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Abstract A time scale is any closed subset of the real line. Continuous time and dis-
crete time are special cases. The unilateral Laplace transform of a signal on a time
scale subsumes the continuous-time unilateral Laplace transform, and the discrete-
time unilateral z-transform as special cases. The regions of convergence (ROCs) time
scale Laplace transforms are determined by the time scale’s graininess. For signals
with finite area, the ROC for the Laplace transform resides outside of a Hilger cir-
cle determined by the time scales’s smallest graininess. For transcendental functions
associated with the solution of linear time-invariant differential equations, the ROCs
are determined by function parameters (e.g., sinusoid frequency) and the largest and
smallest graininess values in the time scale. Since graininess always lies between
zero and infinity, there are ROCs applicable to a specified signal on any time scale.
All ROCs reduce to the familiar half-plane ROCs encountered in the continuous-time
unilateral Laplace transform and circle ROCs for the unilateral z-transform. If a time
scale unilateral Laplace transform converges at some point in the transform plane, a
region of additional points can be identified as also belonging to the larger ROC.
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1 Introduction

A time scale is any closed subset of the real line. Continuous time, R, and discrete
time, Z, are special cases. The calculus of time scales was introduced by Hilger [8].
Time scales have found utility in describing the behavior of dynamic systems [1, 10]
and have been applied to control theory [3, 4, 6].
Laplace transformation of signals on time scales was first considered by Hilger [9].

The development of unilateral Laplace transforms on time scales, however, is due to
Bohner and Peterson [1]. The conventional continuous-time Laplace transform and
discrete-time z-transform are special cases.
Bohner and Peterson’s development, however, did not address regions of conver-

gence (ROCs) in the transform domain. Some initial work in this area was done by
our group [5]. In this paper, we complete this work by presenting the ROCs of the
transcendental functions arising from the solution of linear time-invariant dynamic
equations on time scales [1]. There are three cases of time scales considered.

1. Time scales whose graininess is bounded from above and below

• over the entire time scale, or
• in an asymptotic sense.

2. Time scales whose asymptotic graininess approaches a constant. R and Z are spe-
cial cases. All time scales in this class are also asymptotically a member of the
time scales in 1).

3. All time scales. This can be considered a limiting special case of 1) since the
graininess of any time scales is bounded between zero and infinity.

The unilateral Laplace transform on time scales proves fundamental for signal
processing on time scales, including signal filtering, convolution, and the modeling
stochastic of processes [5, 11–13].

2 Time Scales

Our review of time scales contains only material germane to unilateral Laplace trans-
forms. The text by Bohner and Peterson [1] contains a complete introduction to the
topic. There is also a tutorial available online.1

A time scale, T, is any collection of closed sets of points on the real time axis.
Continuous time, R, and discrete time, Z, are special cases. Some useful time scale
types include

• Causal time scales, T+, containing only points for nonnegative values of time.
• A discrete time scale, D, containing only isolated points.

1TimeScales.org.
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Fig. 1 Some time scales.
Discrete time is Z and
continuous time is R

Some examples of time scales, illustrated in Fig. 1, include

• Discrete time, Z.
• Causal discrete time, which contains all nonnegative integers and is depicted
by Z+.

• The log time scale, also discrete and causal, is

L+ = {t | t = logn,n ∈ N}.
The base of the log is a parameter of the time scale. The log time scale is discrete
and causal.

• The harmonic time scale, H+ = {tn | t0 = 0, tn = Hn for n ∈ N} where the nth
harmonic number is

Hn =
n∑

k=1

1

k
.

The harmonic time scale is both discrete and causal.
• A periodic piecewise continuous time scale with duty cycle λ < 1 is the set of
points

P = {
t
∣∣ t ∈ [n,n + λ], n ∈ Z

}
.

• A causal discrete periodic time scale has an initial period of N points, S =
{t0, t1, . . . , tN }. For a positive constant, T , the time scale is then

B = {
t = tn + mT, tn ∈ S,m ∈ Z+}

.

• The causal and discrete quantum time scale, Q, is parameterized by the positive
number q > 1,

Q = {
t
∣∣ t = 0, t = qn,n ∈ Z+}

,

where Z+ is the set of all nonnegative integers.
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• A stochastic time scale, such as a Poisson process [12], is a discrete time scale
whose points are randomly chosen.

• The continuous time scale is denoted by an R.
• The causal continuous time scale contains all nonnegative values of t and is de-
picted by R+.

A time scale hT denotes a time scale where each t ∈ T is replaced by ht . Thus, for
example,

hP = {
t
∣∣ t ∈ [

hn,h(n + λ)
]
, n ∈ Z

}
repeats periodically with period h.

2.1 The Forward Jump Operator and Time Scale Graininess

For a time scale, T, at a given time, t , the subsequent element in the time scale is
denoted by the forward jump operator,

σ(t) := inf
τ>t,τ∈T

τ. (2.1)

We will also use the notation tσ to characterize this point. The distance between t

and its next point is called the graininess of the time scale and is written

μ(t) := σ(t) − t.

The graininess is nonnegative

0≤ μ(t) < ∞. (2.2)

Here are some examples.

• On Z, when t = n, we have σ(t) = n + 1 and μ(t) = 1.
• On R, we have σ(t) = t + dt and μ(t) = dt . Rigorously, then, μ(t) = 0.
• On the log time scale, σ(t) = log(n + 1) and μ(t) = log(1+ 1

n
).

