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Abstract The convergence of Laplace transforms on time scales is generalized to
the bilateral case. The bilateral Laplace transform of a signal on a time scale sub-
sumes the continuous time bilateral Laplace transform, and the discrete time bilateral
z-transform as special cases. As in the unilateral case, the regions of convergence
(ROCs) time scale Laplace transforms are determined by the time scale’s graininess.
ROCs for the bilateral Laplace transforms of double sided time scale exponentials
are determined by two modified Hilger circles. The ROC is the intersection of points
external to modified Hilger circle determined by behavior for positive time and the
points internal to the second modified Hilger circle determined by negative time.
Since graininess lies between zero and infinity, there can exist conservative ROCs
applicable for all time scales. For continuous time (R) bilateral transforms, the circle
radii become infinite and results in the familiar ROC between two lines parallel to
the imaginary z axis. Likewise, on Z, the ROC is an annulus. For signals on time
scales bounded by double sided exponentials, the ROCs are at least that of the dou-
ble sided exponential. The Laplace transform is used to define the box minus shift
through which time scale convolution can be defined. Generalizations of familiar
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properties of signals on R and Z include identification of the identity convolution
operator, the derivative theorem, and characterizations of wide sense stationary sto-
chastic processes for an arbitrary time scales including autocorrelation and power
spectral density expressions.

Keywords Time scales · Laplace transform · z-transforms · Region of convergence ·
Hilger circle · Stationarity · Autocorrelation · Power spectral density · Hilger delta

1 Introduction

A time scale, T, is any closed subset of the real line. Continuous time, R, and discrete
time Z, are special cases. The calculus of time scales was introduced by Hilger [7].
Time scales have found utility in describing the behavior of dynamic systems [1, 11]
and have been applied to control theory [2, 3, 6].
This is the second in a series of monographs outlining regions of convergence and

applications of Laplace transforms on time scales. The first paper was dedicated to
the causal (or one sided) Laplace transform on a time scale [5]. This paper extends
these results to the bilateral Laplace transform on a time scale and its use in defining
convolution on an arbitrary time scale. Time scale convolution, in turn, allows model-
ing of wide sense stationary stochastic processes on time scales using autocorrelation
and power spectral density descriptors.
For the convergence problem, there are three cases of bilateral time scales consid-

ered.

1. For time scales whose graininess is bounded from above and below over the entire
time scale or asymptotically.

2. For time scales whose asymptotic graininess approaches a constant. R and Z are
special cases. All time scales in this class are also asymptotically a member of the
time scales in 1.

3. For all time scales. This can be considered a limiting special case of 1 since all
time scales are bounded between zero and infinity.

2 Time Scales

Our introduction to time scales is limited to that needed to establish notation. A more
detailed explanation is in our first paper [5] and a complete rigorous treatment is in
the text by Bohner and Peterson [1].

1. A time scale, T, is any collection of closed intervals on the real line. We will
assume the origin is always a component of the time scale.

2. The graininess of a time scale at time t ∈ T is defined by

μ(t) =
(

inf
τ>t, τ∈T

τ
)

− t.
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3. The Hilger derivative of an image x(t) at t ∈ T is

x�(t) := x(tσ ) − x(t)

μ(t)

where tσ := t + μ(t). When μ(t) = 0, the Hilger derivative is interpreted in the
limiting sense and

x�(t) = d

dt
x(t).

4. If y(t) = x�(t), then the definite time scale integral is∫ b

a

y(t)�t = x(b) − x(a).

5. When x(0) = 1, the solution to the Hilger differential equation,
x�(t) = zx(t),

is x(t) = ez(t) where the generalized exponential is

ez(t) := exp
(∫ t

τ=0
ln(1+ zμ(τ))

μ(τ)
�τ

)
.

As a consequence, for z = 0,
e0(t) = 1. (2.1)

6. The circle minus operator is defined by

y � z := y − z

1+ zμ(t)
.

The notation �z in interpreted as y � z with y = 0.
7. The generalized exponential has the property that [1]

e�z(t) = 1

ez(t)
.

3 Bilateral Laplace

Let T denote a bilateral time scale and let f (t) be an image on T. Define the bilateral
Laplace transform as

F(z) :=
∫ ∞

−∞
f (t)eσ�z(t)�t (3.1)

where eσ�z(t) := e�z(t
σ ). The continuous time bilateral Laplace and discrete time

z-transforms are special cases.
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Here are some properties.

1. Integration property.

F(0) =
∫ ∞

−∞
f (t)�t.

This follows immediately from (3.1) and (2.1).
2. The derivative theorem. When f (t)e�z(t) goes to zero as t → ±∞ and F(z)

converges,

f �(t) ←→ zF (z). (3.2)

Proof

f �(t) ←→
∫ ∞

−∞
f �(t)eσ�z(t)�t.

