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Needle-in-the-haystack problems look for small tar-
gets in large spaces. In such cases, blind search
stands no hope of success. Conservation of informa-
tion dictates any search technique will work, on aver-
age, as well as blind search. Success requires an as-
sisted search. But whence the assistance required for a
search to be successful? To pose the question this way
suggests that successful searches do not emerge spon-
taneously but need themselves to be discovered via a
search. The question then naturally arises whether
such a higher-level “search for a search” is any eas-
ier than the original search. We prove two results: (1)
The Horizontal No Free Lunch Theorem, which shows
that average relative performance of searches never
exceeds unassisted or blind searches, and (2) The Ver-
tical No Free Lunch Theorem, which shows that the
difficulty of searching for a successful search increases
exponentially with respect to the minimum allowable
active information being sought.

Keywords: No Free Lunch Theorems, active informa-
tion, active entropy, assisted search, endogenous informa-
tion

1. Introduction

Conservation of information theorems [1-3], especially
the No Free Lunch Theorems (NFLT’s) [4-8], show that
without prior information about a search environment or
the target sought, one search strategy is, on average, as
good as any other [9]. This is the result of the Horizontal
NFLT presented in Section 3.2.

A search’s difficulty can be measured by its endoge-
nous information [1,10-14] defined as

Ip=—log,p . . . . . .. ... ...

where p is the probability of a success from a random
query [1]. When there is knowledge about the target lo-
cation or search space structure, the degree to which the
search is improved is determined by the resulting active
information [1,10-14]. Even moderately sized searches
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are virtually certain to fail in the absence of knowledge
about the target location or the search space structure.
Knowledge concerning membership of the search prob-
lem in a structured class [15], for example, can constitute
search space structure information [16].

Endogenous and active information together allow for
a precise characterization of the conservation of informa-
tion. The average active information, or active entropy,
of an unassisted search is zero when no assumption is
made concerning the search target. If any assumption is
made concerning the target, the active entropy becomes
negative. This is the Horizontal NFLT presented in Sec-
tion 3.2. It states that an arbitrary search space structure
will, on average, result in a worse search than assuming
nothing and simply performing an unassisted search.

The measure of endogenous and active information can
also be applied in a meta sense to a Search for a Search
(S4S). As one might expect, no active information in the
S4S translates to zero active information in the lower-
level search (which means that, on average, the lower-
level search so found cannot do better than an unassisted
search). This result holds for still higher level searches
such as a “search for a search for a search” and so on.
Thus, without active information introduced somewhere
in the search hierarchy, none will be available for the orig-
inal search. If, on the other hand, active information is
introduced anywhere in the hierarchy, it projects onto the
original search space as active information.

The target of a S4S is a search algorithm that equals or
exceeds a minimally acceptable active information thresh-
old. A higher-level S4S will, itself, have a difficulty as
measured by the S4S’s endogenous information. How
much? Previous results have shown the difficulty of a
S4S as measured by its endogenous information is lower
bounded by the desired active information of the target
search [14]. We establish a much more powerful result.
According to the Vertical NFLT introduced in Section 4.3,
the difficulty of a S4S under loose conditions, as measured
by the S4S endogenous information, increases exponen-
tially with respect to the active information threshold re-
quired in the lower-level search space.
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2. Information in Search

All but the most trivial searches require information
about the search environment (e.g., smooth landscapes)
or target location (e.g., fitness measures) if they are to be
successful. Conservation of information theorems [2—5]
show that one search algorithm will, on average, perform
as well as any other and thus that no search algorithm will,
on average, outperform an unassisted, or blind, search.
But clearly, many of the searches that arise in practice do
outperform blind unassisted search. How, then, do such
searches arise and where do they obtain the information
that enables them to be successful?