• For the harmonic time scale, σ(t) = Hn+1 and μ(t) = 1
n+1 .• For the periodic time scale, P,

μ(t) =
{

dt; t ∈ [n,n + λ),

1− λ; t = n + λ.

2.2 Differentiation and Integration on Time Scales

The Hilger derivative of a signal f (t) defined on a time scale T is defined by

f �(t) = f (tσ ) − f (t)

μ(t)
. (2.3)
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Note that, as a special case, the Hilger derivative on Z is the forward difference. Since
t = n, f �(n) = �f (n) = f (n+1)−f (n). For R (and on continuous intervals), (2.3)
is interpreted in the limiting sense and f �(t) = df (t)

dt
.

Hilger integration is most easily introduced by the antiderivative. A more rigor-
ous treatment is given in Bohner and Peterson [2]. Guseinov [7] provides a measure
theoretic [14] treatment of time scale integration.
Let g(t) = f �(t). Then, for (a, b) ∈ T,

f (t) =
∫ t

0
g(τ)�τ + constant.

The definite integral follows as

∫ b

a

g(τ )�τ = f (b) − f (a).

2.3 Time Scale Exponentials

For the dynamic time scale differential equation

f �(t) = p(t)f (t)

the solution, for the initial condition f (0) = 1, is f (t) = ep(t)(t), where

ep(t)(t) := exp
(∫ t

τ=0
loge(1+ μ(τ)p(τ))

μ(t)
�τ

)
. (2.4)

When p(t) is set to a constant, p, we obtain the following special cases.

• On R, we obtain the familiar result

ep(t) = ept .

• On a discrete time scale, D,

ep(tn) =

⎧⎪⎪⎨
⎪⎪⎩

∏n−1
k=0(1+ μ(tk)p); n > 0,

1; n = 0,∏−1
k=n(1+ μ(tk)p)−1; n < 0.

(2.5)

• On Z, it follows from (2.5) that

ep(tn) =

⎧⎪⎨
⎪⎩

(1+ p)n; n > 0,

1; n = 0,
(1+ p)−n; n < 0.

Plots of e1(t) for some time scales are shown in Fig. 2.
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Fig. 2 Plots of e1(t) for t ≥ 0
for the time scales R, Z, Q (for
q = 2), L (using log2), and hH

for h = 1
2

2.3.1 A Bound on the Time Scale Exponential

The magnitude of the time scale exponential on any time scale T obeys the following
inequality:

∣∣eα(t)
∣∣{≤eαr t , t ≥ 0,

≥eαr t , t ≤ 0, (2.6)

where α = αr + jαi and αr = Reα and αi = Imα. For t ≥ 0, this is graphically
evident in Fig. 1 for the special case of α = 1.
To show (2.6), we see from (2.4) that

∣∣eα(t)
∣∣ =

∣∣∣∣ exp
(∫ t

τ=0
log(1+ μ(τ)α)

μ(τ)
�τ

)∣∣∣∣
= exp

(
Re

{∫ t

τ=0
log(1+ μ(τ)α)

μ(τ)
�τ

})
. (2.7)

Since

1+ μ(τ)α = ∣∣1+ μ(τ)α
∣∣ exp(j arctan

(
αi

1+ μ(τ)αr

))
,

we have

Re log
((
1+ μ(τ)α

)) = 1

2

(
log

(
1+ μ(τ)αr

)2 + (
μ(τ)αi

)2)
and (2.7) becomes

∣∣eα(t)
∣∣ = exp

(
1

2

∫ t

τ=0
log((1+ μ(τ)αr)

2 + (μ(τ)αi)
2)

μ(τ)
�τ

)

= exp
(
1

2

∫ t

τ=0
log(1+ 2μ(τ)αr + (μ(τ)|α|)2)

μ(τ)
�τ

)
.
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When θ is real, log(1+ θ) ≤ θ, and we have, for t ≥ 0,
∣∣eα(t)

∣∣ ≤ exp
(
1

2

∫ t

τ=0
2μ(τ)αr + (μ(τ)|α|)2

μ(τ)
�τ

)

= exp
(
1

2

∫ t

τ=0
(
2αr + μ(τ)|α|2)�τ

)
. (2.8)

For t ≥ 0, ∣∣eα(t)
∣∣ ≤ exp

(
αr

∫ t

τ=0
�τ

)
= eαr t .

Similar reasoning gives the results in (2.6) for t ≤ 0.
2.3.2 The � Operator

Define

q(t) � p(t) := q(t) − p(t)

1+ μ(t)p(t)
. (2.9)

Interpret �p(t) as (2.9) with q(t) = 0. This operator has the following useful prop-
erties that follow immediately from (2.4).

• The exponentiation reciprocation property is
1

ep(t)(t)
= e�p(t)(t). (2.10)

• The exponential multiplication property is
eq(t)(t)e�p(t)(t) = eq(t)�p(t)(t). (2.11)

3 Unilateral Laplace Transforms on Time Scales

The unilateral Laplace transform on a time scale is defined as2 [1]

Fu(z) =
∫ ∞

t=0
f (t)eσ�z(t)�t, (3.1)

where we are using the notation eσ�z(t) := e�z(t
σ ).