Using integration by parts [1]

f �(t) ←→ f (t)e�z(t)|∞−∞ −
∫ ∞

−∞
f (t)

[
e�z(t)

]�
�t

= −
∫ ∞

−∞
f (t)(�z)e�z(t)�t.

Since −(�z)e�z(t) = zeσ�z(t), the result follows immediately. �

3. Special cases.

• For continuous time, T = R, we have

eσ�z(t) = e−zt

and (3.1) becomes the conventional bilateral Laplace transform

F(z) =
∫ ∞

−∞
f (t)e−zt dt.

• For discrete time, T = Z, we have

eσ�z(tn) = (1+ z)−(n+1)

and (3.1) becomes

F(z) =
∞∑

n=−∞
f (n)(1+ z)−(n+1).

The bilateral z-transform is

FZ(z) =
∞∑

n=−∞
f (n)z−n. (3.3)
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Thus

F(z) = FZ(z + 1)
z + 1

or, equivalently,

FZ(z) = zF (z − 1).
Note, then, that the conventional z-transform is related to a shifted time scale
Laplace transform for T = Z. For example, the unit circle for the z-transform is
centered about the origin. The time scale version is the same circle now shifted
to be centered at z = −1.

4. Variation. An alternate form of the bilateral transform which will prove useful in
the characterization of stationary stochastic processes on a time scale is

F�(z) :=
∫ ∞

−∞
f (t)eσ

z (t)�t. (3.4)

Although the analysis of convergence in this paper is for F(z), the convergence
properties for F�(z) are similar and follow immediately.

We can break up the transform definition in (3.1) as

F(z) = F+(z) + F−(z) (3.5)

where

F+(z) =
∫ ∞

0
f (t)eσ�z(t)�t

and

F−(z) =
∫ 0

−∞
f (t)eσ�z(t)�t.

We recognize that

F+(z) = Fu(z)

where Fu(z) is the notation for the causal Laplace transform on a time scale [5]. Fu(z)

is alternately referred to as the unilateral or one sided Laplace transform. The regions
of convergence for the causal Laplace transform has been established for causal func-
tions with finite area and for transcendental functions arising from solution of linear
time invariant differential equations on time scales [5].

3.1 Asymptotic Graininess Bounds

Here are some graininess bounds useful in determining the convergence of bilateral
transforms. All upper bounds are bounded by infinity and all lower bounds must equal
or exceed zero.
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(1) Constant Asymptotic Graininess. The graininess of some time scales asymptot-
ically approach a constant at t = ±∞. In such cases, we define the constant
asymptotic graininesses as

μ̄+ = lim
t→∞μ(t) and μ̄− = lim

t→−∞μ(t).

More rigorously, μ̄+ is the positive constant asymptotic graininess if

lim
t→∞

∣∣μ(t) − μ̄+
∣∣ = 0.

Likewise, the negative constant asymptotic graininess

lim
t→−∞

∣∣μ(t) − μ̄−
∣∣ = 0.

(2) Bounds. Graininess on a time scale is asymptotically be bounded from above and
below.

• Entire Bounds.
– The positive upper and lower entire bounds for graininess are

μ́0+ = sup
t∈T, t≥0

μ(t)

and

μ̀0+ = inf
t∈T, t≥0μ(t).

– The negative upper and lower bounds for graininess are

μ́0− = sup
t∈T, t<0

μ(t)

and

μ̀0− = inf
t∈T, t<0

μ(t).

• Attained Bounds.
– The positive upper and lower attained bounds for graininess are

μ́T+ = sup
t∈T, t≥T

μ(t)

and

μ̀T+ = inf
t∈T, t≥T

μ(t).

– The negative upper and lower attained bounds for graininess are

μ́T− = sup
t∈T, t<T

μ(t)
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and

μ̀T− = inf
t∈T, t<T

μ(t).

• Asymptotic Bounds.
– The positive upper and lower asymptotic bounds for graininess are

μ́∞+ = lim
T →∞ μ́T+ = lim

T →∞

(
sup

t∈T, t≥T

μ(t)
)

and

μ̀∞+ = lim
T →∞ μ̀T+ = lim

T →∞

(
inf

t∈T, t≥T
μ(t)

)
.

– The negative upper and lower asymptotic bounds for graininess are

μ́∞− = lim
T →−∞ μ́T− = lim

T →−∞

(
sup

t∈T, t≤T

μ(t)
)

and

μ̀∞− = lim
T →−∞ μ̀T− = lim

T →−∞

(
inf

t∈T, t≤T
μ(t)

)
. (3.6)

When the positive or negative asymptotic bounds are equal, a time scale has a
constant positive and/or negative constant asymptotic graininess.

