intersection,
far to the right, is the ultimate fixed point of the iteration.

FIGURE 11.75. An operator, O, is contractive if, after application to two vectors, the points are closer
together than originally. (See (11.46).)
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Proof . For the contractive case, let τ > t. Then

| f (τ )− f (t)| =
∣∣∣∣
∫ t

τ

df (ξ )

dξ
dξ

∣∣∣∣ ≤
∫ t

τ

∣∣∣∣
df (ξ )

dξ

∣∣∣∣ dξ.

Using (11.48),

| f (τ )− f (t)| <
∫ t

τ

dξ = τ − t = |τ − t|

A nearly identical proof follows for the nonexpansive case in (11.49).
If a function f (t) is contractive, the iteration

tn+1 = f (tn) (11.50)

converges to a unique point, t∞, for all initializations.
An example is f (t)= e−t for t > 0.The iteration in (11.50) converges to t∞ = 0.56714329

which is the solution to the transcendental equation

t∞ = e−t∞ . (11.51)

On a calculator, repeated alternate punching of the ex key and the CHS (change sign)
key will thus always converge to t∞ = 0.56714329.

11.6 Exercises

11.1. Consider the following interesting iteration. Choose any number, spell it and count
the letters. The count is the next number. The process is repeated. The iteration will
always end at the number four.26 For example, 100 is spelled “one hundred” and
contains 10 letters. “Ten” has three letters. “Three” has five letters. “Five” has four
letters. “Four” has four letters and the iteration has thus converged to a fixed point.
Is this iteration contractive?

11.2. For the POCS solution of simultaneous linear equations in Section 11.4.2.
(a) Explain the convergence of POCS when the planes do not intersect at a single

point. How does the initialization effect the fixed point of POCS in such
situations?

(b) Use the POCS iteration to invert a large matrix. Plot the error.
(c) Should we expect the convergence of the iteration to be linear?

11.3. Show that the subspace defined in (11.8) and the linear variety in (11.9) are convex
sets as defined in (11.7).

11.4. Are the following set of signals convex?
(a) The set of signals that are monotonically increasing on a given closed

interval, I.
(b) The set of even signals.
(c) The set of odd signals.

26. This has never been proved but there is, as of yet, no counter example using concise descriptions of numbers
using common English words.
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(d) The set of continuous signals, x(t), where, for a fixed n and ε, the signal obeys
∣∣∣∣
(

d

dt

)n

x(t)

∣∣∣∣ ≤ ε.

(e) The set of discrete time signals, x[n], where, for a fixed ε, |x[n+ 1] − x[n]| ≤ ε.
(f) The set of discrete time signals, x[n], where, on a fixed interval, I, and for a

given function, g[n], and constant ρ,

∑
n∈I

g[n] x[n] = ρ.

(g) The set of complex functions where, for a fixed |x|, x = |x|e j � x, where −π2 ≤� x ≤ π
2 .

(h) The set of real signals for which, for a fixed a and b,

ρ1 ≤
∫ b

a
x(t)dt ≤ ρ2.

(i) The set of conjugately symmetric signals, x(t) = x∗(−t).
11.5. Establish the projections for those signal sets in Exercise 11.4 that are convex.
11.6. Consider measurements from an experiment represented as points on the continuous

x axis.As illustrated in Figure 11.76, our POCS problem is to estimate the probability
density function, fX (x), from which these measurements were made [1333]. Two
convex sets for the density function are positivity and unit area. In addition, the area
of the density over any randomly chosen interval, T , must be equal to the percentage
of points in the interval. For a given T , the set of all functions whose area is equal
to the percentage of points in the interval is a convex set.

(a) If we repeatedly choose random intervals and project onto the convex set
corresponding to the interval then, while also projecting on unit area functions
and nonnegative functions, POCS will converge to the unique function
obeying all of the constraints. What is that function?

FIGURE 11.76. An unknown probability density function, fX (x), generates outcomes shown by the dots
on the x axis. Given these realizations, our task is estimation of the probability density function. Over
any arbitrary interval, T , the area of the density should be equal to the percentage of points in the
interval. In this figure, there are 10 points. The interval T contains 4 points. Thus the area of the
density function over T should be 0.4. The set of all functions with an area equal to 0.4 on T is a
convex set.
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(b) The result in (a) is unacceptable. Identify one or more convex smoothness
constraints that remedy this problem.

(c) Describe how your new convex constraint set or sets in (b) intersect with the
old ones.

(d) Show, by computer emulation, the result of your additional constraint(s).
11.7. §Bertrand’s Paradox. Choosing random lines in Section 11.4.8 for tomographic

reconstruction using POCS requires definition of the term random. (See Footnote 19
in Section 11.4.8.) Consider the circle in the NW corner of Figure 11.77. Inscribed
is an equilateral triangle. Inscribed in the triangle is a smaller shaded circle. If the
larger circle has radius r, then each side of the triangle has a length of

√
3 r and the

diameter of the small shaded circle is r. Our task is to choose a line to randomly
intersect the large circle and find the probability of the cord inside the large circle
has a length not less than

√
3 r. Let the length of the cord be �. We then seek to

evaluate

p = Pr
[
� ≥ √3 r

]
.

Paradoxically, we will now show there are at least three solutions and

1

2
= p = 1

3
= p = 1

4
.

Here are the three solutions.
1. Northeast Solution. With no loss of generality, we can, after the random

cord is chosen, rotate the circle to view the cord horizontally. Consider, then,

FIGURE 11.77. Illustration of the Bertrand paradox.
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the circle shown in the NE corner of Figure 11.77. The cord, once rotated,
will perpendicularly intersect AD. The probability the cord exceeds

√
3 r is

equal to the probability the cord has a midpoint on the line segment joining
points B and C. Thus

p = length of BC

length of AD
= 1

2
.

2. Southwest Solution. Let, as shown in the SW corner of Figure 11.77, the cord
enters the circle at point E. The probability of the cord exceeds

√
3 r is then

equal to the probability the other end of the cord exits the circle in the arc FG.
This is given by the arc length of FG divided by the circle’s circumference.
Then

p = arc length of FG

2πr
= 1

3
.

3. Southeast Solution. Lastly, we note, in order for the cord length to exceed√
3 r, the midpoint of the randomly chosen cord must lie within the shaded

circle. This is illustrated in the SE corner of Figure Figure 11.77. Thus

p = area of small shaded circle

area of the large circle
= π
( r

2

)2
πr2

= 1

4
.

This analysis giving three different solutions for the same problem is clearly flawed.
(a) Resolve the Bertrand paradox.
(b) In Section 11.4.8, the POCS iteration will converge for many procedures for

randomly choosing projection lines. For POCS to work, we need only to assure
each pixel is visited sufficiently in the iteration process, but the frequency of
visitation need not be the same for all pixels [1551]. Some algorithms for
choosing random lines, however, will converge faster in some portions of the
image than in others. What is a methodology for choosing random lines to
assure the same statistical rate of convergence for each pixel?

11.8. The Gerchberg-Saxton Algorithm. A complex valued image, x(t1, t2), and its
Fourier transform, X(u1, u2), are known in magnitude only. We can iteratively
transform back and forth and, at each stage, retain the phase only and impose the
magnitude. Thus, in the nth iteration we Fourier transform xn to Xn and form

X̂n = |X| exp( j � Xn)

where |X| is the known transform magnitude. We then inverse transform X̂n to xn+1

and form the image x̂n+1 = |x| exp( j � xn+1) where |x| is the known magnitude of
the image. The iteration is repeated until desired convergence. This procedure is
known as the Gerchberg-Saxton algorithm [275, 489, 501, 502, 587, 642, 1201,
1278, 1350, 1487, 1514, 1531, 1570].
(a) Is this an implementation of POCS?
(b) Choose two images and use the Gerchberg-Saxton algorithm to construct

phases so that the two images are nearly Fourier transform pairs.
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11.9. Let f (t) be a contractive function and g(t) be a nonexpansive function.
(a) Show that both f (g(t)) and g (f (t)) are contractive functions.
(b) Let f (t) = e−t and g(t) = 2 cos2(t). Find the solutions to t∞ = f (g(t∞)) and

t∞ = g (f (t∞)).
(c) Solve the transcendental equation

t∞ = e−e−e−e
−(3+2 cos2(t∞))

11.10. Evaluate
(a) The limit of x(t) = e−e···e−t

.
(b) The limit of x(t) = cos(cos(cos(· · · cos(t)))).

11.11. The unique solution to τ = f (t) = e−t is the same as the solution to t = f −1(τ ) =
−ln t. Application of tn = f (tn) converges to t∞ that satisfies (11.51).
(a) Does τn = f −1(τn) converge to the unique solution τ∞ = f −1(τ∞) =

0.56714329 ?
(b) Can we generalize? If τ = f (t) is contractive, when is t = f −1(τ ) contractive?

11.7 Solutions for Selected Chapter 11 Exercises.

11.1. Let the operator for the iteration be�. Thus, for example,�(10) = 3 and�(3) = 5.
A single counterexample shows this iteration is not contractive. Since

‖�(12)−�(2)‖ = |6− 3| = 3 ≮ |12− 2| = 10,

the iteration is not contractive.
11.4. All of these sets are convex except for (g) which is not.

(b) The projection of y(t) onto the set of even signals is

PE y(t) = 1

2
(x(t)+ x(−t)) .

(c) The projection of y(t) onto the set of odd signals is

PO y(t) = 1

2
(x(t)− x(−t)) .

(h) This set is an example of a convex slab equal to the region between two parallel
planes. Let

ρy =
∫ b

a
y(t)dt.

The projection of real y(t) onto the convex set on the interval a ≤ t ≤ b is

P12y(t) =

⎧⎪⎨
⎪⎩

y(t) ; ρ1 ≤ ρy ≤ ρ2

y(t)+ 1
b−a

(
ρ1 − ρy

) ; ρy < ρ1

y(t)+ 1
b−a

(
ρ2 − ρy

) ; ρy > ρ2.
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11.6. For a more detailed treatment, including comparison to other methods to construct
probability density functions from data, see Stark et al. [1333].
(a) The probability function will be equally weighted probability masses (Dirac

deltas) at all of the point locations.
11.8. The Gerchberg-Saxton Algorithm. See Figure 11.78.

(a) This is not an implementation of POCS. The set of all images with a fixed
magnitude, |x|, is not convex. Neither is the set of images whose Fourier
transforms have magnitude |X|.

(b) An example of the Gerchberg-Saxton algorithm is shown in Figure 11.78 for a
512×512 image Sad Man. The Gerchberg-Saxton is to synthesize phases in the

FIGURE 11.78. Example implementation of the Gerchberg-Saxton algorithm. Phase is synthesized in
both the spatial and Fourier domains so that an image with magnitude of Sad Man has a Fourier
transform with magnitude Glad Man. See Problem 11.8.



[13:25 7/10/2008 5165-Marks-Ch11.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 569 495–569

SIGNAL AND IMAGE SYNTHESIS: ALTERNATING PROJECTIONS ONTO CONVEX SETS 569

spatial and Fourier domains such that the Fourier transform of Sad Man is Glad
Man. The synthesis is shown for various iterations. The result for 50 iterations
is visually indistinguishable from the original images. The synthesized phase
in both domains is shown at the bottom left. The maximum pixel value in each
image is set to one for display purposes. For the phase plots, white corresponds
to −π and black to π.

11.9. (a) Apply the chain rule of differentiation. For f (g(t)),
∣∣∣∣

d

dt
f (g(t))

∣∣∣∣ =
∣∣∣∣
dg(t)

dt
f ′ (g(t))

∣∣∣∣

=
∣∣∣∣
dg(t)

dt

∣∣∣∣
∣∣f ′ (g(t))

∣∣ < 1.

(b) Applying the iteration in (11.50), we numerically converge to

t∞ = f (g(t∞))→ t∞ = 0.1408

and

t∞ = g (f (t∞))→ t∞ = 1.9606.

(c) The function is contractive. Applying the iteration in (11.50), we numerically
converge to

t∞ = e−e−e−e
−(3+2 cos2(t∞))

→ t∞ = 0.6884.

11.10. Both of these are contractive operators. The limit therefore can be numerically found
through repeated iteration.

(a) The limit e−e···e−t = 0.5671433 for all t. Note that ξ = 0.5671433 is the solution
for ξ = exp(−ξ ).

(b) The limit cos(cos(cos(· · · cos(t)))) = 0.738513 for all t. Likewise,
ξ = 0.738513 is the solution to ξ = cos(ξ ).

11.11. The inverse of a contractive function is not contractive. Set τ = f (t) and t = f −1(τ ).
(a) The iteration τn+1 = −ln (τn) does not converge.
(b) Since

dτ

dt
= 1

dt
dτ

,

we see that, if
∣∣∣∣
dτ

dt

∣∣∣∣ < 1,

then
∣∣∣∣

dt

dτ

∣∣∣∣ > 1.

The inverse of a contractive function can therefore never be contractive.
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Mathematical Morphology and
Fourier Analysis on Time Scales

God made the integers, all else is the work of man.
Leopold Kronecker [87]

The great advances in science usually result from new tools rather than from
new doctrines.

Freeman Dyson

Reason’s last step is the recognition that there are an infinite number of things which
are beyond it.

Blaise Pascal, (1623–1662) [1098]

12.1 Introduction

Mathematical morphology, used extensively in image processing, tracks the support
domains for the operation of convolution and deconvolution. Morphology is also important
in the modelling of signals on time scales. Time scale theory provides a generalization tent
under which the operations of discrete and continuous time signal and Fourier analysis rest
as special cases. The time scale paradigm provides modelling under which a rich class of
hybrid signals and systems can be analyzed.

12.2 Mathematical Morphology Fundamentals

We begin with introductory material on mathematical morphology which is foundational
to the development of time scale theory.

The support of convolution is related to the operation of dilation in mathematical
morphology. Mathematical morphology is most commonly associated with image pro-
cessing. Applications of morphology was initially applied to binary black and white
images by Matheron [966]. The field is richly developed [506, 578]. Here, we outline the
fundamentals.

12.2.1 Minkowski Arithmetic

In N dimensions, let X and H denote a set of vectors or, in the degenerate case of one
dimension, a set of real numbers.

570
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FIGURE 12.1. Illustration of set translation achieved by Minkowski addition, or dilation, of the
triangular set, T, with a single point, t.

Definition 12.2.1. Minkowski Addition and Dilation. The Minkowski addition, a.k.a.
dilation, of X and H, denoted X⊕H, is

X⊕H := {t | t = ξ + τ ∀ ξ ∈ H, τ ∈ X
}
.

Thus, the Minkowski addition of two sets is the set of the pairwise sums of all of the vectors
in the two sets. Let

Y = X⊕H.

Example 12.2.1. If H consists of a single point, H = {t}, then, as shown in Figure 12.1,
Minkowski addition is equivalent to a translation of the set. Each vector in X has t added
to it.

Example 12.2.2. If X = {0, 2, 6} and H = {2, 4, 6}, then Y = {2, 4, 6, 8, 10, 12}. If X =
{1, [2, 4], [10, 11]} and H = {[1, 2]}, then Y = {[2, 6], [11, 13]}.

Minkowski addition is also called dilation. To see why, consider the two dimensional
Minkowski addition example shown in Figure 12.2. Two sets of vectors, X and Y, are shown
in the left hand figure. To perform the Minkowski sum, we wish to add all of the vectors
in the two sets. The boundary of the Minkowski addition set, as shown in the middle of
Figure 12.2, is determined by the translation of the set H around X. The result, shown on the

FIGURE 12.2. Illustration of Minkowski addition, also called dilation.
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FIGURE 12.3. The dilation of the annulus on the left with itself gives the circle shown on the right.

right hand side, is the Minkowski sum of the two sets. The reason for dubbing this operation
dilation is now apparent. The set X is enlarged, or dilated, by the operation of Minkowski
addition with the set H.

Example 12.2.3. A centered annulus of radius R and thickness ε is pictured on the left in
Figure 12.3. The dilation of this annulus with itself is the circle of radius 2R shown on the
right in Figure 12.3.

12.2.2 Relation of Convolution Support to the
Operation of Dilation

Dilation dictates functional support in convolution, i.e., the support of the convolution of
two signals is the dilation of the supports.

Definition 12.2.2. The support of a signal, x(�t), is the region in the signal’s domain where
the signal is not identically zero.

Let x(�t) be identically zero outside a region X and h(�t) be zero outside a region H. Thus,
X and H denote the support of x(�t) and h(�t). Then the convolution

y(�t) = x(�t) ∗ h(�t) (12.1)

is zero outside of the set

Y = X⊕H. (12.2)

Example 12.2.4. If x(t) is zero outside of the interval X = {[1, 5], [11, 12]} and h(t) is
identically zero outside the interval H = {[5, 6]}, then y(t) = x(t) ∗ h(t) will be zero outside
of the interval

Y = X⊕H = {[6, 11], [16, 18]}.
Example 12.2.5. Let

x(t) = �(t)+ δ(t − 8).
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Thus, the support of x(t) is X = {[− 1
2 ,

1
2 ], 8}. If

h(t) = �(t − 5)+ δ(t − 10),

then the corresponding support is H = {[4.5, 5.5], 10}. Thus

y(t) = x(t) ∗ h(t) = �(t − 5)+�(t − 10)+�(t − 13)+ δ(t − 18)

has support Y = {[4, 6], [9.5, 10.5], [12.5, 13.5], 18}. As promised, the support of the
convolution is the dilation of the supports.

Y = X⊕H.

Equation 12.2 does not say the support of the convolution in (12.1) is Y. As is illustrated in
the following example, it is, rather, subsumed in Y.

Example 12.2.6. With reference to Exercise 5.9 and its solution, consider the signal x(t)
with a Fourier transform

x(t)←→ X(u) = |sinc(u)|.
The signal x(t) is identically zero nowhere on the interval X = {t| − ∞ < t < ∞}. Yet,
with h = x (and therefore H = X), we conclude

x(t) ∗ h(t)←→ sinc2(u)

so that

x(t) ∗ h(t) = �(t)

which is zero outside of the interval (−1 < t < 1). This interval is of course subsumed
within but not equal to

Y = X⊕H = {t| −∞ < t <∞}.

12.2.3 Other Morphological Operations

Definition 12.2.3. The negative of a set of vectors, Ĥ, is defined as

Ĥ = {k | k = −h ∀ h ∈ H
}
.

An example of a set and its negative is pictured in Figure 12.4.

Definition 12.2.4. The Minkowski subtraction of the set H from the set Y, denoted
Y
H, is

Y
H := {t | Ĥ+ t ⊂ Y
}
.

Definition 12.2.5. The erosion of the set Y by the set H, is Y
 Ĥ

Since ˆ̂H = H, we see from the previous two definitions the erosion of Y by H is

Y
 Ĥ = {t | H+ t ⊂ Y
}
.
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FIGURE 12.4. Example of a set of vectors, H, and it’s negative, Ĥ.

FIGURE 12.5. Illustration of the erosion of X = Y
 Ĥ.

Example 12.2.7. If Y = {1, 3, 4, 6} and H = {0, 2}, the erosion is Y
 Ĥ = {1, 4}.

Example 12.2.8. If Y = {[1, 4], 6} and H = {[0, 1], 2}, the erosion is Y
 Ĥ = {[1, 2], 3}.

Example 12.2.9. A two dimensional erosion, X = Y
 Ĥ, is illustrated in Figure 12.5. The
two sets, Y and H, are shown in the left hand figure. The set of all translations of H totally
subsumed in Y is illustrated in the middle figure. The set of all translations by t that achieve
this is outlined by the dashed white triangle in the middle figure. This triangle is drawn
again on the right hand figure, and represents the erosion of Y by H.

The reason for the terminology erosion is now evident. The large triangle has been eroded
to the smaller triangle.

Example 12.2.10. In Figure 12.3, the erosion of the large circle on the right by the annulus
on the left results in a circle of radius R.

Definition 12.2.6. The complement of a set X within the allowable domain is

X
c = {t|t /∈ X}.

Definition 12.2.7. The opening of a set Y by a set H, denoted Y ◦H, is

Y ◦H :=
(
Y
 Ĥ

)
⊕H. (12.3)
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FIGURE 12.6. Examples of morphological operations on the binary image, Jack. The white region
corresponds to set membership so that erosion, for example, makes the white region larger. Dilation
makes the white region smaller.

Definition 12.2.8. The closing of a set X by a set H, denoted X •H, is

X •H :=
(
X⊕ Ĥ

)

H. (12.4)

In image processing applications, the set H is dubbed the structuring element.

Example 12.2.11. Examples of Minkowski arithmetic on an image are shown in Figure 12.6
on the image Jack. White corresponds to vectors in the set. Erosion rids the image of small
isolated white regions. In the Y 
 Ĥ image, for example, the teeth are nearly eliminated.
Erosion also increases isolated black points such as on the forehead in the Y 
 Ĥ image.
These enlarged black points are removed by a subsequent dilation as can be seen in the
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FIGURE 12.7. The image Three Dolls used to illustrate edge detection in Figure 12.8.

Y ◦H image. The converse happens in the dilated Y⊕H image. The small white point on
the cheek is enlarged and small black regions, such as the dimple, are removed. Eroding the
image to form Y •H makes the enlarged white space small again. The dimple, lost through
dilation, remains lost.

Definition 12.2.9. The set subtraction of T from Y is defined by

Y− T = {t |t ∈ Y, t ∈ T
}
.

Example 12.2.12. Using the definition of set subtraction, we can generate set boundaries.
In binary images, the result is edge detection. Consider the image Three Dolls in Figure 12.7.
The subtraction of the image, Y, from its dilation is the set (Y ⊕ H) − Y. This forms the
outside boundary of the set Y as shown in Figure 12.8. The difference Y− (Y
 Ĥ), also
shown in Figure 12.8, forms the inside boundary.

12.2.4 Minkowski Algebra

The Minkowski operations have many useful and insightful algebraic properties [506].

Theorem 12.2.1. Dilation is commutative since

X⊕H = H⊕ X.

Since

(X⊕H)⊕ T = X⊕ (H⊕ T) ,

dilation is also associative.

Theorem 12.2.2. The dilation duality property is

X⊕ Ĥ =
(
X

c 
 Ĥ

)c
. (12.5)
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FIGURE 12.8. Examples of edge detection. The structuring element, H, is 2 × 2. The original binary
image is in Figure 12.7.
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FIGURE 12.9. Illustration of the dilation duality property in (12.5).

Proof . Clearly,

t ∈
(
X

c 
 Ĥ

)c

iff

t ∈
(
X

c 
 Ĥ

)c
.

This is true iff ∃ ξ ∈ Ĥ � t ∈ X
c + ξ which, in turn, is true iff ∃ ξ ∈ Ĥ � t ∈ X

c + ξ .
This is true iff t ∈ X⊕ Ĥ.

Example 12.2.13. Let X = {1, [2, 5], 6} and H = {[−2,−1], 0}. These sets, and subse-
quent operations on these sets, are shown in Figure 12.9. It follows that Ĥ = {0, [1, 2]}
and

X⊕ Ĥ = {1, [2, 7]}. (12.6)

For the right side of (12.5), we have

X
c = {(−∞, 1), (1, 2), (5, 6), (6,∞)

}

from which we conclude

X
c 
 Ĥ = {(−∞, 1), (1, 2), (7,∞)

}
.

Taking the complement,
(
X

c 
 Ĥ

)c
, gives a result identical with (12.6).

Example 12.2.14. The dilation duality in Theorem 12.2.2 is illustrated in Figure 12.11 in
two dimensions. On the top left, we have a binary image which we denote by X. A pixel
is in the set if it is white. The complement of the set, X

c, is shown in the upper right hand
corner. It is the negative of X

c. The erosion of the negative by a 2× 2 structuring element,
H, is shown on the bottom left. When negated, this image, shown on the bottom right, is
equivalent to the dilation of the original image, X, with the structuring element, Ĥ.

Theorem 12.2.3. The erosion duality property is

X
 Ĥ =
(
X

c ⊕ Ĥ

)c
. (12.7)
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FIGURE 12.10. The sets X, H and Ĥ are shown in the top three lines of Figure 12.9. This figure illustrates
the erosion duality property in (12.7).

Proof . Take the complement of (12.5) to give

X
c ⊕ Ĥ =

[
(Xc)c 
 Ĥ

]c =
(
X⊕ Ĥ

)c
.

Complementing both sides gives (12.7).

Example 12.2.15. To illustrate the dilation duality property, we use the same sets. X and
H, used in Example 12.2.13. These sets on the real line and Ĥ are illustrated in the top
three lines of Figure 12.9. The illustration of the dilation duality property is in Figure 12.10
where, in the top line, we have the dilation

X
 Ĥ = {1, [2, 3]}. (12.8)

Also, Xc⊕ Ĥ = {(−∞, 1), (1, 2), (3,∞)}. The complement of this set, shown at the bottom
of Figure 12.10, is the same as (12.8).

Example 12.2.16. The erosion duality in Theorem 12.2.3 is illustrated in Figure 12.12. The
original image, X, and its complement, X

c, are shown in the upper left and upper right of
Figure 12.11. The dilation with Ĥ, a 2× 2 pixel array, is shown on the left in Figure 12.12.
The complement of this set, shown on the right is, according to the erosion property in
(12.7), the erosion of the image, X, with the structuring element, H.

Theorem 12.2.4. The dilation subset property: If H⊂ K, then the following dilation subset
relations hold. For all X,

X⊕H ⊂ X⊕K. (12.9)

Proof . Follows immediately from the definition of Minkowski addition.

Example 12.2.17. The dilation of subset property in Theorem 12.2.4 is illustrated in
Figure 12.13.

Theorem 12.2.5. The erosion subset property:1 If H⊂K, then the following erosion subset
relationship holds. For all fixed X,

X
 Ĥ ⊃ X
 K̂. (12.10)

1. If erosion order is reversed, we have H
 X̂ ⊂ K
 X̂
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FIGURE 12.11. Two dimensional illustration of the dilation duality theorem in (12.5). The original
Joshua image is shown in the upper left.

Proof . Since H ⊂ K, for a vector t, we have K ⊕ {t} ⊂ X implying H ⊕ {t} ⊂ X. Thus
t ∈ X
 K̂ implies t ∈ X
 Ĥ.

Example 12.2.18. Let X = {0, 2, 3, 4, 5, 8} and K = {0, 2, 3}. Then X 
 K̂ = {0, 2}. If
H = {0, 2} ⊂ K, then X
 Ĥ = {0, 2, 3} and (12.10) is satisfied.

Example 12.2.19. The erosion subset property is illustrated for a binary image in
Figure 12.15.

Theorem 12.2.6. Distributive properties.

X⊕ (H ∪K) = (X⊕H) ∪ (X⊕K)

X⊕ (H ∩K) ⊂ (X⊕H) ∩ (X⊕K)

Y
 (H ∪K) = (Y
H) ∩ (Y
K)

(H ∩K)
 Y = (H
 Y) ∩ (K
 Y)
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FIGURE 12.12. Illustration of the erosion duality theorem in (12.7). The pictures corresponding to X

and X
c are shown in the top row of Figure 12.11.

Proof . See Exercise 12.2.

Theorem 12.2.7. Opening and closing dualities.

i. (X •H)c = X
c ◦H.

ii. (X ◦H)c = X
c •H.

Proof . i.

(X •H)c =
[
(X⊕ Ĥ)
H

]c

=
[
X⊕ Ĥ

]c ⊕H

=
[
X

c 
 Ĥ

]
⊕H

= X
c ◦H

ii.

(X ◦H)c = [(Xc)c ◦H
]c

= [(Xc •H)c]c
= X

c •H

Definition 12.2.10. An operation, ♦, is antiextensive if, for all Y and H,

Y ♦H ⊂ Y.

If for all Y and H,

Y ♦H ⊃ Y.

the operation is said to be extensive.
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FIGURE 12.13. Illustration of the dilation subset property on a binary image. The original Lenore image,
X, is shown in the upper left hand corner. Dilation by a 2 × 2 structuring element, H, is shown at
the upper right. Dilation using a 4 × 4 set, K ⊃ H, is shown at the bottom left. The dilation subset
property X ⊕ H ⊂ X ⊕ K is illustrated in the bottom right image of Figure 12.14 where all of the
black, corresponding to X ⊕ H, is contained in the gray, corresponding to X ⊕ K. (Continued in
Figure 12.14.)
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FIGURE 12.14. Continuation of Figure 12.13.

Theorem 12.2.8. Opening is antiextensive since

X ◦H ⊂ X. (12.11)

Closing is extensive since

Y ⊂ Y • H.

Proof . See Exercise 12.2.

Theorem 12.2.9. Opening and closing are idempotent.

i. Opening is idempotent in the sense that

X ◦H = (X ◦H) ◦H.

ii. Closing is idempotent in the sense that

Y •H = (Y •H) •H.

Proof . See Exercise 12.2.

12.3 Fourier and Signal Analysis on Time Scales

Time scales, introduced by Hilger [607], are a unification theory under which continuous
and discrete time signals and systems are subsumed. Discrete and continuous time Fourier
transforms and convolutions, for example, are subsumed in the generalized time scale
Fourier transform and convolution integral. The literature on time scales is vast [9, 10, 128,
129, 340, 341, 352, 497, 548, 593, 860, 922, 1165, 1208, 1209, 1360]. We limit treatment
here to Fourier analysis on time scales2 [921].

2. The contributions of Drs. Ian A. Gravagne and John M. Davis to this section are gratefully acknowledged.
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FIGURE 12.15. Illustration of the erosion subset property on a binary image. The original Marilee
image, X, is shown at the upper left. It’s erosion by a 2 × 2 structuring element, K, is in the upper
right. Erosion by a 4× 4 element is at the bottom left. The erosion subset property is evident in the
three remaining gray images where two images are shown using two different gray levels. X
 Ĥ ⊂ X,
X
 K̂ ⊂ X, and X
 Ĥ ⊂ X
 K̂ are represented. (Continued in Figure 12.16.)

Atime scale, T, consists of a set of closed intervals including individual point locations on
the real line, R. Some examples are shown in Figure 12.17. N denotes the natural numbers,
{1, 2, 3, · · · }. From top to bottom,

(a) R consists of the entire real line. Continuous time signals are on R.
(b) hZ consists of points equally spaced at intervals of h. Discrete time signals are on Z.
(c) hZn contains the origin and points separated by an interval h beginning at nh. The

time scale shown here is Z3.
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FIGURE 12.16. Continuation of Figure 12.15.

FIGURE 12.17. Some different time scales. The R and Z time scales correspond, respectively, to
continuous and discrete time.
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(d) Lk , for a specified k, consists of all points {tn | tn = log (k(n− 1)+ 1)} for n ∈ N.
For example

L1 = {log(1), log(2), log(3), · · · }
is shown in Figure 12.17. The log base is arbitrary but fixed.

(e) PαT consists of intervals of length αT separated by a distance of T .
(f) Qab contains the origin and the union of all of the intervals na ≤ t ≤ nb for n ∈ N.

There will be a time, η, where all t ≥ η are in Qab, i.e. Qab becomes continuous
with no breaks for t ≥ η. This occurs when the intervals begin to overlap. The nth

and the (n+ 1)st intervals overlap when nb ≥ (n+ 1)a or n > a
b−a . Then

η =
(

1+
⌊

a

b− a

⌋)
a. (12.12)

For example

Q10,13 =
{
t | t = 0 and 10 ≤ t ≤ 13 and 20 ≤ t ≤ 26

and 30 ≤ t ≤ 39 and t ≥ 40
}
.

Thus, as required by (12.12), η =
(

1+
⌊

10
13−10

⌋)
× 10 = 40.

(g) Aξη consists of the origin and all t = nξ + mη for all integers n,m ∈ N. Shown in
Figure 12.17 is

A2,5 =
{
t | 0, 2, 4, 5, 7, 8, 9, 10, 11, · · · }.

(h) L− is L1 with all of the logs of prime numbers removed.
(i) A discrete time scale, D, consists of a set of discrete points, D = {tn}. The time

scales hZ, hZn, Lk and Aξη are discrete time scales.

The time scales R
+ and Z

+ are the time scales R and Z for t ≥ 0. Time scales with no
negative components are called causal time scales. The time scale D

+ denotes a discrete
time scale with no negative components. The time scales R and R

+ are the time scales used
for continuous time signals and systems, while Z and Z

+ are the time scales of discrete
time signals and systems.

12.3.1 Background

Here are some foundational definitions for time scales. A complete introduction to time
scales is in Bohner and Peterson [128].

The graininess, μ(t), is the distance between a point t ∈ T and the closest point in T

following t.3 For T = hZ, it follows that μ(t) = h. For T = R, μ(t) = dt.

12.3.1.1 The Hilger Derivative

The Hilger derivative of a function x(t) on a time scale T is

x
(t) = x(t + μ(t))− x(t)

μ(t)
.

3. The function μ(t) is also used in this text as the unit step function. The distinction between the graininess
and the unit step function will be clear in the context of use.
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At a right dense4 point, the Hilger derivative is interpreted in the limiting sense and x
(t) =
d
dt x(t). For T = Z, the Hilger derivative is the forward difference


x[n] = x[n+ 1] − x[n] (12.13)

where x[n] = x(n).

12.3.1.2 Hilger Integration

Integration on a time scale is most easily expressed as an anti-derivative. Let y(t) = x
(t).
Then, for a, b ∈ T Hilger integration has the property

∫ b

a
y(t)
t = x(b)− x(a).

Let C ∈ T denote all points in T that are right dense and D ∈ T be those that are not.
Clearly T = C + D. Then

∫
t∈T

y(t)
t =
∫ ∞
−∞

yR(t)dt.

where yR(t) = yC(t)+ yD(t) and

yD(t) =
∑
τ∈D

yμ(t)δ(t − τ ),

and

yC(t) =
{

y(t) ; t ∈ C

0 ; t ∈ C.

We have adopted the notation, for μ(t) > 0,

yμ(t) := y(t)μ(t).

Let D be a discrete time scale. Then, for a function x(t) on D,
∫

t∈D

x(t)
t =
∑
tn∈D

xμ(tn).

12.3.2 Fourier Transforms on a Time Scale

The Fourier transform of a signal, x(t), on a time scale, T, is [608, 609]

X(u) =
∫

t∈T

x(t)e−j2πut
t. (12.14)

Fourier transforms on continuous and discrete time are special cases.For the continuous
time scale, R, (12.14) becomes the continuous time Fourier transform (CTFT) in (2.10).
Discrete time signals are on the time scale Z. The time scale Fourier transform in (12.14)
then becomes the discrete time Fourier transform (DTFT) in (2.112).

4. A time scale is right dense at t when μ(t) = dt.
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For a discrete time scale, D, the Fourier transform in(12.14) can be written as

X(u) =
∑
tn∈D

xμ(tn)e−j2πutn . (12.15)

We will find the following rectangle function definition useful.

Definition 12.3.1. For a discrete causal time scale, D
+, define�N (t) to be equal to one for

the first N + 1 points in D
+ (i.e. values of tn for 0 ≤ n ≤ N) and zero otherwise.

The following two examples use the discrete time scale L1 using log10.

Example 12.3.1. Figure 12.18 shows the Fourier transform of the signal corresponding
to xμ(t) := x(t)μ(t) = cos(2π ft)�20,000(t) for f = 4. As is shown in the upper right, the
magnitude of the Fourier transform peaks at the frequency u = 4. An analogous example for
x(t) = cos(2π ft)�20,000(t) is shown in Figure 12.19. In both figures, the real and imaginary
portions of X(u) are shown in the bottom right and bottom left of the figure.

Example 12.3.2. Shown in Figure 12.20 are the magnitudes of the time scale Fourier
transform magnitude of x(t)= cos(2π ft)�K (t) for f = 10 on L1 for K = {100, 1000, 10000,
100000}. All plots are on shown the same scale. A similar figure for xμ(t) := x(t)μ(t) =
cos(2π ft)�K (t) for f = 10 is shown in Figure 12.21. Here, each plot range is different.

FIGURE 12.18. In R and Z, the Fourier transform of a sinusoid is a Dirac delta functional centered
at the frequency of the sinusoid. If the sinusoid is of finite duration, the transform is a sharp peak
centered at the sinusoid frequency. Figures 12.18 through 12.21 illustrate a similar property for the
time scale L1. The upper left plot in this figure is of xμ(t) := x(t)μ(t) = cos (8π t)�20,000(t) on the
time scale L1. The dots denote the values of the function on the time scale and are linearly connected
for clarity of presentation. The magnitude of the time scale Fourier transform is shown in the upper
right. Since xμ(t) is a sinusoid with frequency f = 4, we expect the transform to peak at u = f = 4.
The real and imaginary parts of the time scale Fourier transform are shown in the bottom left and
bottom right of the figure.



[16:29 2/9/2008 5165-Marks-Ch12.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 589 570–609

MATHEMATICAL MORPHOLOGY AND FOURIER ANALYSIS ON TIME SCALES 589

FIGURE 12.19. These plots are the same as in Figure 12.18, except, the transform is of x(t) =
cos (8π t)�20,000(t). In Figure 12.18, we use xμ as the sinusoid and here x(t). The magnitude of
the time scale Fourier transform, shown in the upper right plot, peaks at the frequency u = 4.

FIGURE 12.20. The magnitudes of the time scale Fourier transform of a sinusoid
x(t) = cos (2π ft)�K (t) with frequency f = 10 on a time scale L1 for various durations, K .
The longer the duration, the sharper the peak centered around u = 10. Fourier transforms on R and
Z exhibit similar behavior.
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FIGURE 12.21. These plots are the same as in Figure 12.20 except that xμ(t) := x(t)μ(t), rather than
x(t), is equal to cos (2π ft)�K (t). As is the case in Figure 12.20, the longer the duration, the sharper
the peak centered around u = 10.

12.3.3 The Minkowski Sum of Time Scales

A time scale, T, is closed under Minkowski addition if, for every ξ ∈ T and τ ∈ T, the
time t = ξ + τ ∈ T. The time scales hZ, hZ+, R, R+, hZn, Lk , Qab, N, and Aξη are closed
under Minkowski addition.

The additive closure of a time scale, T, denoted TC , is the smallest time scale closed
under Minkowski addition in which T is subsumed.

TC =
{
t | t = nξ + mη for all pairs ξ ∈ T, η ∈ T and all n,m ∈ N

}
.

For example,

• if T = {−1, 0, 1}, then TC = Z.

• if T = { t | 0 ≤ t ≤ 1}, then TC = R
+.

• if T = { 45 , 1}, then TC = { 45 , 1, 8
5 ,

9
5 , 2, 12

5 ,
13
5 ,

14
5 , 3, 16

5 ,
17
5 ,

18
5 ,

19
5 , 4 · · · }.

The Minkowski sum5 of two time scales X and H, denoted X⊕H, consists of the points
ξ + τ for all ξ ∈ H and τ ∈ X, i.e., if ξ ∈ H and τ ∈ X, then ξ + τ ∈ X⊕H. For example,

• if X = {0, 1} and H = {4, 5, 10}, then X⊕H = {4, 5, 6, 10, 11}.
• if X = {0, 2} and H = { t | 0 ≤ t ≤ 1 }, then X⊕H = { t | 0 ≤ t ≤ 1 and 2 ≤ t ≤ 3}.

5. This is the same as the dilation operation in Section 12.2.
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• if X = 2Z and H = Z, then X⊕H = Z.
• if X = L− and H = L1, then X⊕H = L1.

The time scale containing only the origin, I = {0}, is the identity operator for the Minkowski
sum since, for any T, we have

T⊕ I = T.

The R time scale absorbs any time scale since, for any T,

T⊕ R = R.

A geometrical interpretation of the Minkowski sum of two time scales is based on
the simple geometry in Figure 12.22. A 45◦ line from the coordinate (ξ, η) intersects the
horizontal axis at ξ + η. Consider, then the time scales are shown in Figure 12.23: X on the

FIGURE 12.22. A right triangle with height τ and base ξ , when adjoined with a 45◦ right triangle, has
a composite base of ξ + τ . This simple geometry allows graphical convolution of the type shown in
Figure 12.23.

FIGURE 12.23. Geometrical illustration of the Minkowski sum operation. The time scale X = {τ |τ =
{0}, [4, 5], {6}} and the time scale H = {ξ | ξ = {0}, {2}, [5, 7], {10}}. We take the Cartesian product
of the time scales on the (ξ, τ ) plane as shown. This Cartesian product, when multiplied by e−j2πut

and integrated, yields the Fourier transform, Y (u). The family of lines corresponding to t = τ + ξ are
at the 45◦ angles shown. The shadow of the Cartesian product along these 45◦ lines contains the set
of all t = τ + ξ ∀ (τ, ξ ). This is the time scale Y = X⊕H = {t | t = {0}, {2}, [4, 8], [9, 16], {17}}.
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τ axis and H on the ξ axis. The Cartesian product of these time scales shows all allowable
combinations of (ξ, τ ). All allowable points t = ξ + τ are shown as the shadow of the
Cartesian product at 45◦ as shown. If a point t lies in the shadow of the Cartesian product
then there exists a (ξ, τ ) such that t = ξ + τ .

12.3.4 Convolution on a Time Scale

Let x(t) on time scale X have a Fourier transform of X(u) and h(t), on a time scale H,
have Fourier transform H(u). Let Y (u) = X(u)H(u) be the time scale Fourier transform
of y(t).

Y (u) =
∫

t∈ Y

y(t)e−j2πut
t. (12.16)

The function y(t) can be deemed to be on time scale Y = X⊕H. To show this, we write

Y (u) = X(u)H(u)

=
∫
τ∈X

x(τ )e−j2πuτ
τ

∫
ξ∈H

h(ξ )e−j2πuξ
ξ

=
∫
τ∈R

xR(τ )e−j2πuτdτ
∫
ξ∈R

hR(ξ )e−j2πuξdξ

=
∫
ξ∈R

∫
τ∈R

xR(τ )hR(ξ )e−j2πu(τ+ξ )dτdξ

=
∫

t∈R

[∫
τ∈R

xR(τ )hR(t − τ )dτ

]
e−j2πutdt

=
∫

t∈R

yR(t)e−j2πutdτdt

where

yR(t) =
∫
τ∈R

xR(τ )hR(t − τ )dτ.

and t = τ + ξ . For every τ ∈ X and ξ ∈ H, there exists a t = τ + ξ ∈ Y = X⊕H.
Since yR(t) = 0 for t ∈ Y, a y(t) on a time scale Y can be constructed to satisfy (12.16).

The function y(t), however, can contain Dirac deltas at right dense locations even if neither
x(t) or h(t) contains Dirac deltas at right dense locations, e.g. there is a Dirac delta at the
right dense location t = 10 in Figure 12.23.

12.3.4.1 Convolution on Discrete Time Scales

For discrete time scales X and H, the discrete time convolution on time scales is

yμ(tp) =
∑

(τn∈X)�(tp−τn∈H)

xμ(τn)hμ(tp − τn). (12.17)
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Proof .

Y (u) = X(u)H(u)

=
∑
τn∈X

xμ(τn)e−j2πuτn
∑
ξm∈H

hμ(ξm)e−j2πuξm

=
∑
ξm∈H

∑
τn∈X

xμ(τn)hμ(ξm)e−j2πu(ξm+τn).

Make the substitution tp = τn + ξm. Clearly, tp ∈ X⊕H = Y. Then

Y (u) =
∑
tp∈Y

⎡
⎣ ∑

(τn∈X)�(tp−τn∈H)

xμ(τn)hμ(tp − τn)

⎤
⎦ e−j2πut .

Since

Y (u) =
∑
tp∈Y

yμ(tp)e−j2πut,

(12.17) follows immediately.

Example 12.3.3. Let X = {τ1, τ2, τ3} = {0, 2, 3} and H = {ξ1, ξ2} = {3, 6}. Then

Y = X⊕H = {t1, t2, t3, t4, t5, } = {3, 5, 6, 8, 9}.
Using the geometry introduced in Figure 12.23, this dilation is illustrated in Figure 12.24.
For x(τ ) ∈ X and h(ξ ) ∈ H, we have y(t) = x(t) ∗ h(t) ∈ Y. Using notation xμ(tp) = xp,
we have

y1 = x1h1 ; y2 = x2h1; y3 = x1h2 + x2h1

y4 = x2h2 ; y5 = x3h6

The geometry in Figure 12.24 gives this information. For example, the 45◦ line intersecting
at t3 = 6 intersects the Cartesian product at {τ3, ξ1} = {3, 3} and at {τ1, ξ2} = {0, 6}. Thus,
as written above, y3 = x1h2 + x2h1.

FIGURE 12.24. Geometry for the convolution in Example 12.3.3.
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FIGURE 12.25. Example convolutions on an L1 time scale from Example 12.3.4. The top left plot
illustrates the time scale convolution on the time scale L1 of xμ1 (t) = �6(t) with hμ1 (t) = xμ1 (t) shown
with the broken line. The result of the time scale convolution, yμ1 (t), is plotted with a solid line. It is also
plotted on a linear scale in Figure 12.28. The top right plots are of x1(t) = xμ1 (t)/μ(t), h1(t) = x1(t)
and y1(t) = yμ1 (t)/μ(t). The two bottom plots are of x2(t) = �6(t), h2(t) = x2(t) and their time scale
convolution, y2(t). Note that x2(t) = x1(t)/μ(t) and h2(t) = h1(t)/μ(t). The result of the convolution
is y2(t) = y1(t)/μ(t). The bottom left plot shows the component functions with the subscripts and the
right without.

Example convolutions on L1. For L1, the time scale convolution in (12.26) is

yμ(tp) =
∑

p/n∈N

xμ(tn)hμ
(
tp/n
)

(12.18)

or, using the notation in (12.27),

yμ(t) = xμ(t)
L1∗ hμ(t). (12.19)

Example 12.3.4. Examples of the time scale convolution in (12.19) are shown in
Figure 12.25. On the top row is convolution corresponding to xμ1 (t) = hμ1 (t) = �6(t).
The result is yμ1 (t). The bottom row shows y2(t), the convolution when x2(t)= h2(t)=�6(t).

Example 12.3.5. The top row in Figure 12.26 shows convolution corresponding to xμ1 (t) =
cos(8π t)�100(t) with hμ1 (t) = �10(t). The result is yμ1 (t). The bottom row shows y2(t), the
convolution when x2(t) = cos(8π t)�100(t) and h2(t) = �10(t).

12.3.4.2 Time Scales in Deconvolution

If x(t) ∈ X and h(t) ∈ H, then y(t) = x(t) ∗ h(t) ∈ Y where Y = X⊕H. Given time scales
Y and H, is it possible to determine X? Different X’s can give the same Y for a fixed H, so
the answer is no.
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FIGURE 12.26. More example convolutions on an L1 time scale. See Example 12.3.5.

Example 12.3.6. Let X1 = {0, 2} and X2 = {0, 1, 2}. If H = {0, 2}, then X1 ⊕H = X2 ⊕
H = {0, 1, 2, 3}. Because the inverse is not unique, X1 can not be determined uniquely
from Y = X1 ⊕H given Y and H.

From the theorem on distributive properties of mathematical morphological operations
in (12.2.6), if Y = X1 ⊕ H = X2 ⊕ H, then (X1 ∪ X2)⊕ H = Y. Thus, the union of any
solutions is also a solution. This dictates there must be a biggest solution equal to the union
of all solutions. Denote this set by X̃. Then X̃ ⊕ H = Y. We can find this set using the
definition of opening and the antiextensive property of opening in (12.11).

X ◦ Ĥ = (X⊕ Ĥ)
 Ĥ

= Y
 Ĥ

⊂ X̃

The conclusion, therefore, is

(a) erosion of the time scale, Y, by Ĥ, produces a time scale in which the support, X,
of the input is subsumed, and

(b) the erosion of Y by Ĥ produces the biggest time scale for which Y = X⊕ Ĥ .

12.3.5 Additively Idempotent Time Scales

A time scale, T, is said to be additively idempotent if

T⊕ T = T.

We adopt the acronym AITS for additively idempotent time scale. We begin with four
theorems.
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Theorem 12.3.1. An AITS time scale must contain the origin. In other words, if T is an
AITS and T ∈ R

+ or T ∈ R
−, then I ∈ T. Proof for T ∈ R

+: Let τ0 = min{tn ∈ T}. If
t0 > 0, then t0 ∈ T⊕ T, a contradiction.

Theorem 12.3.2. If T is closed under Minkowski addition and contains the origin (i.e.
I ∈ T), then T is an AITS.

Proof . If (a) A ∈ B and (b) B ∈ A, then A = B. Since T is closed under addition, (a) T⊕T ∈
T. Since I ∈ T, we know (b) I⊕ T = T ∈ T⊕ T. Therefore T = T⊕ T.

Theorem 12.3.3. If an AITS is scaled, the result is an AITS, i.e., if T is an AITS, so is hT.

Theorem 12.3.4. An AITS other that I is unbounded, i.e. an AITS containing a t > 0 is
unbounded from above. An AITS containing a τ < 0 is unbounded from below.

Proof . For t > 0: Let a ∈ T and a > 0. Since T is an AITS, na ∈ T and na→∞ as n→∞.

12.3.5.1 AITS Hulls

The AITS hull of a time scale, T, is the smallest AITS, TA, such that T ∈ TA.
Here are some examples of AITS hulls.

• If T = {0, h} and h > 0, then TA = hZ
+.

• If T = {−1, 0, 1}, then TA = Z.

• If T = { t | − 1 ≤ t ≤ 1}, then TA = R.

12.3.5.2 AITS Examples

Here are some examples of time scales that are AITS.

1. I.
2. R and R

+.
3. hZ and hZ

+.
4. The log time scale, Lk , where k ∈ N is arbitrary but fixed. Proof: [k(n− 1)+ 1] ×
[k(m − 1)+ 1] = k( p− 1)+ 1 where p = k(n− 1)(m − 1)+ n+ m − 1 ∈ N.