2.1. Blind and Assisted Queries and Searches

Let 77 € Q; denote a target in a search space, Q, so
that for uniformity the probability of success, p, is ra-
tio of the cardinality of 77 to that of Q;. The proba-
bility, p, is the chance of obtaining an element in the
target with a single query assuming a uniform distribu-
tion. If nothing is known about the search space or target
location, the uniformity of the distribution follows from
Bernoulli’s Principle of Insufficient Reason (PrOIR) [14,
17,18]. Bernoulli’s PrOIR states that in the absence of
any prior information, “we must assume that the events ...
have equal probability” [17, 18]. Uniformity is equivalent
to the assumption that the search space is at maximum
informational entropy.

Consider Q queries (samples) from € without replace-
ment. Such searches can be construed as a single query
when the search space is appropriately defined. For a
fixed O, the augmented search space, Qp, consists of
all sequences of length QO chosen from Q; where no el-
ement appears more than once. Note that, appropriately,
the original search space, Q1, is Qo for Q = 1. In general

Q]!
(1] -0)!
The requirement of sampling without replacement re-
quires Q < |Qy|. If nothing is known about the location or

the target, then, from Bernoulli’s PrOIR, any element of
Qg is as likely to contain the target as any other element.

0= e
Qg

where Tp € Qg consists of all the elements containing the
original target, 77.

When, for example, 77 consists of a single element in Q
(i.e., |T1] = 1) and there is no knowledge about the search
space structure or target location, then p; = 1/|€| and

Qo = 2

3)

PQ:%ZQ]JL N 4 |

From Egs. (2) and (3), we have
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There appears, at first flush, to be knowledge about the
search space Q¢ for Q > 1 since a sequence in Q¢ has
the same chance of containing a target as an element in
Q¢ with a perturbation of the same elements. This, how-
ever, is knowledge we cannot exploit with a single query
to Qp. Also, if the space is exhaustively contracted to
eliminate all elements allowing a perturbation rearrange-
ment to another element, the chance of success in a single
query remains the same.

Keeping track of Q subscripts and exhaustively con-
tracted perturbation search spaces is distracting. As
such, let € denote any search space, like ¢, wherein
Bernoulli’s PrOIR is applicable for a single query. We
adopt similar notation for the target subspace, T, and the
probability, p, of finding the target using a single query.
A single query to a multi-query space can then be consid-
ered a search. If a search is chosen randomly from such
a multi-query space, we are still preforming a blind (or
unassisted) search.

3. Active Information and No Free Lunch

Define an assisted query as any choice from Q; that
provides more information about the search environment
or candidate solutions than a blind search. Gauging the
effectiveness of assisted search in relation to blind search
is our next task. Random sampling with respect to the uni-
form probability U sets a baseline for the effectiveness of
blind search. For a finite search space with |Q| elements,
the probability of locating the target T has uniform prob-
ability given by Eq. (3) without the subscripts:

p= m
Q|
Let g denote the probability of success of an assisted
search. We assume that we can always do at least as well
as uniform random sampling. The question is, how much
better can we do? Given a small target 7 in Q and proba-
bility measures U and ¢ characterizing blind and assisted
search respectively, assisted search will be more effec-
tive than blind search when p < ¢, as effective if p = ¢,
and less effective if p > ¢g. In other words, an assisted
search can be more likely to locate 7 than blind search,
equally likely, or less likely. If less likely, the assisted
search is counterproductive, actually doing worse than
blind search. For instance, we might imagine an Easter
egg hunt where one is told “warmer” if one is moving
away from an egg and “colder” if one is moving toward
it. If one acts on this guidance, one will be less likely to
find the egg than if one simply did a blind search. Be-

(6)
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cause the assisted search is in this instance misleading, it
actually undermines the success of the search.

An instructive way to characterize the effectiveness of
assisted search in relation to blind search is with the like-
lihood ratio 4. This ratio achieves a maximum of 11—7 when
g = 1, in which case the assisted search is guaranteed to
succeed. The assisted search is better at locating 7' than
blind search provided the ratio is bigger than 1, equivalent
to blind search when it is equal to 1, and worse than blind
search when it is less than 1. Finally, this ratio achieves
a minimum value of 0 when ¢ = 0, indicating that the as-
sisted search is guaranteed to fail.