For T = R+, the time scale Laplace transform takes on the familiar form of the
continuous-time Laplace transform,

Fu(z) =
∫ ∞

t=0
f (t)e−zt dt.

2The generalization of the Laplace transform in (3.1), popularized by Bohner and Peterson [1], contrasts
with Hilger’s generalization of the Fourier transform on time scales [9] which we have considered else-
where [5].
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In discrete time, T = Z+, we have t = n and

Fu(z) =
∞∑

n=0
f (n)(1+ z)−(n+1).

The traditional unilateral z-transform [12] is

Fz(z) =
∞∑

n=0
f (n)z−n.

Thus,

Fu(z) = Fz(z + 1)
z + 1 (3.2)

so that the time scale Laplace transform on R+ is equivalent to a shift of the tradi-
tional unilateral z-transform scaled by z + 1. We can equivalently write (3.2) as

Fz(z) = zFu(z − 1).
In this sense, the traditional continuous-time Laplace transform and the discrete-

time z-transform are special cases of the time scale Laplace transform in (3.1).

3.1 The Hilger Circle

We first consider unilateral Laplace transforms of signals with finite area [12]. A sig-
nal on a time scale T has finite area if∫

t∈T

∣∣f (t)
∣∣�t < ∞.

Definition 3.1 The Hilger circle on the z plane is defined by the set of z satisfying∣∣∣∣z + 1

μ

∣∣∣∣ = 1

μ
. (3.3)

The Hilger circle is illustrated in Fig. 3. Its center is on the negative real, and the
circle is tangent to the imaginary axis.

Theorem 3.1 (Unilateral Laplace transforms of finite area signals) If a unilateral
discrete signal on a time scale D has finite area, then its unilateral Laplace transform
converges, at least outside of the Hilger circle defined by graininess μ.

Proof

∣∣Fu(z)
∣∣ =

∣∣∣∣
∫ ∞

0
f (t)eσ�z(t)�t

∣∣∣∣
≤

∫ ∞

0

∣∣f (t)
∣∣∣∣eσ�z(t)

∣∣�t. (3.4)
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Fig. 3 The Hilger circle

But for t ≥ 0,
∣∣eσ�z(t)

∣∣ =
n∏

k=0

∣∣1+ μ(tk)z
∣∣−1. (3.5)

If each term in the product is less than one, then∣∣eσ�z(t)
∣∣ < 1. (3.6)

Each term is less than one if ∣∣1+ μ(tk)z
∣∣ > 1,

or, equivalently, ∣∣∣∣z + 1

μ(tk)

∣∣∣∣ >
1

μ(tk)
.

This is the set of all points external to the Hilger circle in Fig. 3. Then (3.4) becomes

∣∣Fu(z)
∣∣ ≤

∫ ∞

0

∣∣f (t)
∣∣�t < ∞. �

3.1.1 The ROC on R and Z

The Hilger circle is instructive in illustrating how the time scale Laplace transform
in (3.1) subsumes the continuous Laplace transform and the z-transform as special
cases. As the graininess μ becomes smaller, we get closer and closer to R. As μ → 0,
the Hilger circle engulfs the entire left half-plane as we approach the continuous-time
Laplace transform. We then obtain the familiar result that the Laplace transform of
finite area signals converges in the right half-plane [12].
For the z-transform, the unit circle in the z plane plays a similar role to the left

half-plane in the Laplace transform. For the causal discrete-time scale Z+, μ = 1 and
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Fig. 4 A family of Hilger
circles corresponding to varying
graininess. As μ → 0, the
Hilger circle’s radius approaches
infinity, thereby claiming the
entire left half-plane

the Hilger circle in Fig. 3 is, indeed, a unit circle. The unit circle for the traditional
z-transform, however, is centered and the Hilger circle is not. The reason is that the
transformation in (3.2) shifts the unit circle to a unit radius Hilger circle. The familiar
property of unilateral z-transforms of finite energy signals converging external to the
unit circle is thus equivalent to such signals converging external to a unit radius Hilger
circle.

3.1.2 The ROC of Finite Area Signals

The Hilger circle changes temporally from point to point. This is illustrated in Fig. 4.
A region of convergence (ROC) for (3.6) is the intersection of the areas external to
each of these circles, i.e., in the region external to the largest Hilger circle.

3.1.3 Graininess-independent ROC

Since μ ≥ 0, the ROC of the Laplace transform converges on at least the right half-
plane independent of the time scale’s graininess.

3.2 Unilateral Laplace Transforms of Exponentials

Before exploring the unilateral Laplace transform of a time scale exponential, we
establish some preliminaries.

3.2.1 The Modified Hilger Circle

For a complex number, α = αr + jαi, the modified Hilger circle in the z plane is the
locus of points satisfying ∣∣∣∣z + 1

μ(t)

∣∣∣∣ =
∣∣∣∣α + 1

μ(t)

∣∣∣∣. (3.7)
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Fig. 5 An illustration of the modified Hilger circle defined in (3.7) for graininess μ and complex number
α. The circle is centered at −1/μ. Since μ > 0, the circle’s center is thus always on the nonpositive real
z axis. We add the real numbers 1/μ and α using the circle’s midpoint as reference. The magnitude of
the sum geometrically illustrated here using a parallelogram is the radius of the circle. The circle passes
through α and its complex conjugate. The circle’s center and α thus supply three points needed to uniquely
define the circle

The modified Hilger circle is illustrated in Fig. 5. It has the following properties.