5. The time scale

L− = { tn = log(n) | n = all positive integers that are not prime}.

Proof: Because {0} ∈ L− and I ⊕ L−, we know that L− ⊕ L− contains L−. No
logs of primes are in L−⊕L− because tn+ tm = log(nm) and nm cannot be prime.

6. Assuming Goldbach’s conjecture, the closure of the set of {0} and the prime
numbers is Z2. Proof: Goldbach’s conjecture is that all even numbers exceeding
two can be expressed as the sum of two prime numbers. Thus, all even integers
greater than three are in TA. Since they are prime, the numbers 2 and 3 are also
in TA. All odd numbers, o > 5, are in TA as the sum of the three and the even
number o− 3. More generally

ZN = {t = n|n = 0, n ≥ N}

is an AITS.
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7. The AITS hull of {0, 7, 11} is

A7,11 =
{
0, 7, 11, 14, 18, 21, 22, 25, 28, 29, 32, 33, 35, · · · }.

More generally, the AITS hull of T = {0, ξ, η} is

TA = Aξη.

8. An AITS can be mixed. An example is the AITS hull of T = {t | t = 0, [a, b]}
where 0 < a < b.

TA = Qab.

The Fourier transform of a signal, x(t), on time scale Qab is

X(u) =
M−1∑
n=0

xμ(nb)e−j2πnbu +
[

M−1∑
n=1

∫ nb

t=na
+
∫ ∞

t=Ma

]
x(t)e−j2πutdt

where

M =
⌊

a

b− a

⌋
.

12.3.5.3 AITS Conservation

Theorem 12.3.5. If T1 and T2 are both AITS’, then T3 = T1 ⊕ T2 is an AITS.

Proof .
T3 ⊕ T3 = (T1 ⊕ T2)⊕ (T1 ⊕ T2)

= (T1 ⊕ T1)⊕ (T2 ⊕ T2)

= T1 ⊕ T2

= T3

12.3.5.4 Asymptotic Graininess of Aξη.

By asymptotic graininess, we mean, if the limit exists,

μ∞ := lim
t→∞μ(t).

In certain instances, the asymptotic graininess is achieved in finite time. We define that
time as

tμ = {min t} such that μ(t) = μ∞ for t ≥ tμ.

For the time scale Zn, for example, the asymptotic graininess of μ∞ = 1 begins at tμ = n.
Here we show that the AITS time scale, Aξη, always approaches a constant asymptotic

graininess.

Theorem 12.3.6. Let L,K ∈ N be relatively prime6 and K < L. Then AK,L achieves a
graininess of μ∞ = 1 at or before time tμ ≤ LK and maintains that constant graininess
thereafter.

6. Two positive integers, K and L, are relatively prime if they have no common integer factors other than one.
{20, 27} are relatively prime. {15, 24} are not because they contain the common factor of 3.
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FIGURE 12.27. See Theorem 12.3.6.

Note that when a graininess of one is achieved for K sequential integer times, say
{ p, p+ 1, . . ., p+K − 1}, the graininess will be one thereafter. Since K is in the time scale,
we assure unit graininess for the next K values by adding to the sequential integers to form
{ p+ K, p+ K + 1, . . ., p+ 2K − 1}. Continuing this, we are assured that unit graininess
occurs at time p and thereafter.

The proof offered is a straightforward result from residue number theory [1296] and
is illustrated in Figure 12.27. The numbers K and L are shown on the number line. The
time scale AK,L contains all integer multiples of K and L. The integer multiples, �K and
kL, are shown in Figure 12.27 up to and including KL. These numbers, {�K|1 ≤ L} and
{kL|1 ≤ k ≤ K}, form an additive basis from which all of the integers on (KL, 2KL) can
be formed. We require only K sequential integers to assure henceforth a graininess of one.
This is guaranteed to occur, at least, for {KL,KL + 1,KL + 2, . . . ,KL + (K − 1)}. Thus,
the asymptotic graininess of one is achieved at least at time KL.

Elaboration: Define ((n))m as n mod m. Since L and K are relatively prime, the residues

((�K))L; 1 ≤ � ≤ L, (12.20)

when arranged by magnitude, are 0, 1, 2, . . . ,L − 1. Similarly, the residues

((kL))K ; 1 ≤ k ≤ K, (12.21)

when arranged by magnitude, are 0, 1, 2, . . . ,K − 1. All of the residues correspond to
different numbers on 1 ≤ n ≤ KL except the last: ((KL))K = ((KL))L = 0.

Consider the numbers KL < m < 2KL. We find ((m))L = λ and ((m))K = κ . There is
a a unique � in the interval 1 ≤ �L such that ((�K))L = λ and a unique k in the interval
1 ≤ k ≤ K such that ((kL))K = κ. Residue arithmetic then states

m = kL + �K .

Thus, since kL ∈ KTAITS and �K ∈ KTAITS , all m in the interval KL < m < 2KL are in
KTAITS . In order to establish arrival at the asymptotic graininess of one, only K of these
sequential values is needed. Thus, a graininess of μ∞ is achieved at tμ ≤ NL and remains
thus thereafter.

To illustrate, let K = 4 and L = 7. Then (12.20) and (12.21) are

((4))7 = 4 ((2× 4))7 = 1 ((3× 4))7 = 5 ((4× 4))7 = 2

((5× 4))7 = 6 ((6× 4))7 = 3 ((7× 4))7 = 0 (12.22)

((7))4 = 3 ((2× 7))4 = 2 ((3× 7))4 = 1 ((4× 7))4 = 0
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or

((4))7 = 4 ((8))7 = 1 ((12))7 = 5 ((16))7 = 2

(20))7 = 6 ((24))7 = 3 ((28))7 = 0 (12.23)

((7))4 = 3 ((14))4 = 2 ((21))4 = 1 ((28))4 = 0.

The mod 7 row contains the residues 0 through 6. The mod 4 row contains the residues 0
through 3. The numbers represented on the top row are {4, 8, 12, 16, 20, 24, 28} and, on the
bottom, {7, 14, 21, 28}. Except for KL = 28, the numbers are distinct.

Consider m = 33. Clearly, ((33))7 = 5 and ((33))4 = 1. Since, from (12.23), ((12))7 = 5
and ((21))4 = 1, we obtain 12+ 21 = 33, the desired answer.

The time scale for this example is

A4,7 =
{
0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, . . .

}
.

The theorem states asymptotic graininess will begin at least at tμ ≤ LK = 28. It clearly
begins earlier at tμ = 18.

The extension to integers that are not relatively prime also follows from Theorem 12.3.5.3
and leads to the following theorem.

Theorem 12.3.7. Let K̂ and L̂ be not relatively prime. Let their common factor be M so
that K̂ = MK and L̂ = ML. Then the asymptotic graininess of AK̂,L̂ is

μ∞ = M

and initiates at

tμ ≤ MLK .

The time scale of AK̂,L̂ is a scaled version of the time scale AK,L. Specifically

AK̂,L̂ = MAK,L.

From Theorem 12.3.5.3, it follows that an asymptotic graininess of M occurs, at least, at
time tμ ≤ MLK .

For example, for K = 3, L = 4 and M = 3, we have

A9,12 =
{
0, 9, 12, 18, 21, 24, 27, 30, 33, 36, . . .

}
.

The asymptotic graininess of μ∞ = M = 3 begins at t = 18 before the required bound of
tμ ≤ MLK = 24.

Theorem 12.3.8. The time scale A1, L
K

where L,K ∈ N are relatively prime and K < L

achieves an asymptotic graininess μ∞ = 1
K . Furthermore, this graininess is achieved at

tμ ≤ L.

The time scale A1, L
K

is a scaled version of AK,L. Specifically

A1, L
K
= 1

K
AK,L.

Since AK,L achieves and asymptotic graininess of one at time KL, the asymptotic graininess
of A1, L

K
is 1

K and occurs at tμ = L.
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As an example, for K = 3 and L = 4,

A1, 4
3
=
{

0, 1,
4

3
, 2,

7

3
,

8

3
, 3,

10

3
,

11

3
, 4, . . .

}
.

achieves its asymptotic graininess of 1
3 is achieved at tμ = 2. This occurs before the bound

of tμ ≤ 4 indicated in Theorem 12.3.8.
Theorems 12.3.5.3 through 12.3.8 are subsumed in the following theorem for all rational

time scales.

Theorem 12.3.9. Rational Time Scales. Let K̂m and L̂m ∈ N for m = 1, 2 and let

L̂1

K̂1
<

L̂2

K̂2
.

Let M be the common factor of K̂1L̂2 and K̂2L̂1 such that

ML = K̂1L̂2 and MK = K̂2L̂1.

Then the time scale AL̂1/K̂1,L̂2/K̂2
achieves an asymptotic graininess of

μ∞ ≤ L̂1

KK̂1
(12.24)

at time

tμ ≤ LL̂1

K̂1
. (12.25)

To show this, we scale the time scale

AL̂1/K̂1,L̂2/K̂2
= L̂1

K̂1
A

1,
K̂1L̂2
K̂2L̂1

= L̂1

K̂1
A1, L

K
.

From Theorem 12.3.8, the time scale A1, L
K

achieves the asymptotic graininess of 1/K at
time tμ ≤ L. Thus, AL̂1/K̂1,L̂2/K̂2

achieves the asymptotic graininess in (12.24) at the time in
(12.25).

Example 12.3.7. Consider the time scale A 3
4 ,

5
6

so that

L̂1 = 3, L̂2 = 5, K̂1 = 4, K̂2 = 6, M = 2, L = 10, K = 9, μ∞ = 1

12
, tμ ≤ 15

2
.

Indeed, keeping the components over their common denominator of 12, we have

A 3
4 ,

5
6
= 1

12
× {9, 10, 14, 15, 18, 19, 20, 23, 24, 25, 27, 28, 29,

30, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, . . .
}

The asymptotic graininess of μ∞ = 1/12 is achieved at tμ = 33/12 ≤ 15/2.
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Theorem 12.3.10. Irrational time scales. Let x be irrational and x > 1. Then the
asymptotic graininess of A1,x is zero and tμ = ∞.

Irrational numbers can be expressed more and more accurately as the ratio of large
relatively prime numbers. For example, π = 3.14159. . . ≈ 314,159

1,000,000 . Since 314,159 is
prime, from Theorem 12.3.8, the asymptotic graininess of this approximation is μ∞ = one
millionth at time tμ ≤ 314,159. As the irrational number is approximated more and more
closely as the ratio of relatively prime integers, both the numerator and the denominator
approach infinity. Thus, μ∞ → 0 and the bound for tμ→∞.

From Theorems 12.3.9 and 12.3.10, we have shown that the asymptotic graininess of the
time scale Aξ,η is always constant. In general, if either ξ or η are irrational, then, assuming
η > ξ ,

Aξ,η = ξA1,η/ξ .

The asymptotic graininess is determined by the ratio η/ξ which can be either rational or
irrational.

12.3.6 Discrete Convolution of AITS’

Let x ∈ D and h ∈ D and let D be a discrete AITS. Then y, the inverse Fourier transform if
Y (u) = X(u)H(u), also has time scale D. The time scale convolution in (8.98) becomes

yμ(tp) =
∑

tp−τn∈D

xμ(τn)hμ(tp − τn); tp ∈ D (12.26)

which we will write as

yμ(t) = xμ(t)
D∗ hμ(t). (12.27)

12.3.6.1 Applications

a. Transformations on a random variable.
The time scale L1 can be used in evaluating the probability mass function of the
product of two statistical independent discrete random variables. Let X and H be
independent discrete random variables of the lattice type. Let all of the probability
mass lie on integers on [1,∞). Let Y = XH so that log Y = log X + log H. If the
probability mass function for X is pn at n = {1, 2, 3, . . .}, then the corresponding
probability mass function for the random variable X is

pX (t) =
∞∑

n=1

pnδ[t − n].

The probability mass function for log X is then

xμ(t) =
∞∑

n=1

xμn δ[t − log n].

where xμn = pn. The probability mass function, hμ(t) on L1, is similarly defined.
Since log X is independent of log H, the probability mass function, yμ(t), of their
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sum, log Y , is given by the time scale convolution on L1 of xμ(t) with hμ(t):

yμ(t) = xμ(t)
L1∗ hμ(t) =

∞∑
n=1

yμn δ[t − log n], (12.28)

where yμn =∑p/n∈N
xμn hμp/n. The probability mass function for Y is then

pY (t) =
∞∑

n=1

yμn δ[t − n]. (12.29)

Example 12.3.8. Two fair dice are rolled. The random variable assigned to a
showing of n dots on a die is log(n). The probability mass function for one die
is one sixth for points 1 ≤ n ≤ 6 on the AITS corresponding to log10(n). Thus,
xμ(t) = hμ(t) = 1

6�6(t). The sum of the logs of the two dice, yμ(t), is given by
the time scale convolution of xμ(t) and hμ(t) and is shown in the upper left corner
in Figure 12.25. The corresponding probability mass function, pY (t), is shown in
Figure 12.28. The mass at n = 12 has four realizations, {(3, 4), (4, 3), (2, 6), (6, 2)},
and therefore has four times the mass at n = 25 which only has one realization:
{(5, 5)}.

b. Mellin convolution. A definition of Mellin convolution of discrete sequences x[n]
and h[n] on Z is given by

y[n] =
∑

(k∈N)�( n
k ∈N)

x[n]h
[n

k

]
.

0.12

0.1

0.08

0.06

0.04

0.02

0
0 5 10 15 20 25 30 35

FIGURE 12.28. The probability mass function, pY (t), in (12.29) corresponding to the time scale
convolution illustrated on the upper left corner of Figure 12.25. The plot is shown as a function
of n rather than t. The probability mass is that of the product of the showing on two dice.
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For the discrete Mellin transform [891],

YM (ω) =
∞∑

n=1

y[n]nω,

it is straightforward to show that

YM (ω) = XM (−ω)HM (ω).

Mellin convolution is performed when using the AITS L1. Since tp = log(n), the
discrete time convolution in (12.17) becomes

yμ (log(p)) =
∑

(log(p)−log(n)∈L1)�(log(n)∈L1)
xμ (log(n)) hμ(log(p)− log(n))

=
∑

( p
n∈N)∩(n∈N)

xμ (log(n)) hμ
(

log
(p

n

))

This is a Mellin convolution for y[p] = yμ
(
tp
)
, x[n] = xμ (tn), and h[m] = hμ (m)

where tq = τq = ξq = log(q).
c. Time Scale FIR filter. A 7 tap time scale FIR (finite impulse response filter) for

L1 = {log(n)|n ∈ N} is illustrated in Figure 12.29 for an input of duration 6. An
input, x, is on additively idempotent discrete time scale, D. The filter, h, can be
implemented using a tap delay line. When h is on D, then the output y will be on
time scale D evaluated in accordance to (12.18). The output for a three input four
tap log(n) FIR filter is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

y12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 − −
h2 h1 −
h3 − h1

h4 h2 −
− − −
− h3 h2

− − −
− h4 −
− − h3

− − −
− − −
− − h4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣

x1

x2

x3

⎤
⎦

where the matrix entries {−} all represent zero. Compare this to the conventional 4
tap 3 input T = Z FIR filter.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4

y5

y 6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1 − −
h2 h1 −
h3 h2 h1

h4 h3 h2

− h4 h3

− − h4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎣

x1

x2

x3

⎤
⎥⎦
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FIGURE 12.29. A time scale FIR filter.

12.3.7 Multidimensional AITS Time Scales

AITS time scales, T, have the property that, if a signal x ∈ T and h ∈ T, then x ∗ h ∈ T.
This can be extended to higher dimensions.

Definition 12.3.2. An N dimensional time scale, TN , is an arbitrary closed subset of points
in R

N .

As we did in Section 8.2, denote the N-dimensional space with the coordinates {tn | 1 ≤
n ≤ N} which we will represent with a vector, �t. The nth element of the vector is denoted
tn = (�t )n.

Definition 12.3.3. If a multidimensional time scale TN is AITS if the sum of all �τ ∈ TN

with all �ξ ∈ TN results in all of the points in TN .

Example 12.3.9. The continuous time scale, TN = R
N is AITS.

Example 12.3.10. A periodic replication of points in accordance to a periodicity matrix
is an AITS time scale. This is a multidimensional extension of the scalar time scale,
hZ. An example is the domain established by the replication of points in Figure 8.18 in
Section 8.6.1.

In the figures for the following examples, black indicates inclusion within the time scale
where white lies outside of the time scale.

Definition 12.3.4. In 2D, anAITS time scale, A�p1,�p2,�p3 consists of all vectors that are integer
multiples of [0 0]T , �p1, �p2 and �p3. This is a generalization of the scalar time scale Aξη.

In Figures 12.30 and 12.31, the vectors �p1, �p2 and �p3 are shown circled.7

Example 12.3.11. In Figure 12.30, we see A�p1,�p2,�p3 for

�p1 = [5 1]T ,
�p2 = [13 13]T ,
�p3 = [2 7]T (12.30)

7. For this and the remainder of the examples, elements in the set are black.
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FIGURE 12.30. Figure for Example 12.3.11. The three points in (12.30) and the origin are circled.
Using (12.32), the additive closure of these four points is shown here. The result is an AITS time
scale. Any two dimensional function defined on this two dimensional time scale when convolved with
a second function on this time scale will result in a function on this time scale. The same is true for
the Figures 12.31 through 12.35.

Since the vector elements are rational, the equivalent of the two dimensional graininess
in the upper right hand corner becomes periodic.

Example 12.3.12. In Figure 12.31, we see A�p1,�p2,�p3 for

�p1 = [
√

13 0]T ,
�p2 = [π π ]T ,
�p3 = [0

√
12]T (12.31)

Because the vector components in (12.31) are irrational, the plot becomes black in the
upper right hand corner. Contrast this with the rational values in Figure 12.30 where the
closure becomes periodic.

Definition 12.3.5. For an arbitrary time scale, TN , define the additive closure of TN as

T
+
N = ⊕∞k=1TN . (12.32)

Theorem 12.3.11. If TN contains the origin, then T
+
N is AITS.

Example 12.3.13. Let TN be the origin and the rectangle with lower left point (25, 30) and
upper right hand point (30, 35). Its additive closure is shown in Figure 12.32.
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FIGURE 12.31. Figure for Example 12.3.12. The additive closure of the four circled points are shown.
The result is AITS.

50 100 150 200 250

FIGURE 12.32. Figure for Example 12.3.13. The additive closure of the origin and the small black
rectangle in the lower left corner is shown. The result is an AITS. The 2-dimensional functions on
this support will convolve to a function also on this support.
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20 40 60 80 100 120 140 160 180 200

FIGURE 12.33. See Example 12.3.14. Shown is the additive closure of the origin and the annulus in
the lower left corner.

50 100 150 200 250

FIGURE 12.34. See Example 12.3.15. The annulus is centered at (75, 75) with a radius of 20. The box
has a lower left corner at (3, 25) and an upper right corner at (8, 30). The additive closure is shown.

Example 12.3.14. The additive closure of the origin and the annulus in the lower left corner
is shown in Figure 12.33.

Example 12.3.15. The additive closure of a time scale containing a small box, an annulus
and the origin is shown in Figure 12.34.

Example 12.3.16. Same as Example 12.34 except that the single point (20, 100) is
added.
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50 100 150 200 250

FIGURE 12.35. See Example 12.3.16. This is the same as Figure 12.34, except that the point (20, 100)
is added.

12.4 Exercises

12.1. Specify a time scale that is closed under addition, but is not AITS.
12.2. Prove

(a) the distributive properties in Theorem 12.2.6.
(b) the extensive/antiextensive components of Theorem 12.2.8.
(c) the idempotent properties of opening and closing in Theorem 12.2.9.

12.3. Let L1 and L2 be lines. Evaluate, in three dimensions, (A) L1 ⊕ L2, (B) L1 
 L2,
(C) L1 ◦ L2, and (D) L1 • L2, when
(a) the lines are parallel.
(b) the lines intersect.
(c) the lines do not intersect and are not parallel.

12.4. (a) Specify an AITS that has both discrete and continuous components.
(b) Prove that any AITS with right dense components is asymptotically right

dense.
12.5. (a) Prove that the dilation of two convex sets is convex.

(b) Is the erosion of one convex set by another convex?
(c) The opening?
(d) The closing?

12.6. The following convex sets of signal are defined in Chapter 11. Evaluate the following
mathematical morphological operations. Some results may by empty or {0}. All
results will be convex. Let Aχ (t) = {x(t) | |x(t)| ≤ χ (t) where χ (t) ≥ 0} and
AFS = {x(t)|x(t) = 0 for | t |>T}.
(a) ACA=1 ⊕ ACA=3.
(b) ACA=1 
 ACA=3.
(c) ACA=1 ◦ ACA=3.
(d) ACA=1 • ACA=3.

(e) Aχ (t) ⊕ Aχ (t)
(f) Aχ (t) 
 Aχ (t)
(g) Aχ (t) ⊕ AFS

(h) Aχ (t) 
 AFS
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12.5 Solutions for Selected Chapter 12 Exercises

12.1.

N⊕ N = {2, 3, 4, · · · } ⊂ N

= N = {1, 2, 3, 4, · · · }.
12.2. Our presentation parallels that of Giardina and Dougherty [506] in which these

proofs can be found [578].
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Applications

To isolate mathematics from the practical demands of the sciences is to invite the
sterility of a cow shut away from the bulls.

Pafnuty Lvovich Chebyshev [1276]

Mathematics compares the most diverse phenomena and discovers the secret
analogies that unite them.

Jean Baptiste Joseph Fourier

I believe there are
15,747,724,136,275,002,577,605,653,961,181,555,468,044,717,914,527,116,
709,366,231,425,076,185,631,031,296 protons in the universe and the same

number of electrons.
Sir Arthur Eddington (1882–1944) [397].

13.1 The Wave Equation, Its Fourier Solution and
Harmony in Western Music

Fourier discovered the Fourier series as a solution to a boundary value problem [33,
303, 512, 620] related to the heat wave equation. Fourier’s work on heat is still
in print [455].

In this section, we derive the wave equation for the vibrating string and show how the
Fourier series is used in its solution. The solution, in turn, gives rise to the physics of
harmonics used as the foundation of music harmony. We contrast the natural harmony of
the overtones to that available from the tempered scale of western music. The tempered
scale is able to accurately approximate the beauty of natural harmony using a uniformly
calibrated frequency scale.

13.1.1 The Wave Equation

The wave equation is manifest in analysis of physical phenomena that display wave like
properties. This includes electromagnetic waves, heat waves, and acoustic waves. We
consider the case of the simple vibrating string.

A string under horizontal tension T is subjected to a small vertical displacement,
y = y(x, t), that is a function of time, t, and location, x. As illustrated in Figure 13.1,
attention is focused on an incremental piece of the string from x to x+�x. Under the small

610
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FIGURE 13.1. A section of a vibrating string.

displacement assumption, there is no movement of the string horizontally (i.e., in the x
direction), and the horizontal forces must sum to zero.

T = T1 cos(θ1) = T2 cos(θ2).

Let the linear mass density (i.e., mass per unit length) of the string be ρ. The mass of
the incremental piece of string is then ρ. The total vertical force acting on the string is
T2 cos(θ2)− T1 cos(θ1). Using Newton’s second law (F = ma), we have

T2 sin(θ2)− T1 sin(θ1) = ρ�x
∂2y

∂t2
.

Dividing by the x force equation gives

T2 sin(θ2)

T2 cos(θ2)
− T1 sin(θ1)

T1 cos(θ1)
= ρ�x

T

∂2y

∂t2

or

tan(θ2)− tan(θ1) = ρ�x

T

∂2y

∂t2
.

But

tan(θ2) = ∂y

∂x

∣∣∣∣
x+�x

and

tan(θ1) = ∂y

∂x

∣∣∣∣
x
.

We can therefore write

1

�x

(
∂y

∂x

∣∣∣∣
x+�x
− ∂y

∂x

∣∣∣∣
x

)
= ρ�x

T

∂2y

∂t2
.

Taking the limit as �x→ 0 and applying the definition of the derivative, we arrive at the
wave equation.

∂2y

∂x2
= 1

ν2

∂2y

∂t2
(13.1)
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where

ν2 = T

ρ
(13.2)

is the velocity of the wave.

13.1.2 The Fourier Series Solution

A vibrating string fixed at x = 0 and x = L does not move at these points and therefore has
boundary conditions

y(0, t) = y(L, t) = 0. (13.3)

A solution of the wave equation in (13.1) that satisfies these boundary conditions is1

y(x, t) =
∞∑

m=1

Am cos

(
2πmνt

L

)
sin

(
2πmx

L

)
; 0 ≤ x ≤ L (13.4)

where the Am coefficients are to be determined. This solution can straightforwardly be
shown to satisfy the boundary conditions in (13.4) and the wave equation in (13.1).

The coefficients, Am, are determined by the initial displacement

y(x, 0) = f (x)

where f (x) is any function satisfying the boundary conditions, i.e., f (0) = f (L) = 0. From
(13.4),

f (x) = y(x, 0) =
∞∑

m=1

Am sin

(
2πmx

L

)
; 0 ≤ x ≤ L.

This expression is recognized as a (real) Fourier series. The coefficients are determined by

Am = 2

L

∫ L

x=0
f (x) sin

(
2πmx

L

)
dx.

The lowest, or fundamental, frequency of the vibrating string is

u0 = ν

L
(13.5)

so that (13.4) can also be written as

y(x, t) =
∞∑

m=1

Am cos (2πmu0t) sin

(
2πmx

L

)
; 0 ≤ x ≤ L (13.6)

The frequencies mu0 are harmonics of the fundamental frequency. A collection of
simultaneously sounded acoustic harmonics is pleasing to the ear and is the foundation
of western music.

1. See Exercise 13.1.
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13.1.3 The Fourier Series and Western Harmony

The ratio of frequencies in the interval of an octave is 2. The ratio of the frequencies of two
adjacent notes on a piano, such as C to C�, is 21/12. There are twelve semitones (or chromatic

steps) in an octave producing, as desired, an overall frequency ratio of
(
21/12

)12 = 2. This
frequency calibration in western music is the tempered scale.

On the other hand true natural harmony, popularized by sixth century BC Greek
philosopher Pythagoras required simultaneously sounded frequencies to have ratios equal
to the ratios of small whole numbers. The number 21/12 and, except for the octave, all
western music intervals, cannot be exactly expressed as the ratio of small numbers. Indeed,
the frequency ratios cannot be exactly expressed as the ratio of any whole numbers.
They are irrational. Nevertheless, the tempered scale can be used to generate natural
Pythagorean ratios to an accuracy often audibly indistinguishable to a trained listener.
The tempered scale, in addition, allows freedom of key changes (modulation) in musical
works difficult to instrumentally achieve in the Pythagorean system of harmony. The
geometrically spaced frequency intervals of the tempered scale also make perfect use
of the logarithmic frequency perception of the human ear. The ability of the tempered
scale to generate near perfect Pythagorean harmonies can be demonstrated in a number
of ways. A deeper question asks why this remarkable relationship exists. There is,
remarkably, no fundamental mathematical or physical truth explaining the observed
properties.2

Newtonian physics applied to the vibrating strings applies to violins, violas and guitars.
Like the vibrating string, the vibrating air columns of bugles, clarinets, trombones and
pipe organs obey a wave equation and have nearly identical solutions. Available tones of
a string or an air column of fixed length are related by integer multiples (harmonics) of
a fundamental frequency. Tonal color is largely crafted by choice of the strength of the
components of the harmonics in a tone.

The Mth harmonic of a fundamental frequency, is simply M + 1 times the frequency
of the reference frequency and can be expressed as the ratio 1 : M + 1. For a
vibrating string or air column, the root can be taken as the lowest frequency allowed
by the physics of the imposed boundary constraints. Simultaneous sounding of notes
corresponding to the root and its first five harmonics constitute a natural major chord.
Notes with frequency ratios of 1 : M + 1 form pleasing harmony when M is small.
More generally, Pythagorean harmony claims two audio tones will harmonize when the
ratio of their frequencies are equal to a ratio of small whole numbers (i.e., positive
integers). This follows directly from the pleasing harmony of harmonics. For example,
the second harmonic (1:3) and the third (1:4) harmonic harmonize. These two notes have
a relative ratio of 3:4 and, indeed, form the interval of a natural perfect fourth. This
pleasing musical interval is, as required by Pythagoras, the ratio of two small whole
numbers.

Western music, on the other hand, is not based on the ratio of small whole numbers.
It is, rather, built around twelfth root of two = 21/12 = 1.05946 . . . which is the ratio of
frequencies between two tones separated by a chromatic step (a.k.a a semitone or half step).
The frequency, un, of a note n chromatic steps from a note with a reference frequency u0, is

un = u02n/12. (13.7)

2. See, however, Exercise 13.2.
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The number of chromatic steps, n, between two frequencies, uα and uβ , follows as

n = log21/12

(
uβ
uα

)
.

A measure of frequency deviation is cents. There are one hundred cents in a chromatic step.
The frequency that lies m cents above a reference frequency u0, is

um = u02n/1200. (13.8)

The number of cents, m, between two frequencies, uα and uβ , follows as

m = log21/1200

(
uβ
uα

)

Harmonics often lie close to frequencies of the tempered scale. Consider the interval of
a perfect fourth. Since a perfect fourth is five semitones, the ratio of frequencies is

(
21/12

)5
.

This seems a far cry from the Pythagorean frequency ratio of 3:4. When, however, the
numbers are evaluated, we find, remarkably, that

4

3
= 1.3333 · · · ≈

(
21/12

)5 = 1.3484 · · · . (13.9)

The difference between these notes is a minuscule audibly indistinguishable 2 cents. The
near numerical equivalence in (13.9) illustrates a more general property of the tempered
scale of western music. Using the awkward number, 21/12, frequencies can be generated
whose ratios are nearly identical to ratios of whole numbers.

13.1.4 Pythagorean Harmony

Harmony in western music is based on harmonics that result naturally from solution of
the wave equation. According to Pythagoras, tones are harmonious when their frequencies
are related by ratios of small whole numbers. The interval of an octave, or diapason, is
characterized by frequency ratios of 1:2, 2:1, and 2:4. If any frequency is multiplied by
2N where N is an integer, the resulting frequency is related to the original frequency
by N octaves. For example, A above middle C is currently, by universal agreement,
440 Hz. Then 440/2 Hz = 220 Hz is A below middle C and 440 × 8 = 3520 Hz is the
frequency of A a total of N = 3 octaves above A above middle C. The ratio of 2:3
is the perfect fifth or diapente interval while 3:4 is the perfect fourth or diatesseron
interval.

Numbers that can be expressed as ratio of integers are rational numbers. Pythagoras
claims harmony occurs between notes when the ratio of their frequencies are small whole
numbers. The rules for the first few harmonics follow. The intervals cited are dubbed
Pythagorean (or natural) since their relations are determined by ratios of small numbers.
After each entry is the note corresponding to a root of middle C, denoted C4. (The root is
the fundamental frequency.)

0. 1:1 defines the reference note or root. C4.
1. 2:1, with twice the frequency, is an octave above the root. C5.
2. 3:1 is the perfect fifth (2:1) of the first (2:1) harmonic. G5
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3. 4:1 is twice the frequency of the first harmonic and is therefore two octaves above
the root. C6

4. 5:1 is the major third of the third (4:1) harmonic. E6.
5. 6:1 is twice the frequency of the second (3:1) harmonic and is therefore the perfect

fifth of the third (4:1) harmonic. G6.
6. 7:1 is the minor seventh of the third harmonic. B� 6.
7. 8:1 is three octaves above the root. C7.
8. 9:1 is the third harmonic of the second harmonic. It is therefore the major second

of the seventh harmonic. (D7)
9. 10:1 is an octave above the fourth harmonic, and therefore the major third of the

seventh harmonic. (E7).
10. 11:1 (F� 7)
11. 12:1 is an octave above the 5th harmonic. (G7) 12. 13:1 (A� 7)

There exist variations of harmonic frequencies from the corresponding tempered notes.
This variation is shown in Figure 13.2. The fourth column, headed “Ratio”, contains the
normalized frequencies of the harmonics normalized by the frequency of the root. The
next column, labelled “Temper”, contains the normalized frequency of the corresponding
tempered note. The “Cents” column contains the error between the harmonic and its
tempered equivalent. The error for the lower harmonics is small, as is the error between
harmonics whose ratios are products of small numbers, e.g., the fifth harmonic where
6 = 3 × 2 has an error of only 2 cents and the fifteenth harmonic, with ratio 16:24,
has no error whatsoever. Harmonics with larger prime ratios, e.g., the sixth harmonic

FIGURE 13.2. The first fifteen harmonics of the root C4. The tempered note closest to the harmonic is
shown. The column ST refers to the number of tempered semitones from the root. The ratio column
lists the integer multiple of the root frequency. The tempered column, to be compared to the ratio
column, is the frequency ratio when the western tempered scale is used. Cents is the error between
the Ratio and Tempered frequencies. One hundred cents is a semitone.
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with ratio 7, tend to have larger errors. Indeed, the 10th harmonic corresponding to
the prime ratio 11:1, has an error of 48.7 cents, less than 2 cents from being closer
to an F than an F�. The sixteenth harmonic, with prime ratio 1:17, is so far removed from
the C4 root it has lost most if not all of its musical harmonic relationship. The seventeenth
harmonic, on the other hand, has a ratio of 18 and is exactly an octave above the eighth
harmonic.

Note all tempered notes with the same name deviate from the Pythagorean frequency by
the same amount. All C’s have an error of 0 cents and thus have no deviation. All G’s have
a deviation of 2 cents, all E’s 13.7 cents, etc. The sixth harmonic deviates over 32 cents
from the corresponding tempered note. The sixth harmonic deviates over 32 cents from the
corresponding tempered note. This difference is enough to be detected by even the untrained
musical ear.

The first four harmonics with the root form a natural major chord, e.g., C C G C
E. Removing the redundant notes leaves C G and E. Including the next two harmonics
yields a seventh chord (C G E B�) and three more harmonics a ninth chord (C G E B�
D). We can continue to an eleventh (C G E B� D F) and thirteenth (C G E B� D F A)
chord. All of the numerical chord names are odd numbers simply because even numbers
reflect of an octave relationship and add no new notes to the chord. The sixth harmonic,
with ratio seven, is, indeed, the new note in the seventh chord (B�). Likewise, the eighth
harmonic with ratio nine, is added to obtain the ninth chord. Continuing further gives
deviation. The tenth harmonic (F�) with ratio eleven is different from new note in an
eleventh chord (F). As noted, though, this harmonic is less than two cents from being
closer to F than F�. Similarly, the thirteenth (A), build by adding a major third (four
semitones) to the eleventh, deviates from the note closest to eleven times the frequency
of the root (A�) which corresponds, instead, more closely to the addition of a minor third
(three semitones).

13.1.4.1 Melodies of Harmonics: Bugle Tunes

Harmonics with ratios of 1:3 through 1:6 are used in the melodies played by bugles, including
Taps played at military funerals and Revelry played to wake soldiers in the morning. The
bugle, when unbent, is a simple vibrating air column as illustrated in Figure 13.3. The
vibrating lips of the bugle player determine the vibration mode of the air. The vibration
modes shown are those used in bugle melodies. The bugle therefore sounds true Pythagorean
harmonics and not tempered note intervals.

FIGURE 13.3. Vibration modes in an air column for the second (top) through fifth (bottom) harmonics
at, respectively, three and six times the frequency of the root. These modes form the four notes for all
bugle melodies including Taps and Revelry.
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13.1.4.2 Pythagorean and Tempered String Vibrations

Aguitar string vibrates similarly to the air column patterns in Figure 13.3. Different notes are
sounded only by changing the effective length of the string or, as is the case with generation
of harmonics, applying initial conditions that prompt the string not to move at one or more
points.

The vibration modes of a string are shown in Figure 13.4. Lightly touching the middle
of the string over the twelfth fret bar and plucking results in the string vibrating in two
halves. In the wave equation solution in (13.6), lightly touching at the twelfth fret imposes
the boundary A1 = 0, so that only higher harmonics can sound. The sounded tone is an
octave higher than the string played open. Vibration in two sections continues even after
the finger is removed from the string. This is the first harmonic of the note sounded by the
open string.

The note sounded in the first harmonic is equivalent to the note sounded by a string
of half the length. In other words, the first harmonic in Figure 13.4 can be viewed as two
independent strings vibrating, each string being half the length of the open guitar string.

FIGURE 13.4. Vibrating strings can, similar to vibrating air columns, generate harmonics. On a guitar,
lightly touching at the twelfth fret and plucking results in the string vibrating in two pieces and sounds
the first harmonic of the root tone of the open string. Lightly touching the seventh fret and plucking
results in three vibrating string sections and the second harmonic. The process can be repeated, as
shown here, for higher order harmonics.
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The twelfth fret bar divides the string into two equal pieces. If the string is depressed on
the twelfth fret in a conventional matter, the sounded note, after plucking, is the same as
the note of the string’s first harmonic.

Placing the finger lightly over the seventh fret bar and plucking forces both coefficients
A1 and A2 to zero in (13.6). The string now vibrates in three equal pieces. (See
Figure 13.4.) This is the second harmonic. Besides the bridges that mechanically constrain
the string from vibrating, there are two nodes where the string is not moving. One
is over the seventh fret bar. While the string is vibrating, this point on the string
can be lightly touched and the string continues to vibrate. The same is true if the
string is lightly touched over the nineteenth fret bar. This is one of two places, other
than the bridges, where the string does not vibrate. Placing the finger on the twelfth
fret, on the other hand, interrupts the vibration of the string and the note ceases
to sound.

The note sounded in the second harmonic can be viewed as resulting from the vibration of
three independent strings each with a length of one third that of the open string. Depressing
the nineteenth fret, which leaves one third of the length on the business end of the string,
yields this same note, when plucked, as the second harmonic.

Continuing, a finger lightly touching the string over the fifth fret bar will, after plucking,
result in the string vibrating in four equal parts. This mode corresponds to the vibration
shown second from the top in Figure 13.4 and sounds the third harmonic of the open string’s
root note. Similarly, lightly touching above the fourth fret gives the fourth harmonic and
the third fret gives the fifth.

Note that, by moving the finger between the seventh, fifth, fourth and third fret,
the sounded notes are those necessary to play the bugle tunes. Like the vibrating air
column, these harmonics can be sounded by applying the proper initial conditions and
stimuli. For the bugle, the stimulus is air and the boundary conditions the frequency of
the bugler’s vibrating lips. For the string, the boundary conditions are imposed through
lightly touching the string while the stimulus is a simple pluck. Remarkably, these
physically different systems with different physics display similar musical (and physical)
properties.

13.1.5 Harmonics Expansions Produce Major Chords
and the Major Scale

A structured illustration of the tempered scale’s ability to provide Pythagorean harmony
comes from derivation of the tones in a tempered scale. We begin with the I, IV and V
chords of the major scale. If C is the root, then I is a C major chord, IV is an F chord and
V a G. Note G is the closest non-octave harmonic to C. In a dual sense, F has, as its closest
non-octave harmonic, C. As before, all frequencies are normalized to the frequency of the
root, C. The note C therefore has a normalized frequency of one.

In the construction of the I, IV, V chords, any note’s frequency can be multiplied by 2M

without changing the note name as long as M is an integer - negative or positive. For any
note, a value of M can always be found to place the notes normalized frequency between 1
and 2. Both 1 and 2 correspond to C’s. Placing a note normalized in frequency between 1
and 2 is therefore simply constraining the note to lie in a specified octave.

The C major chord is formed from the first five harmonics of C. Removing the
octave harmonics (the first and third), the notes of the C chord are C, G, and E with
relative frequencies 1, 3, and 5. The frequency 3 for can be reduced to the desired
octave by dividing by 2 to form the normalized frequency 3/2. Similarly, the frequency
5 can be divided by 4 = 22 to form the normalized frequency 5/4. When reduced to
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the octave between 1 and 2, the notes C, G and E have normalized frequencies of 1,
3/2, and 5/4.

A similar analysis is applicable to the V (G) chord. Beginning with a chord root of 3,
the notes in the G chord, corresponding to the second and fourth harmonics, are 9 and 15.
Thus, the G, D, and B notes of the G chord have respective frequencies 3, 9 and 15. By
choosing an appropriate integer, M, each can be placed in the interval of 1 to 2. The 3,
as before, is divided by 2 corresponding to M = −1. Using M = −3, the frequency of 9
becomes 9/8.

The note B becomes 15/8. The frequencies of the V chord in the frequency interval of 1
to 2 are therefore 3/2, 9/8 and 15/8. Lastly, consider the IV chord. If we construe F as being
the note to which C is the second harmonic, then frequency of the F note is 1/3. The notes
for the F major chord, F, A, and C, follow as 1/3, 3/3 and 5/3. Each of these can be placed
the interval 1 to 2. The result is 4/3, 1, and 5/3.

The results of our analysis are shown in Figure 13.5. The top table has the harmonic
construction of the I, IV, and V chords using harmonics followed by reducing the normalized
frequencies to the octave between 1 and 2. The middle table contains the corresponding
notes when the root note is a C. The last table is a decimal equivalent of the ratio in the
top table.

We assign an index of k = 0 to C, k = 1 to C�, k = 2 to D, etc. Arranging the entries in
Figure 13.5 in ascending values of k gives the results shown in Figure 13.6. A logarithmic
plot of the ratio values, shown in Figure 13.7, results in a remarkably straight line. Using
the entries in Table 7, the standard deviation of the natural 8 note major scale from the
tempered scale is a minuscule 8.6 cents.

FIGURE 13.5. Constructing the Pythagorean 8 note major scale.
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FIGURE 13.6. Comparison of the natural Pythagorean major scale with the tempered major scale.

FIGURE 13.7. A logarithmic plot of the Pythagorean ratios in Figure 13.6. If the line were exactly
straight, each mark would lie on a horizontal line. (Missing entries in Figure 13.6 were replaced by
the geometric mean of adjacent entries. The geometric mean of numbers p and q is

√
pq.)

13.1.5.1 Subharmonics Produce Minor Keys

Consider, then, performing an operation similar to that in Figure 13.5, except subharmonics
are used instead of harmonics. The nth subharmonic of a note has a frequency of 1/nth
the root. Rather than being sequential integer multiples of the root as is the case with
harmonic, subharmonics are sequential integer divisors of the root. The three notes,
F, C, and G, are expanded into their first four subharmonics. For each subharmonic,
the note is moved into the octave with normalized frequencies between 1 and 2 by
multiplying by 2M .

Wherein harmonics build major chords, subharmonics build minor chords. With C4 as
the root, the note with ratio 1

2 is clearly an octave lower, or C3. The note with the ratio 1
3

has C4 as its third harmonic. This note is F2. We quadruple its frequency up two octaves to
4
3 to place it in the interval between 1 and 2.
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The next subharmonic, C2, an octave below C3, has a ratio of 1
4 . The ratio 1

5 is the note
having C4 as its fifth harmonic. This is A�1. To place this in the interval 1 to 2, we multiply
by 8 and assign a frequency of 8

5 to A�4. The next subharmonic, with a value 1
6 , is an octave

below 1
3 and is therefore F1. The first notes generated by subharmonic expansion of C are

C, F, and A�. These notes constitute an F minor chord. Subharmonics expansions therefore
generate minor chords.

Subharmonic expansions are likewise performed for F and G. The result of all three
chords is shown in Figure 13.8. The notes generated are those in the natural minor key
of F minor. The I, IV and V chords (Fm B�m and Cm) of the key are generated by the
subharmonics.

13.1.5.2 Combining the Harmonic and Subharmonic
Expansions Approximates the Tempered Chromatic Scale

Nearly all of the missing notes in the harmonic expansion in Figure 13.5 are present in
subharmonic expansion in Figure 13.8. As shown in Figure 13.9, the only missing note in
the union of the figures is the tritone, F�. A logarithmic plot of these entries is shown in
Figure 13.10. The standard deviation of the fit is a mere 12.1 cents.

13.1.6 Fret Calibration

From (13.5), the product of the length, �0, of a string and its fundamental frequency is, from
(13.5) and (13.2)

u0�0 = ν

=
√

T

ρ
(13.10)

FIGURE 13.8. Chord expansion using subharmonics. The result is the notes in the key of F minor. The
chords are I, IV and V chords of the key of (natural) F minor.
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FIGURE 13.9. Eleven of the 12 tones of the tempered chromatic scale result naturally from harmonic
and subharmonic expansion of the root, perfect fifth and perfect fourth. These entries are a combination
of the entries in Figure 13.5 (the harmonic expansion) and Figure 13.8 (the subharmonic expansion).
The natural Pythagorean results, as witnessed by the low cents error, are remarkably close to the
corresponding tempered frequencies.

FIGURE 13.10. A logarithmic plot of chromatic intervals in Figure 13.9 as predicted by harmonic and
subharmonic expansions within an octave. Ideally, the plot should be a line with every tick exactly
intersecting a horizontal line. Although not perfect, the naturally generated notes are nearly identical
to their tempered equivalents. (The geometric mean was used to interpolate the tritone.)

Equation 13.10 allows calibration of fret bars.An open string of length �0 sounds a frequency
of u0, the same string, shortened to length �n, will produce a frequency un. Since the linear
mass density and string tension are the same, we conclude

u0�0 = un�n.

Substituting the chromatic frequency relationship in (13.7) for un followed by simplification
leaves the equation for fret spacing.

�n = 2−n/12�0.
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FIGURE 13.11. The length of a string from bridge to bridge is �0. The length from the bridge to the nth
fret bar is �n = �0 2− n

12 .

Thus, in Figure 13.11, the first fret is placed at a distance �1 = 2−1/12�0 = 0.9439�0 from
the bottom bridge. The second fret bar is at �2 = 2−1/12�1 = 2−2/12�0 and the nineteenth
fret bar is at �19 = 2−19/12�0.

The fret calibration aligns closely with the string vibrational harmonics illustrated in
Figure 13.4. The twelfth fret in Figure 13.11, corresponding to an octave, divides the string
exactly in half. The first overtone in Figure 13.4 is thus achieved. The seventh fret comes
within 2 cents of generating the second overtone, etc.

13.1.6.1 Comments

The tempered scale closely mimics the structured naturally occurring whole number
Pythagorean frequency ratios while allowing greater flexibility in key changes in com-
positions and instrument design. There is no foundational mathematical or physical reason
the relationship between Pythagorean and tempered western music should exist. It just
does. The rich flexibility of the tempered scale and the wonderful and bountiful archives of
western music are testimony to this wonderful coincidence provided by nature.

13.2 Fourier Transforms in Optics and Wave Propagation

The Fourier transform is ubiquitous in modelling of physics. In this section, we look
as the special case of formation of optical Fourier transforms using monochromatic3

3. A single wavelength or frequency.
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coherent4 optics. The far field or Fraunhofer diffraction of an aperture is expressed as a
two dimensional Fourier transform. The electric field amplitude in the back focal plane of
a lens is proportional to the Fourier transform of the electric field amplitude in the front
focal plane. Indeed, the field we are introducing in this section is dubbed Fourier optics
[493, 514, 518, 1344].

Although the analysis presented in this section is specifically for the propagation of
optical waves, it is equally effective in the modelling of many diffraction phenomena. The
ideas developed in this section, including Fresnel diffraction, Fraunhofer diffraction, and
the relation of the far field to Fourier transforms are applicable. Equivalent models are
used in acoustics [1214, 1497], sonar [830], microwave engineering and antenna design
[290, 1170, 1228, 1525] including beamforming5 [653, 1546].

13.2.1 Scalar Model for Wave Propagation

There are three commonly used models for describing electromagnetic propagation: (1) ray
optics, (2) scalar optics and (3) vector optics. As listed, the mathematical difficulty
and result accuracy increase with the number. Ray tracing through elementary imaging
systems is typically taught in high school physics. In the fundamental ray optics model,
however, the wave nature of light and its ability to constructively and destructively
interfere, cannot be straightforwardly described. Scalar, or Fourier, optics does have this
ability. The mathematical predictions from scalar optics are much more accurate than
that from ray optics. Vector optics, with its roots in Maxwell’s equations, must be used,
however, to describe concepts like polarization. Scalar optics, as the name suggests,
models light as a scalar instead of a vector. Whereas many of the results in ray optics
can be derived from scalar optics, the fundamentals of scalar optics can be derived
from vector optics. We will derive the fundamental expression for scalar diffraction from
Maxwell’s equations. The derivation deviates from the more conventional Green’s function
derivation [493, 514, 514, 1082].

The systems concepts will be applied to the physics of electromagnetic propagation in
order to derive the Rayleigh-Sommerfield scalar diffraction integral. This integral describes
the manner in which monochromatic coherent light propagates.

13.2.1.1 The Wave Equation

Recall Maxwell’s equations.

�× �E = −∂ �B
∂t

�× �H = �J + ∂ �D
∂t

; �D = ε �E

� · �D = ρ ; �B = μ �H (13.11)

� · �B = 0.

4. The light is capable of total constructive and destructive interference.
5. See Section 13.2.5.
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The definitions of the various fields, densities and vector operations are those standardly
used. In a source free medium, �J = ρ = 0. In a homogeneous6 isotropic7 medium such as
free space, ε and μ are scalar constants. Thus

�× �E = −μ∂ �H
∂t

�× �H = ε ∂ �E
∂t

� · �E = 0

� · B = 0.