(3) Global Asymptotic Bounds. Note that, since μ̀+ and μ̀− are nonnegative, and
μ́+ < ∞ and μ́− < ∞, we can always set global upper and lower bounds for
both the positive and negative cases as∞ and 0.

3.2 Regions of Convergence on the z Plane

Define a modified Hilger circle parameterized by a (possibly complex) number α and
a graininess μ, as the locus of points for which∣∣∣∣z + 1

μ

∣∣∣∣ =
∣∣∣∣α + 1

μ

∣∣∣∣.
The circle is centered at −1/μ on the negative real axis on the z plane and passes
through the point α [5]. From this definition we offer the following definitions of
regions on the z plane.

(1) The region H(α,μ) contains all points outside of the modified Hilger circle with
parameters α and μ. H̄(α,μ) is the region inside of the same circle.

(2) The regions R(α, μ̀, μ́) and L(α, μ̀, μ́), illustrated in Fig. 1, are defined as the
intersections

R(α, μ̀, μ́) = H(α, μ́) ∩ H(α, μ̀) (3.7)
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Fig. 1 Illustration of the
regions R(α, μ̀, μ́) and
L(α, μ̀, μ́). In each case, the
leftmost bold circle is centered
on the negative real axis at
−1/μ̀ and the rightmost bold
circle is centered on the negative
real axis at −1/μ́. Both circles
pass through the point α. The
lightly shaded area, external to
all of the circles, are
R(α, μ̀, μ́). The darker shaded
region, internal to the circles, are
L(α, μ̀, μ́). The examples here
illustrate the regions for
different values of α.
(a) Reα < 0. (b) Reα > 0.
(c) α is negative and real. Here,
the region L is empty. (d) α real
and positive

and

L(α, μ̀, μ́) = H̄(α, μ́) ∩ H̄(α, μ̀). (3.8)

These regions have the obvious properties

R(α,μ,μ) = H(α,μ) (3.9)
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and

L(α,μ,μ) = H̄(α,μ). (3.10)

(3) The regions D(α) and E (α) are the limiting cases of R and L. They are illustrated
in Fig. 2.

• Define

D(α) = R(α,0,∞).

D(α) consists of the intersection of all points external to a circle of radius |α|
centered on the z plane and all of the points to the right of the line z = Reα.

Fig. 2 Illustration of the
regions D(α) and E (α). In each
case, the bold circle is centered
at the origin and passes
through α. The vertical line is
defined by the line z = Reα.
The lightly shaded area are
D(α). The darker shaded region
are E (α). The examples here
illustrate the regions for
different values of α.
(a) Reα < 0. (b) Reα > 0.
(c) α is negative and real. Here,
the region L is empty. (d) α real
and positive
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• Likewise, let
E (α) = L(α,0,∞). (3.11)

These regions have the property that [5]

D(α) ⊂ R(α, μ̀, μ́)

and

E (α) ⊂ L(α, μ̀, μ́).

4 A Bilateral Laplace Transform

Clearly, if F+(u) converges in a region Z+ and F−(u) converges in a region Z−, then
F(u) converges at least in the region

Z = Z+ ∩ Z−. (4.1)

We can use this to find the region of convergence (ROC) of the double exponential
function defined by

eβ:α(t) :=
{

eα(t); t ≥ 0,
eβ(t); t ≤ 0. (4.2)

We will find useful the following shorthand notation:

• T(μ̄+) means T has a constant positive asymptotic graininess of μ̄+.
• T(μ̄−) means T has a constant negative asymptotic graininess of μ̄−.
• T(μ̀+, μ́+) means T has lower and upper positive t graininess bounds of μ̀+ and

μ́+. These can be
◦ (μ̀0+, μ́0+),
◦ (μ̀T+, μ́T+), or
◦ (μ̀∞+ , μ́∞+ ).

• T(μ̀−, μ́−) means T has lower and upper negative t graininess bounds of μ̀− and
μ́−. These can be
◦ (μ̀0−, μ́0−),
◦ (μ̀T−, μ́T−), or
◦ (μ̀∞− , μ́∞− ).

• T(0+,∞+)means T has lower and upper positive t graininess bounds of 0 and∞.
• T(0−,∞−)means T has lower and upper negative t graininess bounds of 0 and∞.

