
50 ArgUments for Faith from the Bible,

History, Philosophy, and Science

Edited by

WILLIAM A. DEMBSKI
MICHAEL R. LICONA

evidence
for

GOD
50 Arguments for Faith from the Bible,

History, Ph ilosophy, a nd Science

Edited by

WILLIAM A. DEMBSKI
MICHAEL R. LICONA

~
BakerBooks

a division of Baker Publishing Group
Grand Rapids, Michigan

17

Evolutionary Computation

A Perpetual Motion Machine
for Design Information?

ROBERT J. MARKS II

Evolutionary computing, modeled after Darwinian evolution, is a useful en
gineering tool. It can create unexpected, insightful, and clever results. Con
sequently, an image is often painted of evolutionary computation as a free
source of intelligence and information. The design of a program to perform
evolutionary computation, however, requires infusion of implicit information
concerning the goal of the program. This information fine-tunes the perfor
mance of the evolutionary search and is mandatory for a successful search.

Computational Intelligence

Fifty years ago, Ross W. Ashby asked "Can a Mechanical Chess Player Outplay
Its Designer?"l We know today that it can. A more relevant question is, "Can
a computer program generate more information than it is given?" Evolution
ary computing, on the surface, seems to be a candidate paradigm. As with all
"something for nothing" claims, this is not the case.

Pioneers of evolutionary computing in the 1960s proposed that computer
emulation of evolution overcame the difficulty of demonstrating Darwinian

91

 R.J. Marks II, "Evolutionary Computation:
 A Perpetual Motion Machine for Design Information?"
 Evidence for God: 50 Arguments for Faith from the Bible, History, Philosophy, and Science,
 edited by William A. Dembski and Michael R. Licona, Baker Books (2010), pp. 91-96.

92 The Question of Science

evolution in the biology lab. Proof of Darwinian evolution "has from the
beginning been handicapped by the fact that no proper test has been found to
decide whether such evolution was ~ossible and how it would develop under
controlled conditions."2 "In general, it is usually impossible or impracticable
to test hypotheses about evolution in a particular species by the deliberate
setting up of controlled experiments with living organisms of that species.
We can attempt partially to get round this difficulty by constructing models
representing the evolutionary system we wish to study, and use these to test
at least the theoretical validity of our ideas."3

Engineering Design

Evolutionary computation is used today largely in engineering design and
problem solving. Design begins with establishing a goal or design objective.
From a favorite list of paradigms, a viable model is chosen. Design consists
of identification of parameter values within the chosen model. Design has
been defined as "the judicious manipulation of mid-range values" within the
confines of a model.4 Search algorithms do this with the aid of a computer.

Consider the simple example of designing a recipe for boiling an egg. Our
questions include the following:

1. Do we place the eggs in cold water and bring to a boil, or place the eggs
in boiling water (two choices)?

2. How long do we boil the eggs?
3. Do we remove the pan from the heat and let the water cool, place the

eggs on a dish to cool, or immediately place the eggs in cold water (three
choices) ?

At step 1 there are two choices, and at step 3, three choices. For the duration
of boiling in step 2, let's assume there are choices in fifteen second intervals
from 30 seconds to three minutes: 0:30, 0:45, 1:00, and so on. That's eleven
choices of time intervals. The total number of possible recipes is therefore
2 x 11 x 3 = 66. We have defined a search space, but have not yet defined what
our design criterion is, namely, what is the optimal recipe? Suppose I taste the
egg and rate it from 1 to 100 in terms of taste. This measure, assigned to each
of the 66 recipes, is the fitness of the recipe. Anything above a 90 will meet
the design criterion. The design goal is identification of a recipe that meets
the design criterion.

Assume you have never cooked and have absolutely no idea which recipe is
best. We apply Bernoulli's principle of insufficient reason, which states that,
in the absence of any prior knowledge, we must assume that all the recipes
have an equal probability of being best. One recipe must be assumed as good

Evolutionary Computation 93

as another. To find the optimal recipe, all 66 would need to be tried. One
approach to find a decent recipe is trial and error. If trial and error could be
done on computer, the tests could be done quickly. Suppose we can emulate the
boiling of the egg and the fitness of the result on a computer. Then we could
determine the optimal recipe quickly by evaluating all 66 recipes. Looking at all
possible solutions is called exhaustive search. Unfortunately, search problems
scale poorly, and this is not possible for even reasonably sized problems. If we
have, instead of 3, 100 variables, and each variable has ten possible outcomes,
the number of elements in the search space becomes 10100 (i.e., 10 multiplied
by itself 100 times), which is a larger number than there are atoms in the
universe. Exhaustive search is not possible in such cases.

We can remove Bernoulli's principle of insufficient reason from the search
problem only through infusion of information into the search process. The
information can be explicit. For the egg example, knowledge of chemistry
tells us that placing the boiled eggs in cold water retards the chemical reaction
that will ultimately make the eggs smell like sulfur. Assuming a sulfur smell
will detract from the fitness, we can eliminate one of the search variables and
reduce the search to 44 recipes. Alternately, the information can be implicit.
You may know, for example, that of ten famous egg boilers, two place the
raw eggs in cold water and eight in boiling water. This information can guide
your search of recipes initially to those with a greater chance of meeting the
design criterion.