In general, �E = �E(x, y, z; t) and �H = �H(x, y, z; t). We will assume that the fields are
temporally oscillating at an angular frequency8 ofω. The resulting time harmonic fields9 are

�E = �E0e−jωt ; �E0 = �E0(x, y, z)

�H = �H0e−jωt ; �H0 = �H0(x, y, z)

Optically, this restricts our coherent illumination to a single wavelength, λ = 2πc/ω where
c is the speed of light in the medium. As a consequence of the time harmonic assumption,

∂ �E
∂t
= −jω �E0e−jωt

and

∂ �H
∂t
= −jω �H0e−jωt .

Thus, Maxwell’s equations become

�× �E0 = jωμ �H0

�× �H0 = −jωε �E0

� · �E0 = 0

� · �H0 = 0.

From the first two equation,

�×�× �E0 = jωμ�× �H0 = ω2με �E0.

Using the vector identity

�×�× �E0 = �(� · �E0)−�2 �E0

6. The same everywhere.
7. Propagation is the same in all directions.
8. Because of exclusive use in this derivation, we use ω in lieu of 2πu in this section only.
9. An alternate convention uses a positive exponent. This may be done throughout by choosing exp(−jωt) =

exp(iωt), i.e., set j = −i.
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gives, since � · �E0 = 0,

−�2 �E0 = ω2με �E0

or

�2 �E0 + ω2με �E0 = 0 (13.12)

where �2 is the Laplacian operator.

�2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

Equation 13.12 is the electric field wave equation. Define the magnitude of the propagation
vector as k where

k2 = ω2με =
(

2π

λ

)2

(13.13)

where λ is the wavelength. Then the electric field wave equation becomes

(�2 + k2) �E0 = 0. (13.14)

13.2.1.2 Solutions to the Wave Equation

We consider two solutions to the wave equation in (13.14). The first treats a propagating
wave as a superposition of plane waves and is dubbed the angular spectrum. The second
treats the wave as a superposition of point sources, also known as Huygen’s spherical
wavelets, and results in Rayleigh-Sommerfield diffraction. In a mathematical sense, the
angular spectrum composes a planar cross section coherent wave, u(x, y), as an inverse
Fourier transform10

u(x, y) =
∫ ∞
−∞

∫ ∞
−∞

U( fx, fy)e j2π ( fxx+fyy)dfxdfy. (13.15)

whereas the Huygen’s wavelets model views the function through the Dirac delta sifting
property.

u(x, y) =
∫ ∞
−∞

∫ ∞
−∞

u(ξ, η)δ(x − ξ )δ( y − η)dξdη. (13.16)

This is illustrated in Figure 13.12.
The manner that the angular spectrum plane wave and the Huygen’s point sources

propagate from plane to plane is governed by the wave equation. The propagation
phenomenon is dubbed diffraction.

10. In this section, we use the more standard optics notation (x, y, z) instead of (t1, t2, t3) used in Chapter 8.
Likewise, the frequency variables ( fx, fy) are used in lieu of (u1, u2).
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FIGURE 13.12. Scalar diffraction can be viewed from two perspectives. An electric field amplitude,
u(x, y), on the z = 0 plane can be viewed as emitting a superposition of (left) plane waves travelling
in different directions with different weights and phases, or (right) spherical waves from each point.
For the plane wave case, the diffraction is modelled by the two dimensional inverse Fourier transform
in (13.15) and results in the angular spectrum model of diffraction. For the spherical waves, the
diffraction model uses the Dirac delta sifting property in (13.16) is used to model u(x, y) and results
in the Rayleigh-Sommerfield model of diffraction.

13.2.2 The Angular Spectrum

Assuming �E0 is linearly polarized in a fixed direction so that �E0 = uz(x, y)�a where �a is a
unit vector. The wave equation in (13.14) then becomes the scalar equation

(�2 + k2)uz(x, y) = 0. (13.17)

A plane wave solution to (13.17) is

uz(x, y) = e jk(αx+βy+γ z) (13.18)

where (α = cos(θx), β = cos(θy), γ = cos(θz)) are the direction cosines of the propagation.
The direction cosines are illustrated in Figure 13.13 and, from the Pythagorean theorem,
obey

α2 + β2 + γ 2 = 1. (13.19)

Since (13.18) is a solution to the wave equation and the wave equation is linear, any super-
position of plane waves also solves the wave equation. On the z = 0 plane, a solution is11

u0(x, y) =
∫
α

∫
β

w(α, β)e jk(αx+βy)dα, dβ (13.20)

11. We loose little information by discarding the z component. For a given (α, β), the value of ±γ is specified
by (13.19). Thus, except for the ambiguity of a conjugation, the two dimensional slice of a three dimensional
electric field defines the field in three dimensions. This property is used in holography where a two dimensional
surface is used to reconstruct a three dimensional wavefront.
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FIGURE 13.13. Direction cosines, (α, β, γ ), for a plane wave propagating in the direction of the arrow.
The constant phase of the plane is perpendicular to the vector. Since the vector is unit length, the
direction cosines (α, β, γ ) are the vector’s (x, y, z) components.

where the w(α, β)’s are arbitrary complex weights. Motivated by (13.15), a more meaningful
expression of the same result is

u0(x, y) =
∫
α
λ

∫
β
λ

U0

(
α

λ
,
β

λ

)
e

j2π
(
α
λ x+ βλ y

)
d
(α
λ

)
d

(
β

λ

)
(13.21)

where we have used

k = 2π

λ

and

u0(x, y)←→ U0( fx, fy).

The weight of the plane wave with direction cosines (α, β) contributing to u0(x, y) is

therefore determined by the Fourier transform of u0(x, y). The function U0

(
α
λ
,
β
λ

)
is thus

known as the angular spectrum of u(x, y).

13.2.2.1 Plane Waves as Frequencies

Equation 13.18 reveals that frequency components in coherent optics can be thought of as
plane waves incident on the z = 0 plane. This is illustrated in Figure 13.14. To keep the
geometry in two dimensions, we set θy = π

2 so that β = 0. The propagation direction is at
an angle of θx as shown. The corresponding direction cosine is α. If the wavelength is λ,
then the spacing of the plane wave on the x axis is, as shown, λ/α. Equivalently, this is a
spatial frequency of α/λ. This is a visualization of the frequency interpretation of the plane
wave used in the inverse Fourier transform in (13.21) where the frequency variable fx is
replaced by α/λ.
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FIGURE 13.14. Aplane wave propagating at an angle of θx generates a spatial frequency with frequency
α/λ on the x axis where α = cos(θx).

FIGURE 13.15. Acoherent monochromatic field amplitude, u(x, y), is on the left hand plane. Diffraction
occurs over a distance z to give the field amplitude gz(x, y).

Here are some observations.

(a) The steeper the plane wave, the higher the frequency.
(b) The smallest period we can achieve isλ. Spatial frequencies higher than 1/λ cannot

be resolved.12

(c) Unlike temporal signals, the frequency components from plane waves can be
complex. We can have the plane wave corresponding to e jk(αx+βy) without its
conjugate e−jk(αx+βy). Hence, positive frequency components can exist without a
conjugately symmetric partner. We also see this must be true since electric field
amplitudes like u0(x, y) in (13.21) are generally complex.

13.2.2.2 Propagation of the Angular Spectrum

Consider the diffraction geometry illustrated in Figure 13.15. A known monochromatic
coherent field u(x, y) propagates a distance z where it becomes gz(x, y). Given the angular
spectrum of u, we seek to find the angular spectrum of gz.

12. See Section 13.2.2.3.
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A propagating plane wave remains a plane wave, shifting phase by 2π every wavelength.
Its direction cosines remain the same. Every plane wave component of the angular spectrum
has this property. Using (13.19), it follows that

Gz

(
α

λ
,
β

λ

)
= U

(
α

λ
,
β

λ

)
e jk
√

1−α2−β2 z. (13.22)

The electric field amplitude, gz(x, y), is determined by an inverse Fourier transform.

13.2.2.3 Evanescent Waves

For a monochromatic wave, there is a fixed wavelength λ. We see in Figure 13.14 that the
highest spatial frequency that can be generated by such illumination is

fmax = 1

λ
.

This is manifest in the angular spectrum expression where the direction cosines must obey

−1 ≤ α, β ≤ 1.

The integrations in (13.21) are therefore not over (−∞,∞), but over a circle in the
frequency plane with radius fmax. Plane waves with spatial frequencies outside of this
region are said to be evanescent and do not propagate. For evanescent waves, the
square root in (13.22) becomes imaginary and, rather than propagating, the wave decays
exponentially.

13.2.3 Rayleigh-Sommerfield Diffraction

We now consider an alternative solution to the diffraction problem illustrated in Figure 13.15.
In (x, y, z) space, a coherent monochromatic electric field, u(x, y), exists on the z = 0
plane. Assuming no other sources, we ask what will the resulting field be at a distance
z away? Call this field gz(x, y). We will assume that only free space is between the
two planes. The manner in which the field propagates is determined by the physics of
Maxwell’s equations. We can directly apply some systems concepts. Note, for example,
that the system we seek to analyze is clearly shift invariant or, as called in optics,
isoplanatic. As we shift the input about, the output will shift accordingly. System linearity
for the electric field, interestingly, manifests itself as a coherence constraint on the
monochromatic illumination. In order for the outputs to add, we must allow for constructive
and destructive interference. This requires that the light be coherent, such as from a pin hole
or laser.

Consider, then, the two plane system illustrated in Figure 13.15. The input is the electric
field amplitude on the left plane and the output is the electric field amplitude on the right
plane. Under our assumptions, the system is linear since Maxwell’s equations are linear. If we
double the electric field amplitude on the input plane, we double the electric field amplitude
on the output plane (homogeneity). The response of the sum of two input fields is the sum of
the responses (additivity). Since the system is both additive and homogeneous, it is linear.13

13. See Section 3.2.1.3.
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FIGURE 13.16. For coherent monochromatic inputs, diffraction is a linear isoplanatic operation. The
system can thus be characterized by the impulse response, hz(x, y).

Linear shift invariant systems can be characterized by a single impulse response.14 Given the
impulse response, the output corresponding to any input is given by the two dimensional
convolution of the input with the impulse response as discussed in Section 8.4.3. Between
the planes in Figure 13.15 is free space. On the left we place an impulse of light. The electric
field amplitude on the output plane is hz(x, y). We will use Maxwell’s equation to find the
impulse response of free space. Then the response to input electric field amplitude can be
determined by a convolution. These convolutions are known as diffraction integrals.

A point source of light, δ(x, y, z) is placed at the origin of the input plane. The
corresponding electric field falling on the plane a distance z away is then the impulse
response of free space, or, as called in optics, the point spread function. It will serve as the
kernel in our convolution integral describing diffraction.

Let the impulse response for a fixed z be �E0(x, y, z). Clearly, the response of the point
source will be spherically symmetric. Thus

�E0(x, y, z) = E0(r)�ar

where

r2 = x2 + y2 + z2

and �ar is a unit vector. Thus, in imposing the physics in (13.14), we can use the spherically
symmetric form of the Laplacian.

�2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
= 1

r2

∂

∂
r2 ∂

∂r
.

The electric field wave equation now becomes

(
1

r2

∂

∂r
r2 ∂

∂r
+ k2

)
E0(r)�ar = 0.

Interestingly, it is this point in our derivation where the sense of vector notation leaves.
Taking the dot product of both sides with �ar gives the scalar equation

(
1

r2

∂

∂r
r2 ∂

∂r
+ k2

)
E0(r) = 0. (13.23)

14. See Section 3.3.3.
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To facilitate a solution to (13.23), define

E0(r) = Ê0(r)

r
.

It follows that

1

r2

∂

∂
r2 ∂

∂r2

E0(r)

r
= 1

r2

∂

∂r
r2

(
1

r

∂Ê0

∂r
− Ê0

r2

)

= 1

r2

(
∂Ê0

∂r
+ r

∂2Ê0

vr2
− ∂Ê0

∂r

)
= 1

r

∂2Ê0

∂r2
.

Thus

(�2 + k2)
Ê0(r)

r
= 1

r

(
∂2Ê0

∂r2
+ k2Ê0

)
= 0

or, equivalently,

∂2Ê0

∂r2
+ k2E0(r) = 0; r 
= 0.

The solution is

Ê0 = C1 e jkr + C2 e−jkr

where C1 and C2 are constants. Equivalently,

E0(r) = C1
e jkr

r
+ C2

e−jkr

r
; r 
= 0.

One of these waves is converging to and the other diverging from the point source. To see
which is which, we reimpose the temporal harmonic term.

E0(r)e−jωt = C1
e j(kr−ωt)

r
+ C2

e−j(kr+ωt)

r
.

The first term corresponds to a wave travelling in the positive r direction and is therefore
the one we desire. The second term corresponds to a converging wave. We discard it by
setting C2 = 0. Setting

C1 = 1

jλ
.

gives the final desired solution,

E0(x, y, z) = hz(x, y) = 1

jλ

exp( jk
√

x2 + y2 + z2)√
x2 + y2 + z2

(13.24)

where we have adopted the more conventional point spread function notation, hz(x, y), for
the impulse response of free space.
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13.2.3.1 The Diffraction Integral

For a field amplitude of u(x, y) on the z = 0 plane in Figure 13.15, we can now compute
the resulting field amplitude at a distance z away by convolving u(x, y) with the impulse
response of free space. The result is

gz(x, y) = u(x, y) ∗ hz(x, y)

= 1

jλ

∫ ∞
−∞

∫ ∞
−∞

u(ξ, η)

×
exp

(
jk
√

(x − ξ )2 + (y − η)2 + z2
)

√
(x − ξ )2 + (y − η)2 + z2

dξdη (13.25)

or, in more compact notation,

gz(x, y) = 1

jλ

∫ ∞
−∞

∫ ∞
−∞

u(ξ, η)
e jkR

R
dξdη (13.26)

where

R =
√

(x − ξ )2 + (y − η)2 + z2. (13.27)

Equations (13.26) (and (13.25)) is known as the Rayleigh-Sommerfield diffraction
integral.

The Rayleigh-Sommerfield diffraction integral is analytically intractable for most inputs.
In order to gain further insight into the diffraction process, Fresnel and Fraunhofer
approximations are made to the Rayleigh-Sommerfield diffraction integral.

13.2.3.2 The Fresnel Diffraction Integral

The Fresnel approximation simplifies the Rayleigh-Sommerfield diffraction integral when
z becomes sufficiently large.

The Fresnel Approximation. Consider Figure 13.17 where we have connected the point
(ξ, η) on the input plane with the point (x, y) on the output plane. From (13.27), the distance
between these two points is R. If the distance z is large with respect to the values of ξ, η, x
and y, then R ≈ r and we can replace R by z in the denominator of the integrand in (13.26).
Since, at optical wavelengths, k is very large, we must be somewhat more careful in the
exponential. A small error in R can change kR a significant percentage of 2π and render

FIGURE 13.17. The variable R is the distance between the coordinate (ξ, η) on the input plane and
(x, y) on the output plane.



[12:58 2/9/2008 5165-Marks-Ch13.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 634 610–659

634 HANDBOOK OF FOURIER ANALYSIS AND ITS APPLICATIONS

a poor approximation. Here, we will require a more precise truncated Taylor series
expression for R. Since

√
1+ ε2 ≈ 1+ 1

2
ε2; ε � 1,

we can make the following approximation

R = z

√
1+ (x − ξ )2

z2
+ (y − η)2

z2

≈ z

[
1+ (x − ξ )2

2z2
+ (y − η)2

2z2

]
.

With this substitution in the exponent and R ≈ z in the denominator, we obtain the Fresnel
approximation to the Rayleigh-Sommerfield diffraction integral in (13.26).

gz(x, y) = e jkz

jλz

∫ ∞
−∞

∫ ∞
−∞

u(ξ, η)e j k
2z [(x−ξ )2+(y−η)2]dξ dη. (13.28)

Impulse Response Interpretation. The Fresnel integral in (13.28) can be written as a
convolution.

gz(x, y) = e jkz

jλz
u(x, y) ∗ e j k

2z (x2+y2). (13.29)

The corresponding impulse response is

hz(x, y) = e jkz

jλz
e j k

2z (x2+y2). (13.30)

We know that the Rayleigh-Sommerfield impulse response in (13.24) corresponds to
a spherical wave since, when we set the phase equal to a constant, we obtain a family of
spheres. Specifically, kr = constant⇒ r = constant, which is a family of spheres. Similarly,
exp( jkz) corresponds to a plane wave since z = constant defines a family of planes. For
the Fresnel approximation to the impulse response in (13.30), setting the phase equal to a
constant results in

x2 + y2 = constant× z − 2z2.

This equation corresponds to a family of paraboloids.15 Thus, as illustrated in Figure 13.18,
we have approximated the spherical impulse response of Rayleigh-Sommerfield diffraction
with a parabolic impulse response. This is a good approximation under the Fresnel
assumption. In the Fraunhofer approximation, the wavefront is approximated as a
plane wave.

13.2.3.3 The Fraunhofer Approximation

The Fraunhofer approximation is a special case of the Fresnel approximation. It requires that
we be farther from the diffracting aperture than is required by the Fresnel approximation.

15. Set, for example, y = 0 to obtain a conventional parabolic conic section.
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FIGURE 13.18. The impulse response for Rayleigh-Sommerfield diffraction is a spherical wave. Fresnel
diffraction approximates this by a parabolic wave and is a good approximation when z, as measured
from the center of the sphere, becomes large. Fraunhofer diffraction, which requires a source of finite
extent and much larger, z, approximates the sphere with a plane wave.

We can expand the quadratic in the exponential in (13.28) and write

gz(x, y) = e jkz

jλz
e j k

2z (x2+y2)

×
∫ ∞
−∞

∫ ∞
−∞

u(ξ, η)e j k
2z (ξ2+η2)e−j k

z (xξ+yη)dξ dη. (13.31)

For the Fraunhofer approximation, set

exp

(
j

k

2z
(ξ2 + η2)

)
≈ 1. (13.32)

To do so, we will require the Fraunhofer assumption that

2z

k
= λz

π
� (ξ2, η2) (13.33)

where (ξ2, η2) denotes the maximum square dimension on the input plane. If, for example,
the diffracting aperture is a square with sides of length three, then (ξ2, η2) ≈ √2 × 3/2.
If (13.33) is true, then so is (13.32) and the Fresnel diffraction integral in (13.31) becomes
the Fraunhofer diffraction integral.

gz(x, y) = e jkz

jλz
e j k

2z (x2+y2)
∫ ∞
−∞

∫ ∞
−∞

u(ξ, η)e−j 2π
λz (xξ+yη)dξ dη (13.34)

Fields, gz(x, y), that result from Fraunhofer diffraction are also called far fields.
If the Fraunhofer assumption applies, then so does the Fresnel approximation. Both

Fraunhofer and Fresnel diffraction are approximations of the Rayleigh-Sommerfield
diffraction integral.

Impulse Response Interpretation. The Fraunhofer diffraction integral in (13.34),
interestingly, is no longer a convolution integral. It is, rather, of the more general form of
a superposition integral. The impulse response corresponding to the Fraunhofer diffraction
integral is

h(x, y; ξ, η) = e jkz

jλz
e j k

2z (x2+y2)e−j 2π
λz (xξ+yη). (13.35)
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For a point source at the origin, (ξ, η) = (0, 0), this is recognized as a plane wave. The
plane wave becomes a good approximation for a spherical wave if we are sufficiently far
from the origin and are restricted in attention to the region about the leading edge of the
spherical wave.

Relation of Fraunhofer Diffraction to Fourier Transformation. The two dimensional
Fourier transform of a spatial function u(ξ, η), from (8.5), is

U(fx, fy) =
∫ ∞
−∞

∫ ∞
−∞

u(ξ, η)e−j2π (fxξ+fyη)dξ dη (13.36)

where the frequency variables are ( fx, fy). Using this definition, we can write the Fraunhofer
approximation as

gz(x, y) = e jkz

jλz
e j k

2z (x2+y2)U

(
x

λz
,

y

λz

)
(13.37)

Thus, to within a quadratic phase term, the far field is proportional to the Fourier transform
of the diffracting aperture.

Light detectors, such as photo cells, film, and the human eye, respond to the intensity of
light. The intensity of a field amplitude u(x, y), is given by

I(x, y) = |u(x, y)|2

Thus, the intensity of the far field, from (13.37), is

Iz(x, y) = |gz(x, y)|2

= 1

(λz)2

∣∣∣∣U
(

x

λz
,

y

λz

)∣∣∣∣
2

(13.38)

The relation of the far field to the Fourier transform of the aperture is quite striking. Note
that the equivalent of a far field magnification factor here is λz. Thus, when we are in
the far field, increasing the distance from the aperture results in the intensity spreading
out further.

The Fresnel-Fraunhofer Boundary. Fresnel diffraction obviously does not abruptly
change into Fraunhofer diffraction. Identification of the point where Fraunhofer diffraction
begins is, at best, a fuzzy measure. Nevertheless, we will attempt to identify that point,
being satisfied if we are within an order of magnitude.

The Fraunhofer approximation requires that

e j k
2 (ξ2+η2) ≈ 1. (13.39)

Since e jz ≈ 1 for z < 1 radian,16 we wish, from (13.39), to require

k�2

2z
= π

λz
�2 ≈ 1

where� is the maximum linear dimension of the aperture. Solving for z = zf = the Fresnel-
Fraunhofer boundary gives

zf = π�2

λ
(13.40)

16. e j = 0.99985+ j.01745 ≈ 1.
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For example, consider light from a HeNe laser with a wavelength of λ = 6328Å. For
� = 1 mm, zf = 5 meters. For � = 1 cm, zf = 500 meters.

The Airy Pattern. For a circular aperture of diameter D, we write u(x, y) = � ( r
D

)
where r = √

x2 + y2. Using (8.35) in Section 8.4.6, we have the two dimensional Fourier
transform pair

�
( r

D

)
↔ 1

2
D2jinc(Dρ/2); ρ =

√
f 2
x + f 2

y .

Using (13.38), the Fraunhofer diffraction intensity for the circular aperture is

Iz(x, y) =
(

D

2λz

)2

jinc2
(

Dr

2λz

)
. (13.41)

This diffraction pattern, shown in Figure 13.19, is known as an Airy pattern. The middle
circle of the Airy pattern is the Airy disc. Its diameter is specified by the first zero crossing
of the jinc. Since J1(3.83) = 0, we conclude

jinc2
(

Dr

2λz

)
=

⎡
⎣J1

(
πDρ
λz

)

Dr
λz

⎤
⎦

2

is zero when

πDr

λz
= 3.83.

FIGURE 13.19. The Airy pattern given by the jinc2 in (13.41). The diameter of the Airy disc is given
by (13.43). A mesh plot of jinc(t) is in Figure 8.13.
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The diameter of the Airy disc is thus

d = 2r

= 2× 3.83× λz

πD
(13.42)

= 2.44× λz/D.

13.2.4 A One Lens System

Analysis of the one lens system shown in Figure 13.20 is the topic of this section. A
monochromatic coherent field, u(ξ, η) emanates from the (ξ, η) plane on the left and
propagates a distance d1 to the (α, β) plane on which is placed a thin positive lens with
focal length f . The light leaving this plane propagates an additional distance d2 to the (x, y)
plane where we have the output, g(x, y). Two special cases will result from this analysis: a
one lens imaging system and a Fourier transformer.

13.2.4.1 Analysis

Our approach is as follows. Fresnel diffraction will be used to find the field amplitude
incident on the (α, β) plane. This will be multiplied by the transmittance of the lens. The
light leaving the (α, β) plane will then be subjected to Fresnel diffraction over a distance
d2 to produce the resulting output.

From Fresnel diffraction, the light incident on the (α, β) plane is

v(α, β) = e jkd1

jλd1
e

j k
2d1

(α2+β2)

×
∫
ξ

∫
η

u(ξ, η)e
j k

2d1
(ξ2+η2)

e
−j k

d1
(ξα+ηβ)

dξ dη. (13.43)

Let v̂(α, β) be the light exiting the (α, β) plane. This is

v̂(α, β) = t(α, β)v(α, β)

FIGURE 13.20. A one lens system. The output, g(x, y), will be computed by evaluating Fresnel
diffraction from the input plane to the lens, multiplying the incident field by the lens transmittance,
and computing Fresnel diffraction to the output, (x, y), plane.
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where the lens transmittance is17

t(α, β) = e jknl0e−j k
2f (α2+β2) (13.44)

where n is refractive index of the lens, f its focal length and �0 is the maximum lens thickness.
We multiply the incident field by the lens transmittance18 to obtain the field immediately
exiting the lens

v̂(α, β) = e jk(d1+nl0)

jλd1
e

j k
2 ( 1

d1
− 1

f )(α2+β2)

×
∫
ξ

∫
η

u(ξ, η)e
j k

2d1
(ξ2+η2)

e
−j k

d1
(ξα+ηβ)

dξ dη. (13.45)

Propagating v̂(α, β) to the (x, y) plane using Fresnel diffraction gives

g(x, y) = e jkd2

jλd2
e

j k
2d2

(x2+y2)

×
∫
α

∫
β

v̂(α, β)e
j k

2d2
(α2+β2)

e
−j k

d2
(αx+βy)

dα dβ. (13.46)

Substituting (13.45) gives

g(x, y) = e jk(d1+d2+nl0)

−λ2d1d2
e

j k
2d2

(x2+y2)

×
∫
α

∫
β

e
j k

z ( 1
d1
+ 1

d2
− 1

f )(α2+β2)
e
−j k

d2
(αx+βy)

×
∫
ξ

∫
η

u(ξ, η)e
j k

2d1
(ξ2+η2)

e
−j k

d1
(ξα+ηβ)

dξ dη dα dβ. (13.47)

Interchanging integration order gives

g(x, y) = e jk(d1+d2+nl0)

λ2d1d2
e

j k
2d2

(x2+y2)
∫
ξ

∫
η

u(ξ, η)e
j k

2d1
(ξ2+η2)

× I(x, y; ξ, η)dξ dη (13.48)

17. We have stated the lens transmittance here without prior discussion. The lens transmittance, a pure phase
term, describes the phase delay of light going through a slower optical medium. This transmittance is applicable
when the lens has a spherical surface - the type that would occur if a thin slice were cut from a large sphere
of glass. If the radius of the sphere is large, then the spherical surface can be viewed, as was the case in the
Fresnel approximation, as a paraboloid. When applied to lenses, this parabolic approximation is dubbed the
paraxial approximation. Note, indeed, the phase term in the transmittance in (13.44) is quadratic. For a detailed
derivation of the lens transmittance, see any one of the many excellent texts of Fourier optics [493, 514, 518,
1082, 1344].

18. To apply this multiplication, each ray of light entering the lens should exit at the same coordinate it entered.
This is approximately achieved when the lens is thin, prompting the term thin lens approximation.
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where the (α, β) integral is

I(x, y; ξ, η) =
∫
α

∫
β

e
j k

z ( 1
d1
+ 1

d2
− 1

f )(α2+β2)
e

jk[α( x
d2
+ ξ

d1
)+β( y

d2
+ η

d1
)]

dα dβ. (13.49)

We will now analyze two special cases of (13.48).

13.2.4.2 Imaging System

The first special case of the one lens system in Figure 13.20 occurs when the separation
between the lens and the planes obeys the familiar lens law.

1

di
+ 1

d0
= 1

f

The (α, β) integral in (13.49) then becomes

I(x, y; ξ, η) =
∫
α

∫
β

e
−j 2π

λ [α( x
d2
+ ξ

d1
)+β( y

d2
+ η

d1
)]

dαdβ

= δ
(

1

λ

(
x

d2
+ ξ

d1

))
δ

(
1

λ

(
y

d2
+ η

d1

))

= (λd1)2δ

(
ξ + d1

d2
x

)
δ

(
η + d1

d2
y

)

where we have used the property that δ(ax) = 1
|a|δ(x). Substituting into (13.48) and using

the sifting property of the Dirac delta gives

g(x, y) = e jk(d1+d2+nl0)

−λ2d1d2
(λd1)2e

j k
2d2

(x2+y2)

×
∫
ξ

∫
η

u(ξ, η)e
j k

2d1
(ξ2+η2)

δ

(
ξ + d1

d2
x

)
δ

(
η + d1

d2
y

)
dξ dη

= e jk(d1+d2+nl0)
(

d1

d2

)
e

j k
2d2

(x2+y2)

× u

(
−d1

d2
x,−d1

d2
y

)
e

j k
2d1

[
(

d1
d2

x)2+(
d1
d2

y)2
]

= e jk(d1+d2+nl0)
(

d1

d2

)
e

j k
2d2

(
d1
d2
+1)(x2+y2)

u

(
−d1

d2
x,−d1

d2
y

)
. (13.50)

Define the magnification of the system by M = d2/d1. Then (13.50) becomes

g(x, y) = e jk(d1+d2+nl0)e
j k

2d2
( 1

m+1)(x2+y2) 1

M
u
(
− x

M
− y

M

)
. (13.51)

This is the output of the imaging system. The relationship becomes more apparent when
we write the corresponding intensity.

|g(x, y)|2 = 1

M2

∣∣∣ u
(
− x

M
,− y

M

)∣∣∣2 . (13.52)
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This same result can be obtained through geometric ray models of the system and is a
familiar result from fundamental optics.

13.2.4.3 Fourier Transformation

The second important case of the one lens imaging system is when d2 = f . Interestingly, the
system now performs a Fourier transform in much the same fashion as we saw in Fraunhofer
diffraction.

For d2 = f , the integral in (13.49) becomes

I(x, y; ξ, η) =
∫
α

e
j k

2d1
α2

e
jkα( x

d2
+ ξ

d1
)
dα

×
∫
β

e
j k

2d1
β2

e
jkβ( y

d2
+ η

d1
)
dβ. (13.53)

To evaluate this integral, we use a Fourier transform from Table 2.5.

∫ ∞
−∞

e jat2
e−j2πutdt =

√
jπ

a
e−j(πu)2/a. (13.54)

Using this equation19 to solve (13.53), followed by substitution into (13.48), gives

g(x, y) = exp ( jk(d1 + f + nl0))

−λ2d1d2
(jλd1)e j k

2f (x2+y2)

×
∫
ξ

∫
η

u(ξ, η)e
j k

2d1
(ξ2+η2)

[
e−j

k
2d1 (ξ2+η2)e

j
d2k

2f 2 (x2+y2)
e−j k

f (xξ+yη)

]
dξdη

= e jk(d1+f+nl0)

jλf
e

j k
2f

(
1− d1

f

)
(x2+y2)

∫
ξ

∫
η

u(ξ, η)e−j k
f (xξ+yη)dξ dη

= exp( jk(d1 + f + nl0)

jλf
e

j k
2f

(
1− d1

f

)
(x2+y2)

U

(
x

λf
,

y

λf

)
. (13.55)

Note that the corresponding intensity in the back focal plane is

|g(x, y)|2 = 1

(λf )2

∣∣∣∣U
(

x

λf
,

y

λf

)∣∣∣∣
2

. (13.56)

As was the case with Fraunhofer diffraction,20 we have generated the Fourier transform of
the input. Indeed, the single lens system with d2 = f essentially brings the far field to the
back focal plane.

Consider, again, the field amplitude on the back focal plane in (13.55). Setting d1 = f
corresponds to placement of the input on the front focal plane. The field amplitude on the
back focal plane now becomes directly proportional to the Fourier transform of the input.

g(x, y) = e jk(d1+f+nl0)

jλf
U

(
x

λf
,

y

λf

)
. (13.57)

19. Set a = k
2d1

and 2πu = k
(

x
d2
+ ξ

d1

)
for both integrals.

20. See (13.38)
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TABLE 13.1. Summary of the results of the one lens system.

Condition Result Equation

1
di
+ 1

d0
= 1

f imaging system 13.51, 13.52

d2 = f Fourier transform 13.55, 13.56

d2 = f and d1 = f Fourier transform 13.57, 13.56

A summary of the results for the one lens imaging system are summarized in Table 13.1.

13.2.4.4 Implementation of the PGA Using Optics

The Papoulis-Gerchberg algorithm (PGA) is discussed in Section 10.6. Using the Fourier
transform property of the lens, Marks et al. [895, 896, 907] designed an all optical archi-
tecture for performing the PGA. The PGA is illustrated enumerated steps in Figure 10.30.
The optical architecture with corresponding enumeration is in Figure 13.21.

Here are the steps as numbered in Figures 10.30 and Figure 13.21.

Step 1. The input is introduced through the aperture (hole) in the (ξ, η) plane. It
passes through the lens and the Fourier transform is incident on the (x, y)
plane.

Step 2. The Fourier transform is truncated. This is done by the small mirror on the
(x, y) plane. Light inside the mirror pupil is reflected back into the system.
Light outside of the mirror is lost to the system.

Step 3. The light travels from the mirror on the (x, y) plane back through the lens
towards the (ξ, η) plane. This constitutes an inverse Fourier transform.

FIGURE 13.21. Optical implementation of the PGA.
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Step 4. The middle of the incident light on the (ξ, η) plane goes through the hole and
is lost to the system.

Step 5. The hole is in a mirror that reflects light back into the system. The input
continues to be input into the system through the hole in the mirror, and the
first iteration has been performed.

The PGA iteration continues and converges at the speed of light.
Although an aesthetically pleasing architecture, the optical system suffers from two

problems resulting from the highly sensitive nature of PGA restoration.

(1) There is no provision to observe the result of the iteration. A pellicle21 can be
placed in the feedback path to bleed off an image to view. The absorbtion, also
present from the lens and imperfect mirrors, will degrade performance.

(2) The optical processor is analog and, like all analog processing, suffers from
inexactitude.

13.2.5 Beamforming

The basic goal of beamforming is to synthesize a diffracting aperture to concentrate energy
in an steerable beam. The basic beamforming model using a phased array [831, 840] consists
of (2N + 1)× (2N + 1) equally spaced point antennas. If the linear spacing is D units apart
on the z = 0, then

u(x, y) =
N∑

n=−N

N∑
m=−N

δ(x − nD)δ(y − mD). (13.58)

The array aperture is of length (2N + 1)D. Using (2.62), the two dimensional Fourier
transform is

U( fx, fy) = (2N + 1)2 array ((2N + 1)Dfx) array
(
(2N + 1)Dfy

)
.

From (13.37), the far field is therefore the array pattern

gz(x, y) = (2N + 1)2 e jkz

jλz
e j k

2z (x2+y2)array

(
(2N + 1)Dx

λz

)
array

(
(2N + 1)Dy

λz

)
.

(13.59)

This corresponds to a two dimensional periodic function a square tile.22 The width of main
lobe centered at the origin from zero crossing to zero crossing in x is

� = λz

(2N + 1)D
. (13.60)

This is the beam width. The beam width narrows as the array aperture size increases.

21. A thin highly transmissive membrane beam splitter.
22. A tile is illustrated in Figure 8.21. In practice, the far field is not periodic but is best modelled as the array

pattern weighted by a radiation pattern that attenuates higher order terms.
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13.2.5.1 Apodization

Weighting the point antennas can be referred to as apodization.23 In lieu of (13.58), we now
have

v(x, y) =
N∑

n=−N

N∑
m=−N

wnmδ(x − nD) δ( y − mD). (13.61)

where wnm is the weight assigned to the nmth antenna. The Fourier transform is a two
dimensional periodic trigonometric polynomial.

V ( fx, fy) =
N∑

n=−N

N∑
m=−N

wnme−j2πD(nfx+mfy) (13.62)

and the far field is the array pattern

ğz(x, y) = e jkz

jλz
e j k

2z (x2+y2) V

(
x

λz
,

y

λz

)
. (13.63)

This far field has a lobe width, �, that is determined by the weights, wnm. As is the case
with windows, the beam width can be reduced for a fixed array aperture by a wise choice
of weights. As is illustrated for windows in Figure 9.4, there is a tradeoff. For a fixed array
aperture, as the beam width narrows, the strength of the side lobes, δ, increases.

13.2.5.2 Beam Steering

From the modulation theorem of Fourier transforms, we know that, if v(x)←→ V ( fx), then
v(x)e j2π f0x ←→ V ( fx − f0). This principle can be applied to steer the beam from off center.
In lieu of u(x, y) in (13.61), we use the array

w(x, y) = v(x, y)e j2π (ξx+ηy). (13.64)

Thus

W ( fx, fy) = U( fx − ξ, fy − η).

The far field then becomes

˘̆gz(x, y) = V

(
x

λz
− ξ, y

λz
− η

)
.

The far field beam is thus shifted from the origin. It has been steered to be centered at

(x, y) = (λzξ, λzη) .

Since v(x, y) consists of point antennas, the modulation in (13.64) can be performed by
using complex weights. We simply make the substitution

wnm −→ wnme j2π (ξn+ηm)D.

Such antenna’s are oft referred to as phased array antennas [117, 164, 575, 865]. Receiving
antennas can use a similar approach for selecting the direction from which electromagnetic
signals are received.

23. Apodization in optics is equivalent to windowing in DSP. See Section 9.3.1.
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13.3 Heisenberg’s Uncertainty Principle

Heisenberg’s uncertainty principle states, at the quantum level, the position and momentum
(or velocity) of a particle cannot be accurately measured simultaneously. If�x denotes the
uncertainty of position measurement and�p uncertainty in momentum, then Heisenberg’s
uncertainty principle states

�x �p ≥ h̄

2
(13.65)

where h̄ = h
2π and h = 6.625× 10−34 Joule seconds is Planck’s constant. The uncertainties,

�x and�p, are standard deviations of the probability density functions for the position and
momentum.

Heisenberg’s uncertainty principle is a manifestation of the uncertainty relationship of
Fourier transforms presented in Section 4.3. Schrödinger’s equation for a free particle with
mass, m, is

jh̄

2m

∂2

∂x2
ψ(x, t) = ∂

∂t
ψ(x, t) (13.66)

where ψ(x, t) is the wave function.24 A solution is

ψ(x, t) = Ae−j(kx−2πukt). (13.67)

where A is a constant and k = 2π/λ. Substituting gives the wavelength dependent
relationship

uk = h̄k2

4πm
.

Since Schrödinger’s equation is linear, any superposition of the solutions in (13.67) will also
satisfy (13.66). Thus, instead of (13.67), we have the more general wave packet solution

ψX (x, t) =
∫ ∞

k=−∞
1

2π
�V

(
k

2π

)
e−j(kx−2πukt)dk. (13.68)

where 1
2π �V

(
k

2π

)
is the superposition weighting factor. We choose this notation because,

as we will show, it obeys the Fourier transform

ψX (x, 0)←→ �V (v). (13.69)

We dispose of the arbitrary constant in the solution of Schrödinger’s equation by adopting
the normalization ∫ ∞

−∞
|�(v)|2dv = 1.

Parseval’s theorem then requires
∫ ∞
−∞
|ψ(x, 0)|2dx = 1.

Both �(v) and ψ(x, 0) are therefore wave functions and |�(v)|2 and |ψ(x, 0)|2 are
probability density functions.

24. See Section 4.3.
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The de Broglie wavelength of a particle with momentum p is

λ = h

p

or, equivalently,

k = 2π

λ
= p

h̄
.

Changing the integration variable in (13.68) from k to p then gives

ψX (x, t) =
∫ ∞

p=−∞
1

h
�V

(p

h

)
e−j2π (px/h−ukt)dp.

Setting time t = 0 gives

ψX (x, 0) =
∫ ∞

p=−∞
1

h
�V

(p

h

)
e−j2πpx/hdp. (13.70)

We then see the wave functions, ψX (x, 0) and �V (v), as predicted in (13.69), are Fourier
transform pairs. The wave function for momentum follows as

ψP( p) = 1

h
�V

(p

h

)
. (13.71)

From the uncertainty relationship in (4.56), we know

σXσV ≥ 1

4π
. (13.72)

From (13.71) we have25

σP = hσV .

Substituting into (13.72) gives

σX σP ≥ h̄

2
.

For σX = �x and σP = �p, this is Heisenberg’s uncertainty principle between position and
momentum in (13.65).

13.4 Elementary Deterministic Finance

The tools of signal analysis are applicable to many areas outside of engineering and science.
In this section, we illustrate some applications to problems involving interest in deterministic
personal finance. These problems can be solved by

1. writing, by inspection, a describing difference equation, and
2. solving the difference equation using a unilateral z-transform.

25. See the derivation between (4.16) and (4.17).
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Examples we will present include analysis of

• compound interest on a simple deposit,
• compound interest on periodic deposits,
• payment scheduling of loans, such as mortgages, where premiums are paid

periodically, and
• effects of taxes and inflation.

13.4.1 Some Preliminary Math

The definition of the z transform and some of its properties are presented in Section 2.7.4.
An important difference equation in deterministic finance is

x[n+ 1] = ξx[n] + η ; x[0] = x0 ; n ≥ 0 (13.73)

where both ξ and η are constants. Performing a z transform of both sides using the shift
theorem in (2.132) gives

zX(z)− zx0 = ξX(z)+ η

1− z−1

where (2.131) has been used with a = 1 to compute the transform of ημ[n]. Solving for
X(z) and expanding using partial fractions give

X(z) = z
(z − 1)x0 + η
(z − ξ )(z − 1)

= 1

ξ − 1

[
(ξ − 1)x0 + η

1− ξz−1
− η

1− z−1

]
.

(13.74)

From (2.131), the solution to the difference equation in (13.73) is

x[n] = 1

ξ − 1

(
[(ξ − 1)x0 + η] ξn − η)μ[n]. (13.75)

13.4.2 Compound Interest on a One Time Deposit

Interest quotes have two components.

• annual interest and
• the frequency of compounding.

Let r be the annual interest and N the number of times per year compounding occurs. If
N = 12, as is the case with most savings accounts, compounding is performed monthly.

A one time deposit of d is made in an account that yields an interest of r compounded N

times per year. Let b̂[n] be the balance at the end of the nth period. The difference equation
describing the accumulating interest is

b̂[n+ 1] =
(

1+ r

N

)
b̂[n] (13.76)
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with the initial condition b̂[0] = d. This is a special case of the difference equation in
Equation 13.73 with

x[n] → b̂[n]
ξ → 1+ r

N

η→ 0

x0 → d.

Making these substitutions in (13.75) gives the balance at the end of the nth compounding
period as

b̂[n] = d
(

1+ r

N

)n
.

The balance at the end of a year is

b̂[N] = d
(

1+ r

N

)N
(13.77)

and at the end of M years is26

b̂[NM] = d
(

1+ r

N

)NM
. (13.78)

13.4.2.1 Yield Increases with Frequency of Compounding

All else constant, the greater the frequency of compounding, the higher the yield. In other
words, for a fixed yearly interest, r, and a fixed deposit d, the balance at the end of the year,
b̂[N], is an increasing function of N . To show this, we need to show only that the derivative
of (13.77), with respect to N is positive. From (13.77),

db̂[N]
dN

= d × d

dN
exp

(
N ln

(
1+ r

N

))

= b̂[N] × d

dN

(
N ln

(
1+ r

N

))

= b̂[N] × f (ρ) (13.79)

where

f (ρ) = ln(1+ ρ)− ρ

1+ ρ
and ρ = r/N . Since b̂[N] ≥ 0 for N ≥ 0 and f (ρ) ≥ 0 for ρ ≥ 0 (and therefore N ≥ 0), we
conclude that

db̂[N]
dN

≥ 0.

Since equality only occurs for N = 0, the function b̂[N] is a strictly increasing function of N .

26. To see how long it takes your money to double, see Exercise 13.9.
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13.4.2.2 Continuous Compounding

For continuous compounding (N→∞), the yield at the end of the year for a one time deposit
of d is

b̂[∞] = d er . (13.80)

This can be shown by applying (14.3) to (13.77).

13.4.2.3 Different Rates and Compounding Periods -
Same Yield

A number of interest rate and compounding period quotes result in the same yearly
yield. In other words, for a given r1, N1 and N2, there always exists an r2 such that the
yearly yield is identical. To show this, we use (13.77) and require that b̂[N1] = b̂[N2].
The result is

(
1+ r1

N1

)N1

=
(

1+ r2

N2

)N2

. (13.81)

Solving for r2 gives

r2 = N2

⎡
⎣
(

1+ r1

N1

)N1
N2 − 1

⎤
⎦ . (13.82)

For example, 12% compounded monthly (r1 = 0.12 and N1 = 12) has the same yield as
semi-annual (twice yearly, or N2 = 2) compounding when

r2 = 0.1230

or 12.30%.
Fixed rate to instantaneous rate transformation. The equivalent interest rate calculated
in (13.82) has interesting asymptotic limits. Using (14.3), we conclude

lim
N1→∞

r2 = N2

(
e

r1
N1 − 1

)
. (13.83)

Similarly,

lim
N2→∞

r2 = lim
N2→∞

(
1+ r

N

)N1
N2 − 1

1
N2

.

Applying L‘Hopital’s rule to this “zero over zero” situation gives

lim
N2→∞

r2 = lim
N2→∞

d
dN2

[(
1+ r

N

)N1
N2 − 1

]

d
dN2

(
1

N2

)

= N1 ln

(
1+ r1

N1

)
. (13.84)
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Not surprisingly, solving for r1 in (13.84) and interchanging subscripts gives (13.83).
Equation 13.84 also results from (13.81) when N2 →∞. Then

(
1+ r1

N1

)N1

→ er2 .

Solving for r2 gives (13.84).

13.4.2.4 The Extrema of Yield

The maximum yield for a fixed r and d corresponds to N =∞ and is given by (13.80). The
minimum yield, for N = 1, follows from (13.76) as

b̂[1] = (1+ r)d.

Thus

1+ r ≤ b̂[N]
d
≤ er .

Note that for modest interest rates, the spread is very small since, for r � 1,

er ≈ 1+ r. (13.85)

13.4.2.5 Effect of Annual Taxes

Consider the same problem of evaluating the balance of a one time deposit of d, except
that the interest each year is taxed at a rate, t. Let f [M] be the balance after year M before
taxation and c[M] be the balance after year M after taxation. The before taxation balance
at year M + 1 is given by (13.77) with d → c[M].

f [M + 1] = c[M]
(

1+ r

N

)N
.

The taxable interest earned in year M is new balance minus the initial balance.

i[M] = f [M + 1] − c[M]
The amount payed in taxes is t × i[M]. The after tax balance is

c[M + 1] = f [M + 1] − t × c[M].
Substituting the previous two equations results in the difference equation gives

c[M + 1] =
[

(1− t)
(

1+ r

N

)N + t

]
c[M].

This is a special case of the difference equation in (13.73) with

n→ M

x[n] → c[M]

ξ → (1− t)
(

1+ r

N

)N + t

η→ 0

x0 → c[0] = d.
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Making these substitutions in (13.75) gives the desired result.

c[M] = d

[
(1− t)

(
1+ r

N

)N + t

]M

. (13.86)

Continuous Compounding. Imposing the limit in (14.3) onto (13.86) gives the
continuous compounding solution

lim
N→∞ c[M] = d

[
(1− t)er + t

]M
. (13.87)

Extrema. As a function of N , (13.86) is minimum for N = 1 and maximum for N =∞.
Thus, from (13.87), the following extrema of yield results.

[(1− t)(1+ r)+ t]M ≤ c[M]
d
≤ [

(1− t)er + t
]M
.

From (13.85), for modest interest rates (r � 1) and moderate M, these bounds are tight.
Combining the tax and interest rates into an equivalent interest rate. For a given

tax rate, t, and compounding frequency, N , an equivalent (smaller) interest rate, rt , exists.
Equating (13.86) and (13.78) gives

[
(1− t)

(
1+ r

N

)]M
d =

(
1+ rt

N

)NM
d.

Solving for rt gives

rt = (1− t)

[(
1+ r

N

)N − 1

]
. (13.88)

The equivalent instantaneous compounding interest rate from a taxed instantaneous
interest rate follows from application of (14.3) to (13.88).

lim
N→∞ rt = (1− t) (er − 1) .

13.4.2.6 Effect of Inflation

A constant inflation rate can be viewed as a negative interest rate. If u is the rate of
inflation, the effect of inflation on d dollars over one year is given by (13.80) making
the replacement r →−u.

de−u.

Over M years, the balance has reduced to

[
de−u]M = de−Mu.

For example, if you stuffed d = $100 in your mattress for M = 3 years, its purchasing
value, at an annual inflation rate of 12%, is diminished to

$100× e−3×0.12 = $69.77

in terms of the purchasing value of money at the time of the initial deposit.
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Adjustment for inflation can be assessed after yield is evaluated. Two examples
follow.

Compound interest subjected to inflation. If there is an inflation rate of u for M years,
its toll on the compounded interest on a single deposit, d, follows from a simple adjustment
of (13.78).

bu[NM] = b̂[NM]e−Mu

= d

[(
1+ r

N

)N
e−u

]M

. (13.89)

The quantity bs[NM] is the purchasing value of the balance after M years in terms of the
value of the dollar when the original deposit was made. Interpreting this change as a percent
is helpful.

bt[NM]
d
× 100% =

[(
1+ r

N

)N
e−u

]M

× 100%.

For 200%, the purchasing value has doubled.
For continuous interest compounding, (13.89) becomes

lim
N→∞ bs[NM] = der−u. (13.90)

This can either be derived from (14.3) to (13.89) or by applying the inflation term to (13.80).
Equation 13.90 suggests the obvious. If you wish to maintain or increase the value of your
deposit, the interest rate must be equal to or exceed the inflation rate.

Inflation and tax on a one time deposit. If the effects of inflation are to be applied to
taxed interest,27 the result is simply an inflation adjustment to (13.86).

cu[M] = d

[{
(1− t)

(
1+ r

N

)N + t

}
e−u

]M

. (13.91)

For continuous interest compounding, the inflation adjusted balance follows from
(13.87) as

lim
N→∞ cu[M] = d

[{
(1− t)er + t

}
e−u]M

.