Theorem 4.1 The bilateral Laplace transform of the double exponential function,
eβ:α(t), when it exists, is given by F(z) = F+(z) + F−(z); z ∈ Z where

F+(z) = 1

z − α
; z ∈ Z+, (4.3)

F−(z) = − 1

z − β
; z ∈ Z− (4.4)
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and Z = Z+ ∩ Z−. The component ROCs are

Z+ =
⎧⎨
⎩

H(α, μ̄+) for T(μ̄+),

R(α, μ̀+, μ́+) for T(μ̀+, μ́+),

D(α) for T(0+,∞+)

(4.5)

and

Z− =

⎧⎪⎨
⎪⎩

H̄(β, μ̄−) for T(μ̄−),

L(β, μ̀−, μ́−) for T(μ̀−, μ́−),

E (β) for T(0−,∞−).

(4.6)

4.1 Examples

4.1.1 Zero Asymptotic Graininess

Let μ̄+ = μ̄− = 0. Continuous time, T = R, is a special case as is the log time scale

L = {
tn|tn = sgn(n) log

(|n| + 1); −∞ < n < ∞}
.

For positive t , the region of convergence is

Z+ = H(α,0).

The corresponding Hilger circle has infinite radius and H(α,0) is recognized as the
set of all points to the right of the line z = Reα. Likewise, for negative time,

Z− = H̄(β,0),

contains all of the points to the left of the line z = Reβ . The resultant slab of conver-
gence, Z = Z+ ∩ Z−, is the familiar region of convergence in the bilateral Laplace
transform. It is illustrated on the left of Fig. 3.

4.1.2 Unit Asymptotic Graininess

Let μ̄+ = μ̄− = 1. Discrete time, T = Z, is a special case as is the time scale

S = {
tn|tn = sgn(n)

(|n| + √|n| ); −∞ < n < ∞}
.

It follows that

Z+ = H(α,1)

and

Z− = H̄(β,1).

The intersection, an annulus region of convergence illustrated on the right of Fig. 3, is
familiar in bilateral z-transforms. Instead of being centered at the origin, however, the
circles are centered at z = −1. This anomaly is an artifact of inclusion of the bilateral



Circuits Syst Signal Process

Fig. 3 Left: ROCs for time scales with zero asymptotic graininess for both positive and negative time.
Continuous time, R, is a special case. Right: ROCs for time scales with unit asymptotic graininess for both
positive and negative time. Discrete time, Z, is a special case

z-transform as a special case of the bilateral Laplace transform on time scales. The
conventional z-transform can be generated from Fb(u) using (3.3).

4.1.3 Periodic Graininess

A discrete time scale, D, is said to have periodic graininess1 is there is a period N

where μ(tn) = μ(tn+N) for all values of n.
(a) The exponential for time scales with periodic graininess. In general, for a dis-

crete time scale [5]

ez(tn) =

⎧⎪⎪⎨
⎪⎪⎩

∏n−1
k=0(1+ μ(tk)z); n > 0,

1; n = 0,∏−1
k=n(1+ μ(tk)z)

−1; n < 0.

(4.7)

We can break the products into periods. For t > 0, assume there are

P =
⌊

n

N

⌋

replications of the graininess. Then

n−1∏
k=0

=
N−1∏
k=0

×
2N−1∏
k=N

×
3N−1∏
k=2N

×· · ·

×
(p+1)N−1∏

k=pN

×· · · ×
PN−1∏

k=(P−1)N
×

n−1∏
k=PN

1Such time scales arise from recurrent nonuniform signal sampling, also called interlaced or bunched
sampling [8–10, 14–17].
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=
[P−1∏

p=0

( (p+1)N−1∏
k=pN

)]
×

n−1∏
k=PN

=
[P−1∏

p=0

(N−1∏
q=0

)]
×

n−PN−1∏
k=0

where, in the second product we let q = k −Np and in the third product q = k −NP .
Imposing the periodicity of the graininess, we conclude that, for t > 0,

ez(tn) =
[

P−1∏
p=0

(
N−1∏
q=0

(
1+ μ(q + pN)

))]
×

n−PN−1∏
q=0

(
1+ μ(kq + PN)

)

=
[

P−1∏
p=0

(
N−1∏
q=0

(
1+ μ(q)

))]
×

n−PN−1∏
q=0

(
1+ μ(kq)

)

=
N−1∏
q=0

(
1+ μ(q)

)P ×
n−PN−1∏

k=0

(
1+ μ(kq)

)

=
n−PN−1∏

q=0

(
1+ μ(q)

)P+1 ×
N−1∏

q=n−PN

(
1+ μ(q)

)P
. (4.8)

(b) ROCs for bilateral Laplace transforms of signals with periodic time scales.
For periodic time scales,

μ́0+ = μ́T+ = μ́∞+ = μ́0− = μ́T− = μ́∞− .

We will collectively refer to all of these upper bounds as

μ́ = N−1
max
m=0

μ(tn).