1. All modified Hilger circles pass through the points z = α and z = α∗, where the
asterisk denotes complex conjugation.

2. The Hilger circle in (3.3) is a special case for α = 0.
3. When μ(t) = 0, the modified Hilger circle surrounds all points to the left of the
line z = αr .

For a fixed α and varying graininess, a family of modified Hilger circles is illustrated
in Fig. 6 for αr > 0. The smallest circle has its center at the origin (μ = ∞). The
largest circle, corresponding to μ = 0, has an infinite radius.
As illustrated in Fig. 8, the family of modified Hilger circles has a different char-

acter when αr < 0. The modified Hilger circle attains its smallest radius, |αi |, when
αr = −1/μ. On each side of this smallest circle, the diameters grow. To the left the
diameters grow without bound reaching, in the limit, a circle of infinite radius cor-
responding to all points to the left of the line defined by z = αr . This is shown in
Fig. 6. To the right of the smallest circle, the circles increase in diameter until the
point where the circle’s center is at the origin (μ = 0).

3.2.2 The Nonregressive Case

When αr < 0 and αi = 0, the modified Hilger circles in Fig. 8 can pinch to zero
diameter at the point corresponding to

αr = − 1

μ(t)
. (3.8)
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Fig. 6 A family of modified
Hilger circles for a fixed α and
various values of graininess.
This example assumes αr > 0.
An αr < 0 case is illustrated in
Fig. 8

The exponential function is then said to be nonregressive at this point [1]. From (2.5),
for t ≥ 0,

eα(tn) =
n−1∏
k=0

(
1+ μ(tk)α

)
. (3.9)

At a point of nonregression, say t = t∗k , we have 1 + μ(t∗k )α = 0 and (3.8) is true.
Then, for t ≥ t∗k , it follows immediately from (3.9) that

eα(tn) = 0 for tn ≥ t∗k .

The exponential therefore hits zero and stays there. Nonregressivity always occurs at

z = − 1

μ(tk)

for 0≤ k < ∞. These are isolated points on the negative real axis on the z plane.
At nonregressive points, the Laplace transform kernel contains a pole.3

∣∣eσ�α(t)
∣∣ =

∣∣∣∣ 1

eσ
α (t)

∣∣∣∣ = ∞.

Nonregressivity occurs in dynamic electrical and mechanical systems [10]. For con-
tinuous time, the graininess is zero and all functions on R are regressive.

3As we show later, however, this pole lies outside of the region of convergence of the transform.
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3.2.3 Graininess Bounds

We denote the region in the z plane external to the modified Hilger circle by H(α,μ).
Define the intersection of two such regions by

R(α,μ1,μ2) = H(α,μ1) ∩ H(α,μ2). (3.10)

Some properties of R follow.

1. Relation to modified Hilger circle:

R(α,μ,μ) = H(α,μ). (3.11)

2. Limit: The region

D(α) := R(α,0,∞) (3.12)

is a dimpled half-plane consisting of all the points external to a circle with radius
|α| centered at the origin intersected with the points on the half-plane to the right
of the line z = αr . Examples are illustrated in Fig. 7 for various values of α.

3. Nonnegative argument: When α is real and positive, note that D(α) is a half-plane
of all points to the left of the line z = α. This is illustrated in the lower right figure
in Fig. 7.

Lemma 3.1 Let μ(t) be bounded by4

μ̀ ≤ μ(t) ≤ μ́.

For a fixed α, the union of the set of values of z external to all of the modified Hilger
circles in this interval is equal to the intersection of values of z external to two circles

Fig. 7 Examples of dimpled
half-planes, D(α), shown
shaded

4The slash over the μ in μ́ goes up denoting an upper bound. Likewise, μ̀ denotes the lower bound.
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Fig. 8 The family of modified
Hilger circles for α = αr + jαi

when αr < 0

Fig. 9 Nonregressivity can
occur when the α is negative and
real. At this point, the modified
Hilger circle has zero diameter
and the time scale exponential
hits zero and stays there

parameterized by μ̀ and μ́,⋂
μ̀≤μ(t)≤μ́

H(
α,μ(t)

) = R(α, μ̀, μ́).

In Fig. 10, two circles on the z plane, centered at c and

ξ < c, (3.13)

are shown. Both go through the point z = ja and then, by necessity, z = −ja. To
prove Lemma 3.1, we need only show that, for zr ≥ 0, the smaller circle is totally
subsumed in the larger. Then, with reference to Figs. 6, 8, and 9, all modified Hilger
circles to the left of αr are subsumed in the rightmost circle for zr ≥ αr . Likewise,
imposing a mirror image of Fig. 10, all modified Hilger circles to the right of αr are
subsumed in the leftmost circle for zr ≤ αr . In Fig. 10 we have set αr = 0 with no
loss of generality.

Proof We first note that the larger circle in Fig. 10 contains the set of all points for
which

|z − c| ≤ |ja − c|.
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Fig. 10 Figure used in the
proof of Lemma 3.1

Squaring and expanding straightforwardly gives

|z|2 ≤ a2 + 2czr .

Subtracting (2ξzr − ξ2) from both sides gives

|z − ξ |2 ≤ |ja − ξ |2 − 2(c − ξ)zr .

