Springerlink Beta
Recognized as:
Baylor University (326-41-438)There is a 
Persona associated with this account.
Greater Western Library Alliance GWLA 2007 3707 (621-34-740)There is a Persona associated with this account.
658908 Greater Western Library Alliance Kluwer (merge with GWLA 2006 con acct when possible) (816-71-771)
To use the personalized features of this site, please log in or register.
If you have forgotten your username or password, we can help.
My Menu
Saved Items

Convergence of Unilateral Laplace Transforms on Time Scales

John M. DavisContact Information, Ian A. GravagneContact Information and Robert J. Marks IIContact Information

(1)  Department of Mathematics, Baylor University, One Bear Place #97328, Waco, TX 76798-7328, USA
(2)  Department of Electrical and Computer Engineering, Baylor University, One Bear Place #97356, Waco, TX 76798-7356, USA

Received: 22 May 2009  Revised: 29 September 2009  Published online: 8 April 2010

A time scale is any closed subset of the real line. Continuous time and discrete time are special cases. The unilateral Laplace transform of a signal on a time scale subsumes the continuous-time unilateral Laplace transform, and the discrete-time unilateral z-transform as special cases. The regions of convergence (ROCs) time scale Laplace transforms are determined by the time scale’s graininess. For signals with finite area, the ROC for the Laplace transform resides outside of a Hilger circle determined by the time scales’s smallest graininess. For transcendental functions associated with the solution of linear time-invariant differential equations, the ROCs are determined by function parameters (e.g., sinusoid frequency) and the largest and smallest graininess values in the time scale. Since graininess always lies between zero and infinity, there are ROCs applicable to a specified signal on any time scale. All ROCs reduce to the familiar half-plane ROCs encountered in the continuous-time unilateral Laplace transform and circle ROCs for the unilateral z-transform. If a time scale unilateral Laplace transform converges at some point in the transform plane, a region of additional points can be identified as also belonging to the larger ROC.

Keywords  Time scales - Laplace transform -  z-transforms - Region of convergence - Hilger circle

This work was supported by National Science Foundation grant CMMI #0726996.

Contact Information John M. Davis
Email: John_M_Davis@Baylor.edu

Contact Information Ian A. Gravagne
Email: Ian_Gravagne@Baylor.edu

Contact Information Robert J. Marks II (Corresponding author)
Email: Robert_Marks@baylor.edu


1. M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications (Birkhäuser, Boston, 2001)
2. M. Bohner, A. Peterson (eds.), Advances in Dynamic Equations on Time Scales (Birkhäuser, Boston, 2002)
3. J.M. Davis, J. Henderson, K.R. Prasad, W.K.C. Yin, Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale. Abstr. Appl. Anal. 5, 91–99 (2000)
4. J.M. Davis, J. Henderson, K.R. Prasad, Upper and lower bounds for the solution of the general matrix Riccati differential equation on a time scale. J. Comput. Appl. Math. 141, 133–145 (2002)
CrossRef AMS
5. J.M. Davis, I.A. Gravagne, B.J. Jackson, R.J. Marks II, A.A. Ramos, The Laplace transform on time scales revisited. J. Math. Anal. Appl. 332, 1291–1307 (2007)
6. I.A. Gravagne, J.M. Davis, J. Dacunha, R.J. Marks II, Bandwidth sharing for controller area networks using adaptive sampling, in Proc. Int. Conf. Robotics and Automation (ICRA), New Orleans, LA, April 2004, pp. 5250–5255
7. G. Guseinov, Integration on time scales. J. Math. Anal. Appl. 285(1), 107–127 (2003)
8. S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universität Würzburg, Germany (1988)
9. S. Hilger, Special functions: Laplace and Fourier transform on measure chains. Dyn. Syst. Appl. 8, 471–488 (1999)
10. R.J. Marks II, I. Gravagne, J.M. Davis, J.J. DaCunha, Nonregressivity in switched linear circuits and mechanical systems. Math. Comput. Model. 43, 1383–1392 (2006)
11. R.J. Marks II, I.A. Gravagne, J.M. Davis, A generalized Fourier transform and convolution on time scales. J. Math. Anal. Appl. 340(2), 901–919 (2008)
12. R.J. Marks II, Handbook of Fourier Analysis and Its Applications (Oxford University Press, London, 2009)
13. J. Seiffertt, S. Sanyal, D.C. Wunsch, Hamilton–Jacobi–Bellman equations and approximate dynamic programming on time scales. IEEE Trans. Syst. Man Cybern. Part B 38(4), 918–923 (2008)
14. E. Talvila, The distributional Denjoy integral. Real Anal. Exch. 33(1), 51–82 (2007/2008)
Export this article
Export this article as RIS | Text
Remote Address: • Server: mpweb24
HTTP User Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv: Gecko/20100401 Firefox/3.6.3 GTBDFff GTB7.0 (.NET CLR 3.5.30729)