Likewise, the lower bound

μ̀0+ = μ̀T+ = μ̀∞+ = μ̀0− = μ̀T− = μ̀∞− ,

will be referred to collectively as

μ̀ = N−1
min
n=0 μ(tn).

The ROC for the two sided exponential, eβ:α(t), follows as

Z = Z+ ∩ Z− = R(α, μ̀, μ́) ∩ L(β, μ̀, μ́).

Examples of this ROC are shown in Figs. 4–7. In each of these figures:
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Fig. 4 Illustration of the regions of convergence for time scales with periodic graininess for the double
sided exponential eβ:α(t) in (4.2) when α and β are real and β < α. The regions of convergence are shown
blackened in (a) and (b). As value of β starting from (b) increases with all other values fixed, the smaller
circle passing through β eventually becomes subsumed in the leftmost circle passing through α. When this
happens, the Z ROC is empty. This is shown in (c) where, since β = −1/μ̀, the smaller circle passing
through β has shrunk to zero. As β and α move to the right with the circle centers fixed, the ROC Z
remains empty

Fig. 5 This is the same case
treated in Fig. 4 except β > α.
Each illustration is the mirror
image of that in Fig. 4

• The locations of α and β are labeled and depicted by dots white in the middle
fading to black at the dot’s edges.

• The center of the modified Hilger circles are shown with a hollow dot, ◦, corre-
sponding to the value −1/μ̀ on the negative real axis of the z plane, and a solid
dot, •, is at −1/μ́ and is also on the negative real axis of the z plane.2

2Since μ̀ < μ́ the solid dot, •, is always to the right of the hollow dot, ◦.
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Fig. 6 An example of the ROC,
Z , for the double exponential,
eβ:α(t), for Reβ < Reα and
Imβ > Imα > 0. As the
leftmost α circle becomes larger
than the leftmost β circle, there
is no intersection and Z is
empty. This is illustrated in (c).
Note that if α and β are
interchanged in (a), (b), or (c),
the region Z will be empty

• The ROC Z , if not empty, is blackened.
• The region Z+ = R(α, μ̀, μ́) not in Z is shown lightly shaded.
• The region Z− = L(β, μ̀, μ́) not in Z is shown more darkly shaded.

Figures 4 and 5 illustrate scenarios where α and β are real. ROCs for complex
α and β are shown in Figs. 6 and 7. In all cases, the blackened area, Z , is equal to
the intersection of (1) Z+ corresponding to the area outside the union of the circles
passing through α with (2) Z− which is the area inside the intersection of the β

circles.

4.1.4 Zero Lower Bound and No Upper Bound

An example is shown in Fig. 8 using a time scale with no upper graininess bound and
a lower graininess bounds of zero.

4.2 Proof of Theorem 4.1

Using the decomposition in (3.5),

F+(z) =
∫ ∞

0
eα(t)eσ�z(t)�t.

This integral is equivalent to the causal time scale Laplace transform of eα(t) and has
been derived elsewhere [5].
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Fig. 7 The ROCs here are the
mirror images of those in Fig. 6.
The ROCs, Z , are for the double
exponential eβ:α(t). Like Fig. 6,
Imβ > Imα > 0. However, in
the examples shown here,
Reβ < Reα. For (c), we see that
Z is empty. Note that if α and β

are interchanged in (a), (b),
or (c), the region Z will be
empty

Fig. 8 For the values of α and
β shown, the double sided
exponential, eβ:α(t), in (4.2)
converges in the ROC, Z ,
shown shaded black. The region
Z+ is shaded lightly and Z− is
more darkly shaded. Their
intersection Z given by (4.1) is
shown shaded black

The other component of the Laplace transform is similar.

F−(z) =
∫ 0

−∞
eβ(t)eσ�z(t)�t

=
∫ 0

−∞
1

1+ μ(t)z
eβ(t)e�z(t)�t

=
∫ 0

−∞
1

1+ μ(t)z
eβ�z(t)�t. (4.9)
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Motivated by the � operator definition, we continue

F−(z) = 1

β − z

∫ 0

−∞
β − z

1+ μ(t)z
eβ�z(t)�t

= 1

β − z

∫ 0

−∞
(β � z)eβ�z(t)�t

= 1

z − β
eβ�z(t)

∣∣∣∣
0

−∞
(4.10)

= 1

β − z
. (4.11)

The step between (4.10) and (4.11) is valid if

eβ�z(−∞) = 0. (4.12)

For discrete time scales when t < 0 [5],

eβ�z(tn) =
−1∏
k=n

1+ μ(tk)z

1+ μ(tk)β
. (4.13)

• T(μ̀0−, μ́0−). This product approaches zero if all terms do not exceed one. This is
true if ∣∣1+ μ(tk)z

∣∣ <
∣∣1+ μ(tk)β

∣∣
or, equivalently ∣∣∣∣z + 1

μ(tk)