Using (3.13), we conclude that

|z − ξ |2 ≤ |ja − ξ |2 for zr ≥ 0.
This is the equation for all points subsumed in the smaller circle in Fig. 10, and the
proof is complete. �

Lemma 3.1 is geometrically self-evident after inspection of Figs. 6, 8, and 9. In all
cases, the values of z external to all of the circles is the same as the points external to
the leftmost and rightmost circles.
For a given time scale, we make the following definitions.

(a) The entire graininess lower bound, μ̀0+, for causal time scales is5

μ̀0+ = inf
t∈T+ μ(t).

Similarly, the entire graininess upper bound, μ́0+, is

μ́0+ = sup
t∈T+

μ(t).

(b) Time scales with an attained graininess lower bound have a lower bound on
graininess for times greater than some finite T . The attained graininess lower
bound is

μ̀T+ = inf
t∈T+,t≥T

μ(t).

5The subscript “+” denotes positive time. In a treatment of bilateral Laplace transforms, the subscript “−”
will denote negative time.
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The attained graininess upper bound is

μ́T+ = sup
t∈T+,t≥T

μ(t).

Some special cases follow.
(i) The asymptotic graininess lower bound for causal time scales is∣∣Fu(z)

∣∣ = lim
T →∞ μ̀T+

= lim
T →∞ inf

t∈T+,t≥T
μ(t).

Thus,

μ̀0+ ≤ μ̀T+ ≤ μ̀∞+ . (3.14)

The corresponding asymptotic graininess upper bound is

μ́∞+ = lim
T →∞ μ́T+

= lim
T →∞ sup

t∈T+,t≥T

μ(t),

so that

μ́0+ ≥ μ́T+ ≥ μ́∞+ . (3.15)

(ii) If μ̀∞+ = μ́∞+ , then the time scale is said to have a constant asymptotic grain-
iness,

μ̄∞+ = μ̀∞+ = μ́∞+ .

Some graininess measures for some selected time scales are listed in Table 1.
The following lemmas establish sufficient conditions for

lim
t→∞ eα�z(t) = 0. (3.16)

This region is useful in finding the ROC of the unilateral Laplace transform of eα(t).

Lemma 3.2 (Time scale-dependent ROCs: the entire case) A sufficient condition for
(3.16) is that

z ∈ R(
α, μ̀0+, μ́0+

)
. (3.17)

Table 1 Graininess measures
for some example time scales.
The entry “ND” denotes “not
defined”

Time Scale μ̀0+ μ́0+ μ̀∞+ μ́∞+ μ̄∞+

Z 1 1 1 1 1

L 0 log(2) 0 0 0

H 0 1 0 0 0

P 0 1− λ 0 1− λ ND

Q 1 ∞ ∞ ∞ ∞
R 0 0 0 0 0
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Proof From (2.5),

eα�z(∞) =
∞∏

k=0

1+ αμ(tk)

1+ zμ(tk)
. (3.18)

When (3.17) is true, z lies external to every modified Hilger circle for every μ(t).
Each of the terms in (3.18) is strictly less than one and the product therefore tends to
zero. �

Lemma 3.3 (Time scale-dependent ROCs: the local case) A sufficient condition for
(3.16) is that

z ∈ R(
α, μ̀T+, μ́T+

)
. (3.19)

Proof We can write (3.18) as

eα�z(∞) =
∏
tk<T

1+ αμ(tk)

1+ zμ(tk)
×

∞∏
tk≥T

1+ αμ(tk)

1+ zμ(tk)
; tk ≥ 0. (3.20)

If the second term is zero, then

lim
t→∞ eα�z(t) = 0.

Using the same reasoning as in Lemma 3.2, this is achieved when (3.19) is true. �

Lemma 3.4 (Time scale-dependent ROCs: the asymptotic case) A sufficient condi-
tion for (3.16) is that

z ∈ R(
α, μ̀∞+ , μ́∞+

)
. (3.21)

Proof This follows as the asymptotic case of Lemma 3.3. �

Lemma 3.5 (Time scale-independent ROCs: the global case) For all causal time
scales, (3.16) is true for

z ∈ D(α). (3.22)

This dimpled half-plane ROC, illustrated in Fig. 11 and, for various α in Fig. 7, is
applicable to all time scales.

Proof This follows from (2.2) and Lemma 3.1. �

Lemma 3.6 From Lemmas 3.2, 3.3, 3.4, and 3.5,

D(α) ⊆ R(
α, μ̀0+, μ́0+

)
⊆ R(

α, μ̀T+, μ́T+
)

⊆ R(
α, μ̀∞+ , μ́∞+

)
.
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Fig. 11 Illustration of a
dimpled half-plane, D(α),

where the small dot denotes the
location of the complex number
α. The unilateral Laplace
transform of eα(t) converges at
least in the shaded area shown
here. The value of α is the same
as used in Fig. 8

The largest ROCs thus occur using asymptotic graininess upper and lower bounds.

Proof The proof follows immediately from the graininess inequalities in (2.2), (3.14),
and (3.15), and Lemma 3.1. �

Lemma 3.7 When a time scale has a constant asymptotic graininess μ̄∞+ , then (3.16)
is true for

z ∈ H(
α, μ̄∞+

)
,

in other words, to values external to a modified Hilger circle.