3.1. Active Information

Let U denote a uniform distribution on Q characteristic
of an unassisted search and ¢ the (nonuniform) measure
on Q for an assisted search. Let U(T) and ¢(7) denote
the probability over the target set T € Q. Define the active
information of the assisted search as

o(T)
U(7)

L (¢|U) := log, ()

q
= log, —
*p

Active information measures the effectiveness of assisted
search in relation to blind search using a conventional in-
formation measure. It [1] characterizes the amount of in-
formation [19] that ¢ (representing the assisted search)
adds with respect to U (representing the blind search) in
the search for 7. Active information therefore quantifies
the effectiveness of assisted search against a blind-search
baseline. The NFLT dictates that any search without ac-
tive information will, on average, perform no better than
blind search.

The maximum value that active information can attain
is (I} )max = —log, p = I indicating an assisted search
guaranteed to succeed (i.e., a perfect search) [1]); and the
minimum it can attain is (I )min = —oo, indicating an as-
sisted search guaranteed to fail.

Equation (8) can be written as the difference between
two positive numbers:

1 1
Iy =logy——log,— . . . . . . . ... (8
p q

= I —Is.

We call the first term the endogenous information, Ig,
given in Eq. (1). Endogenous information represents the
fundamental difficulty of the search in the absence of any
external information. The endogenous information there-
fore bounds the active information in Eq. (8).

—oo <[y <lIo.

The second term in Eq. (9) is the exogenous informa-
tion.

si=—log,g . . . . . . ... .. .. 0

I represents the difficulty that remains once the assisted
search is brought to bear. Active information, as the dif-
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ference between endogenous and exogenous information,
thus represents the difficulty inherent in blind search that
the assisted search overcomes. Thus, for instance, an as-
sisted search that is no better at locating a target than blind
search entails zero active information.

Like other log measurements (e.g., dB), the active in-
formation in Eq. (8) is measured with respect to a refer-
ence point. Here endogenous information based on blind
search serves as the reference point. Active informa-
tion can also be measured with respect to other reference
points. We therefore define the active information more
generally as

11 (oly) i togs 2

=log, ¢(T) —log, w(T) (10)

for ¢ and y arbitrary probability measures over the com-
pact metric space € (with metric D), and 7 an arbitrary
Borel set of Q such that y(7') > 0.

3.2. Horizontal No Free Lunch

The following No Free Lunch theorem (NFLT) under-
scores the parity of average search performance.

Theorem I: Horizontal No Free Lunch. Let ¢ and
¥ be arbitrary probability measures and let 7 = {13V,
be an exhaustive partition of Q all of whose partition ele-
ments have positive probability with respect to y. Define
active entropy as the average active information that ¢
contributes to ¥ with respect to the partition T as

o(T3)
T (olw) Z y(T) log, vy

H (ly): Zw

Then Hz(¢|y) < 0 with equality if and only if ¢(7;) =
y(T;) for 1 <i<N.

Proof. The expression in Eq. (11) is immediately rec-
ognized as the negative of the Kullback-Leibler dis-
tance [19]. Since the Kullback-Leibler distance is always
nonnegative, the expression in Eq. (11) does not exceed
zero. Zero is achieved if for each i, ¢(T;) = y(T;).

Because the active entropy is strictly negative, any un-
informed assisted search (¢) will on average perform
worse than the baseline search. Moreover, the degree to
which it performs worse will track the degree to which the
assisted search singles out and confers disproportionately
high probability on only a few targets in the partition. This
suggests that success of an assisted search depends on its
attending to a few select targets at the expense of neglect-
ing most of the remaining targets.

Corollary: Horizontal No Free Lunch — No Informa-
tion Known. Given any probability measure on £, the
active entropy for any partition with respect to a uniform
probability baseline will be nonpositive.