∣∣∣∣ <

∣∣∣∣β + 1

μ(tk)

∣∣∣∣.
This is the definition of the region H̄(β,μ(tk)). For t < 0, the graininess varies over
the range μ̀0− ≤ μ(tk) ≤ μ́0−, the overall region of convergence is the intersection
of all of the H’s in this interval. However, since3⋂

μ̀≤μ(tk)≤μ́

H̄(
β,μ(tk)

) = H̄(β, μ̀) ∩ H̄(β, μ́),

we conclude from (3.8) that (4.12) is true in the ROC

Z− = L(
α, μ̀0−, μ́0−

)
. (4.14)

3This is graphically evident of in Fig. 1 where a sequence of modified Hilger circles are drawn over a
range of graininesses. The points internal to all of the modified Hilger circles is equal to the points inside
both the leftmost and rightmost circles.
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• T(μ̀T−, μ́T−). From (4.13),

eβ�z(−∞) =
T∏

k=−∞

1+ μ(tk)z

1+ μ(tk)β
×

−1∏
k=σ(T )

1+ μ(tk)z

1+ μ(tk)β
. (4.15)

For (4.12) to be true, only the first product needs to be zero. We can thus deal with
graininesses over the interval −∞ < t ≤ T and the ROC increases from (4.14) to

Z− = L(
α, μ̀T−, μ́T−

)
. (4.16)

• T(μ̀∞− , μ́∞− ). In the limiting case, the ROC is

Z− = L(
α, μ̀∞− , μ́∞−

)
. (4.17)

When the lower and upper asymptotic bounds are equal, μ̀∞− = μ́∞− = μ̄− and,
using (3.10) applied to (4.17), we have the region of convergence for T(μ̄−)

Z− = H(α, μ̄−). (4.18)

Lastly, for T(0−,∞−), we apply (3.11) to (4.17) and obtain

Z− = E (α).

5 Convergence of Signals Bounded by the Double Sided Exponential

In this section, after establishing a sufficient condition for the bilateral Laplace trans-
form of eβ:α(t) to converge at z (see Lemma 5.1), we show under the same condition,
the Laplace transform of f (t) will converge at z (see Corollary 5.1) when∣∣f (t)

∣∣ ≤ ∣∣eβ:α(t)
∣∣. (5.1)

The result is a special case of a more general theorem (Theorem 5.1) that only re-
quires the bound in (5.1) to be true for T− ≥ t > T+ for any finite T+ and T−.

Lemma 5.1 A sufficient condition for the bilateral Laplace transform of eβ:α(t) to
converge at z is ∫ ∞

−∞
∣∣eβ:α(t)eσ�z(t)

∣∣�t < ∞. (5.2)

Proof We begin with the magnitude of the Laplace transform if of eβ:α(t) and write∣∣∣∣
∫ ∞

−∞
eβ:α(t)eσ�z(t)�t

∣∣∣∣ ≤
∫ ∞

−∞
∣∣eβ:α(t)eσ�z(t)

∣∣�t < ∞. �

Theorem 5.1 If there exists

• a bounded function f (t) on regressive time scale, T
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• finite values T− < 0 and T+ > 0 such that

∣∣f (t)
∣∣ ≤ ∣∣eβ:α(t)

∣∣ for t < T− and t > T+,

and
• the sufficient condition in (5.2) is true,

then the bilateral Laplace transform in f (t) converges at z.

Proof Let F(z) be the Laplace transform of f (t). Then

∣∣F(z)
∣∣ =

∣∣∣∣
∫ ∞

−∞
f (t)eσ�z(t)�t

∣∣∣∣
≤

∫ ∞

−∞
∣∣f (t)eσ�z(t)

∣∣�t

=
[∫ T−

−∞
+

∫ T+

T−
+

∫ ∞

T+

]∣∣f (t)eσ�z(t)
∣∣�t.

If z is regressive and f (t) is bounded, then the middle integral is finite. For the re-
maining integrals we impose (5.2) and write

[∫ T−

−∞
+

∫ ∞

T+

]∣∣f (t)eσ�z(t)
∣∣�t ≤

[∫ T−

−∞
+

∫ ∞

T+

]∣∣eβ:α(t)eσ�z(t)
∣∣�t

< ∞.

Therefore,

∣∣F(z)
∣∣ < ∞. �

The following corollary follows immediately as a special case.

Corollary 5.1 Suppose z is regressive and (5.1) and (5.2) hold. Then the Laplace
transform of f (t) converges at z.

6 The Box Minus Shift

The box minus shift (�) on a time scale can be defined using the bilateral Laplace
transform. The box minus shift, f (t � τ), reduces to the conventional shift operator,
f (t − τ) on R and Z.