13.4.3 Compound Interest With Constant
Periodic Deposits

Consider interest at an annual rate of r compounded N times each year when, at each
compounding period, a deposit of s is made. If b̂[N] is the balance at the end of n periods,28

the describing difference equation is

b̂[n+ 1] =
(

1+ r

n

)
b̂[n] + s. (13.92)

27. See Exercise 13.9.
28. The notation b̂ will be used for the case of constant periodic deposits as opposed to b which denotes the

accumulated balance on a single deposit.
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Assume the account starts with a balance of b̂[0] = 0. Equation 13.92 is then a special case
of (13.73) with

x[n] → b̂[n]
ξ → 1+ r

N

η→ s

x0 → 0. (13.93)

Substituting these parameters into (13.75) gives

b̂[n] = Ns

r

{(
1+ r

N

)n − 1
}
.

The balance after one year is thus

b̂[N] = Ns

r

{(
1+ r

N

)N − 1

}
. (13.94)

and the balance after M years is29

b̂[MN] = Ns

r

{(
1+ r

N

)MN − 1

}
. (13.95)

13.4.3.1 Continuous Time Solution

For the continuous time solution to this problem, assume y is invested yearly in equal
installments. Thus

s = y

N
.

For M years, the balance in (13.95) therefore becomes

b̂[MN] = y

r

{(
1+ r

N

)MN − 1

}
.

Using (14.3) in Appendix 14.3, the balance using continuous time compounding is

lim
N→∞ b̂[MN] = y

r

(
erM − 1

)
.

13.4.3.2 Be a Millionaire

From (13.95), the deposit can be evaluated as

s =
r
N b̂[MN](

1+ r
N

)MN − 1
.

29. For an example application, see Exercise 13.10.
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Thus, if one makes monthly (N = 12) deposits at an annual interest rate of 12% (i.e.,
r = 0.12), one becomes a millionare30 (i.e., b̂[MN] = $1,000,000) for the following year,
M, and monthly deposit, s, pairs.

M = years s = monthly deposit

10 $4347.10
20 $1010.86
30 $286.13
40 $85.00
50 $25.60
100 $0.0652

13.4.3.3 Starting With a Nest Egg

Consider the case where the savings plan is started with an initial balance of b0. The
parameters associated with (13.73) are

b̂[n] = x[n]
ξ = 1+ r

N

η = s

x0 = b0.

The variables are the same as in Equation 13.93 except that x0 = b0. Making the variable
substitutions into (13.75) gives

b̂[n] = N

r

{( r

N
b0 + s

) (
1+ r

N

)n − s
}
. (13.96)

Effect of taxes. Assume that the deposits have already been taxed, but the accumulated
interest rate is taxed once yearly at a flat tax rate of t. Let the Mth year start with a balance
of c[M]. At the end of the year, prior to taxation, the balance, from (13.96) with b0 = c[M]
and n = N is

b̂[end of year M] = N

r

[( r

N
c[M] + s

) (
1+ r

N

)N − s

]
.

During the year, the total (taxed) deposits were Ns. Thus, the interest earned at the end of
year M is

i[year M] = b− Ns.

A total of t × I goes to taxes leaving us with a balance of

c[M + 1] = b− t × i

= (1− t)N

r

[( r

N
c[M] + s

) (
1+ r

N

)N − s

]
+ tNs.

30. Ignoring taxes.
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This is a special case of the difference equation in (13.73) with the following replacements

n→ M

x[n] → c[M]

ξ → (1− t)
(

1+ r

N

)N
(13.97)

η→ sϕ (13.98)

x0 → c[0] = 0

where we have assumed an initial balance of c[0] = 0 and

ϕ = N

{
1− t

r

[(
1+ r

N

)N − 1

]
+ t

}
.

Making the appropriate substitutions into (13.75), using the values of ξ and η from (13.97)
and (13.98), gives a balance of

c[M] = sϕ
(
ξM − 1

)
ξ − 1

.

As before, we can solve for the deposit, s.

s = c[m](ξ − 1)

ϕ
(
ξM − 1

) .

13.4.4 Loan and Mortgage Payments

You borrow β at an annual interest rate of r compounded N times per year. For monthly
pay periods, N = 12. The balance you owe at month n is equal to the balance of the
previous pay period, plus interest, minus the monthly payment, p. The describing difference
equation is

b̂[n+ 1] =
(

1+ r

N

)
b̂[n] − p.

Note that this is the same difference equation as (13.92) except that s is replaced by−p. The
solution for an initial condition of b̂[0] = β is thus that given in (13.96) with b0 replaced
by β (and s replaced by −p).

b̂[n] = N

r

{( r

N
β − p

) (
1+ r

N

)n + p
}
. (13.99)

13.4.4.1 Monthly Payment

If the loan is to payed in M years, we require that

b̂[MN] = 0.

Imposing this condition on (13.99) and solving for the monthly payment, p, gives

p =
r
N β

1− (
1+ r

N

)−MN ≈
r
N β

1− e−rM
. (13.100)
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A one million dollar loan at 5% interest (r = 0.05) compounded monthly (N = 12) has, for
30 years (M = 30), a monthly payment of p = $5368.22.

13.4.4.2 Amortization

A portion of the payment in (13.100) goes to interest and a portion to payment of the loan.
The balance due at pay period n is b̂[n] given in (13.99). The interest due on this balance is

i[n] = r

N
b̂[n]

=
( r

N
β − p

) (
1+ r

N

)N + p.

The amount of the payment going to the principle is thus

d[n] = p− i[n]

=
( r

N
β − p

) (
1+ r

N

)N

= r

N
β

(
1− 1

1− (
1+ r

N

)−MN

)(
1+ r

N

)n
.

13.4.4.3 Monthly Payment Over Long Periods of Time

For loans given over many years, the monthly payment, from (13.100), is

p∞ = lim
M→∞

r
N β

1− (
1+ r

N

)−MN

= r

N
β.

For modest interest rates, monthly payments for loans taken over a period of 100 years
are about the same as those for a thousand years - even though the original loan, β, is
the same in both cases. For example, using (13.100), a one million dollar loan at 5%
interest compounded monthly has, for 100 years, a monthly payment of $ 4195.23. For a
thousand year mortgage, the monthly payment is $ 4166.67. Since p∞ = $ 4166.67, a ten
thousand year mortgage, to the penny, has the same monthly payments due as a thousand
year mortgage.

13.5 Exercises

The Wave Equation, Its Fourier Solution and Harmony
in Western Music

13.1. Show that the boundary conditions in (13.3) and the wave equation for the vibrating
string in (13.1) are satisfied by the Fourier series solution in (13.4).

13.2. Instead of dividing the music octave equally into 12 notes, consider instead 19
notes.
(a) For the Pythagorean ratios for the major scales in Figure 13.5 and the minor

scale in Figure 13.8, evaluate how close, in cents, Pythagorean frequencies
deviate from the closest of the notes in the 19 notes per octave scale.
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(b) What is the maximum deviation, in cents, from an arbitrary frequency to a note
in the tempered scale?

(c) Compare your answer to the 12 note tempered scale and comment.
(d) Repeat this for another number of notes per octave. Can you get the deviation

from the Pythagorean scale smaller than the 12 or 19 note scale?

Fourier Transforms in Optics and Wave Propagation

13.3. Is the wave equation for the vibrating string in (13.1) the same as the one
dimensional wave equation from Maxwell’s equations in (13.12) under a time
harmonic assumption?

13.4. Show that the plane wave in (13.18) is a solution to the wave equation in (13.17).
13.5. Phase conjugation. Consider the angular spectrum plane wave propagation

direction illustrated in Figure 13.13.
(a) Sketch the propagation direction for another plane wave with the same (α, β)

direction cosines.
(b) Sketch the propagation directions for two plane wave with the same (−α,−β)

direction cosines. Note that these are conjugate plane waves.
(c) Consider, then, the luminous spider in Figure 13.22. Let the coherent wave

emanating from the spider be u(x, y, z). Sketch the wavefronts corresponding
to the complex conjugate, u∗(x, y, z).

13.6. The Airy pattern in Figure 13.19 is the result of Fraunhofer diffraction of a circle. If
we go farther and farther from the source, the Airy pattern simply gets bigger.
For small apertures, Fraunhofer diffraction produces the Fourier transform of
the aperture. The Fourier transform of a Fourier transform produces the original
function with a coordinate reversal. Should not, then, the Fraunhofer diffraction of
the Fraunhofer diffraction of the Airy pattern be a circle? Resolve this reasoning
paradox.

13.7. Show that the lobe width in (13.60) follows from (13.59).

Heisenberg’s Uncertainty Principle

13.8. Can equality be achieved in (13.65)?

FIGURE 13.22. See Exercise 13.5.
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Elementary Deterministic Finance

13.9. Doubling your money on a one time deposit.
(a) Using (13.78), how many years does it take for your one time deposit to double

its value?
(b) What is this period when the interest rate is r = 12% and N = 12?
(c) Using (13.91), how many years does it take for your one time deposit to double

its value when there are taxes and inflation?
(d) With an annual taxation of t = 6% and an inflation rate or u = 5%, how long

does it take to double your money? Use the interest rate and compounding
frequency in (b).

13.10. You deposit one cent each month at a rate of r = 12% compounded monthly. How
many years does it take to accumulate a million dollars?Assume there is no rounding,
no taxation and no inflation.

13.6 Solutions for Selected Chapter 13 Exercises.

13.2. Nineteen notes per octave uses an adjacent note frequency ratio of 21/19 rather that
the 21/12 used for the conventional tempered scale.
(a) In the 19 note system in the right columns of Figure 13.23, values of 2k/19 are

shown for 0 ≤ k ≤ 19. The Pythagorean ratios of Num/Den are shown on the
left side. The deviation in cents of the Pythagorean ratios to the frequencies in
the 19 note system is shown in the right column. The corresponding 12 note
tempered scale frequency ratios and their deviation from the Pythagorean scale
are also shown.

FIGURE 13.23. The deviation, in cents, from the Pythagorean musical scale from the evenly spaced 12
notes and 19 notes per octave scales. See Exercise 13.2.
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(b) 50 cents.
(c) The deviations in the 12 and 19 note systems look similar.

13.5. Phase conjugation.
(c) The wavefronts will be the same, except they will converge towards the spider

rather than diverge.
13.6. The Fraunhofer diffraction is not the Fourier transform of the aperture. It is the

Fourier transform of the aperture multiplied by a quadratic phase.
13.9. Doubling your money on a one time deposit.

(a) Set b̂[NM] = 2d in (13.78) and solve for M. The result is

M = log(2)

N log
(
1+ r

N

) . (13.101)

(b) Setting r = 0.12 and N = 12 in (13.101) gives M = 5.8 years.
(c) Solving for M in (13.91) gives

M = ln(2)

ln
(

(1− t)
(
1+ r

N

)N + t
)
− u

. (13.102)

(d) Substituting the numerical values into (13.102) gives

M = ln(2)

ln
(

0.94 (1.01)12 + 0.06
)
− 0.05

= 11.1 years.

13.10. Set b̂[MN] = $106 in (13.95) and solve for M.

M =
log

(
1+ r×106

Ns

)

N log(1+ r
N )

.

Using s = 0.1, r = 0.01 and N = 12 gives M = 115.7 years.
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And he made a molten sea, ten cubits from the one brim to the other: it was round all
about, and his height was five cubits: and a line of thirty cubits did compass it about.

An early estimate of π ≈ 3.
I Kings 7:23.

14.1 Schwarz’s Inequality

For two complex functions, g(t) and h(t), Schwarz’s inequality1 is

∣∣∣∣ �
∫ ∞
−∞

g(t)h∗(t) dt

∣∣∣∣
2

≤
∫ ∞
−∞
|g(t)|2 dt

∫ ∞
−∞
|h(t)|2 dt (14.1)

Equality obviously occurs for g(t) = ζh(t) where ζ is real. If this is not true, we have the
strict inequality

∫ ∞
−∞
|g(t)+ ζh(t)|2 dt > 0.

Thus, recalling z + z∗ = 2�z, we have

∫ ∞
−∞
|g(t)+ ζh(t)|2 dt

=
∫ ∞
−∞

(g(t)+ ζh(t))
(
g∗(t)+ ζh∗(t)

)
dt

= ζ 2
∫ ∞
−∞
|g(t)|2 dt + ζ

∫ ∞
−∞

(
g(t)h∗(t)+ g∗(t)h(t)

)
dt +

∫ ∞
−∞
|h(t)|2 dt (14.2)

= ζ 2
∫ ∞
−∞
|g(t)|2 dt + 2ζ

∫ ∞
−∞
� (g(t)h∗(t)

)
dt +

∫ ∞
−∞
|h(t)|2 dt

> 0.

1. Also called the Cauchy Schwarz inequality, the Cauchy inequality, and the Cauchy Bunyakovski Schwarz
inequality.

660
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For this inequality to be true, the final quadratic equation in ζ must have no real roots. Using
the quadratic equation, the solution of

aζ 2 + bζ + c = 0

is

ζ± = −b±√b2 − 4ac

2a
.

There are no real solutions to the quadratic when the discriminant is negative, i.e.
b2 − 4ac < 0. Applying this to (14.2) with

a =
∫ ∞
−∞
|g(t)|2.

b = 2
∫ ∞
−∞
� (g(t)h∗(t)

)
dt,

and

c =
∫ ∞
−∞
|h(t)|2

gives the strict inequality portion of Schwarz’s inequality in (14.1).

14.2 Leibniz’s Rule

d

dt

∫ u(t)

ξ=�(t)
f (t, ξ ) dξ = f (t, u(t))− f (t, �(t))+

∫ u(t)

ξ=�(t)
d

dt
f (t, ξ ) dξ.

14.3 A Useful Limit

An important identity is

lim
a→∞

(
1+ r

a

)a = er . (14.3)

Proof . We write

lim
a→∞ ln

(
1+ r

a

)a = lim
a→∞ a ln

(
1+ r

a

)

= lim
a→∞

ln
(
1+ r

a

)
1
a

.

This is a “zero over zero” situation to which we can apply L’Hopital’s rule.

lim
a→∞ ln

(
1+ r

a

)a = lim
a→∞

d
da ln

(
1+ r

a

)
d
da

( 1
a

) = r.

This completes the proof.
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14.4 Series

14.4.1 Binomial Series

The binomial series is

(a+ b)n =
n∑

k=0

(
n
k

)
akbn−k . (14.4)

where the binomial coefficients are(
n
k

)
:= n!

k!(n− k)! .

Pascal’s triangle is a table of binomial coefficients.

n = 1→ 1 1
2→ 1 2 1
3→ 1 3 3 1
4→ 1 4 6 4 1
5→ 1 5 10 10 5 1
6→ 1 6 15 20 15 6 1
7→ 1 7 21 35 35 21 7 1
↗ ↗ ↗ ↗ ↗ ↗ ↗ ↗

k = 0 1 2 3 4 5 6 7

For example, from the table, we read
(

7
3

)
= 35.

14.4.2 Geometric Series

The finite geometric series is2

N−1∑
n=0

zn = 1− zN

1− z
. (14.5)

If |z| < 1, then limz→∞ zN = 0, and

∞∑
n=0

zn = 1

1− z
; |z| < 1 (14.6)

2. When z = M is a positive integer, the number in (14.5) is dubbed a repunit [85]. In base M, these numbers
are a string of N − 1 ones. For M = 2, repunits are Mersenne numbers [562, 1073]. Mersenne numbers are a
popular base for mining large prime numbers of the form 2M − 1. The first 39 Mersenne primes correspond to

M = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281,

3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497,

86243, 110503, 132049, 216091, 756839, 859433, 1257787,

1398269, 2976221, 3021377, 6972593, 13466917.

The prime 13,466,917, in base 2, is a string of 13,466,916 ones. Primes of the form 22M−1 − 1 are double Mersenne
primes. The first few correspond to M = 2, 3, 5, 7.
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14.4.2.1 Derivation

To show this, let

S =
N−1∑
n=0

zn.

Then

S = 1 + z + z2 + · · · + zN−1

zS = z + z2 + · · · + zN−1 + zN .

Subtracting and solving for S gives (14.5). More generally,

h−1∑
n=�

zn = z� − zh

1− z
. (14.7)

14.4.2.2 Trigonometric Geometric Series

Using the geometric series, we can write

N∑
n=−N

zn = zN+ 1
2 − z

−
(

N+ 1
2

)

z1/2 − z−1/2
.

When z = e j2πθ ,

N∑
n=−N

e j2πnθ = sin (π (2N + 1) θ )

sin(πθ )
.

= (2N + 1) array2N+1(θ ). (14.8)

Similarly

N−1∑
n=0

e j2πnθ = N e jπ (N−1)θ arrayN (θ ). (14.9)

14.5 Ill-Conditioned Matrices

Singular matrices have zero determinants. Matrices close to being singular are ill-
conditioned. The condition of a matrix is

cond (A) = |λmax|
|λmin|

. (14.10)

where the λ’s are the eigenvalues of the matrix.

λn 
ψn = A 
ψn.

The ψn’s are the corresponding eigenvectors.
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Example 14.5.1. Consider the matrix

A =

⎡
⎢⎢⎢⎢⎣

0.9562 0.6889 1.0230 0.4380 0.8832
0.6889 0.6044 0.9112 0.2860 0.7146
1.0230 0.9112 1.3752 0.4210 1.0710
0.4380 0.2860 0.4210 0.2087 0.3832
0.8832 0.7146 1.0710 0.3832 0.8725

⎤
⎥⎥⎥⎥⎦
.

The condition of this matrix is 1.8874× 109. When this matrix is multiplied by a vector of
ones, the result is


a = A

⎡
⎢⎢⎢⎢⎣

1
1
1
1
1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

3.9893
3.2052
4.8014
1.7368
3.9245

⎤
⎥⎥⎥⎥⎦
. (14.11)

The inverse of A is

A−1 = 108 ×

⎡
⎢⎢⎢⎢⎣

0.8267 1.5639 −0.5038 −0.5633 −1.2519
0.5816 1.1744 −2.0727 −2.4462 2.0681
0.0314 −0.8723 0.9632 0.5381 −0.7361
−0.5853 −2.1954 0.3746 −0.3287 2.0751
−1.0947 −0.5101 0.8607 2.0575 −0.4342

⎤
⎥⎥⎥⎥⎦
. (14.12)

As we would expect,

A−1

⎡
⎢⎢⎢⎢⎣

3.9893
3.2052
4.8014
1.7368
3.9245

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

1.0000
1.0000
1.0000
1.0000
1.0000

⎤
⎥⎥⎥⎥⎦
. (14.13)

To illustrate the remarkable sensitivity of the ill-conditioned matrix, change the fifth
element in the multiplying vector from 3.9245 to 3.9246. Then

A−1

⎡
⎢⎢⎢⎢⎣

3.9893
3.2052
4.8014
1.7368
3.9246

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

−14, 318
23, 657
−8419
23, 736
−4966

⎤
⎥⎥⎥⎥⎦
. (14.14)

Compare the dramatic difference of (14.13) and (14.14). By this very small change, the
results are thrown off by as much as five orders of magnitude.

Insight into the sensitivity can be seen in the large numbers in the matrix’s inverse in
(14.12). When multiplied by a vector like 
a, the resultant vector components are determined
by subtracting very large and similar numbers to obtain small numbers. High computational
accuracy is required on nearly noiseless data.

14.6 Other Commonly Used Random Variables

There exist numerous other random variable models for use in a plurality of fields. Some
are presented in Section 4.2.2. In this section of the Appendix, we list some of the other
commonly used. Many of the random variables, such as the chi-squared, F, and Student’s t,
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can be derived from other random variables. For details, consult an introductory text on
statistics [613]. Other random variables, such as the Weibull and Pareto, were created due
to their descriptive and modelling attributes. Others, such as the Maxwell and Planck’s
radiation random variables, are descriptive of physical processes.

14.6.1 The Pareto Random Variable

The Pareto probability density function, with parameter a and shift parameter b, is pictured
in Figures 14.1 and 14.2. Its probability density function is

fX (x) = abaμ(x − b)

xa+1
.

The Pareto random variable is used to model many physical phenomena, including the
distribution of incomes above a given level and the distribution of the populations of cities
above a given population.

In general, for b > 0,

∫ ∞
b

xζdx =

⎧⎪⎨
⎪⎩
− bζ+1

ζ + 1
; ζ < −1

∞ ; ζ ≥ −1.

The mth moment of the Pareto random variable is therefore

Xm = aba
∫ ∞

b
xm−a−1dx

=

⎧⎪⎨
⎪⎩

abm

a− m
; a > m

∞ ; a ≤ m.

1

0.5
b = 2

b = 1

3

4
5

6
7

x

0
0 5 10 15

FIGURE 14.1. The Pareto random variable for a = 1 and various values of b. fX (x) = aba x−a−1

μ(x − b). Each of these random variables has an infinite mean and an infinite variance. Also, see
Figure 14.2.
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FIGURE 14.2. The Pareto random variable for b = 1 and various values of a. Another plot of the Pareto
probability density function is in Figure 14.1.

The mean of the Pareto random variable corresponds to m = 1.

X =

⎧⎪⎨
⎪⎩

ab

a− 1
; a > 1

∞ ; a ≤ 1.

The second moment, for m = 2, is

X2 =

⎧⎪⎪⎨
⎪⎪⎩

ab2

a− 2
; a > 1

∞ ; a ≤ 1.

The variance follows.

σ 2
X =

⎧⎪⎨
⎪⎩

ab2

(a− 2)(a− 1)2
; a > 2

∞ ; a ≥ 2.

14.6.2 The Weibull Random Variable

The Weibull random variable with parameter α scale parameter β, is used largely in
reliability theory. The probability density function is

fX (x) = αβ−αxα−1e
−
(

x
β

)α
μ(x).

The mean and variance are

X = β 1
α �

(
1+ 1

α

)
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FIGURE 14.3. The probability density function for the Weibull random variable. β = 1

and

σ 2
X = β

2
α

[
�

(
1+ 2

α

)
− �

(
1+ 1

α

)]
.

Plots are in Figure 14.3 for β = 1. The exponential random variable is a special case
corresponding to α = 1.

14.6.3 The Chi Random Variable

The chi random variable with k degrees of freedom is the square root of a chi-squared
random variable, equal to the square root of the sum of the squares on k i.i.d. zero mean
unit variance Gaussian random variables. Its probability density function is

fX (x) = 21− k
2 xk−1e−x2/2μ(x)

� (k/2)
.

For k = 1, the chi random variable is the half normal random variable. For k = 2, it is a
Rayleigh random variable. The mean and variance are

X =
√

2 �
(

k+1
2

)

�(k/2)

and

σ 2
X = k − X

2
.

Plots are in Figure 14.4.

14.6.4 The Noncentral Chi-Squared Random
Variable

Whereas the chi-squared random variable is the sum of the squares of k zero mean unit
variance Gaussian random variables, the noncentral chi-squared random variable, the means
are no longer zero. Its probability density function is

fX (x) =
√
λ x

k−1
2 e− x+λ

2 I k
2−1

(√
λx
)

2 (λx)
r
4

.
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FIGURE 14.4. The probability density function for the chi random variable.

The new parameter is λ. The chi-squared random variable is a special case for λ = 0.
The mean and variance of the noncentral chi-squared random variable are

X =
√

2 �
(

k+1
2

)

�(k/2)

and

σ 2
X = k − X

2
.

14.6.5 The Half Normal Random Variable

The half normal (or half Gaussian) random variable, with scale parameter θ , is obtained
by taking the magnitude of a zero mean Gaussian random variable. The probability density
function for the half normal random variable is

fX (x) = 2θ

π
e−

x2θ2
π μ(x)

and is shown as the k = 1 curve in Figure 14.4. The mean and variance are

X = 1

θ

and

σ 2
X =

π − 2

2θ2
.

14.6.6 The Rayleigh Random Variable

The Rayleigh random variable, with scale parameter ς , is a special case of the Weibull
random variable. Its probability density function is

fX (x) = x

ς2
e
− x2

2ς2 μ(x).

For ς = 1, the Rayleigh random variable is a chi random variable for k = 2. It is obtained by
performing the square root of the square of the sum of two independent zero mean Gaussian
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random variables with identical variances. The mean and variance of the Rayleigh random
variable are

fX (x) = ς
√
π

2

and

σ 2
X =

4− π
2

ς2.

14.6.7 The Maxwell Random Variable

The Maxwell random variable describes the speeds of molecules in thermal equilibrium
according to statistical mechanics. The probability density function is

fX (x) =
√

2

π
α3/2 x2e−

αx2
2 μ(x)

where α is a scale parameter. A plot is in Figure 14.5. The mean and variance are

X = 2

√
2

πα
,

and

σ 2
X =

3π − 8

πα
.

14.6.8 The Log Random Variable

The log normal random variable, as the name implies, is a random variable whose log is
a normal, or Gaussian, random variable. With shift parameter θ and scale parameter ς , its
probability density function is

fX (x) = 1√
2π ςx

e
− (log x−θ )2

2ς2 μ(x). (14.15)

The mean and variance are

X = eθ+
ς2

2 ,

0.6

0.4

0.2

0
0 1 2 3 4

x

FIGURE 14.5. The probability density function for the Maxwell random variable for α = 1.
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FIGURE 14.6. The probability density function for the log normal random variable in (14.15) for ς = 1.
Continued in Figure 14.7.
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FIGURE 14.7. Continuation of Figure 14.6 for the log normal probability density function.

and

σ 2
X = eς

2+2θ
(

eς
2 − 1

)
.

Plots are shown in Figures 14.6 and 14.7.

14.6.9 The Von Mises Variable

The Von Mises random variable has a probability density function of

fX (x) = eβ cos(x−α)�
( x−π

2π

)
2π I0(β)

. (14.16)

Its characteristic function is the topic of Exercise 4.11. The mean and variance are

X = α,
and

σ 2
X = 1− I1(b)

I0(b)
.
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FIGURE 14.8. The probability density function for the Von Mises random variable in (14.16) for various
α and β. For β = 0, a uniform random variable is a special case.

The uniform probability density function on [0, 2π ] is a special case for β = 0. Plots are
in Figure 14.8 for various α and β.

14.6.10 The Uniform Product Variable

The uniform product random variable is the product of k i.i.d. uniform random variables
on [0, 1]. Its probability density function is

fX (x) = (−1)k−1 (log x)k−1�
(
x − 1

2

)
(k − 1)! . (14.17)

As we expect, the uniform random variable is a special case when k = 1. Plots are in
Figure 14.9. Although for k > 1 the density function is ∞ at x = 0+, the moments are
finite. The mean and variance are

X = 2−k,

and

σ 2
X = 3−k − 4−k .

14.6.11 The Uniform Ratio Variable

The uniform ratio (or uniform quotient) random variable is formed by the ratio of two
independent random variables uniform on [0, 1]. The probability density function is

fX (x) = 1

2

[
�

(
x − 1

2

)
+ x−2μ(x − 1)

]
.

Plots are in Figure 14.10. The tail decays algebraically as x−2 so both the first and second
moments are infinite.
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FIGURE 14.9. The probability density function for the uniform product random variable in (14.17) for
various k. For k = 1, a uniform random variable is a special case.

0.5

0
0 1 2 x

FIGURE 14.10. The probability density function for the uniform ratio random variable. All moments
are infinite.

14.6.12 The Logistic Random Variable

The logistic random variable, used in the study of population growth, has a shift parameter
η and scale parameter b. Its probability density function

fX (x) = e−
x−η

b

b
(

1+ e−
x−η

b

)2
. (14.18)

The mean and variance are

X = η,
and

σ 2
X =

(πb)2

3
.

Plots of the logistic probability density function are in Figure 14.11.
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FIGURE 14.11. The probability density function for the logistic random variable in (14.18) for various
b and η = 0.

14.6.13 The Gibrat Random Variable

The Gibrat random variable is a special case of the log normal random variable for θ = 0
and ς = 1.

14.6.14 The F Random Variable

The F random variable is obtained by the ratio of a chi-squared random variable with
parameter n to an independent chi-squared random variable with parameter m. Its probability
density function is

fF(x) = x
n
2−1

B
( n

2 ,
m
2

) n
n
2 m

m
2 (xn+ m)−

n+m
2 μ(x). (14.19)

Plots of the probability density functions are in Figures 14.12 and 14.13.
The mean and the variance of the F random variable are

F = m

m − 2

and

σ 2
F =

2m2(m + n− 2)

m(m − 2)2(m − 4)
.

14.6.15 The Noncentral F Random Variable

The noncentral F random variable is a ratio of two noncentral chi-squared random
variables. Its probability density function, in terms of the F probability density function in
(14.19), is

fX (x) = e
λ
2 fF(x) 1F1

(
n+ m

2
,

n

2
,

λnx

2(nx + m)

)
.

where the confluent hypergeometric function, 1F1, in introduced in Exercise 4.9. The F
random variable is a special case for λ = 0.
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FIGURE 14.12. The probability density function for the F random variable in (14.19) for various values
of m and n = 2, 3, 4, 5. See also Figure 14.13.
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FIGURE 14.13. The probability density function for the F random variable in (14.19) for various
values of m and n = 20, 40, 60, 90. The plots are graphically indistinguishable for m = 1. See also
Figure 14.12.
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The mean of the noncentral F random variable is

X = (λ+ n)m

n(m − 2)

and the variance is

σ 2
X =

2m2
[
n2 + (2λ+ m − 2) n+ λ(λ+ 2m − 4)

]
n2(m − 4)(m − 2)2

.

14.6.16 The Fisher-Tippett Random Variable

The Fisher-Tippett (or extreme value or log-Weibull) random variable.

fX (x) = 1

β
e

(
α−x
β −e

α−x
β

)

. (14.20)

Probability density function plots are in Figure 14.14. The random variable’s mean is

X = α + βγ
where the Euler-Mascheroni constant is

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
= 0.57721566490153286. . . (14.21)

The variance is

σ 2
X =

π2β2

6
.

14.6.17 The Gumbel Random Variable

The Gumbel random variable is a special case of the Fisher-Tippett random variable for
α = 0 and β = 1 and therefore corresponds to the β = 1 curve in Figure 14.14.

2

0.3

0.2

0.1

0

b = 1

3

4

−5 0 5 10 15

x

FIGURE 14.14. The probability density function for the Fisher-Tippett random variable in (14.20) for
shift parameter α = 0 and scale parameter β = 1, 2, 3, 4.
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14.6.18 The Student’s t Random Variable

The Student’s t random variable is useful for problems associated with inference based on
“small” zero mean samples where estimating the mean and variance with sample averages
can deviate significantly from the true mean and variance.

fx(X) = �
( n+1

2

)
√
πn �

( n
2

) (
1+ x2

n

) n+1
2

. (14.22)

The plots in Figure 14.15 illustrate that, as n→∞, the Student’s t approaches a zero mean
unit variance Gaussian probability density function. The Student’s t random variable is zero
mean with a variance of

σ 2
X =

n

n− 2
.

14.6.19 The Noncentral Student’s t Random Variable

The noncentral Student’s t random variable is a generalization of the Student’s t random
variable for nonzero mean samples.

fX (x) = n
n
2 n!

2ne
λ2
2
(
n+ x2

) n
2 �

( n
2

)

×
⎡
⎣
√

2λx 1F1

(
n
2 + 1, 3

2 ,
(λx)2

2(n+x2)

)

(n+ x2)�
( n+1

2

) + 1F1

(
n+1

2 , 1
2 ,

(λx)2

2(n+x2)

)
√

n+ x2 �
( n

2 + 1
)
⎤
⎦ .

Its mean is

X =
√

n

2

λ�
( n−1

2

)
�
( n

2

)

0.4

0.3

0.2

0.1

0
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x
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2
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FIGURE 14.15. The probability density function for the Student’s t random variable in (14.22) for
various n. Due to the central limit theorem, as n→∞, the Student’s t probability density function
approaches a zero mean unit variance Gaussian probability density function. In this figure, the n = 50
plot is indistinguishable from the Gaussian.
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and the variance is

σ 2
X =

(
λ2 + 1

)
n

n− 2
− λ

2n

2

[
�
( n−1

2

)
�
( n

2

)
]2

.

The Student’s t is a special case for λ = 0.

14.6.20 The Rice Random Variable

The Rice random variable with parameters υ ≥ 0 and ς2, has a probability density
function of

fX (x) = x

ς2
e
− x2+υ2

2ς2 I0

(
xυ

ς2

)
μ(x). (14.23)

The Rayleigh random variable is a special case for υ = 0. The Rice random variable, also
referred to as Rician, is used in detection theory [1442]. A plot of its probability density
function is in Figure 14.16.

14.6.21 The Planck’s Radiation Random Variable

Planck’s radiation function, pictured in Figure 14.17, is the probability density function

fX (x) = 15

π4x5

(
e

1
x − 1

)−1
μ(x). (14.24)

14.6.22 The Generalized Gaussian Random Variable

The probability density function of generalized Gaussian random variable the with
parameters k > 0, variance σ 2

X and mean X is defined by [722]

fX (x) = k

2A(k)�(1/k)
e−(|x−X|/A(k))k

(14.25)

0.6 u = 0

u = 4

1
2 3

0.4

0.2

0
0 1 2 3 4 5 6 7

x

FIGURE 14.16. The probability density function for the Rice random variable in (14.23) for scale
parameter ς = 1 and parameter υ = 0, 1, 2, 3, 4.
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FIGURE 14.17. The probability density function for the Planck’s radiation random variable in (14.24).
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FIGURE 14.18. The generalized Gaussian probability density function in (14.25) for various values of
k for σ 2

X = 1 and X = 0. For k = 1, we have the Laplace probability density function. For k = 2, the
Gaussian.

where

A(k) =
(
σ 2

X �(1/k)

�(3/k)

) 1
2

. (14.26)

The Gaussian random variable is a special case for k = 2. The Laplace random variable
follows from k = 1. This is illustrated in Figure 14.18.

The generalized Gaussian random variable is used in detection theory [722].

14.6.23 The Generalized Cauchy Random Variable

The generalized Cauchy random variable. The probability density function for the
generalized Cauchy random variable with parameters k and ν is [722]

fX (x) = Ç(k, ν)
[

1+ 1
ν

( |x|
A(k)

)k
]ν+ 1

k

(14.27)
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FIGURE 14.19. The generalized Cauchy probability density function in (14.27) for ν = 4 and σ 2
X = 1.

(Note: σ 2
X can not be interpreted as a variance for the generalized Cauchy random variable.)

where A(k) is defined in (14.26) and

Ç(k, ν) = kν−1/k �
(
ν + 1

k

)
2A(k) �(ν) �

( 1
k

) .

The Cauchy random variable is a special case for k = 2 and ν = 1/2.
The tails of the generalized Cauchy are fat, and decay algebraically in inverse proportion

to |x|kν+1. The generalized Gaussian random variable has a much faster exponential decay.
The generalized Cauchy random variable, illustrated in Figure 14.19, is used in detection

theory [722].
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[646] Valéria de Magalhães Iorio. Fourier Analysis and Partial Differential Equations: An

Introduction. Cambridge University Press, 2001.
[647] H. Ishida, Fourier Transform–Infrared Characterization of Polymers. Springer, 1987.
[648] M.E. Ismail andAhmed I. Zayed.Aq-analogue of the Whittaker-Shannon-Kotelnikov sampling

theorem. Proceedings of the American Mathematical Society, Vol. 131(12), pp. 3711–3719,
2003.

[649] S.H. Izen. Generalized sampling expansion on lattices. IEEE Transactions of Signal Processing,
Vol. 53(6), pp. 1949–1963, 2005.

[650] Leland B. Jackson. Digital Filters and Signal Processing... with MATLAB Exercises,
Springer; 3 edition 1995.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 706 680–744

706 REFERENCES

[651] Dunham Jackson. Fourier Series and Orthogonal Polynomials. Dover Publications, 2004.
[652] J.F. James. A Student’s Guide to Fourier Transforms. Cambridge University Press; 2 edition,

2002.

J
[653] M.A. Jack, P.M. Grant, and J.H. Collins. The theory, design, and applications of surface acoustic

wave Fourier-transform processors. Proceedings of the IEEE, Vol. 68(4), pp. 450–468, 1980.
[654] J.S. Jaffe. Limited angle reconstruction using stabilized algorithms. IEEE Transactions on

Medical Imaging, Vol. 9(3), pp. 338–344, 1990.
[655] D.L. Jagerman. Bounds for truncation error of the sampling expansion. SIAM J. Applied Math.,

Vol. 14, pp. 714–723, 1966.
[656] D.L. Jagerman. Information theory and approximation of bandlimited functions. Bell Systems

Tech. J., Vol. 49, pp. 1911–1941, 1970.
[657] D.L. Jagerman and L. Fogel. Some general aspects of the sampling theorem. IRE Transactions

Information Theory, Vol. IT-2, pp. 139–146, 1956.
[658] J. Jahns and A.W. Lohmann. The Lau effect (a diffraction experiment with incoherent

illumination). Optical Communication, pp. 263–267, 1979.
[659] A.K. Jain. Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs, NJ,

1989.
[660] A.K. Jain and S. Ranganath. Extrapolation algorithms for discrete signals with application

to spectral estimation. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-29,
pp. 830–845, 1981.

[661] S. Jang, W. Choi, T.K. Sarkar, M. Salazar-Palma, K. Kyungjung, and C.E. Baum. Exploiting
early time response using the fractional Fourier transform for analyzing transient radar returns.
IEEE Transactions on Antennas and Propagation, Vol. 52(11), pp. 3109–3121, 2004.

[662] T. Jannson. Shannon number of an image and structural information capacity in volume
holography. Opt. Acta, pp. 1335–1344, 1980.

[663] A.J.E.M. Janssen. Weighted Wigner distributions vanishing on lattices. Journal Math. Anal.
Applied, Vol. 80, pp. 156–167, 1981.

[664] A.J.E.M. Janssen. Gabor representation of generalized functions. Journal Math. Anal. Applied,
Vol. 83, pp. 377–396, 1981.

[665] A.J.E.M. Janssen. Positivity of weighted Wigner distributions. SIAM J. Math. Anal., Vol. 12,
pp. 752–758, 1981.

[666] A.J.E.M. Janssen. Bargmann transform, Zak transform and coherent states. Journal Math.
Phys., Vol. 23, pp. 720–731, 1982.

[667] A.J.E.M. Janssen. The Zak transform: a signal transform for sampled time-continuous signals.
Philips J. Res., Vol. 43, pp. 23–69, 1988.

[668] A.J.E. Janssen, R.N. Veldhuis, and L.B. Vries. Adaptive interpolation of discrete time signals
that can be modeled as autoregressive processes. IEEE Transactions Acoust., Speech, Signal
Processing, Vol. ASSP-34, pp. 317–330, 1986.

[669] P.A. Jansson, editor. Deconvolution. With applications in Spectroscopy. Academic Press,
Orlando, FL, 1984.

[670] P.A. Jansson, R.H. Hunt, and E.K. Plyer. Resolution enhancement of spectra. Journal of the
Optical Society America, Vol. 60, pp. 596–599, 1970.

[671] Y.C. Jenq. Digital spectra of nonuniformly sampled signals: Digital look up tunable sinusoidal
oscillators. IEEE Transactions Instrumentation & Measurement, Vol. 37, No. 3, pp. 358–362,
1988.

[672] Yeonsik Jeong, Inkyeom Kim, and Hyunchul Kang. A practical projection-based postprocess-
ing of block-coded images with fast convergence rate. IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 10(4), pp. 617–623, 2000.

[673] A.J. Jerri. On the application of some interpolating functions in physics. Journal Res. National
Bureau of Standards -B. Math. Sciences, Vol. 73B, No. 3, pp. 241–245, 1969.

[674] A.J. Jerri. On the equivalence of Kramer’s and Shannon’s generalized sampling theorems. IEEE
Transactions Information Theory, Vol. IT-15, pp. 469–499, 1969.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 707 680–744

REFERENCES 707

[675] A.J. Jerri. Some applications for Kramer’s generalized sampling theorem. Journal Engineering
Math., Vol. 3, No. 2, April 1969.

[676] A.J. Jerri. Application of the sampling theorem to time-varying systems. Journal Franklin
Institute, Vol. 293, pp. 53–58, 1972.

[677] A.J. Jerri. Sampling for not necessarily finite energy signals. International J. System Sci., Vol. 4,
No. 2, pp. 255–260, 1973.

[678] A.J. Jerri. Sampling expansion for the Lαν -Laguerre integral transform. Journal Res. National
Bureau of Standards -B. Math. Sciences, Vol. 80B, pp. 415–418, 1976.

[679] A.J. Jerri. The Shannon sampling theorem-its various extensions and applications: A tutorial
review. Proceedings IEEE, Vol. 65, No. 11, pp. 1565–1596, 1977.

[680] A.J. Jerri. Computation of the Hill functions of higher order. Math. Comp., Vol. 31, pp. 481–484,
1977.

[681] A.J. Jerri. Towards a discrete Hankel transform and its applications. Journal of Applied Anal.,
Vol. 7, pp. 97–109, 1978.

[682] A.J. Jerri. The application of general discrete transforms to computing orthogonal series and
solving boundary value problems. Bull. Calcutta Math. Society, Vol. 71, pp. 177–187, 1979.

[683] A.J. Jerri. General transforms hill functions. Journal Applicable Analysis, Vol. 14, pp. 11–25,
1982.

[684] A.J. Jerri. A note on sampling expansion for a transform with parabolic cylinder kernel. Inform.
Sci., Vol. 26, pp. 1–4, 1982.

[685] A.J. Jerri. On a recent application of the Shannon sampling theorem. In IEEE International
Symposium on Information Theory, Quebec, Canada, 1983.

[686] A.J. Jerri. A definite integral. SIAM Rev., Vol. 25, No.1, p. 101, 1983.
[687] A.J. Jerri. Interpolation for the generalized sampling sum of approximation theory. The AMS

Summer Meeting, Albany, NY, 1983.
[688] A.J. Jerri. Application of the transform–iterative method to nonlinear concentration boundary

value problem. Chem. Engineering Commun., Vol. 23, pp. 101–113, 1983.
[689] A.J. Jerri. The generalized sampling theorem for transforms of not necessarily square integrable

functions. Journal Math., Math. Sci., Vol. 8, pp. 355–358, 1985.
[690] A.J. Jerri. Introduction to Integral Equations with Applications. Marcel Dekker, New York,

1985.
[691] A.J. Jerri. Part II: The Sampling Expansion – A Detailed Bibliography. 1986.
[692] A.J. Jerri. An extended Poisson type sum formula for general integral transforms and

aliasing error bound for the generalized sampling theorem. Journal Applied Analysis, Vol. 26,
pp. 199–221, 1988.

[693] A.J. Jerri. The Gibbs Phenomenon in FourierAnalysis, Splines and Wavelet. Springer, 1998.
[694] A.J. Jerri.Arecent modification of iterative methods for solving nonlinear problems. The Math.

Heritage of C.F. Gauss, 1991, G.M. Rassias, editor, World Scientific Publ. Co., Singapore,
pp. 379–404.

[695] A.J. Jerri. Integral and Discrete Transforms with Applications and Error Analysis. Marcel
Dekker Inc., New York, 1992.

[696] A.J. Jerri and E.J. Davis. Application of the sampling theorem to boundary value problems.
Journal Engineering Math., Vol. 8, pp. 1–8, 1974.

[697] A.J. Jerri and D.W. Kreisler. Sampling expansions with derivatives for finite Hankel and other
transforms. SIAM J. Math. Anal., Vol. 6, pp. 262–267, 1975.

[698] A.J. Jerri. Truncation error for the generalized Bessel type sampling series. Journal Franklin
Institute (USA) Vol. 314, No. 5, pp. 323–328, 1982.

[699] A.J. Jerri, R.L. Herman and R.H. Weiland. A modified iterative method for nonlinear chemical
concentration in cylindrical and spherical pellets. Chem. Engineering Commun., Vol. 52,
pp. 173–193, 1987.

[700] H. Johnen. Inequalities connected with moduli of smoothness. Mat. Vesnik, Vol. 9(24),
pp. 289–303, 1972.

[701] G. Johnson and J.H.S. Hutchinson. The limitations of NMR recalled–echo imaging techniques.
Journal Magnetic Resonance, Vol. 63, pp. 14–30, 1985.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 708 680–744

708 REFERENCES

[702] Joint Photographic Experts Group, ISO-IEC/JTC1/SC2/WP8, “JPEG technical specification,
revision 8,” JPEG-8-R8, 1990.

[703] M.C. Jones. The discrete Gerchberg algorithm. IEEE Transactions Acoust., Speech, Signal
Processing, Vol. ASSP-34, pp. 624–626, 1986.

[704] D.L. Jones, R.G. Baraniuk. An adaptive optimal-kernel time-frequency representation. IEEE
Transactions on Signal Processing, Vol. 43(10), pp. 2361–2371, 1995.

[705] I.I. Jouny. Scattering analysis using fractional Fourier with applications in mine detection.
Proceedings. 2004 IEEE International Geoscience and Remote Sensing Symposium, 2004.
IGARSS ’04. Vol. 5, pp. 3460–3463, 2004.

K
[706] M. Kac, W.L. Murdock, and G. Szegö. On the eigenvalues of certain Hermitian forms. Journal

Rat. Mech., Anal., pp. 767–800, 1953.
[707] M.I. Kadec. The exact value of the Paley-Wiener constant Soviet Math. Dokl., Vol. 5,

pp. 559–561, 1964.
[708] R.E. Kahn and B. Liu. Sampling representation and optimum reconstruction of signals. IEEE

Transactions Information Theory, Vol. IT-11, pp. 339–347, 1965.
[709] T. Kailath. Channel characterization: time-variant dispersive channels. In Lectures on

Communications Systems Theory, E.J. Baghdady, editor, McGraw-Hill, New York, 1960.
[710] S.C. Kak. Sampling theorem in Walsh-Fourier analysis. Electron. Letters, Vol. 6,

pp. 447–448, 1970.
[711] Avinash C. Kak, Malcolm Slaney. Principles of Computerized Tomographic Imaging.

Industrial & Applied Math (2001).
[712] G. Kakoza and D. Munson. A frequency-domain characterization of interpolation from

nonuniformly spaced data. In Proceedings of the International Symposium on Circuits and
Systems, Portland, Oregon, pp. 288–291, 1989.

[713] F. Kamalabadi and B. Sharif. Robust regularized tomographic imaging with convex projections.
IEEE International Conference on Image Processing, 2005. ICIP 2005. Vol. 2, pp. II - 205–208,
2005.

[714] N.S. Kambo and F.C. Mehta. Truncation error for bandlimited non-stationary processes. Inform.
Sci., Vol. 20, pp. 35–39, 1980.

[715] N.S. Kambo and F.C. Mehta. An upper bound on the mean square error in the sampling
expansion for non-bandlimited processes. Inform. Sci., Vol. 21, pp. 69–73, 1980.

[716] E.O. Kamenetskii. Sampling theorem in macroscopic electrodynamics of crystal lattices.
Physical Review E, Vol. 57(3), pp. 3556–3562, Part B, 1998.

[717] David W. Kammler. First Course in Fourier Analysis. Prentice Hall, 2000.
[718] M. Kato, I. Yamada and K. Sakaniwa. A set-theoretic blind image deconvolution based

on hybrid steepest descent method. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences. Vol. E82A (8), pp. 1443–1449, 1999.

[719] K. Kazimierczuk, W. Kozminski, and I. Zhukov. Two-dimensional Fourier transform of arbi-
trarily sampled NMR data sets. Journal of Magnetic Resonance,Vol. 179(2), pp. 323–328, 2006.

[720] L.M. Kani and J.C. Dainty. Super-resolution using the Gerchberg algorithm. Optical
Communication, pp. 11–17, 1988.

[721] D. Kaplan and R.J. Marks II. Noise sensitivity of interpolation and extrapolation matrices.
Applied Optics, Vol. 21, pp. 4489–4492, 1982.

[722] Saleem A. Kassam. Signal Detection in Non-Gaussian Noise. Springer-Verlag, 1988.
[723] R. Kasturi, T.T. Krile, and J.F. Walkup. Space-variant 2-D processing using a sampled input/

sampled transfer function approach. SPIE Inter. Optical Comp. Conf., Vol. 232, pp. 182–190,
1980.

[724] Jyrki Kauppinen and Jari Partanen. Fourier Transforms in Spectroscopy. Wiley, 2001.
[725] M. Kawamura and S. Tanaka. Proof of sampling theorem in sequency analysis using extended

Walsh functions. Systems-Comput. Controls, Vol. 9, pp. 10–15, 1980.
[726] Steven M. Kay. The effect of sampling rate on autocorrelation estimation. IEEE Transactions

Acoust., Speech, Signal Processing, Vol. ASSP-29, No. 4, p. 859–867, 1981.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 709 680–744

REFERENCES 709

[727] R.B. Kerr. Polynomial interpolation errors for bandlimited random signals. IEEE Transactions
Systems, Man, Cybernetics, pp. 773–774, 1976.

[728] R.B. Kerr. Truncated sampling expansions for bandlimited random signals. IEEE Transactions
Systems, Man, Cybernetics, Vol. SMC-9, pp. 362–364, 1979.

[729] L.M. Khadra, J.A. Draidi, M.A. Khasawneh and M.M. Ibrahim. Time-frequency distributions
based on generalized cone-shaped kernels for the representation of nonstationary signals.
Journal of the Franklin Institute-Engineering and Appled Mathematics. Vol. 335B(5),
pp. 915–928, 1998.

[730] K. Khare and N. George. Sampling-theory approach to eigenwavefronts of imaging
systems.Journal of the Optical Society of America A-Optics, Image Science and Vision,
Vol. 22(3), pp. 434–438, 2005.

[731] K. Khare. Bandpass sampling and bandpass analogues of prolate spheroidal functions. Signal
Processing, Vol. 86(7), pp. 1550–1558, 2006.