Remarks: If no information about a search exists, so
that the underlying measure is uniform, then, on aver-
age, any other assumed measure will result in negative
active information, thereby rendering the search perfor-
mance worse than random search.
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Proof: Using v = U and Eq. (6), the expression Eq. (11)
in Theorem 3.2 becomes
H+<p|U ZU M (Q[U). .. ... . (12)

From Theorem 3.2, the expression in Eq. (12) is nonposi-
tive.

4. The Search for a Good Search

What is the source of active information in a search?
Typically, programmers with knowledge about the search
(e.g., domain expertise) introduce it. But what if they lack
such knowledge? Since active information is indispens-
able for the success of the search, they will then need to
S4S. In this case, a good search is one that generates the
active information necessary for success. In this section,
we prove a vertical no free lunch theorem. It establishes
that, under general conditions, the difficulty of the S4S as
measured against an endogenous information baseline, in-
creases exponentially with respect to the minimum active
information needed for the original search.

4.1. The Probabilistic Hierarchy

Our first task is to extend the definition of active in-
formation in Eq. (10) to the probabilistic hierarchy that
sits on top of Q. Doing so will allow us to characterize
information-theoretically “the search for a good search,”
“the search for the search for a good search,” etc.

Given Q, define M(Q) as the collection of all probabil-
ity measures defined on the Borel sets of Q. We show in
Appendix A that M(Q) is itself a compact metric space
with Borel sets, and thus admits the set of all probability
measures on it, which we denote by M?(Q) = M(M(Q))
and which is again a compact metric space, and so on.

Accordingly, given that M°(Q) := Q, M!(Q) = M(Q),
in general M*(Q) = M(M*~1(Q)) is a compact metric
space. M¥(Q) is the k™ order probability space on . This
is the probabilistic hierarchy. For notational simplicity,
we will use the abbreviation M*(Q) = M¥.

To extend the definition of active information in
Eq. (10) up the probabilistic hierarchy, we need to show
how higher-order probabilities are canonically trans-
formed into lower-order probabilities. Denote an arbitrary
probability measure on M¥ by O (which is in MK+,
By vector-valued integration [20-22]

®k:/Mk“d®k“(“)' e e e e e (13)

Active information in Q can thus be interpreted as be-
ing propagated from active information down the prob-
abilistic hierarchy. Because of the compactness of Q and
M(Q), the existence and uniqueness of Eq. (13) is as-
sured. Note that such integrals exist provided that all con-
tinuous linear functionals applied to them (which, in this
case, amounts to integrating with respect to all bounded
continuous real-valued functions on M¥) equals integrat-
ing over the continuous linear functions applied inside the
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Fig. 1. Search space used in Examples 1 and 2.

P ' M(Q
N

B
T

A E—
B

Fig. 2. Propagation of active information. See Example 1.

integral. Linear functionals thereby reduce vector-valued
integration to ordinary integration.

1. Propagation of Active Information from M(Q) to
Q. Fig. 1 illustrates the simple problem of search-
ing for one of 16 possible squares in a 4 x 4 grid
(= Q). The square in question is the target marked
T. Here p = % and the endogenous information is
Io = 4 bits.

Figure 2 illustrates how active information for
searching M(Q) propagates down the probabilis-
tic hierarchy to active information for searching €.
Consider the following two probability distributions
in M(Q):

e A is the uniform distribution over the rightmost
four squares in the search space.

e B is the uniform distribution over the bottom
twelve squares in the search space.

Suppose we know that one of these distributions
characterizes the search for 7 in Q, but we know
nothing else about the search for 7. In that case,
Bernoulli’s PrOIR would have the search for 7' char-
acterized by a probability measure ®, (€ M?(Q))
that assigns probability % to both A and B. By
Eq. (13), ®; induces the following probability of

success on :

q = Pr[T|A]Pr[A] + Pr[T|B] Pr[B]
1 1.1 1 1
=-X=-+—=X=-=_.
4 2 12 2 6
The corresponding exogenous information is there-
fore Is = —logzé = 2.59 bits and the active infor-

mation is Iy = 4.00 —2.59 = 1.41 bits. Thus, the
higher-order probability measure @, propagated ap-
proximately 1% bits of active information down the
probabilistic hierarchy.
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Fig. 3. Propagation of negative active information. See
Example 2.