Definition 6.1 We define the box minus operation, �, through

f (t � τ) ←→ F(z)e�z(τ ). (6.1)
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Note that, as a consequence,

ez(t � τ) = exp
(∫ t

ξ=τ

ln(1+ μ(ξ)z)

μ(ξ)
�ξ

)
(6.2)

and, interpreting f (�τ) = f (0� τ), from the semigroup property,

ez(t � τ) = ez(t)ez(�τ). (6.3)

Lemma 6.1

ez(�t) = e�z(t).

As a consequence, from (6.3),

ez(t � τ) = ez(t)e�z(τ ).

Proof Using (6.2),

ez(�t) = exp
(∫ 0

ξ=t

ln(1+ μ(ξ)z)

μ(ξ)
�ξ

)

= exp
(

−
∫ t

ξ=0
ln(1+ μ(ξ)z)

μ(ξ)
�ξ

)

=
[
exp

(∫ t

ξ=0
ln(1+ μ(ξ)z)

μ(ξ)
�ξ

)]−1

= [
ez(t)

]−1
= e�z(t). �

Definition 6.2 Define the Hilger delta as [4]

δH

(
t � τσ

) :=
{

δ[t − τ ]/μ(t); μ(t) > 0,

δ(t − τ); otherwise,
(6.4)

where the Kronecker delta, δ[t], is one for t = 0 and is otherwise zero, and δ(t) is the
Dirac delta [10].

For R and Z, the Hilger delta in (6.4) becomes δ[t − τ ] and δ(t − τ) respectively.

7 Time Scale Convolution

The box minus operation allows definition of convolution of two signals on the same
time scale.
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Definition 7.1 Convolution on a time scale is defined as

f (t) ∗ h(t) :=
∫

ξ∈T

f (ξ)h
(
t � ξσ

)
�ξ. (7.1)

This definition is consistent with the convolution of transcendental functions de-
fined in Bohner and Peterson [1] and its generalization [4]. It differs, however, from
the time scale convolutions defined using the Fourier transform on a time scale
[10, 12] which is defined only over a special class of time scales.4 On R and Z, (7.1)
becomes conventional convolution that describes the response, g(t) = f (t) ∗ h(t) of
a linear time invariant system (LTI) system with impulse response, h(t), to a stimulus
of f (t) [10]. The Laplace transform of the impulse response is the system function
or the transfer function, H(z), which contains the amplitude and phase changes im-
posed by the system on the stimulus. This property is generalized to an arbitrary time
scale by the following theorem.

Theorem 7.1 (System function) Convolving a function h(t) with a time scale expo-
nential function yields, as a result, the same exponential weighted by the Laplace
transform of the impulse response

ew(t) ∗ h(t) = ew(t)H(w). (7.2)

Proof

ew(t) ∗ h(t) =
∫ ∞

−∞
h(τ)ew

(
t � τσ

)
�τ

= ew(t)

∫ ∞

−∞
h(τ)ew

(
�τσ

)
�τ

= ew(t)

∫ ∞

−∞
h(τ)eσ�w(τ)�τ

from which (7.2) follows. �

Theorem 7.2 Convolution on a time scale corresponds to multiplication in the
Laplace domain

g(t) = f (t) ∗ h(t) ←→ G(z) = F(z)H(z).

Proof

g(t) = f (t) ∗ h(t)

=
∫

ξ∈T

f (ξ)h
(
t � ξσ

)
�ξ

4Specifically, additively idempotent time scales [10, 12].
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←→
∫

t∈T

[∫
ξ∈T

f (ξ)h
(
t � ξσ

)
�ξ

]
eσ�z(t)�t

=
∫

ξ∈T

f (ξ)

[∫
t∈T

h
(
t � ξσ

)
eσ�z(t)�t

]
�ξ

=
∫

ξ∈T

f (ξ)
[
H(z)eσ�z(ξ)

]
�ξ

= H(z)

∫
ξ∈T

f (ξ)eσ�z(ξ)�ξ

= F(z)H(z)

= G(z). �

The following results follow immediately.

• Convolution on a time scale is commutative, associative and distributive over ad-
dition.

• The Sifting Property of the Hilger delta. If we define

f (t) ∗ δH (t) :=
∫ ∞

t=−∞
f (τ)δH

(
t � τσ

)
�τ

it follows that the Hilger delta is the identity operator for convolution on a time
scale.

f (t) ∗ δH (t) = f (t).

The sifting properties of the Dirac delta and Kronecker delta on R and Z follow as
special cases.

• The Shift Property. If g(t) = f (t) ∗ h(t), then

f (t � ξ) ∗ h(t) = f (t) ∗ h(t � ξ) = g(t � ξ).