[732] A.A. Kharkevich. Kotelnikov’s theorem-a review of some new publications. Radiotekhnika,
Vol. 13, pp. 3–10, 1958.

[733] Y.I. Khurgin and V.P. Yakovlev. Progress in the Soviet Union on the theory and applications of
bandlimited functions. Proceedings IEEE, Vol. 65, pp. 1005–1029, 1976.

[734] T. Kida. Generating functions for sampling theorems. Electronics and Communications in
Japan, (English Translation), Vol. 65(1), pp. 9–18, 1982.

[735] T. Kida. Extended formulas of sampling theorem on bandlimited waves and their application
to the design of digital filters for data transmission. Electron Communication Japan, Part 1,
Vol. 68(11), pp. 20–29, 1985.

[736] Yoon Kim, Chun-Su Park and Sung-Jea Ko. Fast POCS based post-processing technique for
HDTV. IEEE Transactions on Consumer Electronics, Vol. 49(4), pp. 1438–1447, 2003.

[737] Yoon Kim, Chun-Su Park, Sung-Jea Ko. Frequency domain post-processing technique based
on POCS. Electronics Letters, Vol. 39(22), pp. 1583–1584, 2003.

[738] G.W. King and A.G. Emslie. Spectroscopy from the point of view of the communication theory
I. Journal of the Optical Society America, Vol. 41, pp. 405–409, 1951.

[739] G.W. King and A.G. Emslie. Spectroscopy from the point of view of the communication theory
III. Journal of the Optical Society America, Vol. 43, pp. 664–668, 1953.

[740] K. Kinoshita and M. Lindenbaum. Robotic control with partial visual information. International
Journal of Computer Vision, Vol. 37(1), pp. 65–78, 2000.

[741] J.G. Kirkwood. Quantum statistics if almost classical ensembles. Phys. Rev., Vol.44, pp. 31–37,
1933.

[742] S.J. Kishner and T.W. Barnard. Detection and location of point images in sampled optical
systems. Journal of the Optical Society America, Vol. 62, pp. 17–20, 1972.

[743] Morris Kline. Mathematical Thought from Ancient to Modern Times, Oxford University
Press, 1972.

[744] D. Klusch. The Sampling Theorem, Dirichlet Series and Hankel Transforms. Journal of
Computational and Applied Mathematics, Vol. 44(3), pp. 261–273, 1992.

[745] I. Kluvanek. Sampling theorem in abstract harmonic analysis. Mat. Casopis Sloven. Akad. Vied,
Vol. 15, pp. 43–48, 1965.

[746] J.J. Knab. System error bounds for Lagrange estimation of bandlimited functions. IEEE
Transactions Information Theory, Vol. IT-21, pp. 474–476, 1975.

[747] J.J. Knab. Interpolation of bandlimited functions using the approximate prolate series. IEEE
Transactions Information Theory, Vol. IT-25, pp. 717–720, 1979.

[748] J.J. Knab. Simulated cardinal series errors versus truncation error bounds. Proceedings IEEE,
Vol. 68, pp. 1020–1060, 1980.

[749] J.J. Knab. Noncentral interpolation of bandlimited signals. IEEE Transactions Aerospace &
Electronic Systems, Vol. AES-17, pp. 586–591, 1981.

[750] J.J. Knab and M.I. Schwartz. A system error bound for self truncating reconstruction filter
class. IEEE Transactions Information Theory, Vol. IT-21, pp. 341–342, 1975.

[751] I.P. Knyshev. The sampling theorem in amplitude, quantization of random signals. Journal of
Communications Technology and Electronics, Vol. 47(12), pp. 1361–1363, 2002.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 710 680–744

710 REFERENCES

[752] I.P. Knyshev. The sampling theorem in amplitude, quantization of random signals. Journal of
Communications Technology and Electronics, Vol. 47(12), pp. 1361–1363, 2002.

[753] Y. Kobayashi and M. Inoue. Combination of two discrete Fourier transforms of data sampled
separately at different rates. Journal Inf. Process, Vol. 3, pp. 203–207, 1980.

[754] T. Kodama. Sampling theorem application to SAW diffraction simulation. Electron. Letters,
Vol. 16, pp. 460–462, 1980.

[755] H. Kogelnik and T. Li. Laser beams and resonators. Proceedings IEEE, pp. 1312–1329,
1966.

[756] A. Kohlenberg. Exact interpolation of bandlimited functions. Journal Applied Phys., Vol. 24,
pp. 1432–1436, 1953.

[757] D. Kohler and L. Mandel. Source reconstruction from the modulus of the correlation function:
a practical approach to the phase problem of optical coherence theory. Journal of the Optical
Society America, Vol. 63, pp. 126–134, 1973.

[758] K. Kojima. Sampling Theorem in Diffraction Integral Transform. Japanese Journal of Applied
Physics, Vol. 16(5), pp. 817–825, 1977.

[759] Chi-Wah Kok; Man-Wai Kwan. Sampling theorem for ISI-free communication. Proceedings.
IEEE International Symposium on Information Theory, p. 99, 2003.

[760] Alexander Koldobsky. Fourier Analysis In Convex Geometry. American Mathematical
Society 2005.

[761] A.N. Kolmogorov. Interpolation und Extrapolation von stationären zufälligen Folgen (Russian).
Bull Acad. Sci. USSR, Ser. Math, Vol. 5, pp. 3–14, 1941.

[762] B.H. Kolner and D.M. Bloom. Direct electric-optic sampling of transmission-line signals
propagating on a GaAs substrate. Electron. Letters, Vol. 20, pp. 818–819, 1984.

[763] A. Kolodziejczyk. Lensless multiple image formation by using a sampling filter. Optical
Communication, pp. 97–102, 1986.

[764] Vilmos Komornik and Paola Loreti. Fourier Series in Control Theory. Springer, 2005.
[765] R. Konoun. PPM reconstruction using iterative techniques, project report. Technical report,

Dept. of ECE, Illinois Institute of Technology, Chicago, September, 1989.
[766] P. Korn. Some uncertainty principles for time-frequency transforms of the Cohen class. IEEE

Transactions on Signal Processing, Vol. 53(2), Part 1, pp. 523–527, 2005.
[767] T.W. Körner. Fourier Analysis. Cambridge University Press; Reprint edition, 1989.
[768] A. Korpel. Gabor: frequency, time and memory. Applied Optics, pp. 3624–3632, 1982.
[769] Z. Kostic. Low-complexity equalization for π

4 DQPSK signals based on the method
of projection onto convex sets. IEEE Transactions on Vehicular Technology, Vol. 48(6),
pp. 1916–1922, 1999.

[770] V.A. Kotelnikov. On the carrying capacity of “ether” and wire in electrocommunications. In Idz.
Red. Upr. Svyazi RKKA(Moscow), Material for the first all-union conference on the questions
of communications, 1933.

[771] K.T. Kou and T. Qian. Shannon sampling and estimation of band-limited functions in the several
complex variables setting. Acta Mathematica Scientia, Vol. 25(4), pp. 741–754, 2005.

[772] H.P. Kramer. A generalized sampling theorem. Journal Math. Phys., Vol. 38, pp. 68–72, 1959.
[773] H.P. Kramer. The digital form of operators on bandlimited functions. Journal Math. Anal.

Applied, Vol. 44, No. 2, pp. 275–287, 1973.
[774] G.M. Kranc. Comparison of an error-sampled system by a multirate controller. Transactions

America Institute Elec. Engineering, Vol. 76, pp. 149–159, 1957.
[775] E. Krasnopevtsev. Fractional Fourier transform based on geometrical optics Proceedings

KORUS 2003. The 7th Korea-Russia International Symposium on Science and Technology,
Vol. 3, pp. 82–86, 2003.

[776] M.G. Krein. On a fundamental approximation problem in the theory of extrapolation and
filtration of stationary random processes (Russian). Dokl. Akad. Nauk SSSR Vol. 94, pp. 13–16,
1954. [English translation: Amer. Math. Society Selected Transl. Math. Statist. Prob. 4,
pp. 127–131], 1964.

[777] R. Kress. On the general Hermite cardinal interpolation. Math. Comput., Vol. 26, pp. 925–933,
1972.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 711 680–744

REFERENCES 711

[778] H.N. Kritikos and P.T. Farnum. Approximate evaluation of Gabor expansions. IEEE
Transactions Syst., Man, Cybern. SMC-17, pp. 978–981, 1987.

[779] J.W. Krutch. “The Colloid and the Crystal”, in I. Gordon and S. Sorkin (eds.) The Armchair
Science Reader, New York: Simon and Schuster, 1959.

[780] A. Kumar and O.P. Malik. Discrete analysis of load-frequency control problem. Proceedings
IEEE, Vol. 131, pp. 144–145, 1984.

[781] H.R. Kunsch, E. Agrell and F.A. Hamprecht. Optimal lattices for sampling. IEEE Transactions
on Information Theory, Vol. 51(2), pp. 634–647, 2005.

[782] G.M. Kurajian and T.Y. Na. Elastic beams on nonlinear continuous foundations. ASME Winter
Annual Meeting, pp. 1–7, 1981.

[783] T.G. Kurtz. The Optional Sampling Theorem for Martengales Indexed by Directed Sets. Annals
of Probability, Vol. 8(4), pp. 675–681, 1980.

[784] H.J. Kushner and L. Tobias. On the stability of randomly sampled systems. IEEE Transactions
Automatic Control, Vol. AC-14, pp. 319–324, 1969.

[785] A. Kutay, H.M. Ozaktas, O. Ankan, and L. Onural. Optimal filtering in fractional Fourier
domains. IEEE Transactions on Signal Processing, Vol. 45(5), pp. 1129–1143, 1997.

[786] Goo-Rak Kwon, Hyo-Kak Kim, Yoon Kim and Sung-Jea Ko. An efficient POCS-based post-
processing technique using wavelet transform in HDTV. IEEE Transactions on Consumer
Electronics, Vol. 51(4), pp. 1283–1290, 2005.

[787] M.S. Kwon,Y.B. Cho and S.Y. Shin. Experimental demonstration of a long-period grating based
on the sampling theorem. Applied Physics Letters, Vol. 88(21), Art. No. 211103, 22 2006.

[788] M.S. Kwon and S.Y. Shin. Theoretical investigation of a notch filter using a long-period grating
based on the sampling theorem. Optics Communications, Vol. 263(2), pp. 214–218, 2006.

L
[789] B. Lacaze. A generalization of n-th sampling formula. Ann. Telecomm., Vol. 30, pp. 208–210,

1975.
[790] P. Lancaster and M. Tiemenesky. The Theory of Matrices. Academic Press, Orlando, FL,

1985.
[791] H.J. Landau. On the recovery of a bandlimited signal after instantaneous companding and

subsequent band limiting. Bell Systems Tech. J., Vol. 39, pp. 351–364, 1960.
[792] H.J. Landau. Necessary density conditions for sampling and interpolation of certain entire

functions. Acta Math., pp. 37–52, 1967.
[793] H.J. Landau. Sampling, data transmission and the Nyquist rate. Proceedings IEEE, Vol. 55,

pp. 1701–1706, 1967.
[794] H.J. Landau. On Szegö’s eigenvalue distribution theorem and non-Hermitian kernels. Journal

Analyse Math., pp. 335–357, 1975.
[795] H.J. Landau and W.L. Miranker. The recovery of distorted bandlimited signals. Journal Math.

Anal. & Applied, Vol. 2, pp. 97–104, 1961.
[796] H.J. Landau and H.O. Pollak. Prolate spheroidal wave functions Fourier analysis and

uncertainty II. Bell Systems Tech. J., Vol. 40, pp. 65–84, 1961.
[797] H.J. Landau and H.O. Pollak. Prolate spheroidal wave functions Fourier analysis and

uncertainty III: The dimension of the space of essentially time- and bandlimited signals. Bell
Systems Tech. J., Vol. 41, pp. 1295–1336, 1962.

[798] H.J. Landau and H. Widom. Eigenvalue distribution of time and frequency limiting. Journal
Math. Anal., Applied, Vol. 77, pp. 469–481, 1980.

[799] A. Landé. Optik und Thermodynamik, In Handbuch der Physik, Springer-Verlag, Berlin,
pp. 453–479, 1928.

[800] L. Landweber. An iteration formula for Fredholm integral equations of the first kind.
Amer. J. Math., pp. 615–624, 1951.

[801] P.J. La Riviere and X.C. Pan. Interlaced interpolation weighting functions for multislice helical
computed tomography. Optical Engineering, Vol. 42(12), pp. 3461–3470, 2003.

[802] Rupert Lasser. Introduction to Fourier Series. CRC, 1996.
[803] B.P. Lathi. Communication Systems. John Wiley & Sons, Inc., New York, 1965.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 712 680–744

712 REFERENCES

[804] K.N. Le, K.P. Dabke and G.K. Egan. Signal detection using time-frequency distributions with
nonunity kernels. Optical Engineering, Vol. 40(12), pp. 2866–2877, 2001.

[805] Thuyen Le and M. Glesner. Rotating stall analysis using signal-adapted filter bank and Cohen’s
time-frequency distributions. Proceedings of the 2000 IEEE International Symposium on
Circuits and Systems, ISCAS 2000 Geneva. Vol. 1, 28–31, pp. 603–606, 2000.

[806] A.J. Lee. On bandlimited stochastic processes. SIAM J. Applied Math., Vol. 30, pp. 269–277,
1976.

[807] A.J. Lee. Approximate interpolation and the sampling theorem. SIAM J. Applied Math., Vol. 32,
pp. 731–744, 1977.

[808] A.J. Lee. Sampling theorems for nonstationary random processes. Transactions Amer. Math.
Society, Vol. 242, pp. 225–241, 1978.

[809] A.J. Lee. A note on the Campbell sampling theorem. SIAM J. Applied Math., Vol. 41,
pp. 553–557, 1981.

[810] H. Lee. On orthogonal transformations. IEEE Transactions Circuits & Systems, Vol. CAS-32,
pp. 1169–1177, 1985.

[811] Y.W. Lee. Statistical Theory of Communication. John Wiley & Sons, New York, 1960.
[812] W.H. Lee. Computer-generated holograms: techniques and applications, In Progress in Optics,

North-Holland, Amsterdam, 1978, pp. 119–232.
[813] A.J. Lee. Approximate Interpolation and Sampling Theorem. SIAM Journal on Applied

Mathematics, Vol 32(4), pp. 731–744 1977.
[814] S. Lee, P.S. Cho, R.J. Marks II, and S. Oh. Conformal radiotherapy computation by the

method of alternating projection onto convex sets. Phys. Med. Biol., Vol. 42, pp. 1065–1086,
1997.

[815] X. Lee, Y.-Q. Zhang, and A. Leon-Garcia. Information loss recovery for block-based Image
coding techniques-A fuzzy logic approach. IEEE Transactions Image Processing, Vol. 4,
pp. 259–273, 1995.

[816] J. Leibrich and H. Puder. A TF distribution for disturbed and undisturbed speech signals and
its application to noise reduction. Signal Processing. Vol. 80(9), pp. 1761–1776, 2000.

[817] E.N. Leith and J. Upatnieks. Reconstructed wavefronts and communication theory. Journal of
the Optical Society America, pp. 1123–1130, 1962.

[818] O.A.Z. Leneman. Random sampling of random processes: impulse processes. Information &
Control, Vol. 9, pp. 347–363, 1966.

[819] O.A.Z. Leneman. On error bounds for jittered sampling. IEEE Transactions Automatic Control,
Vol. AC-11, p. 150, 1966.

[820] O.A.Z. Leneman. Random sampling of random processes: optimum linear interpolation.
Journal Franklin Institute, Vol. 281, pp. 302–314, 1966.

[821] O.A.Z. Leneman and J. Lewis. A note on reconstruction for randomly sampled data. IEEE
Transactions Automatic Control, Vol. AC-10, p. 626, 1965.

[822] O.A.Z. Leneman and J. Lewis. Random sampling of random processes: Mean square
comparison of various interpolators. IEEE Transactions Automatic Control, Vol. AC-10,
pp. 396–403, 1965.

[823] O.A.Z. Leneman and J. Lewis. On mean-square reconstruction error. IEEE Transactions
Automatic Control, Vol. AC-11, pp. 324–325, 1966.

[824] A. Lent and H. Tuy. An iterative method for the extrapolation of bandlimited functions. Journal
Math. Anal., Applied, pp. 554–565, 1981.

[825] J. LeRoux, P. Lise, E. Zerbib, et al. A formulation in concordance with the sampling theorem
for band-limited images reconstruction from projections. Multidimensional Systems and Signal
Processing, Vol. 7(1), pp. 27–52, 1996.

[826] Pete E. Lestrel (Editor). Fourier Descriptors and their Applications in Biology. Cambridge
University Press, 1997.

[827] Emmanuel Letellier. Fourier Transforms of Invariant Functions on Finite Reductive Lie
Algebras. Springer, 2005.

[828] L. Levi. Fitting a bandlimited signal to given points. IEEE Transactions Information Theory,
Vol. IT-11, pp. 372–376, 1965.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 713 680–744

REFERENCES 713

[829] N. Levinson. Gap and density theorems. In Colloq. Pub. 26. Amer. Math. Society, New York,
1940.

[830] M. Levonen and S. McLaughlin. Fractional Fourier transform techniques applied to active
sonar. Proceedings OCEANS 2003. Vol. 4, pp. 1894–1899, 2003.

[831] Jian Li and Petre Stoica. Robust Adaptive Beamforming. Wiley-Interscience, 2005.
[832] G.B. Lichtenberger. A note on perfect predictability and analytic processes. IEEE Transactions

Information Theory, Vol. IT-20, pp. 101–102, 1974.
[833] B. Lien and G. Tang. Reversed Chebyshev implementation of McClellan transform and its

roundoff error. IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 35(10),
pp. 1435–1439, 1987.

[834] A. Wee-Chung Liew and Hong Yan. POCS-based blocking artifacts suppression with region
smoothness constraints for graphic images. Proceedings of 2004 International Symposium on
Intelligent Multimedia, Video and Speech Processing, pp. 563–566, 2004.

[835] Y. Linde, A. Buzo and R.M. Gray. An algorithm for vector quantizer design. IEEE Transactions
Commun., Vol. COM-28, pp. 89–95, 1980.

[836] D.A. Linden. A discussion of sampling theorems. Proceedings IRE, Vol. 47, pp. 1219–1226,
1959.

[837] D.A. Linden and N.M. Abramson. A generalization of the sampling theorem. Information &
Control, Vol. 3, pp. 26–31, 1960.

[838] E.H. Linfoot. Information theory and optical images. Journal of the Optical Society America,
pp. 808–819, 1955.

[839] E.H. Linfoot. Quality evaluation of optical systems. Opt. Acta, pp. 1–14, 1958.
[840] John Litva. Digital Beamforming in Wireless Communications. Artech House Publishers,

1996.
[841] C.L. Liu and Jane W.S. Liu. Linear Systems Analysis. McGraw-Hill, New York, 1975.
[842] Y.M. Liu. A distributional sampling theorem. SIAM Journal on Mathematical Analysis,

Vol. 27(4), pp. 1153–1157, 1996.
[843] S.P. Lloyd. A sampling theorem for stationary (wide sense) stochastic processes. Transactions

America Math. Society, Vol. 92, pp. 1–12, 1959.
[844] C. Loana, A. Quinquis, and Y. Stephan. Feature extraction from underwater signals using time-

frequency warping operators. IEEE Journal of Oceanic Engineering, Vol. 31(3), pp. 628–645,
2006.

[845] Robert P. Loce and Ronald E. Jodoin. Sampling theorem for geometric moment determination
and its application to a laser beam position detector. Applied Optics, Vol. 29, No. 26,
pp. 3835–3843, 1990.

[846] P.P. Loesberg. Low-frequency A-D input systems. Instrum. Control Syst., Vol. 43, pp. 124–126,
1970.

[847] A.W. Lohmann and D.P. Paris. Binary Fraunhofer holograms, generated by computer. Applied
Optics, pp. 1739–1748, 1967.

[848] A.W. Lohmann. The space-bandwidth product applied to spatial filtering and to holography.
IBM Research Paper, RJ-438, 1967.

[849] A.W. Lohmann and D.P. Paris. Computer generated spatial filters for coherent optical data
processing. Applied Optics, pp. 651–655, 1968.

[850] A.W. Lohmann. An interferometer based on the Talbot effect. Optical Communication,
pp. 413–415, 1971.

[851] A.W. Lohmann. Three-dimensional properties of wave-fields. Optik, pp. 105–117, 1978.
[852] P.J. Loughlin and G.D. Bernard. Cohen-Posch (positive) time-frequency distributions and

their application to machine vibration analysis. Mechanical Systems and Signal Processing.
Vol. 11(4), pp. 561–576, 1997.

[853] P.J. Loughlin and K.L. Davidson. Modified Cohen-Lee time-frequency distributions and
instantaneous bandwidth of multicomponent signals. IEEE Transactions on Signal Processing,
Vol. 49(6), pp. 1153–1165, 2001.

[854] D.G. Luenberger. Optimization by Vector Space Methods. Wiley, New York, 1969.
[855] H.D. Luke. Zur Entsehung des Abtasttheorems. Nachr. Techn. Z., Vol. 31, pp. 271–274, 1978.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 714 680–744

714 REFERENCES

[856] H.D. Luke. The origins of the sampling theorem IEEE Communications Magazine, Vol. 37(4),
pp. 106–108, 1999.

[857] W. Lukosz. Optical systems with resolving powers exceeding the classical limit. Journal of the
Optical Society America, Vol. 56, pp. 1463–1472, 1966.

[858] W. Lukosz. Optical systems with resolving powers exceeding the classical limit, II. Journal of
the Optical Society America, Vol. 57, pp. 932–941, 1967.

[859] A. Luthra. Extension of Parseval’s relation to nonuniform sampling. IEEE Transactions Acoust.,
Speech, Signal Processing, Vol. ASSP-36, No. 12, pp. 1909–1911, 1988.

M
[860] Y.J. Ma and J.T. Sun. Stability criteria of delay impulsive systems on time scales. Nonlinear

Analysis–Theory Mathods & Applications, Vol. 67(4), pp. 1181–1189, 2007.
[861] D.M. Mackay. Quantal aspects of scientific information. Phil. Mag., pp. 289–311, 1950.
[862] D.M. Mackay. The structural information-capacity of optical instruments. Information &

Control, pp. 148–152, 1958.
[863] J. Maeda and K. Murata. Digital restoration of incoherent bandlimited images. Applied Optics,

pp. 2199–2204, 1982.
[864] H. Maitre. Iterative super-resolution. Some new fast methods. Opt. Acta, pp. 973–980, 1981.
[865] Robert J. Mailloux. Phased Array Antenna Handbook, Second Edition. Artech House

Publishers; 2 edition, 2005.
[866] J. Makhoul. Linear prediction: A tutorial review. Proceedings IEEE, Vol. 63, pp. 561–580,

1975.
[867] T. Mallon. A Book of One’s Own. Ticknor & Fields, New York, 1984.
[868] N.J. Malloy. Nonuniform sampling for high resolution spectrum analysis. In Proceedings

ICASSP’84, 1984.
[869] L. Mandel and E. Wolf. Coherence properties of optical fields. Rev. Mod. Phys., pp. 231–287,

1965.
[870] L. Mandel and E. Wolf. Spectral coherence and the concept of cross-spectral purity. Journal of

the Optical Society America, Vol. 66, pp. 529–535, 1976.
[871] Thomas Mann. The Magic Mountain. Vintage; 1st Vintage International Edition, 1996.
[872] M. Maqusi. A sampling theorem for dyadic stationary processes. IEEE Transactions Acoust.

Speech, Signal Processing, Vol. ASSP-26, pp. 265–267, 1978.
[873] M. Maqusi. Truncation error bounds for sampling expansions of sequency band limited

signals. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-26, pp. 372–374,
1978.

[874] M. Maqusi. Sampling representation of sequency bandlimited nonstationary random processes.
IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-28, pp. 249–251, 1980.

[875] M. Maqusi. Correlation and spectral analysis of nonlinear transformation of sequency
bandlimited signals. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-30,
pp. 513–516, 1982.

[876] I. Maravic and M. Vetterli. Sampling and reconstruction of signals with finite rate of innovation
in the presence of noise. IEEE Transactions on Signal Processing, Vol. 52(8), Part 1, pp. 2788–
2805, 2005.

[877] E.W. Marchand and E. Wolf. Radiometry with sources of any state of coherence. Journal of
the Optical Society America, Vol. 64, pp. 1219–1226, 1974.

[878] A. Maréchal and M. Françon. V Diffraction, structure des images. Masson, Paris, 1970.
[879] H. Margenau and R.N. Hill. Correlation between measurements in quantum theory. Progress

in Theoretical Physics, Vol. 26, pp. 722–738, 1961.
[880] C.P. Mariadassou and B. Yegnanarayana. Image reconstruction from noisy digital holograms.

IEE Proceedings F on Radar and Signal Processing, Vol. 137(5), pp. 351–356, 1990.
[881] J.W. Mark and T.D. Todd. A nonuniform sampling approach to data compression. IEEE

Transactions Communications, Vol. COM-29, pp. 24–32, 1981.
[882] W.D. Mark. Spectral analysis of the convolution and filtering of non-stationary stochastic

processes. Journal Sound Vib. Vol. 11, pp. 19–63, 1970.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 715 680–744

REFERENCES 715

[883] J.D. Markel and H.H. Gray, Jr. Linear Prediction of Speech. Springer-Verlag, New York,
1982.

[884] R.J. Marks II and T.F. Krile. Holographic representations of space-variant systems: System
theory. Applied Optics, Vol. 15, pp. 2241–2245, 1976.

[885] R.J. Marks II, J.F. Walkup, and M.O. Hagler. A sampling theorem for space-variant systems.
Journal of the Optical Society America, Vol. 66, pp. 918–921, 1976.

[886] R.J. Marks II, J.F. Walkup, and T.F. Krile. Ambiguity function display: An improved coherent
processor. Applied Optics Vol. 16, pp. 746–750, 1977.

[887] R.J. Marks II, J.F. Walkup, and M.O. Hagler. Line spread function notation. Applied Optics,
Vol. 15, pp. 2289–2290, l976.

[888] R.J. Marks II, J.F. Walkup, and M.O. Hagler. Volume hologram representation of space-
variant systems. In Applications of Holography and Optical Data Processing, E. Marom,
A.A. Friesem, and E. Wiener-Aunear, editors, Oxford: Pergamon Press, pp. 105–113, 1977.

[889] R.J. Marks II, J.F. Walkup, and M.O. Hagler. Sampling theorems for linear shift-variant systems.
IEEE Transactions Circuits & Systems, Vol. CAS-25, pp. 228–233, 1978.

[890] R.J. Marks II, G.L. Wise, D.G. Haldeman, and J.L. Whited. Detection in Laplace noise. IEEE
Transactions on Aerospace and Electronic Systems, Vol. AES-14, pp. 866–872, 1978.

[891] R.J. Marks II and J.N. Larson. One-dimensional Mellin transformation using a single optical
element. Applied Optics, Vol. 18, pp. 754–755, 1979.

[892] R.J. Marks II. Two-dimensional coherent space-variant processing using temporal holography.
Applied Optics, Vol. 18, pp. 3670–3674, 1979.

[893] R.J. Marks II, J.F. Walkup, and M.O. Hagler. Methods of linear system characterization through
response cataloging. Applied Optics, Vol. 18, pp. 655–659, 1979.

[894] R.J. Marks II and M.W. Hall. Ambiguity function display using a single 1-D input. in SPIE
Milestone Series: Phase Space Optics, Markus Testorf, Jorge Ojeda-Castañeda, and Adolf
Lohmann, Editors, (The Society of Photo-Optical Instrumentation Engineers, Bellingham, WA,
2006) reprinted from Applied Optics, Vol. 18(15), pp. 2539–2540, 1979.

[895] R.J. Marks II and D.K. Smith. An iterative coherent processor for bandlimited signal
extrapolation. Proceedings of the 1980 International Computing Conference, Washington D.C.,
1980.

[896] R.J. Marks II. Coherent optical extrapolation of two-dimensional signals: processor theory.
Applied Optics, Vol. 19, pp. 1670–1672, 1980.

[897] R.J. Marks II. Gerchberg’s extrapolation algorithm in two dimensions. Applied Optics, Vol. 20,
pp. 1815–1820, 1981.

[898] R.J. Marks II. Sampling theory for linear integral transforms. Opt. Letters, Vol. 6, pp. 7–9,
1981.

[899] R.J. Marks II and M.J. Smith. Closed form object restoration from limited spatial and spectral
information. Opt. Letters, Vol. 6, pp. 522–524, 1981.

[900] R.J. Marks II and M.W. Hall. Differintegral interpolation from a bandlimited signal’s samples.
IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-29, pp. 872–877, 1981.

[901] R.J. Marks II. Posedness of a bandlimited image extension problem in tomography. Opt. Letters,
Vol. 7, pp. 376–377, 1982.

[902] R.J. Marks II. Restoration of continuously sampled bandlimited signals from aliased data. IEEE
Transactions Acoust., Speech, Signal Processing, Vol. ASSP-30, pp. 937–942, 1982.

[903] R.J. Marks II and D. Kaplan. Stability of an algorithm to restore continuously sampled
bandlimited images from aliased data. Journal of the Optical Society America, Vol. 73,
pp. 1518–1522, 1983.

[904] R.J. Marks II. Noise sensitivity of bandlimited signal derivative interpolation. IEEE
Transactions Acoust., Speech, Signal Processing, Vol. ASSP-31, pp. 1029–1032, 1983.

[905] R.J. Marks II. Restoring lost samples from an oversampled bandlimited signal. IEEE
Transactions Acoust., Speech, Signal Processing, Vol. ASSP-31, pp. 752–755, 1983.

[906] R.J. Marks II and D. Radbel. Error in linear estimation of lost samples in an oversampled
bandlimited signal. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-32,
pp. 648–654, 1984.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 716 680–744

716 REFERENCES

[907] R.J. Marks II and D.K. Smith. Gerchberg-type linear deconvolution and extrapolation
algorithms. In Transformations in Optical Signal Processing, W.T. Rhodes, J.R. Fienup,
and B.E.A. Saleh, editors, Vol. 373, pp. 161–178, 1984.

[908] R.J. Marks II and S.M. Tseng. Effect of sampling on closed form bandlimited signal interval
interpolation. Applied Optics, Vol. 24, pp. 763–765, Erratum, Vol. 24, p. 2490, 1985.

[909] R.J. Marks II. A class of continuous level associative memory neural nets. in SPIE Milestone
Series: Selected Papers in Optical Neural Networks edited by Suganda Jutamulia (The
Society of Photo-Optical Instrumentation Engineers, Bellingham, WA, 1994), pp. 331–336;
reprinted from Applied Optics, Vol. 26, pp. 2005–2009, 1987.

[910] R.J. Marks II. Linear coherent optical removal of multiplicative periodic degradations:
processor theory. Opt. Engineering, Vol. 23, pp. 745–747, 1984.

[911] R.J. Marks II. Multidimensional signal sample dependency at Nyquist densities. Journal of the
Optical Society America A, Vol. 3, pp. 268–273, 1986.

[912] R.J. Marks II. Class of continuous level associative memory neural nets. Applied Optics,
pp. 2005–2010, 1987.

[913] R.J. Marks II, S. Oh, and L.E. Atlas. Alternating projection neural networks. IEEE Transactions
on Circuits and Systems, Vol. 36, pp. 846–857, 1989.

[914] R.J. Marks II, L.E. Atlas, and S. Oh. Optical neural net memory. U.S. Patent No. 4,849,940
(assigned to the Washington Technology Center, University of Washington, Seattle), 1989.

[915] R.J. Marks II. Introduction to Shannon Sampling and Interpolation Theory. Springer-
Verlag, New York, 1991.

[916] R.J. Marks II, Editor, Advanced Topics in Shannon Sampling and Interpolation Theory.
Springer-Verlag, 1993.

[917] R.J. Marks II, Loren Laybourn, Shinhak Lee, and Seho Oh. Fuzzy and extra-crisp alternating
projection onto convex sets (POCS). Proceedings of the International Conference on Fuzzy
Systems (FUZZ-IEEE), Yokohama, Japan, pp. 427–435, 1995.

[918] R.J. Marks II, Alternating Projections onto Convex Sets, in Deconvolution of Images and
Spectra, edited by Peter A. Jansson, (Academic Press, San Diego), pp. 476–501, 1997.

[919] R.J. Marks II. Method and Apparatus for Generating Sliding Tapered Windows and Sliding
Window Transforms. U.S. Patent No. 5,373,460, 1994.

[920] R.J. Marks II, B.B. Thompson, M.A. El-Sharkawi, W.L.J. Fox, and R.T. Miyamoto. Stochastic
resonance of a threshold detector: image visualization and explanation. IEEE Symposium on
Circuits and Systems, ISCAS, pp. IV-521–523, 2002.

[921] R.J. Marks II, Ian A. Gravagne, and John M. Davis, “A Generalized Fourier Transform and
Convolution on Time Scales,” Journal of Mathematical Analysis and Applications, Vol. 340(2),
pp. 901–919, 2008.

[922] R.J. Marks II, Ian Gravagne, John M. Davis, and Jeffrey J. DaCunha. Nonregressivity in
switched linear circuits and mechanical systems. Mathematical and Computer Modelling,
Vol. 43, pp. 1383–1392, 2006.

[923] L. Marple, T. Brotherton, R. Barton, E. Lugo, and D. Jones. Travels through the time-frequency
zone: advanced Doppler ultrasound processing techniques. 1993 Conference Record of The
Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, 1993. 1–3 Vol.2,
pp. 1469–1473, 1993.

[924] M. Marques, A. Neves, J.S. Marques et al. The Papoulis-Gerchberg algorithm with unknown
signal bandwidth. Lecture Notes in Computer Science. 4141, pp. 436–445, 2006.

[925] Alan G. Marshall. Fourier, Hadamard, and Hilbert Transforms in Chemistry. Perseus
Publishing, 1982.

[926] A.G. Marshall and F.R. Verdun. Fourier transforms in NMR, Optical and Mass
Spectrometry. Elsevier, Amsterdam, 1990.

[927] R.J. Martin. Volterra system identification and Kramer’s sampling theorem. IEEE Transactions
on Signal Processing, Vol. 47(11), pp. 3152–3155, 1999.

[928] H.G. Martinez and T.W. Parks. A class of infinite-duration impulse response digital filters for
sampling rate reduction. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-27,
pp. 154–162, 1979.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 717 680–744

REFERENCES 717

[929] S.A. Martucci. Symmetric convolution and the discrete sine and cosine transforms. IEEE
Transactions Sig. Processing, SP–42, 1038–1051 1994.

[930] F. Marvasti. The extension of Poisson sum formula to nonuniform samples. Proceedings 5th
Aachener Kolloquium, Aachen, Germany, 1984.

[931] F. Marvasti. A note on modulation methods related to sine wave crossings. IEEE Transactions
Communications, pp. 177–178, 1985.

[932] F. Marvasti. Reconstruction of a signal from the zero-crossings of an FM signal. Transactions
IECE of Japan, p. 650, 1985.

[933] F. Marvasti. Signal recovery from nonuniform samples and spectral analysis of random samples.
In IEEE Proceedings on ICASSP, Tokyo, pp. 1649–1652, 1986.

[934] F. Marvasti. Spectral analysis of random sampling and error free recovery by an iterative
method. IECE Transactions of Institute Electron. Commun. Engs., Japan (Section E), Vol. E 69,
No. 2, 1986.

[935] F. Marvasti. A unified approach to zero-crossings, nonuniform and random sampling of signals
and systems. In Proceedings of the International Symposium on Signal Processing and Its
Applications, Brisbane, Australia, pp. 93–97, 1987.

[936] F. Marvasti. Minisymposium on zero-crossings and nonuniform sampling, In Abstract of 4
presentations in the Proceedings of SIAM Annual Meeting, Minneapolis, Minnesota, 1988.

[937] F. Marvasti. Analysis and recovery of sample-and-hold signals with irregular samples. In
Annual Proceedings of the Allerton Conference on Communication, Control and Computing,
1989.

[938] F. Marvasti. Minisymposium on nonuniform sampling for 2-D signals. In Abstract of 4
presentations in the Proceedings of SIAM Annual Meeting, San Diego, California, 1989.

[939] F. Marvasti. Rebuttal on the comment on the properties of two-dimensional bandlimited signals.
Journal of the Optical Society America A, Vol. 6, No. 9, p. 1310, 1989.

[940] F. Marvasti. Reconstruction of 2-D signals from nonuniform samples or partial information.
Journal of the Optical Society America A, Vol. 6, pp. 52–55, 1989.

[941] F. Marvasti. Relationship between discrete spectrum of frequency modulated (FM) signals and
almost periodic modulating signals. Transactions IECE Japan, pp. 92–94, 1989.

[942] F. Marvasti. Spectral analysis of nonuniform samples of irregular samples of multidimensional
signals. In 6th Workshop on Multidimensional Signal Processing, California, 1989.

[943] F. Marvasti. Extension of Lagrange interpolation to 2-D signals in polar coordinates. IEEE
Transactions Circuits & Systems, 1990.

[944] F. Marvasti. The interpolation of 2-D signals from their isolated zeros. Journal
Multidimensional Systems and Signal Processing, 1990.

[945] F. Marvasti and M. Analoui. Recovery of signals from nonuniform samples using iterative
methods. In IEEE Proceedings of International Conference on Circuits and Systems, Oregon,
1989.

[946] F. Marvasti, M. Analoui, and M. Gamshadzahi. Recovery of signals from nonuniform samples
using iterative methods. IEEE Transactions Acoust., Speech, Signal Processing, 1991.

[947] F. Marvasti, Peter Clarkson, Dobcik Miraslov, and Chuande Liu. Speech recovery from missing
samples. In Proceedings IASTED Conference on Control and Modeling, Tehran, Iran, 1990.

[948] F. Marvasti and Reda Siereg. Digital signal processing using FM zero-crossing. In Proceedings
of IEEE International Conference on Systems Engineering, Wright State University, 1989.

[949] F.A. Marvasti. Spectrum of nonuniform samples. Electron. Letters, Vol. 20, No. 2, 1984.
[950] F.A. Marvasti. Comments on a note on the predictability of bandlimited processes. Proceedings

IEEE, Vol. 74, p. 1596, 1986.
[951] F.A. Marvasti. A Unified Approach to Zero-Crossing and Nonuniform Sampling of Single and

Multidimensional Signals and Systems. Nonuniform Publications, Oak Park, IL, 1987.
[952] F.A. Marvasti and A.K. Jain. Zero crossings, bandwidth compression and restoration of

nonlinearly distorted bandlimited signals. Journal of the Optical Society America A, Vol. 3,
pp. 651–654, 1986.

[953] F.A. Marvasti. Extension of Lagrange interpolation to 2-D nonuniform samples in polar
coordinates. IEEE Transactions Circuits & Systems, Vol. 37, No. 4, pp. 567–568, 1990.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 718 680–744

718 REFERENCES

[954] F.A. Marvasti and Liu Chuande. Parseval relationship of nonuniform samples of one and two-
dimensional signals. IEEE Transactions Acoust., Speech, Signal Processing, Vol. 38, No. 6,
pp. 1061–1063, 1990.

[955] F.A. Marvasti. Oversampling as an alternative to error correction codes. Minisymposium on
Sampling Theory and Practice, SIAM Annual Meeting, Chicago, IL, July 1990. Also in ICC’92,
Chicago, IL, 1992.

[956] F.A. Marvasti and T.J. Lee. Analysis and recovery of sample-and -hold and linearly
interpolated signals with irregular samples. IEEE Transactions Signal Processing, Vol. 40,
No. 8, pp. 1884–1891, 1992.

[957] FarokhA. Marvasti. Nonuniform Sampling:Theory and Practice (InformationTechnology:
Transmission, Processing, and Storage). Kluwer Academic/Plenum Publishers, 2001.

[958] E. Masry. Random sampling and reconstruction of spectra. Inf. Contr., Vol. 19, pp. 275–288,
1971.

[959] E. Masry. Alias-free sampling: an alternative conceptualization and its applications. IEEE
Transactions Information Theory, Vol. IT–24, 1978.

[960] E. Masry. Poisson sampling and spectral estimation of continuous time processes. IEEE
Transactions Information Theory, Vol. IT–24, 1978.

[961] E. Masry. The reconstruction of analog signals from the sign of their noisy samples. IEEE
Transactions Information Theory, Vol. IT–27, pp. 735–745, 1981.

[962] E. Masry. The approximation of random reference sequences to the reconstruction of clipped
differentiable signals. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-30,
pp. 953–963, 1982.

[963] E. Masry and S. Cambanis. Bandlimited processes and certain nonlinear transformations.
Journal Math. Anal., Vol. 53, pp. 59–77, 1976.

[964] E. Masry and S. Cambanis. Consistent estimation of continuous time signals from nonlinear
transformations of noisy samples. IEEE Transactions Information Theory, Vol. IT–27,
pp. 84–96, 1981.

[965] E. Masry, D. Kramer, and C. Mirabile. Spectral estimation of continuous time process:
performance comparison between periodic and Poisson sampling schemes. IEEE Transactions
Automatic Control, Vol. AC-23, pp. 679–685, 1978.

[966] Georges Matheron, Random Sets and Integral Geometry, John Wiley & Sons, New York,
1975.

[967] J. Mathews and R.L. Walker. Mathematical Methods of Physics, 2nd ed. W.A. Benjamin,
Menlo Park, CA, 1970.

[968] D. Maurice. Convolution and Fourier Transforms for Communications Engineers. John
Wiley & Sons, 1976.

[969] A.C. McBride and F.H. Kerr. On Namias’s fractional Fourier transform. IMA J. Applied Math.,
Vol. 39, pp. 159—175, 1987.

[970] James H. McClellan. The Design of Two Dimensional Filters by Transformation. Proceedings
7th Annual Princeton Conference on Information Sciences and Systems, pp. 247–251, 1973.

[971] James H. McClellan and David S.K. Chan. A 2-D FIR Filter Structure Derived from
the Chebyshev Recursion. IEEE Transactions on Circuits and Systems, CAS–24, No. 7,
pp. 372–378, 1977.

[972] M.J. McDonnell. A sampling function appropriate for deconnotation. IEEE Transactions
Information Theory, Vol. IT-22, pp. 617–621, 1976.

[973] K.C. McGill and L.J. Dorfman. High-resolution alignment of sampled waveforms. IEEE
Transactions Biomedical Engineering, Vol. BME–31, pp. 462–468, 1984.

[974] J. McNamee, F. Stenger, and E.L. Whitney. Whittaker’s cardinal function in retrospect. Math.
Comp. Vol. 25, pp. 141–154, 1971.

[975] A.K. Menon and Z.E. Boutaghou. Time-frequency analysis of tribological systems – part I:
implementation and interpretation. Tribiological International. Vol. 31(9), pp. 501–510, 1998.

[976] W.F.G. Mechlenbräuker, Russell M. Mersereau, McClellan Transformation for 2-D Digital
Filtering: I-Implementation. IEEE Transactions on Circuits and Systems, CAS-23, No. 7,
pp. 414–422, 1976.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 719 680–744

REFERENCES 719

[977] Alfred Mertins. SignalAnalysis: Wavelets, Filter Banks, Time-Frequency Transforms and
Applications. Wiley, 1999.

[978] F.C. Mehta. A general sampling expansion. Inform. Sci., Vol. 16, pp. 41–44, 1978.
[979] P.M. Mejías and R. Martínez Herrero. Diffraction by one-dimensional Ronchi grids: on the

validity of the Talbot effect. Journal of the Optical Society America A, Vol. 8, pp. 266–269,
1991.

[980] Russell M. Mersereau, W.F.G. Mechlenbräuker, and T.F. Quatieri. McClellan Transformation
for 2-D Digital Filtering: I-Design. IEEE Transactions on Circuits and Systems, CAS-23,
No. 7, pp. 405–414, 1976.

[981] R.M. Mersereau. The processing of hexagonally sampled two dimensional signals.
Proceedings IEEE, Vol. 67, pp. 930–949, 1979.

[982] R.M. Mersereau and T.C. Speake. The processing of periodically sampled multidimensional
signals. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-31, No. 31,
pp. 188–194, 1983.

[983] D. Middleton. An Introduction to Statistical Communication Theory. McGraw-Hill,
New York, 1960.

[984] D. Middleton and D.P. Peterson. A note on optimum presampling filters. IEEE Transactions
Circuit Theory, Vol. CT-10, pp. 108–109, 1963.

[985] J. Millet-Roig, J.J. Rieta-Ibanez, E. Vilanova, A. Mocholi, and F.J. Chorro. Time-frequency
analysis of a single ECG: to discriminate between ventricular tachycardia and ventricular
fibrillation. Computers in Cardiology 1999, 26–29 pp. 711–714, 1999.

[986] R. Mintzer and B. Liu. Aliasing error in the design of multirate filters. IEEE Transactions
Acoust., Speech, Signal Processing, Vol. ASSP-26, pp. 76–88, 1978.

[987] R. Mirman. Point Groups, Space Groups, Crystals, Molecules. World Scientific, 1999.
[988] S. Mitaim and B. Kosko. Adaptive stochastic resonance. Proceedings of the IEEE. Vol. 86,

No. 11, 1998.
[989] J.R. Mitchell and W.L. McDaniel Jr. Adaptive sampling technique. IEEE Transactions

Automatic Control, Vol. AC-14, pp. 200–201, 1969.
[990] J.R. Mitchell and W.L. McDaniel Jr. Calculation of upper bounds for errors of an approximate

sampled frequency response. IEEE Transactions Automatic Control, Vol. AC-19, pp. 155–156,
1974.

[991] Sanjit K. Mitra. Digital Signal Processing, McGraw-Hill Science/Engineering/Math; 3rd
edition 2005.

[992] H. Miyakawa. Sampling theorem of stationary stochastic variables in multi-dimensional space
(Japanese). Journal Institute Electron. Commun. Engineering Japan, Vol. 42, pp. 421–427,
1959.

[993] K. Miyamoto. On Gabor’s expansion theorem. Journal of the Optical Society America, Vol. 50,
pp. 856–858, 1960.

[994] K. Miyamoto. Note on the proof of Gabor’s expansion theorem. Journal of the Optical Society
America, Vol. 51, pp. 910–911, 1961.

[995] W.D. Montgomery. The gradient in the sampling of n-dimensional bandlimited functions.
Journal Electron. Contr., Vol. 17, pp. 437–447, 1964.

[996] W.D. Montgomery. Algebraic formulation of diffraction applied to self-imaging. Journal of
the Optical Society America, Vol. 58, pp. 1112–1124, 1968.

[997] D.R. Mook, G.V. Fisk, and A.V. Oppenheim. A hybrid numerical-analytical technique for
the computation of wave fields in stratified media based on the Hankel transform. Journal
Acoustics. Society America, Vol. 76, No. 1, pp. 222–243, 1984.

[998] N. Moray, G. Synnock, and S. Richards. Tracking a static display. IEEE Transactions Systems,
Man, Cybernetics, Vol. SMC-3, pp. 518–521, 1973.

[999] Frank Morgan. RealAnalysis andApplications: Including Fourier Series and the Calculus
of Variations. American Mathematical Society, 2005.

[1000] F. Mori and J. De Steffano III. Optimal nonuniform sampling interval and test-input design for
identification of physiological systems from very limited data. IEEE Transactions Automatic
Control, Vol. AC-24, No. 6, pp. 893–900, 1979.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 720 680–744

720 REFERENCES

[1001] H. Mori, I. Oppenheim, and J. Ross. Some Topics in Quantum Statistics: The Wigner Function
and Transport Theory. In Studies in Statistical Mechanics, J. de Boer and G.E. Uhlenbeck,
eds. North-Holland, Amsterdam, Vol. 1, pp. 213–298, 1962.

[1002] Norman Morrison. Introduction to Fourier Analysis. Wiley-Interscience, 1995.
[1003] G.V. Moustakides and E.Z. Psarakis. Design of N-dimensional hyperquadrantally symmetric

FIR filters using the McClellan transform. IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, Vol. 42(8), pp. 547–550, 1995.

[1004] K. Mullen and PS. Pregosin. Fourier Transform Nuclear Magnetic Resonance Techniques.
Academic Press, 1977.

[1005] D.H. Mugler and W. Splettstößer. Difference methods and round-off error bounds for the
prediction of bandlimited-functions from past samples. Frequenz, Vol. 39, pp. 182–187, 1985.

[1006] D.H. Mugler and W. Splettstößer. Some new difference schemes for the prediction of
bandlimited signals from past samples. In Proceedings of the Conference “Mathematics in
Signal Processing” Bath, 1985.

[1007] D.H. Mugler and W. Splettstößer. Difference methods for the prediction of bandlimited signals.
SIAM Journal Applied Math., Vol. 46, pp. 930–941, 1986.

[1008] H.D. Mugler and W. Splettstößer. Linear prediction from samples of a function and its
derivatives. IEEE Transactions Information Theory, Vol. IT–33, pp. 360–366, 1987.

[1009] K. Mullen, P.S. Pregosin. Fourier Transform Nuclear Magnetic Resonance Techniques:
A Practical Approach. Elsevier Science & Technology Books, 1977.

[1010] N.J. Munch. A Twisted Sampling Theorem. IMA Journal of Mathematical Control and
Information, Vol. 7(1), pp. 47–57, 1990.

[1011] D.C. Munson. Minimum sampling rates for linear shift-variant discrete-time systems. IEEE
Transactions Acoust., Speech, Signal Processing, Vol. ASSP–33, pp. 1556–1561, 1985.

[1012] P.K. Murphy and N.C. Gallagher.Anew approach to two-dimensional phase retrieval. Journal
of the Optical Society America, Vol. 72, pp. 929–937, 1982.