2. Negative Active Information from M(Q). If incor-
rect information assists a search, the active informa-
tion can be negative. Consider, again, Fig. 1 and as-
sume, as in the previous example, that one of the dis-
tributions A and B in M(Q) characterizes the search
for T, though we have no way of preferring one to
the other. This time, as shown in Fig. 3, assume that
the target 7', instead of being in the lower right cor-
ner, is in the lower left corner. The probability of
success is then

q = Pr[T|A]|Pr[A] + Pr[T|B] Pr[B]
1 1 1
s O —_— _ = —
TR,
which corresponds to exogenous information Is =
4.59 and to active information I, = 4.00 —4.59 =
—0.59 bits.

3. Propagation of Active Information from M-.
Fig. 4 illustrates the propagation of active informa-
tion from M?(Q) down the probabilistic hierarchy.
One of the distributions in M?(Q) is the Bernoulli
distribution @, that assigns % probability to the dis-

tribution A and % to B. Over Q, the distribution A is
uniform on the right four squares of Q and B is uni-
form on the bottom eight squares. The probability of
success is then

q = Pr[T|A] Pr[A] + Px[T|C] Pr[C]

L7 L s
T 4787878 64

Therefore, Is = —logg = 2.09 bits corresponding
to an active information of 7, =4.00 —2.09 = 1.91
bits.

4.2. Conservation of Uniformity

In the absence of active information, uniform proba-
bility measures propagate down the probabilistic hierar-
chy to lower-level uniform probability measures. In other
words, higher-order uniform probability measures never
induce anything other than uniform probability measures
at lower levels in the probabilistic hierarchy.

Theorem 2: Conservation of Uniformity. Let U; :=U
be the uniform probability on a compact metric space
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Q with metric D [23], and let U, be the uniform prob-
ability on the compact metric space M with canonical
(Kantorovich-Wasserstein) metric [24]. Then

U= [ udUs(u), L (14)
JM!
and, more generally,
U= | HdUea(n) - (15)
Mk

where Uy, is the uniform distribution on MF.

The proof is in Appendix B.

Remarks: Because of the compactness of Q and M!' =
M, the integral in Eq. (14) exists and is uniquely deter-
mined. This theorem shows that averaging the probability
measures of M with respect to the uniform probability U,
(€ M?) is just the uniform probability U; (€ M!). Thus,
if we think of each p under the integral in Eq. (14) as a
probability measure representing an assisted search, this
theorem says that the average performance of all assisted
searches is equivalent to uniform random sampling.

4.3. The Displacement Principle: The Vertical No
Free Lunch Theorem

The displacement principle states that the search for a
good search is at least as difficult as a given search. We
prove that in the search for a good search, the endoge-
nous information for the higher-level search grows expo-
nentially with respect to the active information needed
to successfully search for the original target. Since en-
dogenous information gauges the inherent difficulty of a
search, this shows that the difficulty of the search for a
good search grows exponentially with the difficulty of the
original search.

More precisely,! the original search seeks a target 7 =
Ty in Q = Q; = MP. In the search for the search, we have
a target T, of searches that equal or exceed a given per-
formance level among the set of measures Q> = M'. (We
will henceforth interchangeably use the notation €21 and
MF)

Consider, then, a minimally acceptable active informa-
tion I,.. Over the set of all measures M', the target set of
searches is then

Th={pecQ, |I(p|U)>1}. . (16)

Theorem 3: The Strict Vertical No Free Lunch The-
orem. Let /; =log(4/p) be the minimally acceptable
active information? of a search such that

p<Lgkl . (17
and
1
= — . 18
P=% (13)

where we have adopted the notation K := |Q|. Given that
M = Q, and that information is measured in nats (as op-

1. The subscripts here refer to the level of the search. In Section 2.1, the
subscripts refer to multiple queries.

2. A breve as is used on i+ denotes a lower bound while a cap, as is used
on g, denotes an upper bound.
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- B