The Need for Implicit Information

Purely theoretical considerations suggest that, given a fast enough computer
and sufficient time, a space can be successfully searched to find the optimal
solution. But this is the myth of "monkeys at a typewriter." The story, theo
retically plausible, says that if enough monkeys pound out random letters
long enough, all of the great texts in history-such as Moby-Dick (1,170,200
characters), Grimm's Fairy Tales (1,435,800 characters), and the King James
Bible (3,556,480 letters not including spaces)-will eventually result. The

-'finiteness of the closed universe, however, prohibits this.
Looking for a single solution in a large unstructured search space is dubbed

a "needle in a haystack" problem. In moderately large cases, it simply can't be
done. Choosing randomly from a 26-letter alphabet, the chances of writing the
King James Bible are 263,556,48°, which equals 3.8 x 105,032,323. This is a number
so large it defies description. If all the matter in the universe (1058 kilograms)
were converted to energy (E =mc2

), 10 billion times per second since the big
bang (20 billion years) and all this energy were used to generate text at the
minimum irreversible bit level (i.e., In(2) kT =2.9 10-2

] joules per bit), then
about 1088 messages as long as the King James Bible could be generated. If

94 The Question of Science

we multiply this by the number of atoms in the universe (1078 atoms), we have
10166 messages, still dwarfed by the required 105,032,323.

Let's try a more modest problem: the phrase

IN "THE::-BEGINNING':-GOD'cCREATED

(We could complete the phrase with "the heaven and the earth," but the
numbers grow too large.) Here there are 27 possible characters (26 letters
and a space) and the string has a length of 28 characters. The odds that
this is the phrase written by the monkeys is 272

, which equals 1.20 x 1040

to 1. This number isn't so big that we can't wrap our minds around it. The
chance of a monkey typing 28 letters and typing these specific words is the
same as choosing a single atom from over one trillion tons of iron. Using
Avogadro's number, we compute 2728 atoms: (1 mole per 6.022 x 1023 atoms)
x (55.845 grams per mole) x (1 short ton per 907,185 grams) = 1.22 x 1012

short tons.
Quantum computers would help by reduction of the equivalent search size

by a square root,S but the problem remains beyond the resources of the closed
universe. Information must be infused into the search process.

Searching an unstructured space without imposition of structure on the
space is computationally prohibitive for even small problems. The need for
implicit information imposed by design heuristics has been emphasized by
the no free lunch theorems,6 which have shown, "unless you can make prior
assumptions about the ... [problems] you are working on, then no search
strategy, no matter how sophisticated, can be expected to perform better than
any other."7 No free lunch theorems "indicate the importance of incorporating
problem-specific knowledge into the behavior of the [optimization or search]
algorithm. "8

Sources of Information

A common structure in evolutionary search is an imposed fitness function,
wherein the merit of a design for each set of parameters is assigned a number.
The bigger the fitness, the better. The optimization problem is to maximize
the fitness function. Penalty functions are similar, but are to be minimized.
In the early days of computing, an engineer colleague of mine described his
role in conducting searches as a penalty function artist. He took pride in using
his domain expertise to craft penalty functions. The structured search model
developed by the design engineer must be, in some sense, a good model. Ex
ploring through the parameters of a poor model, no matter how thoroughly,
will not result in a viable design. In a contrary manner, a cleverly conceived
model can result in better solutions in faster time.

Evolutionary Computation 95

Here is a simple example of structure in a search. Instead of choosing each
letter at random, let's choose more commonly used letters more frequently.
If we choose characters at random, then each character has a chance of 1 in
27, which equals a 3.7 percent chance of being chosen. In English, the letter
e is used about 10 percent of the time. A blank occurs 20 percent of the time.
If we choose letters in accordance to their frequency of occurrence, then the
odds of choosing IN':-THE':-BEGINNING':-GOD':-CREATED nose dives to five
one millionths (0.0005 percent) of its original size-from 1.2 x 104{) to 5.35 X

1034
• This is still a large number: the trillion tons of iron has been reduced to

5.5 million tons. If we use the frequency of digraphs, we can reduce it further.
(Digraphs are letter pairs that occur frequently; for instance, the digraph e_,
where _ is a space, is the most common pair of characters in English.) Trigraph
frequency will reduce the odds more.

The Fine-Tuning of the Search Space

As more implicit structure is imposed on the search space, the search be
comes easier. Even more interesting is that, for moderately long messages, if
the target message does not match the search space structuring, the message
won't be found.

Let a search space be structured with a disposition to generate a type of
message. If a target does not match this predisposition, it will be found with
probability zero.

This theorem, long known in information theory in a different context, is
a direct consequence of the law of large numbers. If, for example, we struc
ture the search space to give an e 10 percent of the time, then the number of
e's in a ~~ssage 10,000 characters in length will be very close to 1,000. The
curious book Gadsby, containing no e's, would be found with a vanishingly
small probability.

Structuring the search space also reduces its effective size. The search space
consists of all possible sequences. For a structured space, let's dub the set of
all probable sequences that are predisposed to the structure the "search space
subset." For frequency of occurrence structuring of the alphabet, all of the
great novels we seek, except for Gadsby, lie in or close to this subset.

The more structure that is added to a search space, the more added informa
tion there is. Trigraphs, for example, add more information than digraphs.

As the length of a sequence increases and the added structure information
increases, the percent of elements in the search subset goes to zero. This is
called the "diminishing subset theorem." Structuring of a search space therefore
not only confines solutions to obey the structure of the space; the number of
solutions becomes a diminishingly small percentage of the search space as the
message length increases.

96 The Question of Science

Final Thoughts

Search spaces require structuring for search algorithms to be viable. This
includes evolutionary search for a dugeted design goal. The added structure
information needs to be implicitly infused into the search space and is used to
guide the process to a desired result. The target can be specific, as is the case
with a precisely identified phrase; or it can be general, such as meaningful
phrases that will pass, say, a spelling and grammar check. In any case, there is
yet no perpetual motion machine for the design of information arising from
evolutionary computation.

	zz00
	zz00
	zz01
	zz02
	zz03
	zz04
	zz05
	zz06