Proof The proof follows from (3.11) and Lemma 3.5. �

We are now ready to establish a major theorem.

Theorem 3.2 For a causal time scale, T+, let f (t) = eα(t). Then the corresponding
unilateral Laplace transform is

Fu(z) = 1

z − α
, (3.23)

where convergence is in one of the regions defined in Lemmas 3.2, 3.3, 3.4, 3.5,
or 3.7.

Proof

Fu(z) =
∫ ∞

0
eα(t)eσ�t (t)�t

=
∫ ∞

0

(
1+ μ(t)z

)−1
eα(t)e�t (t)�t

=
∫ ∞

0

(
1+ μ(t)z

)−1
eα�t (t)�t
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= 1

α − z

∫ ∞

0

α − z

1+ μ(t)z
eα�t (t)�t

= 1

α − z

∫ ∞

0
(α � z)eα�t (t)�t

= 1

α − z
eα�t (t)

∣∣∣∣
∞

0
. �

For the ROCs in Lemmas 3.2, 3.3, 3.4, 3.5, or 3.7, we have eα�t (∞) = 0. Since
eα�t (0) = 1, (3.23) results.

4 Other Transcendental Functions on Time Scales

Other transcendental functions on a time scale are listed in Table 2. Some unilateral
Laplace transforms based on these functions are listed in Table 3. Remarkably, the
time scale Laplace transform function is independent of time scale [1, 5]. The time
scale, however, determines the ROC on the z plane.
Derivations of the entries in Table 3 on the z plane follow. In this section, we set6

αi = ω and αr = a. We also define, for real a

w := ω � a − �a.

Table 2 Some transcendental
functions on a time scale. For R,
ez(t) = ezt . Therefore, on R,
cosω(t) = cos(ωt),
sinω(t) = sin(ωt),
cosha(t) = cosh(at), and
sinha(t) = sinh(at)

(a) u(t) = 1 for t ≥ 0 and 0 otherwise
(b) cosω(t) = 1

2 (ejω(t) + e−jω(t))

(c) sinω(t) = 1
j2 (ejω(t) − e−jω(t))

(d) cosha(t) = 1
2 (ea(t) + e−a(t))

(e) sinha(t) = 1
2 (ea(t) − e−a(t))

Table 3 Some transcendental
functions on an arbitrary time
scale and their unilateral
Laplace transforms.
w := ω � a − �a = ω

1+μ(t)a
.

On R, we have w = ω

(1) u(t) ←→ 1
z

(2) cosω(t) ←→ z

z2+ω2

(3) sinω(t) ←→ ω

z2+ω2

(4) cosha(t) ←→ z

z2−a2

(5) sinha(t) ←→ a

z2+a2

(6) ea(t) cosw(t) ←→ z−a

(z−a)2+ω2

(7) ea(t) sinw(t) ←→ β

(z−a)2+ω2

(8) ea(t) coshw(t) ←→ z−a

(z−a)2−ω2

(9) ea(t) sinhw(t) ←→ w

(z−a)2−ω2

6The variable σ = αr is more commonly used in continuous time Laplace transforms, but its use here
would invite confusion with the forward jump operator in (2.1).
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For each of the functions in Table 3, three ROCs will be derived.

• Bounded ROC: This ROC is applicable when the time scale has asymptotic graini-
ness upper and lower bounds of μ́∞+ and μ̀∞+ . The ROCs are parameterized by these
bounds. Smaller ROCs can be obtained by using the same ROCs parameterized by
either μ́T+ and μ̀T+, or μ́0+ and μ̀0+.

• Asymptotic ROC: These ROCs are applicable to time scales with a fixed asymptotic
graininess μ̄∞+ .

• Global ROC: Since μ́∞+ ≥ 0 and μ̀∞+ ≤ ∞, the global ROC is obtained from the
bounded ROC by using these extreme values. The global ROC is therefore inde-
pendent of the time scale used.

We now derive each entry in Table 3 and establish their various ROCs.

(1) u(t)

The transform of the unit step, u(t), follows immediately from (3.23) after
recognizing that, for t ≥ 0,

eα(t)|α=0 = u(t).

• Bounded ROC: From the bounded ROC for eα(t), we immediately recognize
that the bounded ROC for the unit step is R(0, μ̀∞+ , μ́∞+ ). But the modified
Hilger circle centered at −1/μ̀∞+ and going through the origin subsumes the
circle centered at −1/μ́∞+ , so the bounded ROC is H(0, μ́∞+ ).

• Asymptotic ROC: H(0, μ̄∞+ ).
• Global ROC: The right half-plane D(0).

(2) cosω(t)

Applying (3.23) to definition (b) in Table 2 gives

cosω(t) ↔ 1

2

(
1

z − jω
+ 1

z + jω

)

from which the transform of cosω(t) in Table 3 follows.

• Bounded ROC: As illustrated in Fig. 12, the bounded ROC is R(jω, μ̀∞+ , μ́∞+ ).
• Asymptotic ROC: The modified Hilger circle, H(jω, μ̄∞+ ).
• Global ROC: The dimpled half-plane, D(jω).

(3) sinω(t)

The Laplace transform of sinω(t) follows similarly. We have

sinω(t) ↔ 1

j2

(
1

z − jω
− 1

z + jω

)
.