B o

M(Q)
O
A

M?*(Q)

| 7
Y &)

Fig. 4. Propagation of active information through two levels of the probability hierarchy. See Example 3.

posed to bits),? the endogenous information of a search
for a search that achieves at least an active information /-
is exponential with respect to /:

Y 6 1)

The proof is supplied in Appendix C.
Theorem 4: The General Vertical No Free Lunch
Theorem. Let
pLg<l1 . (20)
and
pK > 1. . 2D

Then the difficulty of the search for the search as mea-
sured by the endogenous information, Ig,, is bounded by

I, > Io, . (22)
where

o Io —log(K .

lo, = o~ log(K) — 1. +KD(pl|g). - (23)

2
Here D(p||g) is the Kullback-Leibler distance:

7 = (1— 1=r p
D(pllg) = (1 P)ln(l_q>+pln<g> e

The proof of Theorem 4.3 is given in Appendix D. Al-
though the strict vertical NFLT in Eq. (18) and the general
vertical NFLT in Eq. (21) make different assumptions, the
following result shows that Theorem 4.3 is a special case
of Theorem 4.3.

Theorem 5: Strict Case Subsumed in General Case.
If Egs. (17) and (18) are in force, then Eq. (23) becomes
I, — €'+ which is consistent with Eq. (19).

The proof is given in Appendix E.

5. Conclusion

The Horizontal NFLT illustrates the law of conserva-
tion of information by revealing that unsubstantiated arbi-
trary assumptions about a search will, on average, result in
a search with less than average performance as measured
by the search’s active information. This results from the
average active information, e.g., the active entropy, being
always negative.

3. For a probability, 7, information in bits is » = —log, 7 and, in nats, is
n = —In7x where In denotes the natural logarithm [19]. One nat equals
In2 = 0.639 bits.
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The Vertical NFLT establishes the troubling property
that, under a loose set of conditions, the difficulty of a
Search for a Search (S4S) increases exponentially as a
function of minimal acceptable active information being
sought.
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Appendix A. The Probabilistic Hierarchy

Geometric and measure-theoretic structures on Q ex-
tend straightforwardly and canonically to corresponding
structures on M(Q), the collection of all probability mea-
sures on the Borel sets of Q. And from there they ex-
tend to M?(Q) = M(M(Q)), the collection of all proba-
bility measures on the Borel sets of M(Q), and so on up
the probabilistic hierarchy, which is defined inductively as
M (Q) = M(MF1(Q)).

To see how structures on Q extend up the probabilis-
tic hierarchy, begin with the metric D on Q. Because D
makes Q a compact metric space, D a fortiori makes Q
a complete separable metric space. Separable topological
spaces that can be metrized with a complete metric are
known as Polish spaces ([25], ch. 8).

M(Q) is itself a separable metric space in the
Kantorovich-Wasserstein metric D; which induces the
weak topology on M(Q). For Borel probability measures
U and v on Q, this metric is defined as

Di(uv) = int{ [ Dlxy)Eandyi € Patuw) |
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—sup{ | [ rtoutan - [ swvian| s, <1}
In the first equation, P> (u, v) is the collection of all Borel
probability measures on Q x Q with marginal distribu-
tions W on the first factor and v on the second. In the
second equation here, f ranges over all continuous real-
valued functions on Q for which the Lipschitz seminorm
does not exceed one. The Lipschitz seminorm is defined

as follows:
_ lf(x) = fO)I
||f||L = SUP{W

Both the infimum and the supremum in these equations
define metrics. The first is the Wasserstein metric, the sec-
ond the Kantorovich metric. Though the two expressions
appear different, the quantities they represent are known
to be identical [26].

The Kantorovich-Wasserstein metric D is the canoni-
cal extension to M(Q) of the metric D on Q. It extends
the metric structure of Q as faithfully as possible to M(Q).
For instance, if &, and d, are point masses in M(Q), then
D1 (6y,8,) = D(x,y). It follows that the canonical embed-
ding of Q into M(Q), i.e., x — &y, is in fact an isometry.