N
[1013] T. Nagai. Dyadic stationary processes and their spectral representation. Bull. Math. Stat.,

Vol. 17, pp. 65–73, 1976/77.
[1014] N. Nakajima and T. Asakura. A new approach to two-dimensional phase retrieval. Opt. Acta,

Vol. 32, pp. 647–658, 1985.
[1015] V. Namias. The fractional order Fourier transform and its applications to quantum mechanics.

J. Institute Math. Applied, Vol. 25, pp. 241–265, 1980.
[1016] H. Nassenstein. Super-resolution by diffraction of subwaves. Optical Communication,

pp. 231–234, 1970.
[1017] A. Nathan. On sampling a function and its derivatives. Information & Control, Vol. 22,

pp. 172–182, 1973.
[1018] A. Nathan. Plain and covariant multivariate Fourier transforms. Information & Control,Vol. 39,

pp. 73–81, 1978.
[1019] J.L. Navarro-Mesa, E. Lleida-Solano, and A.A. Moreno-Bilbao. A new method for epoch

detection based on the Cohen’s class of time frequency representations. IEEE Signal
Processing Letters, Vol. 8(8), pp. 225–227, 2001.

[1020] A.W. Naylor and G.R. Sell. Linear Operator Theory in Engineering and Science. Springer-
Verlag, New York, 1982.

[1021] S.A. Neild, P.D. McFadden, and M.S. Williams. A review of time-frequency methods for
structural vibration analysis. Engineering Structures, Vol. 5(6), pp. 713–728, 2003.

[1022] Kazuki Nishi. Generalized comb function: a new self-Fourier function. IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2004. (ICASSP ’04). Vol. 2,
pp. 573–576.

[1023] J. Ojeda-Castañeda, J. Ibarra, and J.C. Barreiro. Noncoherent Talbot effect: Coherence theory
and applications. Optical Communication, Vol. 71, pp. 151–155, 1989.

[1024] J. Ojeda-Castañeda and E.E. Sicre. Quasi ray-optical approach to longitudinal periodicities
of free and bounded wavefields. Opt. Acta, pp. 17–26, 1985.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 721 680–744

REFERENCES 721

[1025] J. Von Neumann. The Geometry of Orthogonal Spaces. Princeton University Press,
Princeton, New Jersey, 1950.

[1026] J. Von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton University
Press, 1955, Chap. 5, Sect. 4.

[1027] B. Nicoletti and L. Mariani. Optimization of nonuniformly sampled discrete systems.
Automatica, Vol. 7, pp. 747–753, 1971.

[1028] K. Niederdrenk. The Finite Fourier and Walsh Transformation with an Introduction to
Image Processing. Vieweg & Sohn, Braunschweig, 1982.

[1029] Y. Noguchi, E. Kashiwagi, E. Kashiwagi et al. Ultrasound Doppler sinusoidal shift signal
analysis by time-frequency distribution with new kernel. Japanese Journal of Applied Physics
Part 1, Vol. 37(5B), pp. 3064–3067, Sp. Iss. SI 1998.

[1030] Y. Noguchi, E. Kashiwagi, K. Watanabe et al. Time-frequency analysis of the blood
flow Doppler ultrasound signal. Japanese Journal of Applied Physics Part 1, Vol. 40(5B),
pp. 3882–3887, 2001.

[1031] Stephen Abbott Northrop. A Cloud of Witnesses. (Portland, Oregon: American Heritage
Ministries, 1987; Mantle Ministries, 228 Still Ridge, BuIverde, Texas), pp. 147–8.

[1032] K.A. Nugent. Three-dimensional optical microscopy: a sampling theorem. Optical
Communication, pp. 231–234, 1988.

[1033] H. Nyquist. Certain topics in telegraph transmission theory. AIEE Transactions, Vol. 47,
pp. 617–644, 1928.

[1034] D. Nguyen and M. Swamy. Formulas for parameter scaling in the McClellan transform. IEEE
Transactions on Circuits and Systems, Vol.33(1), pp. 108–109, 1986.

[1035] D. Nguyen and M. Swamy. A class of 2-D separable denominator filters designed via the
McClellan transform. IEEE Transactions on Circuits and Systems, Vol. 33(9), pp. 874–881,
1986.

O
[1036] K. Ogura. On a certain transcendental integral function in the theory of interpolation. Tôhoku

Math. J., Vol. 17, pp. 64–72, 1920.
[1037] S. Oh, R.J. Marks II, L.E. Atlas and J.W. Pitton. Kernel synthesis for generalized time-

frequency distributions using the method of projection onto convex sets. SPIE Proceedings
1348, Advanced Signal Processing Algorithms, Architectures, and Implementation,
F.T. Luk, Editor, San Diego, pp. 197–207, 1990.

[1038] S. Oh and R.J. Marks II. Performance attributes of generalized time-frequency representations
with double diamond and cone shaped kernels. Proceedings of the Twenty Fourth Asimomar
Conference on Signals, Systems and Computers, 5–7 November, 1990, Asilomar Conference
Grounds, Monterey, California.

[1039] S. Oh, R.J. Marks II, and Dennis Sarr. Homogeneous alternating projection neural networks.
Neurocomputing, Vol. 3, pp. 69–95, 1991.

[1040] S. Oh, C.Ramon, M.G. Meyer, A. C. Nelson, and R.J. Marks II. Resolution enhancement
of biomagnetic images using the method of alternating projections. IEEE Transactions on
Biomedical Engineering, Vol. 40, No. 4, pp. 323–328, 1993.

[1041] S. Oh and R.J. Marks II. Alternating projections onto fuzzy convex sets. Proceedings of the
Second IEEE International Conference on Fuzzy Systems, (FUZZ-IEEE ‘93), San Francisco,
Vol.1, pp. 148–155, 1993.

[1042] S. Oh and R.J. Marks II. Some properties of the generalized time frequency representation with
cone shaped kernels. IEEE Transactions on Signal Processing, Vol.40, No.7, pp. 1735–1745,
1992.

[1043] S. Oh, R.J. Marks II, and L.E. Atlas. Kernel synthesis for generalized time-frequency
distributions using the method of alternating projections onto convex sets. IEEE Transactions
on Signal Processing, Vol. 42, No.7, pp. 1653–1661, 1994.

[1044] N. Ohyama, M. Yamaguchi, J. Tsujiuchi, T. Honda, and S. Hiratsuka. Suppression of Moiré
fringes due to sampling of halftone screened images. Optical Communication, pp. 364–368,
1986.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 722 680–744

722 REFERENCES

[1045] K.B. Oldham and J. Spanier. The Fractional Calculus. Academic Press, New York, 1974.
[1046] A.Y. Olenko and T.K. Pogany. Time shifted aliasing error upper bounds for truncated sampling

cardinal series. Journal of Mathematical Analysis and Applications, Vol. 324(1), pp. 262–280,
2006.

[1047] B.L. Ooi, S. Kooi, and Leong M.S. Application of Sonie-Schafheitlin formula and
sampling theorem in spectral-domain method. IEEE Transactions on Microwave Theory and
Techniques, 49(1), pp. 210–213, 2001.

[1048] E.L. O’Neill. Spatial filtering in optics. IRE Transactions Information Theory, pp. 56–62,
1956.

[1049] E.L. O’Neill. Introduction to Statistical Optics. Addison-Wesley, Reading, MA, 1963.
[1050] E.L. O’Neill and A. Walther. The question of phase in image formation. Opt. Acta, pp. 33–40,

1962.
[1051] L. Onural. Exact analysis of the effects of sampling of the scalar diffraction field. Journal of

the Optical Society of America A – Optics, Image Science and Vision, Vol. 24(2), pp. 359–367,
2007.

[1052] Z. Opial. Weak convergence of the sequence of successive approximation for nonexpansive
mappings. Bull. Amer. Math. Society, Vol. 73, pp. 591–597, 1967.

[1053] A.V. Oppenheim and R.W. Shafer. Digital Signal Processing. Prentice-Hall, Englewood
Cliffs, NJ, 1975 - updated in [1054].

[1054] A.V. Oppenheim, R.W. Schafer, and J.R. Buck, Discrete-Time Signal Processing, second
edition (Prentice-Hall, New Jersey, 1999)–an updated version of [1053].

[1055] A.V. Oppenheim. Digital processing of speech. In Applications of Digital Signal Processing.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

[1056] A.V. Oppenheim, Alan, S. Willsky, and Ian T. Young. Signals and Systems. Prentice-Hall,
Englewood Cliffs, NJ, 1983.

[1057] J.F. Ormsky. Generalized interpolation sampling expressions and their relationship. Journal
Franklin Institute, Vol. 310, pp. 247–257, 1980.

[1058] L. Stankovic, T. Alieva, and M.J. Bastiaans. Time-frequency signal analysis based on the
windowed fractional Fourier transform. Signal Processing, Vol. 83(11), pp. 2459–2468, 2003.

[1059] Radomir S. Stankovic, Claudio Moraga, and Jaakko Astola. Fourier Analysis on Finite
Groups with Applications in Signal Processing and System Design. Wiley-IEEE Press,
2005.

[1060] P. Oskoui-Fard, H. Stark. Geometry-free X-ray reconstruction using the theory of convex
projections 1988 International Conference on Acoustics, Speech, and Signal Processing,
ICASSP–88., pp. 871–874, 1988.

[1061] T.J. Osler. A further extension of the Leibnitz rule for fractional derivatives and its relation to
Parseval’s formula. SIAM J. Math. Anal., Vol. 4, No. 4, 1973.

[1062] L.E. Ostrander. The Fourier transform of spline function approximations to continuous data.
IEEE Transactions Audio Electroacoustics., Vol. AU-19, pp. 103–104, 1971.

[1063] J.S. Ostrem. A sampling series representation of the gain and refractive index formulas for
a combined homogeneously and inhomogeneously broadened laser line. Proceedings IEEE,
Vol. 66, pp. 583–589, 1978.

[1064] N. Ostrowsky, D. Sornette, P. Parker, and E.R. Pike. Exponential sampling method for light
scattering polydispersity analysis. Opt. Acta, Vol. 28, pp. 1059–1070, 1981.

[1065] M.K. Ozkan, A.M. Tekalp, and M.I. Sezan. POCS-based restoration of space-varying blurred
images. IEEE Transactions on Image Processing, Vol. 3(4), pp. 450–454, 1994.

[1066] H.M. Ozaktas, O. Arikan, M.A. Kutay, and G. Bozdagt. Digital computation of the fractional
Fourier transform. IEEE Transactions on Signal Processing, Vol. 44(9), pp. 2141–2150,
1996.

[1067] H.M. Ozaktas, N. Erkaya, and M.A. Kutay. Effect of fractional Fourier transformation on
time-frequency distributions belonging to the Cohen class. IEEE Signal Processing Letters,
Vol. 3(2), pp. 40–41, 1996.

[1068] Haldun M. Ozaktas, Zeev Zalevsky, and M. Alper. The Fractional Fourier Transform: with
Applications in Optics and Signal Processing, John Wiley & Sons, 2001.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 723 680–744

REFERENCES 723

P
[1069] Hoon Paek, Rin-Chul Kim, and Sang-Uk Lee. On the POCS-based postprocessing technique

to reduce the blocking artifacts in transform coded images. IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 8(3), pp. 358–367, 1998.

[1070] C.H. Page. Instantaneous Power Spectra. Jour. Applied Phy., Vol.23, pp. 103–106, 1952.
[1071] R.E.A. Paley and N. Wiener. Fourier Transform in Complex Domain. Colloq. Publications,

American Math. Society, New York, Vol. 19, 1934.
[1072] F. Palmieri. Sampling theorem for polynomial interpolation. IEEE Transactions Acoust.,

Speech, Signal Processing, Vol. ASSP-34, pp. 846–857, 1986.
[1073] T. Pappas. Mersenne’s Number. The Joy of Mathematics. San Carlos, CA: Wide World Publ.

Tetra, P. 211, 1989.
[1074] A. Papoulis. The Fourier Integral and Its Applications. McGraw-Hill, New York, 1962.
[1075] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, NY,

1965.
[1076] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 2nd ed., McGraw-

Hill, NY, 1984.
[1077] A. Papoulis. Probability, Random Variables, and Stochastic Processes, 3rd ed. McGraw-

Hill, New York, 1991.
[1078] Papoulis and S.Unnikrishna Pillai. Probability, Random Variables and Stochastic

Processes. 4th Revised Edition, McGraw Hill, 2002.
[1079] A. Papoulis. Error analysis in sampling theory. Proceedings IEEE, Vol. 54, pp. 947–955,

1966.
[1080] A. Papoulis. Limits on bandlimited signals. Proceedings IEEE, Vol. 55, pp. 1677–1681, 1967.
[1081] A. Papoulis. Truncated sampling expansions. IEEE Transactions Automatic Control,

pp. 604–605, 1967.
[1082] A. Papoulis. Systems and Transforms with Applications in Optics. McGraw-Hill,

New York, 1968.
[1083] A. Papoulis and M.S. Bertran. Digital filtering and prolate functions. IEEE Transactions

Circuits & Systems, Vol. CT-19, pp. 674–681, 1972.
[1084] A. Papoulis. A new method of image restoration. Joint Services Technical Activity Report, 39,

1973–74.
[1085] A. Papoulis. A new algorithm in spectral analysis and bandlimited signal extrapolation. IEEE

Transactions Circuits & Systems, Vol. CAS-22, pp. 735–742, 1975.
[1086] A. Papoulis. Generalized sampling expansion. IEEE Transactions Circuits & Systems,

Vol. CAS–24, pp. 652–654, 1977.
[1087] A. Papoulis. Signal Analysis. McGraw-Hill, New York, 1977.
[1088] A. Papoulis. Circuits and Systems, A Modern Approach. Holt, Rinehart and Winston, Inc.,

New York, 1980.
[1089] A. Papoulis. A note on the predictability of bandlimited processes. Proceedings IEEE, Vol. 73,

pp. 1332–1333, 1985.
[1090] G.Y. Park, C.K. Lee, J.T. Kim, K.C. Kwon, and S.J. Lee. Design of a time-frequency

distribution for vibration monitoring under corrosions in the pipe. Proceedings Key
Engineering Materials for Advanced Nondestructive Evaluations. pp. 321–323, 1257–1261,
2006.

[1091] Jiho Park, D.C. Park, R.J. Marks II, and M.A. El-Sharkawi. Block loss recovery in DCT image
encoding using POCS. IEEE International Symposium on Circuits and Systems, Scottsdale,
Arizona, pp. V245–V248, 2002.

[1092] Jiho Park, R.J. Marks II, D.C. Park, and M.A. El-Sharkawi. Content based adaptive spatio-
temporal methods for MPEG repair. IEEE Transactions on Image Processing, Vol. 13, # 8,
pp. 1066–1077, 2004.

[1093] Jiho Park, Dong Chul Park, R.J. Marks II, and M.A. El-Sharkawi. Recovery of image blocks
using the method of alternating projections. IEEE Transactions on Image Processing, 2005.

[1094] J.B. Park and D.G. Nishimura, Effects of 3D sampling in (k,t)-space on temporal qualities of
dynamic MRI . Magnetic Resonance Imaging, Vol. 24(8), pp. 1009–1014, 2006.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 724 680–744

724 REFERENCES

[1095] T.W. Parks and R.G. Meier. Reconstructions of signals of a known class from a given
set of linear measurements. IEEE Transactions Information Theory, Vol. IT–17, pp. 37–44,
1971.

[1096] E. Parzen. A simple proof and some extensions of sampling theorems. Technical report,
Stanford University, Stanford, California, 1956.

[1097] E. Parzen. Stochastic Processes. Holden-Day, San Francisco, 1962.
[1098] Blaise Pascal, translated by A. J. Krailsheimer. Pensées. Penguin Classics; Reissue edition,

1995.
[1099] C. Pask. Simple optical theory of optical super-resolution. Journal of the Optical Society

America, Vol. 66, pp. 68–69a, 1976.
[1100] K. Patorski. The self-imaging phenomenon and its applications. In Progress in Optics, North-

Holland, Amsterdam, 1989.
[1101] Soo-Chang Pei, Min-Hung Yeh, and Tzyy-Liang Luo. Fractional Fourier series expansion

for finite signals and dual extension to discrete-time fractional Fourier transform. IEEE
Transactions on Signal Processing, Vol. 47(10), pp. 2883–2888, 1999.

[1102] Soo-Chang Pei, Min-HungYeh, and Chien-Cheng Tseng. Discrete fractional Fourier transform
based on orthogonal projections. IEEE Transactions on Signal Processing, Vol. 47(5),
pp. 1335–1348, 1999.

[1103] Haidong Peng, Mohammad Sabati, Louis Lauzon, and Richard Frayne. MR image
reconstruction of sparsely sampled 3D k-space data by projection-onto-convex sets. Magnetic
Resonance, Vol. 24(6), pp. 761–773, 2006.

[1104] Hui Peng and Henry Stark. Signal recovery with similarity constraints. Journal of the Optical
Society of America A, Vol 6, No.6, pp. 844–851, 1989.

[1105] L.M. Peng. Sampling theorem and digital electron microscopy. Progress in Natural Science,
Vol. 7(1), pp. 110–114, 1997.

[1106] L.E. Pellon. A double Nyquist digital product detector for quadrature sampling. IEEE
Transactions Signal Processing, Vol. 40, pp. 1670–1681, 1992.

[1107] I. Pesenson. A sampling theorem on homogeneous manifolds. Transactions of the American
Mathematical Society, Vol. 352(9), pp. 4257–4269, 2000.

[1108] R.J. Peterka, D.P. Oleary, and A.C. Sanderson. Practical considerations in the implementation
of the French-Holden algorithm for sampling of neuronal spike trains. IEEE Transactions
Biomedical Engineering, Vol. BME-24, pp. 192–195, 1978.

[1109] Terry M. Peters, J. C. Williams, and J. H. Bates, (Editors). Fourier Transform in Biomedical
Engineering Birkhauser Verlag, 1997.

[1110] D. P. Petersen. Sampling of space-time stochastic processes with application to information
and design systems, Thesis, Rensselaer Polytechnic Inst., Troy, N. Y. 1963.

[1111] D.P. Petersen. Discrete and fast Fourier transformations on n-dimensional lattices.
Proceedings IEEE, Vol. 58, 1970.

[1112] D.P. Petersen and D. Middleton. Sampling and reconstruction of wave number-limited
function in n-dimensional Euclidean spaces. Inform., Contr., Vol. 5, pp. 279–323, 1962.

[1113] D.P. Petersen and D. Middleton. Reconstruction of multidimensional stochastic fields from
discrete measurements of amplitude and gradient. Information & Control, Vol. 1, pp. 445–476,
1964.

[1114] D.P. Petersen and D. Middleton. Linear interpolation, extrapolation and prediction of random
space-time fields with limited domain of measurement. IEEE Transactions Information
Theory, Vol. IT–11, 1965.

[1115] J. Per̆ina. Holographic method of deconvolution and analytic continuation. Czechoslovak
J. Phys., Vol. B21, pp. 731–748, 1971.

[1116] J. Per̆ina and J. Kvapil. A note on holographic method of deconvolution. Optik, pp. 575–577,
1968.

[1117] J. Per̆ina, V. Perinova, and Z. Braunerova. Super-resolution in linear systems with noise.
Optica Applicata, pp. 79–83, 1977.

[1118] E.P. Pfaffelhuber. Sampling series for bandlimited generalized functions. IEEE Transactions
Information Theory, Vol. IT-17, pp. 650–654, 1971.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 725 680–744

REFERENCES 725

[1119] F. Pichler. Synthese linearer periodisch zeitvariabler Filter mit vorgeschriebenem Sequen-
zverhalten. Arch. Elek. Übertr. (AEÜ), Vol. 22, pp. 150–161, 1968.

[1120] W.J. Pielemeier and G.H. Wakefield. A high-resolution time-frequency representation for
musical instrument signals. Journal of the Acoustical Society of America. Vol. 99(4),
pp. 2382–2396, 1996.

[1121] W.J. Pielemeier, G.H. Wakefield, and M.H. Simoni. Time-frequency analysis of musical
signals. Proceedings of the IEEE. Vol. 84(9), pp. 1216–1230, 1996.

[1122] Allan Pinkus and Samy Zafrany. Fourier Series and Integral Transforms. Cambridge
University Press, 1997.

[1123] H.S. Piper, Jr. Best asymptotic bounds for truncation error in sampling expansions of band
limited signals. IEEE Transactions Information Theory, Vol. IT-21, pp. 687–690, 1975.

[1124] H.S. Piper, Jr. Bounds for truncation error in sampling expansions of finite energy band limited
signals. IEEE Transactions Information Theory, Vol. IT–21, pp. 482–485, 1975.

[1125] J.W. Pitton, W.L.J. Fox, L.E. Atlas, J.C. Luby, and P.J. Loughlin. Range-Doppler processing
with the cone kernel time-frequency representation communications, computers and signal
processing, 1991., IEEE Pacific Rim Conference on Vol. 2, pp. 799–802, 1991.

[1126] J.W. Pitton and L.E. Atlas. Discrete-time implementation of the cone-kernel time-frequency
representation. IEEE Transactions on Signal Processing, Vol. 43(8), pp. 1996–1998, 1995.

[1127] K. Piwerneta. A posteriori compensation for rigid body motion in holographic interferometry
by means of a Moiré technique. Opt. Acta, Vol. 24, pp. 201–209, 1977.

[1128] E. Plotkin, L. Roytman, and M.N.S. Swamy. Non-uniform sampling of bandlimited modulated
signals. Signal Processing, Vol. 4, pp. 295–303, 1982.

[1129] E. Plotkin, L. Roytman, and M.N.S. Swamy. Reconstruction of nonuniformly sampled
bandlimited signals and jitter error reduction. Signal Processing, Vol. 7, pp. 151–160, 1984.

[1130] T. Pogány. On a very tight truncation error bound for stationary stochastic processes. IEEE
Transactions Signal Processing, Vol. 39, No. 8, pp. 1918–1919, 1991.

[1131] R.J. Polge, R.D. Hays, and L. Callas. A direct and exact method for computing the transfer
function of the optimum smoothing filter. IEEE Transactions Automatic Control, Vol. AC-18,
pp. 555–556, 1973.

[1132] H.O. Pollak. Energy distribution of bandlimited functions whose samples on a half line vanish.
Journal Math. Anal., Applied, Vol. 2, pp. 299–332, 1961.

[1133] Polybius of Megalopolis, World History, translated by H. J. Edwards.
[1134] B. Porat. ARMA spectral estimation of time series with missing observations. IEEE

Transactions Information Theory, Vol. IT-30, No. 6, pp. 823–831, 1984.
[1135] B. Porter and J.J. D’Azzo. Algorithm for closed-loop eigenstructure assignment by state

feedback in multivariable linear systems. International J. Control, Vol. 27, pp. 943–947,
1978.

[1136] R.P. Porter and A.J. Devaney. Holography and the inverse source problem. Journal of the
Optical Society America, Vol. 72, pp. 327–330, 1982.

[1137] M. Pourahmadi. A sampling theorem for multivariate stationary processes. Journal
Multivariate Anal., Vol. 13, pp. 177–186, 1983.

[1138] F.D. Powell. Periodic sampling of broad-band sparse spectra. IEEE Transactions Acoustics,
Speech, Signal Processing, Vol. ASSP-31, pp. 1317–1319, 1983.

[1139] M. Pracentini and C. Cafforio. Algorithms for image reconstruction after nonuniform
sampling. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP–35, No. 8,
pp. 1185–1189, 1987.

[1140] S. Prasad. Digital superresolution and the generalized sampling theorem, Journal of the
Optical Society of America A – Optics, Image Science and Vision, Vol. 24(2), pp. 311–325,
2007.

[1141] P.M. Prenter. Splines and Variational Methods. John Wiley, New York, 1975.
[1142] R.T. Prosser. A multi-dimensional sampling theorem. Journal Math. Analysis Applied, Vol. 16,

pp. 574–584, 1966.
[1143] R. Prost and R. Goutte. Deconvolution when the convolution kernel has no inverse. IEEE

Transactions Acoust., Speech, Signal Processing, pp. 542–549, 1977.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 726 680–744

726 REFERENCES

[1144] M. Protzmann and H. Boche. Convergence proof for the algorithm by Papoulis and Gerchberg.
Frequenz, Vol. 52(9–10), pp. 175–182, 1998.

[1145] E.Z. Psarakis, V.G. Mertzios, and G.P. Alexiou. Design of two-dimensional zero phase FIR fan
filters via the McClellan transform. IEEE Transactions on Circuits and Systems, Vol. 37(1),
pp. 10–16, 1990.

[1146] E.Z. Psarakis and G.V. Moustakides. Design of two-dimensional zero-phase FIR filters via the
generalized McClellan transform. IEEE Transactions on Circuits and Systems, Vol. 38(11),
pp. 1355–1363, 1991.

Q
[1147] S. Qazi, A. Georgakis, L.K. Stergioulas, and M. Shikh-Bahaei. Interference suppression in

the wigner distribution using fractional Fourier transformation and signal synthesis. IEEE
Transactions on Signal Processing, Vol. 55(6), Part 2, pp. 3150–3154, 2007.

R
[1148] S.A. Rabee, B. Sharif, B.S, and S. Sali. Distributed power control algorithm in cellular radio

systems using projection onto convex sets 2001 Vehicular Technology Conference. VTC 2001
Fall. IEEE VTS 54th, Vol. 2, pp. 757–761, 2001.

[1149] L.R. Rabiner and R.W. Schafer. Digital Processing of Speech Signals. Prentice-Hall,
Englewood Cliffs, NJ, 1978.

[1150] D. Radbel and R.J. Marks II. An FIR estimation filter based on the sampling theorem. IEEE
Transactions Acoust., Speech, Signal Processing, Vol. ASSP-33, pp. 455–460, 1985.

[1151] R. Radzyner and P.T. Bason. An error bound for Lagrange interpolation of low pass functions.
IEEE Transactions Information Theory, Vol. IT-18, pp. 669–671, 1972.

[1152] J.R. Ragazzini and G.F. Franklin. Sampled Data Control Systems. McGraw-Hill, New York,
1958.

[1153] Y. Rahmat-Samii and R. Cheung. Nonuniform sampling techniques for antenna applications.
IEEE Transactions Antennas & Propagation, Vol. AP-35, No. 3, pp. 268–279, 1987.

[1154] P.K. Rajan. A study on the properties of multidimensional Fourier transforms. IEEE
Transactions Circuits & Systems, Vol. CAS-31, pp. 748–750, 1984.

[1155] A. Ralston and P. Rabinowitz. A First Course in Numerical Analysis, 2nd ed. McGraw Hill,
New York, 1978.

[1156] Dinakar Ramakrishnan and Robert J. Valenza. Fourier Analysison Number Fields. Springer,
1998.

[1157] Jayakumar Ramanathan. Methods of Applied Fourier Analysis. Birkhäuser Boston, 1998.
[1158] K.R. Rao and P. Yip. Discrete Cosine Transform: Algorithms, Advantages, Applications.

Academic Press, Boston, 1990.
[1159] M.D. Rawn. Generalized sampling theorems for Bessel type transforms of bandlimited

functions and distributions. SIAM J. Applied Math., Vol. 49, No. 2, pp. 638–649, 1989.
[1160] M.D. Rawn. On nonuniform sampling expansions using entire interpolating functions and

on the stability of Bessel-type sampling expansions. IEEE Transactions Information Theory,
Vol. 35, No. 3, 1989.

[1161] M.D. Rawn. A stable nonuniform sampling expansion involving derivatives. IEEE
Transactions Information Theory, Vol. 35, No. 6, 1989.

[1162] Lord Rayleigh. On the character of the complete radiation at a given temperature. Phil. Mag.,
series 5, Vol 27, 1889; reprinted in Scientific Papers, Cambridge University Press, Cambridge,
England, 1902; later published by Dover Publications, New York, Vol. 3, p. 273, 1964.

[1163] M.G. Raymer. The Whittaker-Shannon sampling theorem for experimental reconstruction of
free-space wave packets. Journal of Modern Optics, Vol. 44(11–12), pp. 2565–2574, 1997.

[1164] M. Reed and B. Simon. Methods and Modern Mathematical Physics. IV Analysis of
Operators. Academic Press, New York, 1978.

[1165] G.J. Ren and Y.M. Shi. Asymptotic behaviour of dynamic systems on time scales. Journal of
Difference Equations and Applications, Vol. 12(12), pp. 1289–1302, 2006.

[1166] F.M. Reza. An Introduction to Information Theory. McGraw-Hill, New York, 1961.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 727 680–744

REFERENCES 727

[1167] A. Requicha. The zeros of entire functions: Theory and engineering applications. Proceedings
of the IEEE, Vol. 68, No. 3, pp. 308–328, 1980.

[1168] A. Restrepo, L.F. Zuluaga, and L.E. Pino. Optimal noise levels for stochastic resonance.
Acoustics, Speech, and Signal Processing, 1997. ICASSP–97, 1997 IEEE International
Conference on Vol. 3, pp. 2365–2368, 1997.

[1169] D.R. Rhodes. The optimum lines source for the best mean-square approximation to a given
radiation pattern. IEEE Transactions Antennas & Propagation, pp. 440–446, 1963.

[1170] D.R. Rhodes. A general theory of sampling synthesis. IEEE Transactions Antennas &
Propagation, pp. 176–181, 1973.

[1171] W.T. Rhodes. Acousto-optical signal processing: Convolution and correlation. Proceedings
IEEE, Vol. 69, pp. 65–79, 1981.

[1172] W.T. Rhodes. Space-variant optical systems and processing. In Applications of Optical
Fourier Transforms, H. Stark, editor, Academic Press, New York, 1982.

[1173] S.O. Rice Mathematical analysis of random noise. Bell System Technical J., Vol. 23,
pp. 282–332, 1944.

[1174] S.O. Rice Mathematical analysis of random noise. Bell System Technical J., Vol. 24,
pp. 46–156, 1945.

[1175] S. Ries and W. Splettstößer. On the approximation by truncated sampling series expansions.
Signal Processing, Vol. 7, pp. 191–197, 1984.

[1176] S. Ries and R.L. Stens. A localization principle for the approximation by sampling series.
In Proceedings of the International Conference on the Theory of Approximation of Functions
(Kiev, USSR), Moscow; Nauka, pp. 507–509, 1983.

[1177] S. Ries and R.L. Stens.Approximation by generalized sampling series. In Constructive Theory
of Functions (Proceedings of Conference at Varna, Bulgaria, 1984), Bl. Sendov et al., editor,
Sofia, Publishing House Bulgarian Acad. Sci., pp. 746–756, 1984.

[1178] A.W. Rihaczek. Signal energy distribution in time and frequency. IEEE Transactions Inform.
Theory, IT–14, pp. 369–374, 1968.

[1179] C.L. Rino. Bandlimited image restoration by linear mean-square estimation. Journal of the
Optical Society America, Vol. 59, pp. 547–553, 1969.

[1180] C.L. Rino. The application of prolate spheroidal wave functions to the detection and estimation
of bandlimited signals. Proceedings IEEE, Vol. 58, pp. 248–249, 1970.

[1181] J. Riordan.Combinatorial Identities. Wiley & Sons, New York, 1968.
[1182] O. Robaux. Application of sampling theorem for restitution of partially known objects. 2.

numerical methods. Optica Acta, Vol. 17(11), p. 811, 1970.
[1183] O. Robaux. Use of Sampling theorem for reconstruction of partially known objects. 3.

decomposition of spectra. Optica Acta, Vol. 18(7), p. 523, 1971.
[1184] Allan H. Robbins, Wilhelm Miller, Circuit Analysis: Theory & Practice (2nd Edition),

Delmar Thomson Learning, 1999.
[1185] J.B. Roberts and D.B.S. Ajmani. Spectral analysis of randomly sampled signals using

a correlation-based slotting technique. Proceedings IEEE, Vol. 133, Pt. F, pp. 153–162,
1986.

[1186] J.B. Roberts and M. Gaster. Rapid estimation of spectra from irregularly sampled records.
Proceedings IEEE, Vol. 125, pp. 92–96, 1978.

[1187] J.B. Roberts and M. Gaster. On the estimation of spectra from randomly sampled signals –
a method of reducing variability. Proceedings of the Royal Society London, Vol. A371,
pp. 235–258, 1980.

[1188] Gregory S. Rohrer, Structure and Bonding in Crystalline Materials. Cambridge University
Press, 2001.

[1189] N. Rose. Mathematical Maxims and Minims, Rome Press Inc., 1988.
[1190] A. Röseler. Zur Berechnung der optischen abbildung bei teilkohärenter beleuchtung mit hilfe

des sampling–theorems. Opt. Acta, Vol. 16, pp. 641–651, 1969.
[1191] A. Roshan-Ghias and M.B. Shamsollahi, and M. Mobed et al., Estimation of modal parameters

using bilinear joint time-frequency distributions. Mechanical Systems and Signal Processing.
Vol. 21(5), pp. 2125–2136, 2007.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 728 680–744

728 REFERENCES

[1192] G. Ross. Iterative methods in information processing for object restoration. Opt. Acta,
pp. 1523–1542, 1982.

[1193] Hugh Ross, Beyond the Cosmos: The Extra-Dimensionality of God , Navpress Publishing
Group; 2nd Expand edition 1999.

[1194] E. Roy, P.Abraham, S. Montresor, and J.L. Saumett. Comparison of time-frequency estimators
for peripheral embolus detection. Ultrasound in Medicine and Biology,Vol. 26(3), pp. 419–423
2000.

[1195] S.H. Roy, P. Bonato, and M. Knaflitz. EMG assessment of back muscle function during cyclical
lifting. Journal of Electromyography and Kinesiology. Vol 8(4), pp. 233–245, 1998.

[1196] Y.A. Rozanov. To the extrapolation of generalized random stationary processes. Theor.
Probability Applied, Vol. 4, p. 426, 1959.

[1197] D.B. Rozhdestvenskii. Sampling and the discretization theorem. Automation and Remote
Control, Vol. 67(12), pp. 1991–2001, 2006.

[1198] W. Rozwoda, C.W. Therrien, and J.S. Lim. Novel method for nonuniform frequency-sampling
design of 2-D FIR filters. In Proceedings ICASSP’88, 1988.

[1199] D.S. Ruchkin. Linear reconstruction of quantized and sampled random signals. IRE
Transactions Communication Systems, Vol. CS–9, 1961.

[1200] Walter Rudin. Fourier Analysis on Groups. Wiley-Interscience, 1990.
[1201] A. Rundquist, A. Efimov, and D.H. Reitze. Pulse shaping with the Gerchberg-Saxton

algorithm. Journal of the Optical Society of America B – Optical Physics, Vol. 19(10),
pp. 2468–2478, 2002.

[1202] C.K. Rushforth and R.L. Frost. Comparison of some algorithms for reconstructing space-
limited images. Journal of the Optical Society America, Vol. 70, pp. 1539–1544, 1980.

[1203] C.K. Rushforth and R.W. Harris. Restoration, resolution, and noise. Journal of the Optical
Society America, Vol. 58, pp. 539–545, 1968.

[1204] F.D. Russell and J.W. Goodman. Nonredundant arrays and postdetection processing for
aberration compensation in incoherent imaging. Journal of the Optical Society America,
Vol. 61, pp. 182–191, 1971.

S
[1205] M.S. Sabri and W. Steenaart. An approach to bandlimited signal extrapolation: the

extrapolation matrix. IEEE Transactions Circuits & Systems, Vol. CAS–25, pp. 74–78, 1978.
[1206] R. Sahkaya, Y. Gao, and G. Saon. Fractional Fourier transform features for speech recognition

Proceedings. (ICASSP ’04). IEEE International Conference on Acoustics, Speech, and Signal
Processing, Vol. 1, pp. I–529–32, 2004.

[1207] R.A.K. Said and D.C. Cooper. Crosspath real-time optical correlator and ambiguity function
processor. Proceedings Institute Elec. Engineering Vol. 120, pp. 423–428, 1973.

[1208] S.H. Saker. Oscillation of nonlinear dynamic equations on time scales. Applied Mathematics
and Computation, Vol. 148(1), pp. 81–91, 2004.

[1209] S.H. Saker. Oscillation of second-order nonlinear neutral delay dynamic equations on time
scales. Journal of Computational and Applied Mathematics, Vol. 187(2), pp. 123–141, 2006.

[1210] B.E.A. Saleh. A priori information and the degrees of freedom of noisy images. Journal of
the Optical Society America, Vol. 67, pp. 71–76, 1977.

[1211] B.E.A. Saleh and M.O. Freeman. Optical transformations. In Optical Signal Processing.
J.L. Horner, editor, Academic Press, New York, 1987.

[1212] F.V. Salina, N.D.A. Mascarenhas, and P.E. Cruvinel. A comparison of POCS algorithms for
tomographic reconstruction under noise and limited view. Proceedings Brazilian Symposium
on Computer Graphics and Image Processing, 2002. pp. 342–346, 2002.

[1213] F.V. Salina and N.D.A. Mascarenhas. A Hybrid Estimation Theoretic-POCS Method for
Tomographic Image Reconstruction. 18th Brazilian Symposium on Computer Graphics and
Image Processing, 2005. SIBGRAPI 2005. pp. 220–224, 2005.

[1214] M. Salerno, G. Orlandi, G. Martinelli, and P. Burrascano. Synthesis of acoustic well-logging
waveforms on an irregular grid. Geophysical Prospection, Vol. 34, No. 8, pp. 1145–1153,
1986.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 729 680–744

REFERENCES 729

[1215] C. Sanchez-Avila. An adaptive regularized method for deconvolution of signals with edges
by convex projections. IEEE Transactions on Signal Processing, Vol. 42(7), pp. 1849–1851,
1994.

[1216] C. Sanchez-Avila and J.A. Garcia-Moreno. An adaptive LSQR algorithm for computing
discontinuous solutions in deconvolution problems. Mathematics and Computers in
Simulation, Vol. 50(1–4), pp. 323–329, 1999.

[1217] I.W. Sandberg. On the properties of some systems that distort signals – I. Bell Syst. Tech. J.,
pp. 2033–2046, 1963.

[1218] J. Sanz and T. Huang. On the Gerchberg - Papoulis algorithm. IEEE Transactions on Circuits
and Systems, Vol. 30(12), pp. 907–908, 1983.

[1219] J.L.C. Sanz. On the reconstruction of bandlimited multidimensional signals from algebraic
sampling contours. Proceedings IEEE, Vol. 73, pp. 1334–1336, 1985.

[1220] Vidi Saptari. Fourier Transform Spectroscopy Instrumentation Engineering. International
Society for Optical Engineering (SPIE), 2003.

[1221] T.K. Sarkar, D.D. Weiner, and V.K. Jain. Some mathematical considerations in dealing with
the inverse problem. IEEE Transactions Antennas & Propagation, Vol. AP-29, pp. 373–379,
1981.

[1222] K. Sasakawa. Application of Miyakawa’s Multidimensional Sampling Theorem (Japanese).
Prof. Group on Inform. Theory, Institute Electron. Commun. Engineering Japan, I: no. I, 1960;
II: no. 9, 1960; III: no. 2, 1961; IV: no. 6, 1961; V: no. 1, 1962.

[1223] Y. Sasaki and K. Teramoto. Improved satellite ground resolution for sea-ice observation
using an inversion method and a priori information. IEEE Journal of Oceanic Engineering.
Vol. 31(1), pp. 219–229, 2006.

[1224] P. Sathyanarayana, P.S. Reddy, and M.N.S. Swamy. Interpolation of 2-D signals. IEEE
Transactions Circuits & Systems, Vol. 37, No. 5, pp. 623–631, 1990.

[1225] K.D. Sauer and J.P. Allebach. Iterative reconstruction of bandlimited images from non-
uniformly spaced samples. IEEE Transactions Circuits & Systems, Vol. 34, pp. 1497–1505,
1987.

[1226] R.W. Schafer, R.M. Mersereau, and M.A. Richards. Constrained iterative restoration
algorithms. Proceedings IEEE, pp. 432–450, 1981.

[1227] R.W. Schafer and L.R. Rabiner. A digital signal processing approach to interpolation.
Proceedings IEEE, Vol. 61, pp. 692–702, 1973.

[1228] S.A. Schelkunoff. Theory of antennas of arbitrary size and shape. Proceedings IRE,
pp. 493–521, 1941.

[1229] W. Schempp. Radar ambiguity functions, the Heisenberg group, and holomorphic theta series.
Proceedings America Math. Society Vol. 92, pp. 103–110, 1984.

[1230] W. Schempp. Gruppentheoretische aspekte der signal übertragung und der kardinalen
interpolations splines I. Math. Meth. Applied Sci., Vol. 5, pp. 195–215, 1983.

[1231] J.L. Schiff and W.J. Walker. A sampling theorem for analytic functions. Proceedings of the
American Mathematical Society, Vol. 99(4), pp. 737–740, 1987.

[1232] J.L. Schiff and W.J. Walker. A sampling theorem and wintner results on Fourier coefficients.
Journal of Mathematical Analysis and Applications, Vol. 133(2), pp. 466–471, 1988.

[1233] J.L. Schiff and W.J. Walker. A sampling theorem for a class of pseudoanalytic functions.
Proceedings of the American Mathematical Society, Vol. 111(3), pp. 695–699, 1991.

[1234] R.J. Schlesinger and V.B. Ballew. An application of the sampling theorem to data collection
in a computer integrated manufacturing environment. International Journal of Computer
Integrated Manufacturing, Vol. 2(1), pp. 15–22, 1989.

[1235] Dietrich Schlichthärle. Digital Filters: Basics and Design. Springer, 2000.
[1236] I.J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic

functions. Part a: On the problem of smoothing or graduation. A first class of analytic
approximation formulae. Quart. Applied Math., Vol. 4, pp. 45–99, 1946.

[1237] I.J. Schoenberg. Cardinal interpolation and spline functions. Journal Approx. Theory 2,
pp. 167–206, 1969.

[1238] A. Schönhage. Approximationstheorie. de Gruyter, Berlin – New York, 1971.



[13:28 15/10/2008 5165-marks-references.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 730 680–744

730 REFERENCES
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A
a.k.a., ix, 155, 362, 411, 503, 570
Abbott, Edwin A., 326, 680
Abel transform, 226, 345–348, 401–402,

406–407
Abel, Niels Henrik, 519
absolute

convergence, vi, 24
error, 366
value, 73

absolutely convergent, 61–62, 72–73, 266
additive, 9

basis, 598
closure, 590, 605–607
correlation, 462
noise, 18, 288, 292–294, 302, 323, 325, 456,

459, 461–463, 518, 682, 699
sample noise, 265
systems, 9, 105–106, 108, 110–113, 135,

142, 630
acoustics, 3–4, 495, 610, 612, 624, 692, 706,

728, 735
acronym table – see tables
additively, 630
additively idempotent time scale, ix, 595, 603.