The three ROCs are the same as for cosω(t).
(4) cosha(t)

Applying (3.23) in Table 2 gives

cosha(t) ↔ 1

2

(
1

z − a
+ 1

z + a

)
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Fig. 12 The bounded ROC for
cosω(t) and sinω(t) is shown
shaded

Fig. 13 The bounded ROC for
cosha(t) and sinha(t) is
H(|a|, μ́∞+ ). This figure
assumes a > 0

from which the transform of coshω(t) in Table 3 follows.

• Bounded ROC: For real a, the bounded ROC is H(|a|, μ́∞+ ). This is illustrated
in Fig. 13.

• Asymptotic ROC: This follows immediately as H(|a|, μ̄∞+ )

• Global ROC: Then the global ROC follows as the half-plane D(|a|).

(5) sinhω(t)

Since

sinha(t) ↔ 1

2

(
1

z − a
− 1

z + a

)
the Laplace transform in Table 3 follows immediately. The ROCs are the same
as those for coshω(t).
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(6) ea(t) cosw(t)

This entry follows immediately from (3.23) after recognizing that

ea(t) cosw(t) = 1

2

(
eα(t) + eα∗(t)

)
.

• Bounded ROC: The bounded ROC is R(α, μ̀∞+ , μ́∞+ ).

• Asymptotic ROC: H(α, μ̄∞+ ).

• Global ROC: D(α).

(7) ea(t) sinw(t)

Since

ea(t) sinw(t) = 1

j2

(
eα(t) − eα∗(t)

)
,

the ROCs here are the same as for ea(t) cosw(t).
(8) ea(t) coshw(t)

Since

ea(t) coshw(t) = 1

2

(
ea+ω(t) + ea−ω(t)

)
, (4.1)

the entry in Fig. 13 follows. We find it useful to define

b+ =max(a − ω,a + ω)

and

b− =min(a − ω,a + ω).

• Bounded ROC: The bounded ROC is the intersection of two R’s in (4.1).

CR := R(
b+, μ̀∞+ , μ́∞+

) ∩ R(
b−, μ̀∞+ , μ́∞+

)
. (4.2)

This bounded ROC for ea(t) coshw(t) can be the exterior of a single modified
Hilger circle or the exterior of two Hilger circles. This is illustrated in Fig. 14.

• Asymptotic ROC: Using (3.11), the ROC for time scales with a constant as-
ymptotic graininess is, from (4.2),

CH := CR|μ́∞+ =μ̀∞+ =μ̄∞+

= H(
b+, μ̄∞+

) ∩ H(
b−, μ̄∞+

)
.

• Global ROC: Using (3.12) applied to (4.2) reveals the global ROC for
ea(t) coshw(t) as

CD := CR|μ́∞+ =0,μ̀∞+ =∞
= D(b+) ∩ D(b−). (4.3)

Some examples of CD are illustrated in Fig. 15.
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Fig. 14 Different ROCs for ea(t) coshw(t) and ea(t) sinhw(t) are shown as black. There are four para-
meters. (i) the centers of the circles, c̀ := −1/μ̀∞+ and (ii) ć := −1/μ́∞+ ; and (iii) the parameters of the
function b+ := a +ω and (iv) b− := a −ω. Since μ̀∞+ ≤ μ́∞+ , we also know that c̀ ≤ ć. There are four cir-
cles involved in each bounded ROC. Each circle is concentric with a second circle and tangent with a third
either at b− or b+ . They are shaded using the (a, b, c, d) key shown at the bottom of the figure as modified
Hilger circles (a) H(b+, μ̀∞+ ), (b) H(b+, μ́∞+ ), (c) H(b−, μ́∞+ ), and (d) H(b−, μ̀∞+ ). The two ROCs
in (4.2) follow as R(b+, μ̀∞+ , μ́∞+ ) = points external to both circles (a) and (b), while R(b−, μ̀∞+ , μ́∞+ )

corresponds to points external to circles (c) and (d). The intersection of these regions, denoted by C in (4.2),
is shown in the above figures as shaded black. With the four parameters and inequality constraints, there
are six possible orderings. The figures above are instantiations of each. (1) For b− < b+ < c− < c+
shown here, CR = H(b−, μ́∞+ ) (i.e., points exterior to circle (c)). (2) We obtain the same results for
b− < c− < b+ < c+ as shown here, (3) and for b− < c− < c+ < b+ . (4) For c− < b− < c+ < b+ as
shown here, CR = H(b+, μ́∞+ ) (i.e., points exterior to circle (b)). (5) c− < c+ < b− < b+ for the ex-
ample shown here has CR = H(b−, μ́∞+ ) ∩ H(b+, μ́∞+ ) (i.e., points exterior to both circles (b) and (c)).
(6) Lastly, for c− < c+ < b− < b+ as shown here, the result is the same as (4)

(9) ea(t) sinhw(t)

Similarly,

ea(t) sinhw(t) = 1

j2

(
ea+ω(t) − ea−ω(t)

)
,

in Fig. 13 follows. The ROCs are the same as for ea(t) coshw(t).