To see that D canonically extends the metric structure
of Q to M(L), consider the following reformulation of
this metric. Let

%,y € Q, X#y}

M, (Q) = ! Y b.:xicQ
<i<n

where n ranges over all positive integers. It is readily
seen that M,,,(Q) is dense in M(Q) in the weak topology.
Note that the x;s are not required to be distinct, implying
that M, (Q) consists of all convex linear combinations of
point masses with rational weights; note also that such
combinations, when restricted to a countable dense sub-
set of Q, form a countable dense subset of M(Q) in the
weak topology, showing that M(Q) is itself separable in
the weak topology.

For any measures p and v in M, (Q), it is possible to
find a positive integer n such that

1
u=- Z 5xi
<<
and
1
V= Z Z 6}’1"
1<i<n

Next, define

1

Z sxia_

Ny <<n

1
D{)erm -

Zsyi

1<i<n

.1
:=min{ — Z D(xi,y5i) : G €Sy
1<i<n
where S, is the symmetric group on the numbers 1 to n.
D" looks for the best way to match up point masses for
any pair of measures in M, (Q) vis-a-vis the metric D.
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It is straightforward to show that D{*"™ is well-defined
and constitutes a metric on My, (). The only point
in need of proof here is whether for arbitrary measures
% Y 1<i<n &y, and % Y 1<i<n Oy, in M, (), and for any mea-
sures

1 1
— Y &=-Y &,
M <iZmn 1<i<n
and
1 1
- Z Oy, = — Z Oy,
mn < Zmn Ny i<
we have
. 1
min<{ — Z D(x;,y5i) : O €S,
<

1
=min{ — D(zj,wpi) :p €S .
{mn lggmn ( l pl) P mn}

The proof follows from Hall’s marriage lemma [27].
Given this equality, it follows that D" = Dy on M, (Q)
and, because My, (Q) is dense in M(Q), that D{*"™ ex-
tends uniquely to D; on all of M(Q).

Thus, given that D metrizes Q, D is the canonical met-
ric that metrizes M(Q). And, just as D induces a compact
topology on Q, so does D; induce a compact topology
on M(Q). This last result is a direct consequence of D
inducing the weak topology on M(Q) and of Prohorov’s
theorem, which ensures that M(Q) is compact in the weak
topology provided that Q is compact ([28]: 59).

Given that D; makes M(Q) a compact metric space,
the next question is whether this metric induces a uni-
form probability Uy on M(Q) (such a U, would reside
in M?(Q); Uy = U is the original uniform probability on
Q). As it is, M(Q) is uniformizable with respect to D
and therefore has such a uniform probability. To see this,

note that if :

Ur=-Y ¢,
n<i<n
denotes a finitely supported uniform probability that is
based on an e-lattice {xj,x,...,x,} C Q, then U ap-
proximates U to within ¢, i.e., D;(U%,U) < €. Given that

2";1) is the number of ways of filling n slots with n iden-
tical items ([29], ch. 1), it follows that for

. e 2n—1)!
:(Z"I)er!(n1>)!’

{“17u27 T 7”’1*} c M(Q)
is an %-lattice as the s run through all finitely sup-
ported probability measures %Zlgign Oy, where the w;’s
are drawn from {x,x,...,x, | allowing repetitions.
It follows that as U® converges to U in the weak topol-
ogy on M(Q), the sample distribution

1
Z 5ﬂk

e _
U; = —
" <k<n*

converges to the uniform probability U; in the weak
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topology on M?(Q). Moreover, for D,, which is the
Kantorovich-Wasserstein metric on M?(Q) (M?(Q) is
likewise a compact metric space with respect to D,),
D,(U{,Uy) < £. The details for proving these claims de-
rive from elementary combinatorics and from unpacking
the definition of uniform probability [23].

In summary, given the compact metric space  with
metric D and uniform probability U induced by D, both D
and U extend canonically up the probabilistic hierarchy:
D := Dy on M(Q) := Q, D; on M!(Q)), D, on M?(Q),
etc. Moreover, U; € M!(Q), U, € M?(Q), etc.