Also see AITS
Airy

disc, 637–638
pattern, 637, 657
George Biddell, 518

AITS, ix, 595–598, 601–608. Also see –
additively idempotent time scale

AITS hull, 596–597
algebraic decay, 591, 596
aliasing, 4, 9, 55, 222, 236–237, 253–254, 283,

288, 309, 374, 376, 382, 390, 396–397,
451–472, 483, 489, 684, 686, 691, 692,
697–698, 581, 705, 707, 715, 718–719,
722, 730, 732, 734–735

almost sure convergence, 177
alternating projections onto convex sets, vii, x,

433–435, 495, 551–553, 716, 721.
Also see – POCS

AM, ix, 68, 122, 133. Also see – amplitude
modulation

ambient temperature, 106
ambiguity function, 441, 445, 681, 715,

728–729, 735
amortization, 8, 656
amplitude modulation, ix, 6, 68, 122–123,

133–134, 204, 276. Also see – AM
analytic signals, xiv, 12, 64, 77, 134
angular

displacement, 399
Fourier transform, 126, 680
frequency, 625
intervals, 547
spectrum, 626–630, 657
variable, 399

annulus, 342, 572, 574, 607
antenna, 122, 624, 643–644, 684, 686, 691, 703,

714, 726, 729, 736, 741
anti-derivative, 587
antiextensive, 581, 583, 595, 608
aperiodic, 354, 358, 704
aperture, 4, 415, 532–533, 544, 624, 634–637,

642–644, 657, 659, 687, 698–699
apodization, 415, 644, 731
Arabshahi, Payman, vii
arbitrary

but fixed, 586, 596
closed subset, 604
complex weights – see complex weight
constant, 645
frequency, 424, 657, 734
function, 248, 429
integtration, 15
interval, 564
number, 385
period, 14
point, 501
phase, 416
rational time, 424
signal, 484
tile shape, 373
time scale, 605

745
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arbitrary (cont’d)
variation, 220
vector, 506–507, 510, 514, 522

arctan, 22, 91, 228–229, 292, 312–313, 460
arithmetic mean, 14, 439
array

aperture, 643–644
beam – see beam array
detector, 250
function, xii, 23, 32–35, 65–66, 69, 90, 99,

100, 103, 154, 169, 266, 267, 272, 276,
454–455, 466, 468, 470, 489, 643, 663

imaging, 3, 732
linear – see linear array
of circles, 378
of Dirac deltas, 373
of squares, 392
pattern, 643–644
phased – see phased array
pixel – see pixel array

associative, 115–116, 576
memory, 7, 516–521, 525–527, 529, 550,

691, 716, 730
astrologers, 411
asymptotic Gaussian, 189
asymptotic graininess, 597–601
Atlas, Les E., viii, 436, 551–553, 691, 716, 721,

725, 744
atmospheric gases, 6
audio, 3–4, 68, 122, 234, 439, 613, 695, 743
Augustine, Saint, 411, 681
autoconvolution, 133, 186, 203, 419
autocorrelation, xi, xiii, 15, 194–200, 204, 214,

233, 289–292, 309–312, 316–317, 323,
384, 427, 457, 460–464, 486, 700, 708

average, 124, 160, 176–179, 182, 186, 196, 204,
215–216, 277, 303–304, 306, 439, 517,
519, 533, 676, 682, 698, 737. Also see –
sample mean

image, 179, 517, 519, 533
power, 124, 196, 204, 215–216, 737
interpolation noise, 303–394, 306
sampling density, 277, 698

B
Baby Senator image, 182
back projection, 352
bandlimited, ix, xii, xiv, 8–9, 12, 39, 49, 61, 68,

71–72, 101–102, 133, 139, 150, 217–222,
224–227, 230–237, 239–244, 250–251,
261–263, 265–266, 271, 273, 275–278,
288, 307, 309, 314, 316, 320, 323–325,
376, 382, 394–395, 397–398, 447–450,
465, 472, 474–475, 477, 479–480,
482–488, 491, 493, 495, 507, 514–517,
535, 537, 550, 682, 685–690, 692, 694,
697–699, 701–703, 706, 708–712,
714–720, 723–737, 740–743

function, 39, 49, 101, 220, 224–225, 231,
235, 682, 685, 689, 694, 699, 701, 706,
709–710, 712, 719–720, 725, 726,
732–734, 737, 743. Also see – bandlimited
signals

signal, ix, xii, xiv, 8–9, 12, 68, 71, 150,
217–219, 226, 231–232, 234–235,
239–240, 242–244, 250–251, 261, 263,
265, 275–277, 288, 307, 316, 320,
323–324, 376, 382, 394, 397, 447–449,
474, 477, 480, 483, 485–487, 495, 507,
514–517, 535, 537, 550, 685–690, 692,
697, 702–703, 709, 711–712, 714–717,
720, 723, 725, 727–728, 734, 736,
740–742. Also see – bandlimited
function

bandpass, ix, 121–123, 134–135, 267–268,
270–272, 278, 301–302, 369–371, 413,
418, 439, 683, 686, 709, 734, 738

filter, 121, 123, 134–135, 369, 413,
439, 683

function, 267–268, 270, 301–302
sampling, 270, 302, 686, 709, 734, 738
signal, 268, 270–271, 418, 686

bandstop filter, 121, 135, 369–370
bandwidth, xii, xiv, 12, 49, 68, 120, 122,

139, 218–219, 221–222, 227, 231–232,
235–236, 239–241, 243, 247–248, 252,
261, 264, 267, 271, 272, 274–276, 276,
280, 289, 293–294, 304, 314, 397–398,
429, 429, 450, 455, 465–467, 470, 473,
475, 477, 482–483, 485–486, 507,
514–515, 535, 537, 685, 699, 702,
705, 713, 716–717, 731, 737, 742

equivalence, 397
interval, 232

Bartlett window, 415, 419
baseband, 68, 122–123, 133–134, 204,

268–269, 277
signal, 122–123, 133–134, 204, 268, 277

bastinadoed, 413
Bayes, Rev. Thomas, 519
BE, ix. Also see bounded energy signals
beam

array, 547
constraint, 555
cross section, 545–546
design, 545–546
dose, 547
element, 547, 554–558, 560–561
intensity, 546, 558–559, 562
splitter, 643
intensity, 546
position, 554
profile, 545–546, 558–559, 561–562
projection, 546
steering, 644
synthesis, 8
vector, 547, 556
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weights, 445
width, 643–644

beamforming, 8, 126, 415, 495, 624, 643, 697,
713, 742

beat frequency, 429, 435
bel, 413
bell shaped curve, 159
Benedictine abbey of Saint Benoît-sur-Loire, 5
Bernoulli

random variable, 169
trial, 169–170
Daniel, 518
Jacob (Jacques), 518
Nicolaus (II), 518

Bertrand’s paradox, 565
Bessel

functions, xii, xvi, 9, 37, 39–41, 43, 64, 69,
89, 92–93, 95–96, 133, 141, 202, 263,
342–345, 401, 406, 415

Friedrich Wilhelm, 326, 518
beta

function, xii, 36–37, 164
probability function, 153, 165, 202
random variable, 153, 163–165, 202, 209, 210

bias, 122, 124–125, 134, 204, 216, 276,
313–316, 318–319

biased estimate, 313
BIBO, ix, 107, 110–112, 142. Also

see – bounded input-bounded output
stability

bilateral
cosine transform, 65, 83
Laplace transform, 64

binary
image, 182, 570, 575–578, 580, 582, 584
string, 365

binomial
coefficients, xiii, 36, 662
random variable, 170–172, 175, 190, 194,

202–203
series, 170, 203, 481, 662

bioengineering, 424, 434
bioinformatics, 495
biomedical

engineering, 3, 724
signal, 424, 434, 684

bipolar, 517
bit packet, 160
bits, 364
BL, ix. Also see bandlimited signals
Black, H.S., 218, 684
Blackman window, 415, 420, 422, 685
block orthogonal, 414
blurred

face, 517
image, 147, 696, 705, 722, 741
motion – see motion blurr

Bohner, M., 586, 680, 685
Bohr, Niels Henrik David, 151, 685

Boltzmann’s constant, xii, 198, 407
Borel, Emile, 218–219, 685
Born-Jordon kernel, 411, 543
Bortfeld, Thomas, 448, 685, 735
Bortfield’s geometry, 560–561
boundary. Also see Fresnel – Fraunhofer

boundary & inside boundary & outside
boundary

conditions, 127–128, 130, 164, 228, 612,
618, 656

for the spectrogram, 440
of a closed convex set, 497
of a region, 380
of the Minkowski addition, 571
wide sense stationary stochastic process, 204
value problems, 7, 610, 692, 700, 703,

707, 743
bounded. Also see – error bound & lower

bound & measureable
bounded signals & unbounded & upper bound

bandlimited function, 102, 682
derivative, 512
energy signals, ix, 305, 511
first difference, 512
input-bounded output stability, ix, 107, 110,

142. Also see – BIBO
inverse Fourier transform, 101
noise level, 482
signal, ix, 11–12, 67, 71, 107, 495, 512,

527, 688
bow tie

constraint, 428, 539, 543–544
untruncated, 544

boxcar window, 415, 419–420, 423–424
BPF – see band pass filter
Bracewell, Ronald N., vi, 686
Bradley,Walter L., viii
Brahme’s butterfly tumor, 557, 559, 686
Bravais lattice, 327
Bregman, L.M., 495, 686
broadband signal, 122, 700, 725
Brother Ray image, 179, 185
BS, ix. Also see bounded signals
bugle, 613, 616, 618
bunched samples, 252, 257. Also see –

interlaced samples
byte, 364, 366, 517, 532

C
CA, ix. Also see constant area signals
Cantor, Georg Ferdinand Ludwig Philipp, 139,

689, 694
capacitors, 106, 116
cardinal series, 49, 150, 217–220, 222–225,

227, 229, 231–235, 241–243, 245–249,
261, 265–266, 272–274, 277–278,
284–285, 288–290, 294–295, 302,
313–314, 320–321, 323, 449, 461, 484,
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cardinal series (cont’d) 682, 684, 686, 688–689,
697, 704, 709–710, 718, 722, 729,
733–734, 739

carrier, x, 68, 122–124, 133–134, 276
frequency, 68, 122, 276
carrier frequency phase, 124

Cartesian
coordinates, 15
Cartesian product, xi, 591–593

CAT, ix, 327
cathode ray tube – see CRT
Cauchy

autocorrelation, 323
A.L., 218, 687–688, 690, 738
- Bunyakovski – Schwarz inequality, 660
characteristic function, 168
inequality, 660
principle value, 167
probability density function, 166–167, 679
random variable, 153, 166–169, 175–176,

187, 209, 678–679
- Schwarz inequality, 660

causal
comb, 31-32, 78
convolution, 137
filter, 107, 440, 482
impulse response, 366
signal, 8, 12, 15, 18, 46, 51, 64–65, 107, 111,

137, 140, 420, 482, 486–487, 495, 684, 705
sine wave, 420
system, 107–111, 113–114, 135–136, 142,

144. Also see – nonanticipatory system
time scale, 586, 599
window, 420, 423

causality, 6, 107, 111
CD, ix, 4, 107
cellular radio, 495, 726
center of mass, 155, 174
central

limit theorem, 6, 8, 160, 178–170, 187–192,
202–203, 211, 676

slice theorem, 348–350, 401, 406
tendency, 155

cents, 610, 614–616, 621–623, 656–657,
658–659

chain rule, 347, 569
characteristic functions, xiii, xvii, 6, 152–156,

158–164, 166, 168–171, 174–177,
186–187, 201–203, 205–206, 210–211,
315, 318, 670

Chebyshev’s inequality, 157–158, 178
Chebyshev

filters, 107
polynomials, xiv, 42–43, 50, 69, 89, 96–97,

167, 372
polynomials of the second kind, 9, 69
Pafnuty Lvovich, 519, 610

chemistry, 3, 716
Cheung, Kwan Fai, viii, 516, 691, 726, 740

chi random variable, 667–668
chi-squared random variable, 153, 162–164,

175, 190, 201, 206, 664, 667–668, 673
chirp, 432–434, 439, 544, 551–552

Fourier transform, 439
Cho, Paul S., viii, 554, 557, 559–562, 692,

711–712, 742
Choi, Jai J., viii
Choi-Williams distribution, 431
chords, 412, 613, 616–621
Christ, v
chromatic

scale, 8
step, 411, 613–615, 621–622

chromatography, 4, 739
Churchill, Sir Winston Spencer, 495
circularly symmetric, 341–346, 401, 406
circular

aperture, 637
convolution, 51, 53–54, 118–119, 466
convolution mechanics, 118–119
harmonic, 344–345, 401
circular pupil, 377, 379, 385
radius, 395
spectrum, 387
support, 377, 379, 391, 394–395

city block metric, 327
clarinets, 613
closed

convex sets, 496–497
under addition, 590, 596, 608
under independent summation, 174–175, 189
under Minkowski addition, 590, 596

closing xi, 575, 581, 583, 608
duality, 581

closure, 497, 590, 596, 605, 606–607
cochlea, 4
Cohen’s GTFR, 7, 417, 431, 434, 438, 537, 689,

691, 696, 702, 710, 712, 713, 720, 722,
738–739, 741, 744

Cohen, Leon, 424, 427, 692, 696
coherent

demodulation, 122–125, 133–134, 268
demodulator, 122, 124
field, 629–630, 638, 695, 700
illumination, 377, 625, 684, 701
light, 4, 8, 377, 623, 630, 683, 735
optics, 628, 716
processor, 445, 702, 713, 715, 738
sonar, 4
wave, 626, 657

Colerage, Samuel Taylor, vii
colored noise, 323, 458
column space, 506–507
comb function, xii, 14, 23, 31–32, 34–35, 47,

51, 70–71, 78, 84, 100, 221–222, 235, 243,
253, 270, 273, 356–357, 373, 390, 392,
395–396, 466, 720

causal – see causal comb
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multidimensional – see multidimensional
comb lemma

communications engineering, 3, 685
commutative, 115–116, 120, 576
compact

disk, ix
support, 150

complement, xii, 369, 506, 574, 578–579
complete, 5, 47–48, 112, 139, 219, 224–225,

234, 238, 245, 267, 273–274, 278, 283,
315, 245, 326, 357, 403, 474, 475, 477,
482, 516, 528, 586, 661, 682, 704, 726

basis set, 48, 273–274, 278, 474, 477, 704
complex, 326, 545, 682, 685, 686, 693, 704,

710, 723, 737–738
arguments, 35–36
bandlimited signal, 235
computational – see computational

complexity
conjugate – see conjugate
exponential, 115–116, 419
even function, 82
field amplitude, 629
Fourier transform, 15, 82
frequency response, 116
function, 62, 190, 564, 660
image, 566
number, 12
odd function, 82
phase – see phase of a complex exponential
plane wave, 629
sinusoid, 31, 62, 412
signal, 239, 495
target, 558
Walsh function – see Walsh function
weights 628, 644

compound interest, 647, 651–652, 655–656
compounding, 647–649, 651–653, 656, 658
computational complexity, 213
computed axial tomography – see CAT
condition, 8, 17, 24, 60, 67, 69, 95–96, 105,

127–128, 130, 136, 153, 164, 179, 186,
195, 224, 228, 248–249, 277, 298–299,
301, 383, 430, 470–472, 485–486, 612,
617–618, 642, 648, 655–656, 663–664,
691, 696, 711

number, 301, 470–472, 485, 663–664
cone, 428, 431, 434–438, 441, 444, 504–505,

508, 516, 527, 537, 539, 541, 543–544,
551–552, 693–694, 696, 709, 721, 725,
738, 744

constraint, 428, 541, 543–544, 551–552
kernel, 428, 431, 434–438, 441, 444, 537,

693–694, 696, 709, 721, 725, 738, 744
confluent hypergeometric function, xii, 202,

209, 673
conformal radiotherapy, 7–8, 495, 545–546,

554, 557, 449–562, 685, 712

conjugate, 15, 22, 45, 51, 70, 120, 127, 235,
269, 430, 438, 444, 472, 483, 489, 564,
629, 657, 735, 744

plane waves, 657
symmetry, 45, 70, 120, 200, 235, 430, 472,

483, 489, 564, 629. Also see – Hermetian
conservation of contours, 368
constant

area signal, ix, 508–511, 533, 545, 549
graininess, 597
phase signal, ix, 511–512, 566, 628
Q, 415, 439, 695, 737
addressable memory, 516

continuously sampled signals, 7, 9, 448–450,
455, 461–463, 477, 480, 483, 715

continuous, 11, 20, 36, 50, 80–81, 115, 120,
203, 224, 398, 449, 468, 564, 511, 586,
546, 608, 685, 689, 711, 716, 722, 732,
742. Also see – continuous time

circular convolution, 118
compounding, 649, 651–653
domain, 328
dose, 549
functions, 9, 166, 173, 220, 327, 473, 509,

688, 732, 741. Also see continuous
signal & continuous time signal &
discontinuous function

image, 328
interest, 652
multidimensional, 330
noise, 324. Also see continuous white noise
position, 9
random variable, 153, 173
sample restoration, 462–464
sampling, vii, 10, 288, 447–448, 463, 450,

463, 465, 467, 477, 483
short time Fourier transform, 441
signal, 104, 219, 508, 511, 564, 681–682,

690, 692, 704. Also see continuous
function & continuous time signal

space, 326
stochastic process, xiii, 197. Also see –

continuous time stochastic process
sum, 112
unit step, xiii
white noise, 9, 197–198, 324, 457

continuous time, 120, 196, 200, 425, 501, 718,
731. Also see – continuous

cone kernel, 441
convolution, 115, 141
filter, 135
Fourier transform, ix, 8, 13–15, 18, 20, 45,

50, 54, 81, 583, 587. Also see – CTFT
GTFR, 417, 427, 434
impulse response, xii, 121
periodic function, 67
rectangle, xiii
scale, 587, 604
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continuous time (cont’d)
signal, ix, xiii–xiv, 6, 11–12, 14, 50, 71, 193,

417–418, 570, 584, 586, 692, 704,
728–719. Also see continuous function &
time signal

solution, 653
stochastic process, 194. Also see – continuous

stochastic process
systems, 112, 120, 139
window, 415

contractive
function, 567, 569
operators, 208, 558–559, 562, 569
iteration, 563, 567, 569

control theory, 3
convergence factor, 26, 32, 66, 83, 87
convex

cones, 496, 504–505, 527
cone hull, 504–505, 527
hull, 504–505, 527
set, vii, x, 7, 433–435, 438, 495–508,

510–514, 517, 527–528, 533, 535, 537,
539, 542–543, 545–546, 548, 551–554,
557, 559–564, 567, 608, 686, 691–694,
702–703, 710, 712, 716, 721, 724, 726,
730–731, 735, 738–739

slab, 508, 567
convolution, vi, xi, xiv, 7, 15, 39, 32, 46, 51,

53–54, 107, 110–112, 115, 117–119, 126,
130, 132–134, 137, 139, 174, 186–188,
198, 222, 226, 231, 236, 250–251, 263,
331–334, 346–347, 373, 413, 419, 443,
450, 456, 458, 466–467, 469, 570,
572–573, 583, 591, 592–595, 601–603,
631, 634–635, 680, 714, 716–719, 724,
725, 727, 732, 734. Also see –
deconvolution

algebra, 115–116
integral, 111, 115, 117–118, 137, 333, 346,

401, 583, 631, 635, 732
kernel, 456, 725
mechanics, 117, 333–334
on a time scale, 592, 594, 601–602
sum, 115
support, 572–573
tables – see tables
theorem, 19, 32, 333, 347, 413

correlation, 51, 194, 198, 204, 226, 292, 324,
384, 457–458, 684, 693, 698, 703, 710,
714, 727. Also see – autocorrelation

integral, 15
length, 324
theorem, 458

cos, xii, 21–25, 27, 32, 37, 39, 42, 56–58, 65,
67–69, 77–78, 81–84, 87, 90, 92–94,
96–99, 110, 116, 121–124, 132, 198, 204,
214, 228–229, 232, 239, 262–263,
268–271, 276–278, 280, 283–284, 286,
291–292, 302, 306, 310–311, 324, 335,

337, 339, 341–342, 344, 350–352, 362,
367–369, 371, 402, 404, 420–423, 431,
438–439, 442, 445–446, 460, 488, 511,
567, 569, 588–594, 611–612, 627, 629,
670. Also see – cosine

cosech, 23, 25–26, 86, 132, 140. Also see –
hyperbolic cosecant

cosh, 24, 26, 163, 203, 211–212, 291–292, 311,
324. Also see – hyperbolic cosine

cosine ix, xiv, 4, 6, 24, 56, 61–62, 65, 83, 117,
262, 284, 327, 360, 371, 420–424, 446,
627–628, 630, 657, 683, 717, 726–727.
Also see – cos

filter, 421, 423
series, 422–424
transform, ix, xiv, 4, 6, 56, 65, 83, 327, 360,

717, 727
cosinusoid, 123, 268
cotan, 23, 31, 78, 87. Also see – cotangent
cotangent, 23, 32, 78, 87, 304. Also

see – cotan
cotanh, 26
countably infinite, 14, 230
CP, ix. Also see constant phase signal
Cramer’s rule, 257, 275, 286
cross-correlation, 194, 198, 204, 384
CRT, ix, 395
crystallography, 3, 700, 732, 740
CTFT, ix, 13–16, 20, 60, 587. Also see –

continuous time Fourier transforms
convergence, 189
distribution function, xii, 151–152, 187,

201–202
spotting, 194
sum, 51

current, 11, 84, 116, 196
cyclostationary stochastic processes, 323

D
data noise level, 292, 384–386, 402
daVinci, Leonardo, 518
Davis, John M., viii, 583, 694, 702, 716
dB, ix, 12, 68, 118, 366, 386–387, 413, 429,

544. Also see – decibel
DCT, ix, 4, 7, 56–57, 72, 360, 362–366, 527,

680, 723, 735, 742, 744. Also see – discrete
cosine transform

basis functions, 362
de Broglie wavelength, 646
decade, 53, 414, 737
decibel, ix, 413. Also see – dB
decimation, 387, 392–395, 403, 413, 435–436,

463, 465, 693
deconvolution, 495, 570, 594, 681, 691,

699, 704, 706, 708, 716, 724–725,
729, 735

definite integration, 45
of derivatives property, 45, 63
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degree of aliasing, 253, 462, 467
degrees Kelvin, 198
Dembski,William A., vii
demagnify, 145
demodulation, 122–125, 134, 204,

268, 740
deMoivre

Abraham, 518
-Laplace theorem, 190

derivative. Also see – bounded derivative &
fractional derivative Hilger derivative &

kernel, xii, 262, 264–265, 307
function, 156
interpolation, 261, 263, 265, 306–308, 715
of a bandlimited signal, 261, 263, 307
of a bounded function, 101–102
of a discontinuity, 65
of a finite energy function, 101
of the cone kernel, 441, 444
of the characteristic function, 155, 168, 205
of the Dirac delta, 232
of the output, 137
of the second characteristic function,

156, 162
of the sinc, xii
property, 45, 63, 205
samples, 276, 281, 303–304, 306
sampling, 302, 304, 306
theorem, 18, 45, 65, 71–72, 86, 102, 141,

154, 192, 232, 262, 347, 401
DeSantis, P., 477, 695
Descartes, Rene, 242, 695
Description de l’Egypte, 5–6
detection theory, 203, 677–679
deterministic

autocorrelation, xi, 15, 317, 457
correlation, 15, 457
random variable, 168, 177

DFT, ix, 13, 50, 52–57, 60, 72, 103, 118,
125–126, 359–360, 366, 485, 681, 686,
695, 731, 739. Also see – discrete Fourier
transform

leakage, 55
diagonal

elements, 399
matrix, 337, 340, 359, 377, 549

diamond kernel, 431–432, 444, 721
diapason, 614
diapente, 614
diatesseron, 614
dice, 151, 602
die, 151, 169, 177, 602
difference equations, 8, 59–60, 523, 646–648,

650, 652, 655, 704, 726
diffraction, 3–4, 7, 495, 623, 626–627,

629–631, 633–639, 641, 657, 659,
681–682, 684, 697, 700, 703, 706, 710,
714, 719, 722, 735, 740–741

integral, 624, 631, 633–635, 710

digital integration, 311
diffraction intensity, 63
differential equation – see linear differential

equation
digital

signal processing, ix, 52, 683, 693–694, 729.
Also see DSP

versatile disc, ix. Also see DVD
video disc, ix. Also see DVD

dilation, xi, 570–573, 575–576, 578–580, 582,
590, 593, 608

duality, 576, 578–580
subset property, 579, 582

dimple, 576
diodes, ix, 106, 687
Dirac delta functions, vi, xii, 20–23, 31–32,

54–55, 64–66, 83–84, 110, 112–114, 120,
139, 145, 168, 178, 199, 221–222, 232,
283, 356, 373, 429, 443, 456, 458, 542,
588, 592, 626, 627, 640

Dirac delta scaling, 21
direct interpolation, 246, 296
direction cosines, 627–628, 630, 657
directly sampled signals, 271, 278, 293
Dirichlet

conditions, 17, 67, 219
Johann Peter Gustav Lejeune, 17

discontinuous function, 477, 682, 688, 729.
Also see – continuous function

discrete
cosine transform, ix, 4, 6, 56, 360, 527,

726–727. Also see – DCT
Fourier transforms, ix, 10, 13, 52, 125, 359,

440, 485, 681, 686, 695–696, 710, 731,
735, 738. Also see – DFT10, 11, 46, 599

periodic nonuniform decimation, 463, 465
time convolution, 13, 51, 81, 118, 231, 236,

250–251, 469, 603
time Fourier transforms, ix, 10, 13, 50–51,

54, 154, 587. Also see – DTFT
time periodic signals, 119
time scale, 586–588, 592, 603
time signals, ix, xii–xiv, 7, 11–12, 59, 72,

126, 236, 416, 419, 463, 503, 564,
583–584, 586–587, 692, 706, 722

time system, 72, 113, 115, 135–136, 139,
141–142, 698, 720

time windows, 413
uniform random variable, 169–170

discretized
intensity, 546
kernel, 547

discriminant, 85, 610–612
dispersion, 155, 157, 174, 177
displaced, 14, 255
displacement, 399, 616

assumption, 611
vector, 504, 513

dissipated power, 11
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distribution, vi, xii, 20, 151–152, 154, 168,
173–174, 189, 202, 232, 407, 417, 431,
433–435, 537, 551–553, 557, 560–561,
665, 692–683, 686–687, 689, 692, 696,
699–700, 702, 704–706, 709, 711–713,
721–723, 725–727, 735, 738–741,
743–744

distributive, 115–116, 580, 595, 608
dose, 547, 549, 554, 557–558, 560–561, 692

constraint, 547–549, 554
contour, 557, 560–561, 735
distribution, 557, 560
domain, 547
matrix, 554, 558
prescription, 546
synthesis, 546, 556–557, 560–561
vector, 547

double
diamond kernel, 432, 434, 721
factorial, xiii, 35, 63, 206
Mersenne primes, 662

doublet, 232
Dougherty, Edward R., 609, 700
DSP, ix, 644. Also see – digital signal processing
DTFT, ix, 13, 50–53, 55, 59–60, 82, 142, 359,

368, 466–467, 472, 587. Also see –
discrete time Fourier transform

duality theorem, 15, 19, 21, 78, 86, 127,
140, 474

duration limited signals, 495, 507–508, 515,
688, 733

duty cycle, 448, 450, 453, 455, 458–459,
461, 463

DVD, ix, 4
dynamic

signal, 411
systems, 106, 694, 704, 526

Dyson, Freeman, 570

E
École Normale, 5
École Polytechnique, 5
Eddington, Sir Arthur, 610, 696
edge detection, 576–577
Edwards, Jonathon, 217, 696
Egyptology, 6
eigenvalues, xiii, 473, 475–476, 481, 492,

523–526, 663, 685, 701, 708, 711, 731
eigenvectors, 523, 663
Einstein, Albert, 17, 104, 151, 288, 696
El-Sharkawi, Mohamed A., viii, 532, 534–536,

538–543, 716, 723
electric

field amplitude, 624, 627, 629–631
field wave equation, 626

electromagnetics, 3–4, 112, 690–691
electromagnetic

signal, 644
propagation, 624
wave, 482, 610, 705

engineering, 3, 6, 646, 731
bioengineering – see bioengineering

engineering
biomedical – see biomedical engineering
communications –see communications

engineering
math, 20
microwave, 624

entire functions, 219, 685, 692, 711, 727
envelope, 124–125, 133, 204, 216, 276,

320–321, 326
demodulation, 124
detection, 125, 204, 276
detector, 124, 133

equal to by definition, xi, 14
Erlang random variable, 153, 162–164, 175,

190, 201, 205
erosion, 573–575, 578–581, 584, 595, 608

duality, 578–579, 581
subset property, 579–580, 584

errata, viii
error

absolute – see absolute error
bound, 320, 720, 726, 742
curve, 525
free, viii, 684, 717
interpolation – see interpolation error
magnitude, 225
mean square – see mean square error
normalized – see normalized error
plot, 518
quantization – see quantization error
round off – see round off error
range, 530
truncation – see truncation error

Euclidean, 327–328, 404, 724, 731
norm, 404

Euler’s
formula, 21–22, 24, 29, 32, 42, 61, 97
head, 520

Euler, Leonhard, 519, 530, 687
Euler-Mascheroni constant, xii, 675
even, xii, 10, 12–13, 21, 24, 25, 32, 45–46, 61,

63, 65, 81–83, 86, 88–90, 92–94, 96, 99,
139, 162, 168, 207–208, 259, 262–264,
278, 282–284, 286, 292, 304, 310, 345,
386, 420, 432, 435, 441, 444, 457, 472,
563, 567, 596, 616

functions, xii, 13, 45–46, 65, 81–82, 92–93,
162, 345, 420, 457. Also see – even signal

function property table – see tables
moments, 168
periodic function, 457
signal, 12–13, 563, 567. Also see – even

function
signal property table – see tables
window, 432

evenly odd functions, 69, 88, 96,
138, 149
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expectation, 152, 314, 316–317, 384
expected value, xii, 152, 157, 177–179, 194,

214, 289
exponential, 19, 29, 115–116, 121, 153,

160–162, 164, 171, 175, 203, 208, 419,
633, 635, 667, 679, 684, 692, 695, 698,
722, 732, 736, 739

decay, 679, 684
random variable, 153, 160–162, 164,

175, 667
Taylor series, 171, 208

extensive, 581, 583, 608
extrapolation, 8, 328, 447–449, 462, 473,

475–480, 482, 484–486, 492, 495,
515–516, 684, 689–691, 698, 705–706,
708, 710, 712, 715–716, 723–724, 728,
731, 738–739

algorithm, 462, 691, 706, 715–716
matrix, 484–485, 708, 728

extrema 17, 65, 67, 91–92, 98–99
of yield, 650–651

extreme value random variable, 675

F
F random variable, 673–675
fading, 124, 133
Family, 360–361
far field, 4, 8, 624, 635–636, 643–644, 691
Faraday, Michael, v, 518
fast Fourier transform, ix, 9, 52, 360, 686, 693,

704, 724. Also see – FFT
fault diagnosis, 424, 741
feature extraction, 424, 713
FFT, ix, 9, 52, 126, 360, 373, 436, 438,

690, 733, 744. Also see – fast Fourier
transform

filter, ix, 4, 7–9, 59–60, 107, 120–124, 125–126,
131, 134–135, 142–143, 199–200, 204,
215, 222, 227, 236, 242, 245, 247–250,
252–253, 256–259, 268, 270, 274–275,
278–280, 283, 286, 290–296, 298–301,
306–308, 311, 313–316, 318–319,
322–324, 327, 351–352, 360, 366–371,
373, 385–386, 397, 402, 413–415,
418–424, 436, 438, 439–442, 451, 455,
462, 470, 473–474, 477–478, 489, 507,
516, 537, 603–604, 680–681, 683–684,
687, 691, 693–694, 697–698, 700–701,
703–705, 709–714, 716–723, 725–726,
728–729, 732–738, 740

bank, 9, 413–415, 439, 683, 698, 712, 719,
734, 737

filtered
back projection, 352
interpolation, 291–292, 306, 322
NINV, 298–300
projection, 351–352
signals, 250, 252, 315

finance, vii, 6–8, 60, 646–647, 658

finite
area, xiii, xviii, 11, 17–18, 64–65, 71, 84, 86,

100–101, 111, 167–168, 224, 231–232,
430, 542

area constraint, xiii, 430, 542
energy signals, xiii, 11, 20, 39, 48–49, 61, 65,

71–73, 84, 100–101, 217, 224, 231, 235,
239–240, 243, 277–278, 323, 448–449,
474, 493, 502–503, 686, 707, 725, 733

impulse response, ix, 59, 419, 603. Also
see – FIR

support, 253, 473
FIR, ix, 59, 327, 366, 419, 603–604, 691, 718,

720, 726, 728, 732, 736. Also see – finite
impulse response

first. Also see – first order
derivative, 156, 160–161, 164, 205, 207, 263,

303, 512
difference, 512
fret, 623
harmonics, 613–618
moment, 155–156, 167, 671
orthant, 517
overtone, 623
quadrant, 399
subharmonics, 620
year graduate student, vi

first order
aliasing, 451, 456, 459, 461, 483
decimated sample restoration, 390,

392, 493
difference equation, 8
spherical Bessel function, 263
spectrum, 483
statistics, 193–194

Fisher-Tippett random variable, 675
fixed point, 498, 516, 559, 562–563
Flatland, 326, 680
flip

a coin, 151, 169
and shift, 117–118, 333, 337

flute, 234
FM, ix, 67, 717, 740. Also see – frequency

modulation
for all, xi, 11–12, 31, 33, 49, 61, 73, 77, 107,

109, 113, 120, 125, 128, 139, 142, 149,
153, 157, 195, 200, 231, 232, 266, 299,
354, 388–389, 403, 429, 465, 496, 499,
501, 503–504, 507, 517, 546, 558, 563,
566, 569, 579, 581, 586, 590, 600, 616

forward difference, 587
Fourier

acoustics, 3, 740
analysis, vi, 3–4, 6–8, 151, 221, 262–263,

416, 458, 570, 583, 695, 698, 708,
711, 731

array imaging, 3
- Bessel transform, 343, 345
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Fourier (cont’d)
coefficient, 4, 16, 50, 69–79, 92, 95, 98, 143,

223, 238, 265–266, 276, 283, 323,
357–358, 370, 485, 685, 729. Also see –
Fourier series coefficient

complex – see complex Fourier transform
descriptors, 3, 712
Edmie, 4
integral, 3, 10, 723, 736
inversion, 3, 19, 235, 241, 730, 733. Also

see – inverse Fourier transform
Jean Baptiste Joseph, 3–6, 518, 610
Joseph (senior), 4
kernel, 235
transform matrix, 485
transform nuclear magnetic resonance, 3, 720
optics, 3, 624, 639, 697, 700, 734
reconstruction, 3, 733
series, vi, 3, 5, 7, 9, 10, 13–17, 31, 37, 48–51,

60, 67–70, 92–94, 100, 143, 150, 197, 200,
214, 219, 221–225, 274, 303, 327, 335,
342, 344–345, 352, 356–359, 370–371,
373–374, 402, 408–410, 420, 450, 453,
460, 466, 474, 485, 510, 612–613, 681,
687, 689, 692–696, 703, 706, 710–711,
719, 724–725, 730, 735–736, 739, 743–744

series coefficient, 14, 31, 60, 67, 93–94, 342,
358, 370, 402. Also see – Fourier
coefficient

spectra, 3–4, 704–705
spectrometry, 3
spectroscopy, 3, 702, 737
theory, 3, 704, 739
transform, vi–vii, ix, xi–xii, 3–4, 6–10,

13–15, 18–20, 22, 22–25, 26–32, 34–35,
37, 39, 41, 43–47, 49–52, 54–56, 58,
64–69, 72, 76–78, 81–83, 89, 91, 94, 101,
107, 109–110, 115–116, 120–121,
124–129, 131–133, 136–139, 141,
143–144, 148, 149–154, 160–162, 174,
190, 196, 199–200, 203, 210, 213, 221,
223, 230, 240–241, 249, 251, 253, 269,
273, 287, 291, 315, 327, 330–336,
340–346, 348–351, 359–361, 373–376,
396–401, 404, 406–407, 411, 413–419,
422–423, 425–426, 428, 435–436,
438–441, 443, 450, 457–458, 460, 474,
477, 482, 485–486, 507–508, 511–512,
516, 566, 568–569, 573, 583, 587–589,
591–592, 597, 601, 623–624, 626–628,
630, 636–638, 641–646, 657, 659,
680–687, 689–690, 693–697, 700,
702–706, 708, 710, 712–713, 716, 718,
720, 722, 724, 726–728, 730–732,
734–735, 738–743

transform nuclear magnetic resonance, 3, 720
transformer, 107, 109–110, 131, 133, 136,

143–144, 638
transform tables – see tables
vision, 3, 738

Fox,Warren L.J., viii, 716, 725
fractional

derivatives, 8, 401, 722
Fourier transform, xii, 6, 8, 126–129,

138–139, 148–150, 680, 684, 689, 690,
697, 706, 708, 710–711, 713, 718, 722,
724, 726, 728, 734, 741–743

Franklin, Benjamin, 519
Fraunhofer

approximation, 633–636
assumption, 635
diffraction, 4, 624, 635–637, 641, 657,

659, 684
Joseph von, 519

frequency, vii, ix–x, xii, xiv, 4, 6–7, 12–14,
19–20, 47, 50–51, 53–55, 60, 64, 67–68,
115–117, 120–124, 126, 133–135, 142,
196–200, 217–218, 220–222, 225,
234–236, 249, 252, 256, 267–268,
275–277, 283, 290, 295, 304, 306, 327,
341–342, 345–346, 348, 351, 360,
365–367, 369–370, 372, 385–386, 389,
402, 411–425, 427–430, 432–437, 439,
441, 447, 450, 454, 467–468, 472, 477,
482–483, 495, 532, 537, 539, 541–542,
551–553, 566, 588–589, 610, 612–616,
618–623, 625–626, 628–630, 636,
647–648, 651, 656–658, 680, 682–685,
689, 691–696, 699–700, 702–703, 705,
708–713, 716–723, 725, 727–728,
732–734, 736, 738–741, 744

deviation, 68, 614
domain, 6, 19–20, 51, 53–55, 123, 199, 222,

268, 341, 385–386, 389, 416, 428, 441,
447, 450, 454, 468, 477, 682, 708–709, 740

marginal, 427–428, 537, 542
modulation, ix, 67. Also see – FM
resolution, 7, 416–418, 428, 435–436, 438,

537, 539, 541
response, 60, 115–116, 120–121, 135, 142,

200, 249, 252, 256, 275, 351, 366–367,
369–370, 372, 402, 719

Fresnel
approximation, 633–635, 639
diffraction, 624, 633, 635–636, 638–639
integral, 634
Augustin Jean, 518
- Fraunhofer boundary, 636

fret, 617–618, 621–623
bar, 617–618, 622–623
calibration, 621, 623
spacing, 622

full
modulation, 216
rank matrix, 506, 517, 547

fundamental frequency, 411, 414, 612–614, 621
fuzzy

convex sets, 500
linguistic variable, 500
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G
Gabor, Dennis, 424, 699
gamma

function, xii, 35–36, 141, 163
random variable, 153, 161–164, 175, 190,

201–202, 205–206
random variable moments, 201, 205

Gauss, Johann Carl Friedrich, 518
Gaussian, xii, 8, 30–31, 43–44, 64, 138, 149,

153, 155, 159–162, 166–167, 175,
178–179, 186–192, 201–203, 207–208,
211, 318–319, 343, 407, 518, 667–669,
676–679, 682, 696, 699, 703, 708

asymptotic – See asymptotic Gaussian
function, 30–31
jitter, 318
noise, 20, 518, 682, 699, 708
random variable, 159–162, 166, 175, 179,

187, 189, 201, 207, 407, 667–669, 677–679
ratio random variable, 166

generalized
Cauchy random variable, 678–679
comb function, 70–71, 720
Gaussian random variable, 161, 677–679
interpolation, 242, 248, 274, 380, 704, 722
time-frequency representation, ix, 417, 424,

436, 721, 744. Also see – GTFR
genius, 3
geometric

mean, 439, 620, 622
random variable, 175, 203
series, 9, 26, 32, 34, 62, 74, 90, 144, 146,

169, 229, 267, 291, 312, 442, 446, 480,
486, 489, 662–623

geophysics, 424, 434, 495, 680
Gerchberg, R.W., 477, 700
Gerchberg-Papoulis algorithm, see

Papoulis-Gerchberg algorithm
Gerchberg-Saxton algorithm, 566, 568, 691,

699–700, 705, 728, 731, 739–741
Giardina, Charles R., 609, 700
Gibb’s phenomenon, 9, 17, 70, 100, 225, 707
Gibbs, J.Willard, 17
Glad Man image, 568–569
global maximum, 236
God, v, 104, 151, 126, 411, 447, 570, 693, 728
Goertzel’s algorithm, 6, 52, 125–126, 440, 442
Goldbach’s conjecture, 596
Goldburg, Marc H., viii, 700
Gori, F., 477, 695, 701
graininess, 586, 597–601, 605
Gravagne, Ian A., viii, 583, 694, 702, 716
gray scale images, 137, 180, 362, 364–366, 527
greedy limit cycle, 499–500
Green’s function, 112, 333, 624
greenhouse effect, 6
group delay, 430

GTFR, ix, 7, 424–432, 434–439, 441, 443–444,
537, 539, 543. Also see – generalized
time-frequency representation

table – see tables
kernel, 425–432, 436, 537, 539, 543
mechanics, 425

Gubin, L.G., 495, 702
guitars, 613, 617
Gumbel random variable, 675

H
Hagler, Marion O., viii, 702, 715
Haldeman, Douglas G., viii, 715
half

Gaussian random variable, 668
normal random variable, 668
step, 613
tones, 411

Hall, Michael W., viii, 70, 715
Hamming

filter, 107
window, 415, 420, 422
Richard W., 10, 104, 306, 703

HandbookOfFourierAnalysis.com, vii
Hankel transforms, xii, 134, 226, 343, 345,

400–401, 406, 680–681, 702, 704, 707,
709, 719

Hann window, 415. Also see – Hanning window
Hanning window, 56, 415, 420, 422–423, 544
harmonics, 8, 344–345, 401, 610, 612–623, 625,

632, 657, 686–687, 689, 694, 695, 699,
709, 742

Hartley transform, xiv, 57–58, 72, 686, 703, 743
Hawking, Stephen, vi, 151, 703
Heisenberg’s uncertainty principle, vii, 7–8,

192, 416, 645–646, 657, 704
Healthy Girl image, 529–530, 534–536, 540,

542–543
HeNe laser, 637
Hermetian, 45, 196, 200, 204, 235, 239, 267,

366. Also see – conjugate symmetry
Hermite

polynomials, xii, 9, 43, 68–69, 96, 138, 149
Charles, 447, 519
- Gaussian function, xii, 43–44, 138, 149

Hertz, 12, 14, 68, 218, 234, 236, 411, 482
Heinrich, 10
heteroassociative memory, 527
heterodyne, 122, 124, 133, 268–269, 277, 283
heterodyned sampling, 268
hexagon, 345–355, 376–379, 385–387, 719
Higgins, John Rowland, 218, 689, 704
higher transcendental function, 6. Also see –

transcendental function
higher order

DFT’s, 360
decimation, 393–395
kernels, 263
derivatives, 449
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higher order (cont’d)
derivative sampling, 259
harmonics, 617
spectra, 380
terms, 315, 643

high pass filters, 121, 135, 204, 271, 360,
369–370

Hilbert
David, 120, 519
spaces, vi, 328, 501–503, 515, 684, 643
transforms, 8, 46, 60, 64–65, 77–78, 133,

140, 228, 230–231, 252, 270, 272, 270,
280, 351, 370, 372, 716, 734, 743

Hilger
derivative, 586–587
integration, 587
Stefan, 583, 704

holography, 495, 427, 687, 690, 693, 699–700,
706, 713, 715, 725, 731, 735–736, 740

homogeneity, 112–113, 630, 739
homogeneous systems, 9, 104–105, 108–111,

135, 142, 625, 630, 690, 721–722, 724
horizontal, 337, 398, 403, 528, 559,

561–562, 565
axis, 412, 527, 551, 591
derivative, 146, 147
flip, 337
forces, 611
line, 620, 622, 436
motion, 138
movement, 611
projection, 349
scaling, 337
slice, 350, 397
swath, 418
tension, 610

Howard’s minimum-negativity-constraint, 493,
516, 691

Howard, S.J., 516, 704–705
Huffman coding, 365
hyperball, 328
hyperbolic

cosecant, 24. Also see – cosech
cosine, 24. Also see – cosh
secant, 24–26, 161–162. Also see – sech
sechant random variable, 161–162
sin, 24. Also see – sinh
tangent, 24
trig functions, 24–26

hypercube, 291, 328
hypergeometric function – see confluent

hypergeometric function
hyperplane, 446, 503–504
hypersphere, 328, 379, 386, 402, 408, 410

I
ideal gas, 401, 407
idempotent, ix, 497, 501, 506, 583, 595,

603, 608

identical middles, ix, 513, 515–518, 520,
522, 530

identically distributed, 157, 176, 314
identity

element, 115
for Laplace transformation, 229
matrix, 359, 506
operator, 591
vector, 625

iff, xii, 57
IIR, ix, 59, 135, 142, 419–423, 440, 442.

Also see – infinite impulse response
ill-conditioned, 298–299, 663–664
ill-posed, 8, 137, 248, 250, 259, 302–304, 306,

323, 449, 462, 477, 482, 485, 492, 516,
684, 691, 736

ill-posed sampling theorem, 304, 691
IM, ix. Also see – see identical middles
image

averaged – see average image
binary – see binary image
block, 365–366, 532, 534–536, 538–539,

541–543, 723
coding, 360
compression, 6–7, 57, 327, 360, 362, 364,

495, 527
encoding, 4, 362–363
JPEG – see JPEG
library, 517
optical – see optical image
processing, vi, 3, 495, 570, 575, 681,

690–691, 700, 706, 721, 730, 733
restoration, 366, 495, 723, 727, 730, 742
samples, 385, 691
synthesis, vii, 495
thresholded – see threshold image
vector, 533

imaginary operator, 229
imaging, 3, 106–107, 112, 327, 377, 533, 544,

624, 638, 640–642, 681–682, 684,
686–687, 691, 694, 700–701, 705–709,
719, 723–724, 728, 732, 735, 737, 743

aperture, 533, 544
system, 106, 377, 624, 638, 640–642, 682,

701, 705, 709
implicit sampling, 277, 682, 697
impulse

kernel, 127
response, ix, xii, 59, 107, 112–118, 120–122,

125–126, 130–131, 133, 135–137, 139,
142–143, 146, 148, 150, 196, 198–199,
248, 333, 366–368, 418–421, 423, 440,
603, 631–635, 716

incoherent illumination, 377, 706
incomplete

cosine, 262
sine, 262

independence, 157
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independent, 9–10, 15, 157, 159, 166, 168,
174–176, 179, 195, 203, 219, 264, 289,
310, 315–316, 342, 401, 447, 477, 499,
558, 601, 617–618, 668, 671, 673

and identically distributed, 157. Also see –
i.i.d.

random variables, 159, 174, 179, 401, 671
i.i.d., 157, 162, 170, 176, 186–187, 189,

202–203, 211, 667, 671. Also see –
independent and identically distributed

index, vi, 41, 48, 53, 95, 310, 474, 501, 517,
619, 639, 688, 705, 711, 722

induction, 145, 205, 481, 492
infinite

area, 86, 167–168
mean, 9
energy, 20, 84, 100, 224, 322
height, 21, 23, 120
impulse response, ix, 59, 135. Also see – IIR
mean, 665
moment, 168, 202, 209, 671–672
noise level, 84, 304, 324
number, 84, 231, 272, 288, 320, 328, 385,

387, 570
power, 120, 197
series, 300
sum, vi, 62, 294, 484, 485
variance, 665

inflation, 647, 651–652, 658
initial condition, 60, 523, 617–618, 648, 655,

663, 670
inner product, 47, 273, 502–503, 533
inside boundary, 576
instantaneous frequency, 68, 430
integral

theorem, 87
transform, 72, 226–227, 273, 695, 697, 707,

710, 715, 725, 743
integrating detector, 250–251, 276
integration

by parts, 311
of derivatives property, 45, 63, 205
limit, 158, 306, 346, 488
order, vii, 19, 432
over a period, 14–15
over a unit interval, 50–51
region, 380–381, 383, 385

integrator, 441
intensity

modulation, 558
of light, 636
of field amplitude, 636
of the far field, 636
profile, 558–559, 561–562

interest rates, 649–652, 654–656, 658
interference

bandwidth, 429
suppression, 429, 726

interior point, 497, 504

interlaced
sampling, 252, 257–258, 303–306
signal-derivative sampling, 304, 306

interpolation, vii, 6, 8, 50, 217, 219–220, 222,
225–226, 232, 242–243, 245–249, 252,
256–261, 263, 265–267, 271–278, 281,
284, 287–297, 301–308, 310–316,
322–323, 375, 380–381, 383, 385,
391–392, 397, 402–403, 447–450, 456,
461, 463–465, 467, 470, 473, 476–477,
480, 485–486, 495, 680–681, 685,
688–689, 693–694, 697–698, 702–704,
706–712, 715–717, 721–724, 726,
729–733, 735, 738–740, 742–743

error, 288, 314, 477
formula, 219, 222, 245, 247, 261, 306,

315, 738
function, 8, 225, 242, 247–249, 252,

256–261, 266–267, 271–278, 284, 287,
294–295, 297, 304–305, 322, 375,
380–381, 385, 392, 397, 403

kernel, 391
noise, 243, 261, 289–293, 295–296, 302–304,

306–307, 310, 312–313, 315, 322, 323,
402, 456, 461

noise level, 289–292, 295, 303, 306, 310,
322, 402, 461

noise power spectral density, 291
noise variance, 293–294, 296, 302–304,

306–307, 312–313, 315, 323, 461
theory, 6, 217, 697, 716, 739

interval interpolation, 447, 463–464, 473,
476–477, 480, 485–486, 716

invariant – see shift invarian & time invariant
inverse – also see inversion

Abel transform, 401, 402, 407
bounded – see bounded inverse Fourier

transform
cosine transform, 65
DFT, 53–54, 57, 72, 103, 118, 359, 362,

366, 485
DTFT, 142
filter, 27, 279–280, 313, 316, 319
FFT, 373
Fourier transform, 14, 19, 45, 47, 64, 77, 83,

94, 121, 144, 174, 200, 213, 249, 273, 287,
350, 360, 375, 395, 406, 441, 443, 486,
601, 626–628, 630, 642

Hankel transform, 406
Hilbert transform, 46, 140
pseudo – see pseudo inverse
quantization, 365
Radon transform, 345, 349, 351–352, 533
transposition, 340

inversion, 14, 15, 50–51, 83, 107, 330–331,
400, 480, 684, 729. Also see – inverse

formula, 223, 238, 250, 406
of the DFT, 103
system, see invertible system
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inversion (cont’d)
theorem, 19
Fourier – see Fourier inversion

invertible system, 107, 109–110, 136,
142, 144

irrational
number, 601, 605, 613
time scale, 601

isoplanatic systems, 106, 333, 404, 630–631
iteration relaxation, 558

J
Jack image, vii, 575
Jacobi, Carl Gustav Jacob, 242, 519–520, 530
Jacobian, 340
Jeremiah image, vii, 180
Jesus Christ, v
jinc function, xii, 23, 37–38, 63–67, 76–78,

88, 91, 132, 139, 343–344, 358, 385,
406, 637

jitter, xiv, 288, 313–316, 318–319, 323, 681,
687–688, 699, 712, 725

density, xiv, 318
offset, 313

jittered samples, 313–314, 316, 318
John the Baptist, 5
Johnson-Nyquist noise, 197
Joint Photographic Experts Group, ix, 362, 708.

Also see – JPEG
joint probability density function, 157, 316
Josh image, 360–361
Joshua image, viii, 580
JPEG, ix, 4, 57, 362, 527, 681, 708, 731.