• The Derivative Property. From the derivative theorem in (3.2), it follows immedi-
ately that

g�(t) = f (t) ∗ h�(t) = f �(t) ∗ h(t).

8 Wide Sense Stationarity of a Stochastic Process on a Time Scale

Let x(t) be a real stochastic process on a time scale T. Its autocorrelation [10] is

Rx(t, τ ) = E
[
x(t)x(τ )

]
. (8.1)
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Definition 8.1 A stochastic process, x(t), on a time scale T is wide sense stationary
(WSS)5 [10, 13] if 6

Rx(t, τ ) = Rx(t � τ). (8.2)

As a consequence, the autocorrelation of a wide sense stationary (WSS) stochastic
process on a time scale can be represented by a single one-dimensional function,
Rx(t).

Notes

1. For R and Z, (8.2) takes on the familiar form

Rx(t, τ ) = Rx(t − τ).

2. From (8.1), Rx(t, τ ) = Rx(τ, t); thus

Rx(t � τ) = Rx(τ � t).

Definition 8.2 The Laplace transform of the autocorrelation is the power spectral
density, Sx(z)

Rx(t) ←→ Sx(z).

Theorem 8.1 On time scale T, let

y(t) = x(t) ∗ h(t). (8.3)

Then

Sy(z) = H(z)H�(z)Sx(z). (8.4)

Proof Multiply both sides of (8.3) by x(τ) and expectate to give

Rxy(τ, t) = Rx(t � τ)
t∗ h(t) (8.5)

where
t∗ denotes convolution with respect to the variable t . Rewrite (8.3) as y(τ) =

x(τ)
τ∗ h(τ), multiply both sides by y(t), and expectate to give

Ry(t, τ ) = Rxy(τ, t)
τ∗ h(τ).

Substitute (8.3) gives

Ry(t, τ ) = h(t)
t∗ Rx(t � τ)

τ∗ h(τ).

5An further requirement of a constant first moment accompanies the classic definition of WSS stochastic
processes [10, 13, 14]. For the treatment in this paper, however, such an assumption is not needed.
6We use here a common abuse of notation [10, 13, 14]. The function Rx cannot simultaneously be a
two-dimensional function, Rx(t, τ ), and a one-dimensional function, Rx(t).
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Laplace transform both sides with respect to t gives

Ry(t, τ )
t←→

∫
t∈T

[
h(t)

t∗ Rx(t � τ)
τ∗ h(τ)

]
eσ�z(t)�t

=
∫

t∈T

[(∫
ξ∈T

Rx(ξ � τ)h
(
t � ξσ

)
�ξ

)
τ∗ h(τ)

]
eσ�z(t)�t

=
∫

ξ∈T

Rx(ξ � τ)

[∫
t∈T

h
(
t � ξσ

)
eσ�z(t)�t

]
τ∗ h(τ)�ξ

=
(∫

ξ∈T

Rx(ξ � τ)
[
H(z)eσ�z(ξ)

]
�ξ

)
τ∗ h(τ)

= H(z)

[∫
ξ∈T

Rx(ξ � τ)eσ�z(ξ)

]
τ∗ h(τ)

= H(z)Sx(z)
[
e�z(τ )

τ∗ h(τ)
]

= H(z)Sx(z)

∫
η∈T

h(η)e�z

(
τ � ησ

)
�η

= H(z)Sx(z)

∫
η∈T

h(η)e�z(τ )e�z

(
�ησ

)
�η

= H(z)Sx(z)e�z(τ )

∫
η∈T

h(η)ez

(
ησ

)
�η

= H(z)Sx(z)e�z(τ )

∫
η∈T

h(η)eσ
z (η)�η

= H(z)Sx(z)H�(z)e�z(τ ). (8.6)

The e�z(τ ) term reveals Ry(t, τ ) is of the form Ry(t � τ). Therefore (8.4) follows
immediately. �

9 Conclusion

We have established generalizations of the ROCs from unilateral to bilateral Laplace
transforms. For double sided exponentials, the ROC, when it exists, are the intersec-
tion of points outside of a modified Hilger circle defined by behavior for positive
time and inside another modified Hilger circle determined by behavior for negative
time. The ROCs revert to the familiar horizontal slab ROC for continuous time and
annulus for discrete time. Since graininess lies between zero and infinity, there are
conservative ROCs applicable for all time scales. Signals bounded by double sided
exponentials were shown to converge in at least the ROC of the double sided expo-
nential. The Laplace transform on a time scale is used to define a box minus operator
that, in turn, allows definition of time scale convolution. Time scale convolution al-
lows characterization of wide sense stationary stochastic processes on a time scale
via its autocorrelation and power spectral density.
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