5 Extrapolation of the ROC

For the Laplace transform on R, convergence of Fu(z) at some value z = α ensures
convergence on the half-plane Re z ≥ αr . Likewise, for the conventional z-transform,
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Fig. 15 Some examples of
global ROCs, CD , for
ea(t) coshw(t) and
ea(t) sinhw(t) given in (4.3). In
each case, the ROC D(b−) is
shown shaded with horizontal
lines and D(b+) with vertical
lines. The intersection of the two
regions, CD , is shaded with
crisscrossed horizontal and
vertical lines. (a) When
b− < b+ < 0, the global ROC is
the intersection of points
external to the larger circle and
points to the right of b+ . (b) For
b− < 0 and −b− > b+ > 0, the
global ROC is likewise
described. For (c) b− < 0 and
−b− < b+ > 0, and
(d) 0< b− < b+ , the global
ROC is the set of points to the
right of the line z = b+

convergence at a point z = α ensures convergence for all |z| ≥ |α|. In this section, we
present a generalization of this extrapolation for the general Laplace transform on a
time scale.

Definition 5.1 A causal signal, f (t), is said to display strong convergence at α on a
time scale T at time t = T σ if∫ ∞

T σ

∣∣f (t)eσ�α(t)
∣∣�t < ∞.

Lemma 5.1 If eσ�α(t) is regressive, then if f (t) is bounded and displays strong con-
vergence at T σ , then Fu(z) converges at z = α.

Proof

∣∣Fu(α)
∣∣ =

∣∣∣∣
∫ ∞

0
f (t)eσ�z(t)�t

∣∣∣∣
≤

∣∣∣∣
[∫ T

0
+

∫ ∞

T σ

]
f (t)eσ�z(t)�t

∣∣∣∣
≤

∣∣∣∣
∫ T

0
f (t)eσ�z(t)�t

∣∣∣∣
+

∣∣∣∣
∫ ∞

T σ

f (t)eσ�z(t)�t

∣∣∣∣
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≤
∣∣∣∣
∫ T

0
f (t)eσ�z(t)�t

∣∣∣∣
+

∫ ∞

T σ

∣∣f (t)eσ�z(t)
∣∣�t. (5.1)

If ez(t) is regressive, then eσ�z(t) is bounded. If f (t) is also bounded, then the
first integral in (5.1) is finite. The second integral is bounded by assumption. Thus,
|Fu(α)| < ∞. �

Theorem 5.1 If |Fu(α)| < ∞, then Fu(z) converges in the α parameterized ROCs
defined in Lemmas 3.2, 3.3, 3.4, 3.5, and 3.7 dependent on the graininess properties
of the time scale.

Proof We have

∣∣Fu(z)
∣∣ =

∣∣∣∣
∫ ∞

0
f (t)eσ�z(t)

∣∣∣∣
=

∣∣∣∣
[∫ T

0
+

∫ ∞

T σ

]
f (t)eσ�z(t)�t

∣∣∣∣
≤

∣∣∣∣
∫ T

0
f (t)eσ�z(t)�t

∣∣∣∣
+

∣∣∣∣
∫ ∞

T σ

f (t)eσ�z(t)�t

∣∣∣∣
≤

∣∣∣∣
∫ T

0
f (t)eσ�z(t)�t

∣∣∣∣
+

∣∣∣∣
∫ ∞

T σ

f (t)eσ�αeσ
α�z(t)�t

∣∣∣∣
≤

∣∣∣∣
∫ T

0
f (t)eσ�z(t)�t

∣∣∣∣
+

∫ ∞

T σ

∣∣f (t)eσ�α(t)eσ
α�z(t)

∣∣�t, (5.2)

where we have used (2.10) and (2.11). If∣∣eσ
α�z(t)

∣∣ ≤ 1, (5.3)

then

∣∣Fu(z)
∣∣ ≤

∣∣∣∣
∫ T

0
f (t)eσ�z(t)�t

∣∣∣∣
+

∫ ∞

T σ

∣∣f (t)eσ�α

∣∣�t. (5.4)
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This leads to the same ROCs as Lemmas 3.2, 3.3, 3.4, 3.5, and 3.7 dependent on the
graininess properties of the time scale. �

6 Conclusions

The following ROC properties for unilateral Laplace transformation of signals on
time scales have been established.

1. Unilateral Laplace transforms of signals with finite area converge external to a
Hilger circle. See Theorem 3.1.

2. Independent of graininess, the Laplace transform of a finite area signal always
converges in the right half z plane. See Sect. 3.1.3.

3. The ROCs of Laplace transforms on time scales become the familiar half-plane
and unit circle for continuous-time Laplace transforms and z-transforms, respec-
tively. See Sect. 3.1.1.

4. The ROC of a unilateral Laplace transform of a time scale exponential, eα(t), is a
region external to two modified Hilger circles parameterized by α and the smallest
and largest graininess of the time scale. See Theorem 3.2.

5. When a time scale has a constant asymptotic graininess, like Z and R, the ROC is
external to a single modified Hilger circle. See Lemma 3.7.

6. Since 0≤ μ < ∞, the Laplace transform of a time scale exponential, eα(t), always
converges to the right of a dimpled half-plane. See Lemma 3.5.

7. The ROCs for transcendental functions associated with the solution of linear time-
invariant differential equations on time scales can be determined using the ROCs
developed for the time scale exponential, eα(t). See Sect. 4.

8. If the ROC of a time scale Laplace transform converges at a point, the ROC can
be extrapolated to a larger region. The familiar cases of R and Z are special cases.
See Sect. 5.
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