Also see – JPG
JPG, ix, 7, 327, 362. Also see – JPEG

K
Kaiser window, 415
Kaplan, Dmitry, viii, 708, 715
Kelvin, Lord, 3, 518, 736. Also see – Thomson,

William
kernel, x, xii, 72, 128, 226–227, 230, 235,

241, 262–265, 274, 284, 307, 333, 391,
424–438, 441, 444, 456, 537, 539,
543–544, 547, 551–553, 631, 692–694,
696, 699, 701, 707–709, 711–712, 721,
725, 738, 741–742, 744

constraint, 626, 628
synthesis, 433–435, 438, 537, 543,

551–553, 721
Kirkwood-Rihaczek distribution, 431
Kotelnikov, Vladimir A., 218–219
Kral, E. Lee, vii, 702
Kramer’s sampling theorem generalization,

6, 50, 218, 239, 242, 273–274, 278, 699,
706–707, 710, 716, 743

Kramer, H.P., 6, 50, 218, 242, 273, 278, 239,
706, 710

Krile, Thomas F., viii, 445, 702, 708, 715

Kronecker
delta, xii, 27, 113, 128
delta sifting property, 113, 128
Leopold, 570

Kuterdem, H.G., viii, 692

L
L’Hopital’s rule, 33, 649, 661
L’Hopital, Guillaume François Antoine Marquis

de, 518
Lacroix, Sylvestre, 5
Lagrange, Joseph-Louis, 5–6, 218, 518
Lagrangian, 242, 272, 277, 284

kernel, 284
interpolation, 242, 272, 277, 717, 726, 743

Lanczos window, 415
Langer, Rudoph E., 3
Laplace

autocorrelation, 198, 291–292, 309, 311–312,
460–464

jitter, 318
noise, 161, 203, 694, 715
Pierre-Simon, 104, 518
random variable, 161, 678
transform, xiv, 18, 58, 64, 134, 141,

228–230, 694
Laplacian, 628, 631
Larson, John N., viii, 715
laser, 630, 637, 705, 710, 713, 722
lattice

Bravais – see Bravais lattice
type, 154, 170–171, 601

law of large numbers, 6, 158, 177–179
Laybourn, Loren, viii, 716
leakage, 55–57, 415
leakage-resolution tradeoff, 415–416
Lebesgue

Henri Leon, 519
integral, xiii, 104, 739
measureable, xiii, 11, 104, 502

LED, ix, 4
Lee, Shinhak, viii, 545, 554, 556–557,

559–562, 692
Legendre

polynomials, xiii, 9, 40–41, 50, 68–69,
88–89, 94–96

Adrien-Marie, 519
Leibniz’s rule, 92, 444, 644, 661, 722
Leibniz, Gottfried Whilhem, 447
Lenore image, 582
lenses, xii, 377, 624, 638–643 710, 738
lens law, 640
Leonardo da Vinci, 518
library

matrix, 516–517
subspace, 520, 522, 530–531
vector, 516–518, 525–527

lightning, 10, 161
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limit
cycle, 499–500, 543
point, 498

Linden, D.A., 252, 259, 713
line

sample, 397, 403
spread function, 112, 333, 682, 715

linear
array, 547, 701
chirp, 439, 544
convergence, 523, 531
convolution, 118–119
differential equations with constant

coefficients, 135
integral transform, 72, 226–227, 715
manifold, 503, 517
motion blur, 8, 137–138, 146
systems, 6, 105, 112–114, 129–131, 133,

136, 139, 143, 150, 196, 198, 330, 682,
700–701, 713, 715, 724–725

time invariant system, x, 106, 112, 114, 142,
439. Also see – LTI

varieties, x, 504, 507, 509–511, 513–518,
520, 522, 530–531, 533, 563

loan, 647, 655–656
log normal random variable, 669–701
log-Weibull random variable, 675
logistic random variable, 672–673
long

column vector, 532
duration, 418
history, 424
period of time, 656, 417–418
window, 417. Also see wide window

loose conditions, 179. Also see – mild
conditions

Lord Kelvin – see Thomson, William
lost

block, 7, 530
image blocks, 527
information, 532
pixel, 527
sample, 7–8, 243–247, 272, 275, 278, 286,

294–296, 296–302, 323, 327, 382–387,
402, 486–487, 715, 738

signal interval, 447
through dilation, 576

lower
bound, 308–312, 512
frequency, 267, 283
limit, 439
sideband, 133

low pass
filter, ix, 4, 107, 120–121, 123, 135, 143,

222, 227, 236, 245, 268, 274, 307–308,
369–370, 373, 418, 451, 455, 470,
473–474, 478, 485, 507, 516, 537, 701.
Also see – LPF

filter operator, 478

sense, 12, 219, 227
signal, 124, 271, 291, 294, 687
trigonometric polynomial, 266

low passed kernel, ix, 227, 230, 235, 241.
Also see – LPK

lower sideband, 133
LPF, ix, 123, 279, 308. Also see – low pass filter
LPK, ix, 227, 229–230. Also see – low passed

kernel
LTI systems, x, 106, 109–111, 114–118, 120,

125–126, 129–131, 133, 136–137, 139,
142, 198–200, 204, 418–419, 440. Also
see – linear time invariant system

Luke, H.D., 218, 713–714
Luther, Martin, 411
LV, x. Also see – linear variety

M
magnification, 108–109, 337–338, 636, 640, 735
magnifier, 107–109, 130–131, 136, 144, 404
magnify, 108, 475
major chord, 613, 616, 618–620
major scale, 618–620, 636
Mann, Thomas, 217, 714
mantissa, 76
Margenau-Hill distribution, 431, 714
marginal, 427–428, 441, 537, 541–544,

552–553
density, 401

marginally stable, 420, 441
Markov, Andrei Andreyevich, 519
Marks

Connie Lynn J., viii
Jeremiah J., viii
Joshua J., viii
Lenore, viii
Marilee M., viii
Ray A., viii
Robert (Jack), viii
Robert J., II, iii, 219, 433–436, 445, 495, 532,

534–536, 538–543, 551–554, 557,
559–562, 642, 691–692, 684, 700,
702–704, 708, 712, 715–716, 721, 734,
726, 731, 740, 744

Masquerade image, 529, 538–539
mass density, 611, 622
matrix

condition number – see condition number
diagonal – see diagonal matrix
equation, 276, 505–507
extrapolation – see extrapolation matrix
full rank – see full rank matrix
idempotent, 506
identity – see identity matrix
ill conditioned – see ill conditioned
inverse, 664
library – see library matrix
offset – see offset matrix
of integers, 402
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matrix (cont’d)
on ones and zeros, 533
of zeros, 468
operation, 452
nonsingular, 336
periodicity – see periodicity matrix
projection – see projection matrix
quantization – see quantization matrix
rotation – see rotation matrix
sampling – see sampling matrix
scaling – see scaling matrix
singular – see singular matrix
square, 405
sub – see submatrices
- vector, 53, 226, 230, 468

mathematical morphology, vii, 7, 570, 703.
Also see – morphology

mathematicians, vi, 5, 411, 519, 530–531
Matheron, Georges, 570, 718
maximally packed

circles, 377–379, 393–394, 403. Also see –
maximally packed spheres

spheres, 380. Also see – maximally packed
circles

maximum
deviation, 528, 657
dimension, 635–636
energy, 485, 493
error, 366
filter output, 215
frequency component, 277, 427
lens thickness, 639
number of vectors, 526
pixel value, 569
power, 204
value, 12, 33, 178, 236, 558
width and height, 558
yield, 650

Maxwell
- Boltzmann velocity distribution, 407
random variable, 669
James Clerk, 519

Maxwell’s equations, 624–625, 630–631, 657
McClellan

transforms, 7, 327, 366–373, 691, 713,
718–721, 726, 732, 736

James H., 368, 695, 718
mean, 9, 14, 17, 48–49, 65–66, 152–153,

155–169, 171, 174–178, 186–189, 192,
194–195, 199, 201–206, 211, 223–224,
233, 288–289, 294, 303, 307, 316, 323,
383, 385, 402–403, 439, 456, 474, 499,
502–503, 506, 517–518, 537, 543, 556,
620, 622, 665–673, 675–677, 686, 708,
712, 727

square, 17, 48–49, 65–66, 223–224, 233, 499,
502–503, 506, 517–518, 537, 543, 556,
686, 708, 712, 727

square convergence, 49, 65–66, 223–224, 233
square error, 233, 517, 537, 543, 556, 708

measure theory, vi. Also see – Lesbegue
measureable, 104, 502

median, 155
Mellin

convolution, 134, 602–603
transfer function, 134, 141
transform, xiv, 134, 141, 226, 603, 715

memoryless systems, 107–111, 133, 135, 142
mercury thermometer, 4
Mersenne

numbers, 9, 662, 723
primes, 662, 702

Meyer, Michael G., viii, 721
Michelson

Albert Abraham, 17
- Morley experiment, 17

middle C, 411, 614, 637
Middleton, D., 218, 373, 719, 724
mild conditions, 186. Also see – loose

conditions
million dollars, 8, 656, 658
minimum

mean square error, 537, 556
negativity constraint, 493, 516, 691, 704–705
norm, 506
sampling density, 387, 392–395
sampling rate, 217, 222, 277, 408, 720.

Also see – Nyquist rate & minimum
sampling density

Minkowski
addition, xi, 571–572, 579, 590, 596
algebra, 576
arithmetic, 570, 575
subtraction, xi, 573
operatopms, 57
sum, 571–572, 590–591

minor
chord, 620–621
key, 620–621
seventh, 615
scale, 656
third, 616

mixed random variable, 203, 211
Miyamoto, Robert T., viii, 716
mode, 155, 616, 618, 705, 740
modified Bessel functions, xii, 39–40, 64,

92–93, 202, 415
modulated

input, 418
signal, 124–125, 133, 216
window, 423, 441

modulating sinusoid, 8
modulation, ix, 6, 8, 15, 21, 51, 67, 68, 122–125,

133–134, 204, 216, 268, 276, 331, 357,
558, 613, 644, 683–684, 699, 717, 738, 740

profiles, 558
theorem, 21, 357, 644, 684, 738
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Modulo Man image, 138, 147
moment, xiv, 9, 152, 154–156, 165, 167–169,

196–197, 200–210, 665–666, 671–672,
683, 694, 696, 699, 705, 713

momentum, 645–646
Monge, Gaspard, 5
Monika image, 137
morphology, vii, 7, 570, 703
mortgage, 8, 647, 655–656
motion blur, 8, 137–138, 146
movie, 4, 32, 326
moving target, 441, 734
multidimensional

Abel transform, 348
area, 354
comb lemma, 356–357, 373
convolution, 7, 332–333
cosine transform, 327
differential, xii
Dirac delta, 356
discrete Fourier transform, 359–360
Fourier analysis, 4, 330, 357
Fourier series, 331, 334, 336, 341, 356
Fourier transform, 352, 399, 425, 726
function, 327, 341, 360. Also see –

multidimensional signal
parallelogram, 353
periodic function, 348
periodicity, 352, 354
sampling, 374–375, 402, 716
sampling theory, vii, 352, 373, 375, 381,

699, 729
scaling, 337
signals, vii, 6–7, 10, 326–328, 359, 368,

695, 712, 717, 719, 729–731, 740, 743.
Also see – multidimensional function

signal analysis, 326
symmetry, 6
system, 404, 712, 717, 743
tiles, 380
time scale, 604

multiplex, 122, 133, 411–412
music, vii, 4, 6–8, 414, 424, 610, 612–614, 616,

618, 656, 658
musical

notation, xi
musical score, 4, 7

N
Namias, V., 126, 718, 720
Napier, John, 519
Napoleon, 5–6
Napoleon’s Egypt invasion, 6
natural numbers, xiii, 584
narrow

frequency band, 417
window, 418. Also see short duration

window

negative binomial random variable, 175, 190,
202–203

Nelson, Alan C., viii, 721
neural networks, 495, 691, 716, 721, 730
neurophysiology, 424, 484
Newton, Isaac, v
Newtonian physics, 613
Newton’s second law, 611
NINV, 294–296, 298–302, 307–311, 318,

322–325, 403, 459, 461–463
noise level, 179, 185, 194, 197–198, 243, 261,

265, 289–292, 295, 301, 303, 306,
308–310, 312, 322, 324, 384–386, 402,
457–458, 461–463, 482, 520, 529–530,
727, 736

NMR, see nuclear magnetic resonance
nonanticipatory system, 107. Also see – causal

signal
noncentral

chi-squared random variable, 667–668, 673
F random variable, 673, 675
Student’s t variable, 676

nondestructive testing, 424, 434, 723
nonexpansive, 559, 563, 722

function, 559, 567
operator, 558–559

nonstationary, 436, 690, 699, 708–709, 712,
714, 744

nonuniform sampling, 242, 257, 272, 277, 688,
690–691, 694, 698, 701, 714, 717–719,
725–726, 730, 734, 736–737, 739, 742

norm, xi, 327–328, 404, 486, 506, 510–511,
681, 689, 740

of a sequence, 501
normal

random variable, 160, 667–670, 673
tissue, 557

normalized, 178, 188, 237, 305, 369, 415, 557,
560–561, 645

error, 309
frequencies, 615
harmonics, 615, 618–620
interpolation noise, 294–296, 385, 463
lower bound, 310
pixels, 517
probability density function, 163
random variable, 186
window, 420

notation table – see tables
notch filter, 121, 711
nuclear magnetic resonance, 3, 720
null space, xi, 503, 506, 510–511, 515
Nyquist

density, 9, 247, 327, 376–382, 385–387, 390,
392–396, 402, 691, 716. Also see –
minimum sampling density

interval, 252, 257, 259, 303
Harry, 218, 721
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Nyquist (cont’d)
rate, 8, 218–219, 222, 226, 232, 234–235,

237, 250–252, 258, 260, 269, 275–276,
283, 291, 294, 298–299, 302–303, 306,
323, 376, 381, 396, 402, 461, 475, 698,
711. Also see – minimum sampling rate

O
octave, 411, 414, 613–623, 656–658
odd

component, 13, 21, 24, 29, 65
function, xiii, 13, 32, 45, 63, 65, 78, 81–83,

86, 88, 96, 166. Also see – odd signal
integrand, 83, 167, 460
index, 33
moments, 207
signal, 12–13, 563, 567. Also see – odd

function
summand, 283
term, 13

offset
matrix, 389
vectors, 388–389, 510–511

Oh, Seho, viii, 426, 433–435, 500, 537,
551–554, 557, 559–562, 692, 712, 716, 721

ohm, 11, 196–197
opening, xi, 574, 581, 595, 608

duality, 581
operator norm, 486
optical image, 385, 393, 690–691, 701, 713,

736, 738
optics, vii, 3–4, 112, 126, 333, 415, 447, 624,

626, 628, 631, 639, 641, 642, 644, 657,
683–684, 693, 697, 700–701, 710–712,
722, 733–734, 737–738

optimal
detection theory, 203
periodic replication, 378

optimization, 495, 686, 692, 713, 721, 734–735
orthant, 504, 510, 517
orthogonal, 9, 40–41, 43, 48, 50, 69–70, 89,

95–96, 150, 273, 362–363, 383, 414,
473–475, 484, 502–503, 506, 510, 517,
688, 694, 706–707, 712, 721, 724, 732,
742. Also see – orthonormal

basis, 9, 48, 50, 150, 273, 362–363, 383.
Also see – orthonormal basis

complement, 506
functions, 473, 475
polynomials, 40, 50, 694, 706

orthonormal, 48–50, 274, 278, 474, 523
basis, 48–49, 274, 278. Also see – orthogonal

basis
oscillators, 124, 134, 419, 706
oscillator frequency, 134
oscillatory, 41, 233
output noise level, 308–309, 457, 461
outside boundary, 576

oversample, 8, 243–245, 247, 261, 275,
277–278, 285, 286–287, 535, 550,
697, 703, 715, 731

overshoot, 9, 16, 70, 100
oxymoron, 168

P
Page distribution, 431, 723
Papoulis’

generalization, 6, 242, 252, 256, 261, 302,
394, 691

proof, 223
Papoulis

Athanasios, vi–vii, x, 218, 252, 477, 642,
690, 699, 704, 723, 729, 741

- Gerchberg algorithm, 477, 514, 516, 690,
697, 716, 726, 735, 741. Also see – PGA

parabolic
approximation, 639
conic section, 634
impulse response, 634
wave, 635

parallel
connection, 422
lines, 608
planes, 567
sides, 408
slices, 397–398
subspace, 513

parallelogram, 336, 353–354, 376, 393–394,
403, 405, 408

periodicity, 403
subtile, 393–394
tile, 355, 394

parameter estimation, 424
paraxial approximation, 639
Pareto

random variable, 187, 665–666
Vilfredo Federigo Samaso, 518

Paris, 4–6
Park, Dong Chul, viii, 534–543, 723
Park, Jiho, viii, 527–528, 532, 534–543, 723
Parseval’s theorem, 16, 47–49, 88, 101, 190,

200, 231, 303, 320, 324, 485, 645, 714,
718, 722

Parzen window, 187, 402, 407, 415,
419–420, 724

Pascal’s
triangle, 662
wager, v–vi, 151

Pascal
distribution, 154
random variable, 202
Blaise, 151, 288, 519, 570, 724

Pask, C., 449, 724
pattern recognition, 126, 495, 683, 743–744
peak signal-to-noise ratio, x, 366, 532.

Also see – PSNR
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Pearson III random variable, 153, 175, 190, 202,
210–211

pellicle, 643
pencil beam, 546–547
perfect

fifth, 614–615, 622
fourth, 613–614, 622

periodic, 9, 11, 14–17, 21, 31–32, 47, 51,
53–55, 67, 70, 91–93, 118–119, 127, 136,
139, 149–150, 197, 218, 222–223, 227,
238, 243, 266, 303, 327, 342, 344,
352–358, 354–357, 358, 402, 448–450,
455, 457, 453–454, 462–463, 465,
469–470, 472, 484, 448–450, 483, 486,
490, 605, 643, 647, 652, 684–685, 694,
705, 716–718, 730, 734

bandlimited functions, 218, 266
continuous sampling, 448–450, 462–463, 483
decimation, 465, 387
deposits, 647, 652
function, xiii–xiv, 9, 14–17, 31, 47, 51,

54–55, 67, 91, 93, 218, 222–223, 342, 352,
356–357, 402, 455, 457, 469–470, 472,
484, 486, 490, 643, 684–685, 734. Also see
– periodic signal

nonuniform decimation, 463, 465, 470
replication, 55, 327, 354–356, 358, 378, 604
sequence, 54, 490
signal, 11, 21, 54, 70, 119, 150, 327, 686.

Also see – periodic function
spectrum, 467
string, 54
trigonometric polynomial, 644

periodicity, 32, 126, 352–354, 356–359,
373–374, 376–379, 389, 391, 403, 467,
484, 489, 604, 647, 720, 735

cell, 358, 403
matrix, 353–354, 356–357, 359, 373–374,

376–379, 389, 391, 604
subtile, 389, 392
vector, 352–355, 376–377

periodically
sampled, 448, 719, 725
spaced, 448

Peterson, A., 587, 680, 685, 719
Peterson, D.P., 195, 330, 335, 625, 719
PGA, 477–482, 485–487, 515–517, 642–643.

Also see – Papoulis-Gerchberg algorithm
phase, vi, 46, 115–117, 120, 123–124, 133, 219,

275, 327, 360–361, 366–367, 416, 495,
511–512, 566, 568, 628, 630, 634, 636,
639, 681, 690–692, 695, 698–700,
702–703, 710, 715, 720, 722, 726, 737–741

arbitrary – see arbitrary phase
carrier frequency – see carrier frequency

phase
conjugation, 657, 659
constant – see constant phase
delay, 639

images, 360
in image characterization, 360
of a complex exponential, 419
of a DFT, 360
of a Fourier transform, 8, 360–361
of the frequency response, 120
plots, 569
pure – see pure phase
quadratic – see quadratic phase
sampling, 219
shift, 116–117. Also see – shifting phase
synthecized – see synthesized phase
term, 639
zero – see zero phase

phased array, 643–644, 684, 686, 703, 714
Philipp, Harald (Hal), viii
PI, ix. Also see pseudo inverse
PIA, ix, 131. Also see – piecewise invariant

approximation
piano, 613
piecewise

constant integration, 226
invariant approximation, 130–133, 136,

143, 150
linear approximation, 226
linear interpolation, 226, 249
linear signal, 277

pin hole, 630
pipe organs, 613
pitch, roll and yaw, 399
Pitton, James W., viii, 721, 725
pixel, 179, 360, 362, 364, 366, 517–519,

527–530, 532–534, 538–539, 541–542,
544, 546–547, 566, 569, 578–579

aperture, 533
array, 547
block loss, 534, 541

Planck’s
constant, xii, 198, 645
radiation random variable, 665, 677-678

Plato, 447
POCS, x, 7, 327, 438, 447, 482, 495–496,

498–501, 514, 516–518, 520–522,
525–527, 529–533, 535, 537, 539–546,
550–553, 556–566, 568, 680–681, 692,
699, 703, 705, 709, 711, 713, 716,
722–723, 728, 733–734, 736–739,
741–742, 744. Also see – alternating
projections onto convex sets

associate memory, 517–518, 520–522,
525–526

convergence, 499–500, 517, 530
kernel, 553
restoration, 529, 535, 539–541
synthesis, 544

point
masses, 152
spread function, 112, 330, 333, 404, 631–632

pointwise convergence, 66, 694
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Poisson
approximation, 177, 193–194
counting process, 194–195, 199, 204
point process, 193–195, 199
random variable, 171–172, 176, 190, 201, 204
Siméon Denis, 518
sum formula, 47, 52, 89–90, 234, 236, 248,

253, 267, 303, 308, 317, 688, 717
polar

coordinates, xi, 15, 46, 341–342, 344–345,
350, 687, 717, 733, 741

form, 46, 344
Fourier series, 345
representaion, 344

polarization, 624
polarized, 527
Pollak, H.O., 473, 711, 725, 731
Pólya distribution, 154
Polybius of Megalopolis, 413, 725
polymers, 3, 705
popcorn, 194
power, xiii, 11, 47, 50, 76, 84, 89, 120, 124,

142, 187, 192, 196–200, 204, 211,
214–216, 231, 233, 263, 290–291, 308,
324, 427, 460, 490, 685, 703, 723, 726,
736–738, 742

point presentation, viii
spectral density, xiii, 196–200, 204, 214–215,

233, 290–291, 308, 324, 427, 460, 685,
723, 738

theorem, 47, 50, 76, 89, 142, 231, 263,
460, 490

prediction, 447–449, 477, 624, 686–689,
714–715, 720, 724, 732, 740

prime
numbers, 586, 596–599, 601, 662, 702
ratio, 615–616

probability, vi–vii, xii, xiv, 6, 10, 151–174,
177–179, 186–193, 201–203, 207–211,
213, 314–316, 319, 401, 510, 564–566,
568, 601–603, 645, 665–679, 693, 723,
733, 735, 740

density function, xii, xiv, 151–154, 155,
157–171, 173, 178–179, 187–190, 192,
201–203, 206–207, 209–211, 213,
314–316, 401, 510, 564, 568, 645,
665–679, 693

mass, 153–154, 168–174, 177–178, 191,
202–203, 568, 601–602

mass function, 154, 170–172, 191–192, 203,
601–602

projection, vii, x, 7–8, 327, 345–359, 351–352,
402, 406, 426, 433–435, 438, 495,
497–502, 504–512, 514, 517, 522,
527–562, 564, 566–567, 585–586,
691–694, 697, 702–703, 706, 708, 710,
712, 716, 721–724, 726, 729–731,
733–735, 738–742, 744. Also see –
tomographic projection

matrix, 506, 517, 522, 548
operator, 497, 504–506, 541, 555–556, 559

prolate spheroidal wave function, x, 48–49, 473,
701, 709, 711, 727, 731. Also see – PSWF

propagation, vii, xii, 4–5, 623–629, 657, 687,
694–695, 705–706, 726–727, 729,
736–737, 740–742

direction, 628, 657
of the angular spectrum, 629
vector, xii, 626

prototype filter, 367, 370–371, 402
pseudo inverse, x, 506, 547, 556
PSNR, x, 366, 532. Also see – peak signal to

noise ratio
PSWF, x, 473–477, 480, 484–485, 491.

Also see – prolate spheroidal wave function
coefficient, 475, 484
expansion, 484

pure
phase, 639
tone, 68

Pythagoras, viii, 518, 613–614, 618
Pythagorean

harmony, 613–614, 618
scale, 657–658
theorem, 62, 73–74, 627

Q
Q of a filter, 439
quadratic

equation, 85, 661
formula, 76, 85
phase, 636, 659

quadrature, 472, 686, 724
quality factor, 439
quantization, 7–8, 364–365, 535, 537, 550,

688–689, 700, 709–710, 735
error, 7–8, 535, 537, 550
level, 535, 537
matrix, 364
operator, 535

quantum
leap, 64
level, 645
mechanics, 126, 681, 709, 714, 720–721, 739

quarter note, 411
queuing theory, 160
quotient rule, 156

R
radar, 3, 126, 424, 441, 681, 686, 691–692,

695–696, 700, 706, 714, 729, 740
Radbel, Dmitry, viii, 715, 726
radiotherapy, 7–8, 495, 545–545, 554, 557,

559–562, 685, 712, 735
Radon transform, 345, 349–352, 402, 533
Ramon, Ceon, viii, 721
ramp response, 118, 120



[12:42 15/10/2008 5165-marks-index.tex] Job No: 5165 MARKS: Doing Qualitative Research Using Your Computer Page: 765 745–775

INDEX 765

random variable, vi–vii, xii–xiv, 6, 9, 151–179,
186–187, 189–190, 194–195, 201–207,
209–211, 306, 314, 323, 401, 407,
601–602, 664–679, 723

Bernoulli – see Bernoulli random variable
beta – see beta random variable
binomial – see binomial random variable
Cauchy – see Cauchy random variable
chi – see chi random variable
chi-squared – see chi-squared random

variable
deterministic – see deterministic random

variable
discete uniform – see discete uniform random

variable
Erlang – see Erlang random variable
exponential – see exponential random

variable
extreme value – see extreme value random

variable
F – see F random variable
Fisher-Tippett – see Fisher-Tippett random

variable
gamma – see gamma random variable
Gaussian – see Gaussian random variable
generalized Cauchy – see generalized Cauchy

random variable
generalized Gaussian – see generalized

Gaussian random variable
geometric – see geometric random variable
Gumbel – see Gumbel random variable
half Gaussian – see half Gaussian random

variable
half normal – see half normal random

variable
hyperbolic sechant – see hyperbolic sechant

random variable
independent – see independent random

variable
Laplace – see Laplace random variable
log normal – see log normal random

variable
log-Weibull – see log-Weibull random

variable
logistic – see logistic random variable
Maxwell – see Maxwell random variable
mixed – see mixed random variable
negative binomial – see negative binomial

random variable
noncentral chi-squared – see noncentral

chi-squared random variable
noncentral F – see noncentral F random

variable
noncentral Student’s – see noncentral

Student’s t trandom variable
normal – see normal random variable
normalized – see normalized random

variable
Pareto – see Pareto random variable

Pascal – see Pascal random variable
Pearson III – see Pearson III random variable
Planck’s radiation – see Planck’s radiation

random variable
Poisson – see Poisson random variable
Rayleigh – see Rayleigh random variable
Rice – see Rice random variable
sechant – see hyperbolic sechant random

variable
triangle – see triangle random variable
uniform – see uniform random variable
uniform difference – see uniform difference

random variable
uniform product – see uniform product

random variable
uniform quotient – see uniform quotient

random variable
uniform ratio – see uniform ratio random

variable
Von Mises – see Von Mises random variable
Weibull – see Weibull random variable

raster, 7, 395–397, 403, 408, 683
sampling, 7, 395–397, 403, 408
scan, 395, 397

rational
numbers, 17, 424, 601, 605, 692
time scales, 600

ray
of light, 639
optics, 624
tracing, 624

Rayleigh
random variable, 667–669, 677
- Sommerfield diffraction, 624, 626–627,

630, 633–635
Rayleigh’s theorem, 47
real

roots, 661
signals, 15, 45, 133, 196, 235, 436, 438, 482,

489, 512, 564
time filters, 107
time implementation, 440

rectangle
function, xiii,14, 21, 23, 28, 187, 588
integration, 226, 228
support, 377

recurrent nonuniform sampling, 242, 257,
272, 277

regularize, 482, 680, 682, 684, 729
relatively prime, 597–599, 601
relativity, 17
relaxed

constraint, 429, 539
interference projection, 541
interpolation formula, 222, 247–248
nonexpansive operator, 559

relaxation, 558
reliability, 160, 201–202, 208–209, 666
remote sensing, 3, 495, 683, 708, 728
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Rényi, Alfréd, 217, 737
repunit numbers, 9, 662, 702
residue, 598–599

arithmetic, 598
number theory, 598, 732

resistor, 11, 106, 116, 196–197
resonant frequency, 215, 439
restoration noise level, 384–386, 457–459,

463, 482
Revelry, 616
reverse integration, 19
Rice random variable, 677, 727
Riemann

integral, 104
Georg Friedrich Bernhard, 519

right dense, 587, 592, 608
ringing Laplace autocorrelation, 198
robotics, 495, 709
roll, 151, 169, 177, 399, 602
roll-off, 248, 381
Roman empire, 413
Romans, v
root, 45, 235, 239–240, 304, 439, 613–620, 622,

624, 630, 661, 667–668
Ross, Hugh, 326, 628
rotate, 118, 208, 337–341, 349–350, 380,

399–401, 559, 561–562, 565–566, 712,
741. Also see – rotation rotated

gantry, 559, 561–562
image, 401

rotating wagon wheel, 4
rotation, 6, 331, 336–341, 349, 357, 378, 399,

404, 735. Also see – rotate
and scale theorem, 357
angle, 340
in higher dimensions, 339
in three dimensions, 339
matrix, 337–339, 399

rounded, 364–365, 535
rounding, 658
round off error, 478, 713, 720

S
Sad Man image, 568–569
Saint Augustine, 411, 681
Saint Benoît-sur-Loire, 5
Saint Joseph, 5
sample

and hold, 249, 252, 717–718
dependency, 243, 327, 716
mean, 176

sampled DTFT, 53
sampling

density, 9, 235, 277, 327, 376, 379, 385,
387–395, 402, 691

density comparisons, 379
matrix, 376–379, 382, 387–388, 402
phase, 219

rate, xiii, 217, 222, 232, 239, 243, 270, 272,
277–278, 289, 291, 298–299, 301,
309–310, 322, 325, 392, 395, 408, 451,
692, 698, 703, 708, 716, 720

rate parameter, xiii, 243, 272, 278, 289,
301, 325

theorem, vi–vii, 4, 6–7, 9, 15, 49–50, 202,
217–223, 227, 231, 234, 236, 242, 252,
256–257, 265, 267, 271, 273, 277–278,
293, 302, 304–306, 310–311, 313,
372–373, 375, 381, 448–449, 462, 474,
495, 680–716, 718–727, 729–741,
743–744

theorem for periodic bandlimited signals, 218
theorem for signal-derivative sampling, 304
theorem tables – see tables
theory for bandpass functions, 267

Sarr, Dennis, viii, 721
savings accrual, 8, 647
scalar

diffraction, 627, 722
optics, 624–625
time scale, 604

scaling, 15, 20–21, 117, 156, 161 192, 336–338,
340–341, 399–400, 416, 721

matrix, 337, 340, 399
property, 21
theorem, 20, 156, 161 192, 406, 416

science, 3, 10, 447, 570, 610, 646, 711, 731
Schrödinger’s equation, 192, 645
Schwarz’s inequality, 71, 73, 103, 224, 321,

440, 660–661
sech, 23–27, 66, 86, 132, 140, 153, 161–162
cosech, 23
sechant random variable – see hyperbolic

sechant random variable
second

characteristic function, xiii, 155–156,
160–162, 164, 166, 171, 174, 177,
205–206, 210

derivative function, 156
moment, 165, 168–169, 196–197, 200, 204,

666, 571
order aliasing, 254, 451, 479, 471
order decimation, 403
order miracle, 10
order statistics, 193–194, 29

segmentation, 3, 738
semitones, 411, 613–616
separability, 6, 331, 334–336, 395, 401.

Also see – separable
theorem, 334–335, 357, 395, 406

separable, 157, 334–335, 401, 721. Also see –
separability

function, 334–335, 401
set

subtraction, 576
translation, 571

Sezan, M. Ibrahim, 495, 697, 722, 730
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Shannon
Claude E., viii, 217–220, 252, 259, 302, 730
number, 232, 236, 475, 682, 706
sampling theorem, xi, vii, 6–7, 217–218, 373,

683, 685, 686–689, 695, 697, 701,
703–707, 710, 716, 726, 732, 737, 743

Shannon’s proof, 221, 234
Shepp-Logan phantom, 350
shift

invariant system, 106, 230, 333, 630–631,
691. Also see – time invariant

theorem, 15, 19, 58, 100, 142, 145, 208, 210,
212, 332–333, 341, 647

shifting phase, 630
short

duration window, 418. Also see narrow
window

time Fourier transform, 126, 413–419,
422–423, 435–436, 438–441

shot noise, 199
sideband, 133
sifting property, 19–20, 31, 33, 84, 112–113,

128, 443, 626–627, 640
signal

detection, 424, 708, 712, 737
integral property, 45, 77, 87, 200
level, 194
norm, xi, 503
of samples, 51, 243, 25
processing, vii, ix, 3, 10, 52, 424, 434, 496,

722, 729–730
recovery, vii, 7, 126, 447, 610, 693, 695, 717,

724, 495
synthesis, 126, 438, 700, 726, 739
-to-noise ratio, x, 366, 475, 532

signum function, xiii, 29. Also see – sgn
sgn, xiii, 14, 17, 22–23, 29–30, 46, 63, 65–66,

77, 83, 101, 140, 166, 230, 239, 275, 278,
280, 351, 370, 441. Also see – signum
function

simultaneous
equations, 7, 253, 256, 258, 330, 514,

532, 563
switching tone, 433, 435
weighted projections, 500–502, 514

simultaneously
sample, 9, 242, 260, 303
sounded harmonics, 612–613

sinc function, 14–15, 17, 21–22, 27–28, 32–33,
35, 37, 39, 49, 63–67, 70, 76–78, 86–93,
97–98, 101, 107–109, 121–122, 129,
132–133, 137, 139, 141, 150, 153, 159,
219–220, 222–225, 227–234, 236–239,
242–243, 245–247, 249, 251, 253,
258–263, 266–267, 269, 271–274,
277–286, 289–291, 293–298, 301–302,
306–307, 310–311, 314, 319–320, 324,
335–336, 340–341, 357–358, 370–371,
392, 408–410

sin, xii, 17, 21–22, 24, 27, 29, 32–33, 39, 57–58,
63, 66, 69, 77–78, 81–82, 84, 87, 90, 93,
96–100, 124, 218, 220, 228–230, 232, 238,
262–263, 267, 270, 273, 278, 280, 284,
306, 311, 320, 337, 339, 341–342,
350–352, 371, 402, 404, 412, 455,
488–489, 611–612, 663. Also see – sine

transform, 65. Also see – sine transform
sine, xiii, xiv, 24, 57, 61, 62, 262, 306, 420

integral, xiii, 39, 70, 87, 262, 306
transform, xiv, 57, 717. Also see – sin

transform
wave, 420, 717

single side band suppressed carrier, 119, 599.
Also see – SSSC

sinh, 24–26, 86, 162, 203, 211–212, 291–292,
311, 324. Also see – hyperbolic sin

sinogram, 402
sinusoid, 3, 6, 31, 116, 125, 276, 412, 417–421,

429, 432, 441, 558–589, 682, 709, 721, 743
slab, 508, 567
Slepian’s paradox, 482, 486
Slepian, David, 10, 473, 482, 486–487, 731
sliding window, 413, 416, 683, 716

Fourier transform, 416
slower roll-off, 381
Smith, David Eugene, 447
Smith, David K., viii, 715–716
Smith, Michael J., viii
sonar, 4, 126, 424, 434, 441, 624, 692, 700, 713
spectra, 3, 52, 71, 222, 224, 232, 237, 240, 247,

253, 258–259, 270, 304, 377, 380–381,
385, 387, 394, 396, 402–403, 451, 453,
467–468, 472, 685, 698, 704, 706, 716,
718, 723, 725, 727, 736, 740. Also see –
spectrum

spectral support, 376–377, 379–381, 392–393,
395–398

spectrogram, 4, 7, 415–420, 424, 431–436,
439–440, 537, 551–553, 683

spectrometry, 3, 683, 694, 716
spectroscopy, 3, 690, 693, 698, 702, 706,

708–709, 729, 732, 737, 739–740
spectrum, 4, 12, 21, 45–46, 51–54, 68, 72, 102,

122–124, 133–134, 197, 219, 222, 232,
234–235, 237, 239, 243, 248, 253–254,
258, 268, 270, 345, 374, 376–377,
380–381, 385–387, 390–391, 396–397,
402, 411, 416, 418–419, 450–452, 456,
467, 472, 477, 483, 489, 516, 626–630,
657, 683, 705, 714, 717, 738. Also see –
spectra

speech, 126, 424, 434, 436, 495, 691, 702, 712,
715, 717, 722, 728, 733, 738, 744

spherical
Bessel functions, xii, 9, 39, 41, 61, 69, 89,

95–96, 133, 141, 263, 401
harmonic, 345

spherically symmetric, 341, 343, 401, 631
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spinal cord, 545
square

aperture, 532, 544
area, 73
diamond, 388–389, 391–392
doughnut, 392–393
matrices, 405
root, 235, 239–240, 630, 667–668
subtiles, 395
summable, 265
tile, 395, 643
wave, 17, 64, 77, 100

SSSC, x, 133. Also see – single side band
suppressed carrier

stable, 59, 107, 109–112, 135, 142, 726
systems, 107, 420, 441

standard deviation, 155–156, 177, 204, 318,
619, 621, 645, 518

Stark, Henry, 495, 568, 724, 727, 730, 733,
742–743

stationarity, 289. Also see stationary
stationary, 195–199, 204, 214, 233, 288, 293,

303, 307, 316, 323, 336, 385, 402, 416,
456, 684, 686, 690, 702, 710, 713–714,
719, 720, 725, 728, 732, 739

in the wide sense, 195–197, 199, 204, 214,
233, 288–289, 307, 316, 323, 402, 456,
713, 741

processes, 195–196, 702, 714, 720, 725, 732
step response, 120
Stirling’s formula, 63, 74
stochastic

bandlimited signal, 316, 320
input, 198
processes, vi–vii, xiii, 6, 10, 151, 193–194,

196–198, 200, 204, 214–215, 233,
289–290, 316, 323, 383, 682, 684,
712–714, 723–725, 730

representation, 180
resonance, 6–7, 178–180, 182, 204, 215, 699,

716, 719, 727, 744
signal, 316–318

strictly
convex sets, 497
positive, 239–240, 277

strong
convergence, 501
law of large numbers, 177

structural analysis, 3
structuring element, 575, 577–579, 582, 584
student’s t, 664, 676–677
sub-Nyquist sampling, 393
subharmonics, 620–622
submatrices, 522
subpixel resolution, 7, 532–533, 545
subspace, 503–509, 513–517, 520, 522, 531,

563, 691, 734, 738, 744
subtiles, 388–395

sufficient condition, 17–18, 105, 136, 383,
430, 486

super resolution, 447, 495, 680–681, 685, 695,
696, 698, 700–701, 705, 708, 714, 720,
724–725, 741

superposition, 106, 113, 115, 127, 129–130,
135, 150, 335, 398, 434, 635, 696

integral, 113, 115, 127, 129–130, 135,
398, 635

of plane waves, 626–627
of point sources, 626
of sinusoids, 6
of separable functions, 335
sum, 113, 330, 398

support, 150, 253, 268, 376–377, 379–381,
385–386, 391–398, 403, 432, 434, 570,
572–573, 575, 689

domain, 570
symmetric

Fourier-Bessel transform, 345
function, 341–346, 401, 406. Also see –

symmetric signal
kernel, 430, 543, 551–552
Laplacian, 631
signal, 12, 45, 70, 200, 235, 472, 483, 564.

Also see – symmetric function
symmetrically spaced, 334
synthesize

a diffraction grating, 643
beam, 547, 558–559
from images, 8
GTFR kernels, 426, 434
phase, 568–569
using POCS, 537, 539, 543, 551–552, 556

system
operator, xiii, 104, 110, 129, 142
theory, vi–vii, 104, 139, 106, 404, 702,

708, 715

T
tables

acronym, ix–x
convolution (c)

continuous time c algebra, 115
discrete time c algebra, 115

sampling theorem even and odd function
properties, 13

extrema of sinc, 92
Fourier transforms (FT)

characteristic functions, 153–154
continuous FT theorems, 13
discrete FT theorems, 13
FT pairs, 22–23
FT types, 13
multidimensional FT properties, 331

GTFR’s
kernel transforms, 425
special cases, 431

notation, xi-xiv
optical systems summary, 642
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probability functions (pf)
continuous pf’s, 1153
discrete pf’s 154

sampling theory
directly sampled, 272
history, 218
noise levels, 462

windows
commonly used, 415
cosine transform relationships, 420

tanh, 23–24, 26–27, 66, 86, 140, 162.
Also see – hyperbolic tan

taps, 616
target

border, 558
detection, 126
dose, 548–549
organ, 560–561
shape, 557–558
volume, 548

taxes, 647, 651–652, 654, 658
Taylor series, xix, 12, 22, 24, 61–62, 73, 155,

171, 186, 202, 208, 210, 259, 261,
265–266, 311, 325, 448–449, 486–487, 634

arctan, 312
cardinal series, 265–266
characteristic function, 155
confluent hypergeometric series, 210
cosine, 24
exponential, 22
Gaussian, 208
log, 61
sine, 24
truncated, 634

Taylor, Brook, 519
Tchebycheff – see Chebyshev
television, 4, 395, 495
tempered scale, 7, 610, 613–623, 657–658
template matching, 517
TFR, x, 411–413, 419, 427. Also see – GTFR
thermal

equalibrium, 669, 739
noise, 197–198
resistors, 106

thermometer, 4
thesaurus, 196
thin lens approximation, 639
Thompson, Benjamin B., viii, 716
Thomson,William – see Kelvin, Lord
Three Dolls, 576
threshold, 179–180, 475, 681, 743

detector, 178, 716
image, 180, 185

tic tac toe, 328–330, 299, 404
tighter integration, 381–381
tile, 354–359, 373–374, 376–381, 383–395,

643. Also see – subtile
time-

- bandwidth product, 218, 231–232, 473, 475

- frequency distribution, 417, 433–435, 537,
551–553, 692, 696, 702, 705, 709,
712–713, 721–723, 727, 738, 741, 744.
Also see – time-frequency representation

- frequency representations, vii, ix–x, 4, 7,
126, 327, 411, 417, 424, 436, 537, 680,
689, 691–693, 708, 720–721, 725, 741,
744. Also see – TFR & time-frequency
distribution

invariant, x, 6, 106, 108–112, 114, 130,
133, 135–137, 142–144 196, 333, 439.
Also see – shift invariant

marginal, 427–428
resolution, 416–418, 428, 436, 439, 537–539,

541–542
resolution constraint, 428, 539, 541
resolution versus frequency resolution trade

off, 416–418, 436, 439
scale, vii, ix, xi, xiii, 7–8, 326, 328, 570,

583–592, 594–605, 608, 680, 685, 696,
702–703, 714, 716, 726, 728, 734, 744

series, 3, 685, 725, 733, 739
time variant systems, 106, 112, 130–131, 136,

139, 698, 708
Toeplitz, 452, 702
tomographic

projection, 7, 327, 345, 348–349, 406,
533, 548

reconstruction, 546, 565
tomography, ix, 3, 7, 327, 345, 352, 424, 495,

546, 683, 708, 711, 715, 728, 730, 733, 741
tonal color, 613
transcendental

equation, 563, 567
function, 6, 697, 721
relationship, 202

transfer
function, 60, 134, 248, 308, 421, 423, 440,

442, 682, 708, 725, 735
kernel, 127, 226–227

transfinite numbers, xii, 139, 150, 689
transformation function, 367–371, 373, 402
translation, 218, 404, 510, 571, 574, 683, 695,

704, 709–710, 739, 743
transpose, 15, 51, 117, 235, 347

theorem, 347
transposition, 127, 327, 331, 333, 336–338,

340, 399
trapezoidal integration, 225–228, 230
triangle

function, xiii, 32, 64, 458
random variable, 159

trigonometric
function, 21, 24, 220
geometric series, 169, 663
polynomials, 266, 272, 276, 322, 453, 456,

469, 483, 644
tritone, 621–622
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trombone, 613
truncated

cardinal series, 223, 225, 233, 320
IIR filters, 419–420, 422–423
Fourier series, 16–17, 70, 98, 107, 224
Foutier transform, 642
PSWF, 474
signal, 475
sinusoid response, 420–421
Taylor series, 634

truncation error, 232, 245, 248, 320–321, 323,
684, 686, 688–689, 696, 703, 706–709,
714, 725, 735, 742

Tseng, Shiao-Min, viii, 300, 716, 736
tuba, 234
tumor, 545–546, 554, 557, 560–561
twelfth root of two, 613

U
ultrasound, 126, 424, 434, 684, 716, 721
unbiased

estimate, 314–315, 318–319
interpolation, 314, 316
restoration, 318

unbounded, 319
AITS, 596
degree of aliasing, 462
Dirac delta, 110
energy, 304
from above, 569
from below, 569
variance, 306

uncertainty
principle, vii, 7–8, 192, 416, 645–646, 657,

704, 710
relationship, 192, 202, 645–646

unfiltered
interpolation formula, 291
NINV, 298–301, 323
restoration, 295, 298

uniform, 9, 17, 49, 53, 56, 137, 153–154,
159, 164, 169–170, 175, 177–179,
187, 204, 214, 219, 223–225, 231, 232,
304, 319, 376, 385, 461–462, 474, 533,
558, 610, 671–672, 686, 689, 702,
706, 738

convergence, 49, 223–225
difference random variable, 159
jitter, 319
motion blur, 137
probability density function, 671
product random variable, 671–672
ratio, 9, 159, 164, 169–170, 177–179, 187,

323, 671–672
quotient random variable, 671
random variable, 9, 159, 164, 169–170,

177–179, 187, 323, 671–672
ratio random variable, 672

unilateral
cosine transform, 56, 65
Laplace transform, 18, 228

unit
area, 20–21, 23, 156, 188, 354, 376, 564
circle, 58, 343, 694
delay, 59
doublet, 205
energy, 48, 485, 491
norm, 510, 511
periodicity, 368
gain, 422
graininess, 598
interval, 50–51, 188, 205, 403, 405
length, 628
multiply, 59
norm, 510–511
period, 50, 368
radius, 328, 343, 408, 410
slope, 408
square, 370, 398
step, xiii, 14, 30, 58, 65, 111, 120, 133, 140,

228, 346, 419, 430, 586
variance, 162, 167, 187, 667, 676
vector, 510–511, 514, 627, 631

unitless, 12, 50
units, 12, 14, 60, 200–201, 204, 312, 328, 354,

398, 423, 439–440, 634
universal

agreement, 614
set, 497

upper
integration limit, 488
bound, 512, 686, 708, 719, 722, 734
case letter, 450
envelope, 124–125
frequency, 267
limit, 439, 554
sideband, 133, 268

upsampling, 236
unstable, 107, 247, 259, 303, 319, 383, 449

V
Vandermonde determinant, 257, 275, 286
variance, xiii, 153, 155–160, 162, 164, 166,

167–172, 174–178, 187–189, 192, 194,
201–206, 211, 292–294, 296, 302–304,
306–307, 313, 315–316, 323, 384,
402–403, 463, 665–673, 675–677, 679

Vatican, 139
vectorization, 329
vector

arbitrary – see arbitrary vector
beam – see beam vector
column, 37, 532. Also – see long column

vector
component, 521, 605, 628, 664
curl, xi, 332
displacement – see displacement vector
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dose – see dose vector
eigen – see eigenvector
elements, 605
identity, 229, 625
image – see image vector
library – see library vector
matrix – see matrix-vector
maximum – see maximum vector
norm, xi, 327
offset, 517
operator, 229, 625
optics, 624
periodicity – see periodicity vector
propagation – see propagation vector
offset – see offset vector
response – see response vector
stimulus, 527
subtile – see subtile vector
unit – see unit vector
weighted – see weighted vector

velocity
measurement, 3, 734
sampling, 9

Venn, John, 518
vertical, 398, 411–412, 528

bars, 4
displacement, 611
force, 610
line, 348, 515
scale, 454–455
slice, 395, 397–398
swath, 418

vibrating
air column, 613, 616–617
lips, 616, 618
string, 610–613, 617–618, 656–656

vibration
analysis, 424, 434, 713, 744
mode, 616–617

vibrational harmonics, 623
video

disc, 495
processing, 495

viola, 613
violin, 613
volt, 60, 197, 201, 204
voltage, 11, 84, 116, 151, 196, 439
Von Mises random variable, 202, 670–671
Von Neumann’s alternating projection

theorem, 514
Von Neumann, Johann, 242, 721

W
Walkup, John F., viii, 445 702, 708, 715, 738
Walsh function, 50, 278, 708
Wang, Y., 739
watermarking, 495, 681
WAV file, 107

wave
equations, vii, 190, 610–614, 617, 624,

626–627, 656–657
function, x, 48–49, 190, 192, 473, 645–646,

711, 727, 731
packet, 645, 726, 412
propagation, vii, 4, 623–624, 628–629,

657, 695
waveform, 4, 84, 249, 412, 475, 699–700
wavefront, 627, 634, 657, 659, 733–734
wavelength, xiii, 623, 625–626, 628, 630,

633–634, 637, 645–646, 685, 690
wavelets, xiii, 9, 626, 683, 686, 692–694, 698,

701, 707, 711, 719, 730, 734, 736,
738–739, 741, 744

weak
convergence, 501, 722
law of large numbers, 6, 158, 177–178,

501, 722
weather analysis, 3, 698
Webb, H., 495, 733, 742
Weibull random variable, 665–668, 675
weighted

area, 510–511
Dirac delta, 21
distance, 501
fractional Fourier transform, 128–129,

138–139, 148–150
function, 511. Also see – weighted signal
Hermite polynomial, 43
sum, 468, 501–502, 508
noise level, 149
probability, 568
projection, 501–502
signal, 510, Also see – weighted function
vector, 510

weights, 128–129, 138, 149, 451, 453, 501–502,
556, 627–628, 644

Weil, Andre, 411
Welch window, 415, 693
well-posed, 306, 463, 476–477, 484–485,

491, 493
western harmony, 8, 613
western

movies, 4
music, vii, 7–8, 610, 612–614, 623, 656
tempered scale, 615

white
Gaussian noise, 518, 699
noise, 9, 197–198, 290, 292–295, 302–303,

309–310, 312, 323–324, 385, 402, 457,
459–460, 463–464, 518, 527, 533, 569, 699

Whited, John L., viii, 715
Whittaker, Edmund Taylor, 218–219, 739
Whittaker, J.M., 218–219, 739
Whittaker-Kotelnikov-Shannon sampling

theorem, 217, 683, 689, 697, 705
Whittaker-Kotelnikov-Shannon-Kramer

sampling theorem, 217
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Whittaker-Shannon sampling theorem, 217,
687–688, 726

wide
sense cyclostationary, 323
sense stationary, 195–197, 199, 204, 214,

233, 288–289, 307, 316, 323, 402,
457, 713

window, 418. Also see – long windows
Wigner distribution, 431, 434–435, 537,

551–553, 682–683, 687, 692, 700, 706,
720, 726, 735, 739

windows, 56–57, 187, 402, 407, 413–420,
422–424, 431–432, 434–436, 438, 441,
490, 544, 644, 681, 683, 696, 716,
722, 740

Blackman – see Blackman window
boxcar – see boxcar window
Bartlett – see Bartlett window
causal – see causal window
commonly used, 56, 415, 420. Also see –

tables
continuous time – see continuous time

windows
cosine transform relationships – see tables
discrete time – see discrete time windows
design, 419
even – see even window
filter, 418–419
fixed length, 415
Hamming – see Hamming window
Hanning – see Hanning window
Kaiser – see Kaiser window
Lanczos – see Lanczos window
long – see long window
modulated – see modulated window
narrow – see narrow window
normalized – see normalized window
parameter, 439
Parzen – see Parzen window
short duration – see short duration window
sliding – see sliding window
table – see tables
typical, 415

Welch – see Welch window
wide – see wide window

Wise, Gary L., viii, 263, 699, 715
Wu, Wen–Chung Stewart, viii, 740
Wunsch, Donald C., viii

X
x axis, 564, 628–629
X-ray, 3, 700, 722, 730–731, 735

Y
Yang, Y., 527, 741
yaw, 399
Youla, Dante C., 495, 514–515, 742

Z
z transform, xi, xiv, 58–60, 421, 423, 646–647
Zadeh, Lotfi A., 500, 743
ZAM GTFR, 435
zero

crossing, 33, 38, 66, 84, 637, 643, 682,
685, 717

input, 113
initial condition, 60, 523
locus plot, 445–446
output, 113
mean, 162, 166–167, 187, 192, 194, 201, 204,

288–289, 293, 303, 307, 323, 383, 385,
402–403, 456, 518, 667–668, 676

padding, 236, 732
phase, 120, 327, 366–367, 691, 726
sum property, 245
variance, 177

zeroth order
sample and hold, 249
spectrum, 253, 397, 451, 467, 472
spherical Bessel function, 141
spherical Hankel transform, 343, 345
spectrum, 141, 397, 467, 472

Zhao, Yunxin, viii, 436, 744
Zhu, Q. F., 530, 739
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