Appendix B. Proof of the Conservation of
Uniformity

We prove Theorem 4.2 for Q finite (the infinite case is
proved by considering finitely supported uniform proba-
bilities on &-lattices, and then taking the limit as the &-
mesh of these lattices goes to zero [23]).

Proof: Let Q = {x1,x2,...,x,}. For large N, consider all
probabilities of the form

- ¥

1<i<n

N;
N

such that the N;s are nonnegative integers that sum to N.

From elementary combinatorics, there are N* = (N :{i’;l)

distinct probabilities like this [29]. Therefore, define

1
Uy[N] = Y 8y
1<k<N*

so that the y;’s run through all such y. From Appendix
A it follows that U [N] converges in the weak topology to
U, as N 1 oo,

It’s enough, therefore, to show that

Zﬂk

1<k<N*

1

dUs|N| = —

S HAUIN =

is the uniform probability on €. And for this, it is enough
to show that for x; in Q,

= ¥ )=

1<k<N*

For definiteness, let us consider x;. We can think
of x; as occupied with weights that run through all the
multiples of 1/N ranging from 0 to N. Hence, for fixed
integer M (0 < M < N), the contribution of the s with
weight M /N at x; is

M. (NM+n2>.
n—2

Note that the term (N _Mf"_z) is the number of ways of
occupying n — 1 slots with N — M identical items [29].

Accordingly, the total weight that the ps assign to xj,
when normalized by 1/N*, is
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1 1 — n—2
N ) Nk({xl})zﬁ Y M'<N Zr‘l/ljz )

1<k<N* 0<M<N

Because this expression is independent of x; and is also
the probability of xp, it follows that the probability of all
x;s under 1% Y1 <k<n+ i is the same. Hence for each x; in
Q»

U(f) = 7

Y )=

1<k<N*

This is what needed to be proved.

Appendix C. Proof of the Strict Vertical No
Free Lunch Theorem

We offer two derivations of Theorem 4.3.

C.1. Combinatoric Approach.
We start with the finite case. First, we assume

Q= {x1,x2,..., 2k},
T = {xl,x2, e ,X|T|},

where, from Eq. (6), we use |T| = pK. (For the proof of
Theorem 4.3, we use Eq. (18).) For a given N, consider
all probabilities

1
‘uzﬁ Z 6w,-

1<i<N

where the w;’s are drawn from Q allowing repetitions. By
elementary combinatorics there are

. (N+K-1\ T(N+K)
N _< K—1 )_F(N+1)F(K)

such probabilities.*
Accordingly, define

1
Uy[N] := N Y, &y,
L1<i<N*
where the p;s range over these us. U [N] then converges
weakly to Us.
Next, consider the probabilities
1
nu = ]v Z 6W,‘

1<i<N

where the w;s are drawn from Q, allowing repetitions, but
also for which the number of w;s among T is at least | Ng|

4. T'(+) is the gamma function. For M a nonnegative integer, (M + 1) =

The Search for a Search

If we let Oy denote the set of all such finitely supported
probabilities that assign probability at least § to T, and if
we let

a(N) =N = [Ng) — (1= )N,

then by elementary combinatorics Qy has the following
cardinality.

W IN—j+pK—1\ (j+(1—p)K—1
lQNl:,Za( PK—1 >< (1-p)K—1 )'(25)

Because we assume Eq. (18), this gives
qWN) /-
_ J+K-2
=1 ('K557)

It follows that

. . |owl
P2~—U2(T2)—A1,133° N

av) . o
= lim Jgo (J;Iizz)

. (26)

This last limit simplifies. Note first that

N+K—1\  NE~'4 (lower order terms in N)
K—-1 ) I'(K)

Thus
N+K—1 NK-T
— .
K—-1 N—e T'(K)
Similarly, note that
JtHK=2\
K-2 )

Since

.27

j%=2 + (lower order terms in j)
I'K+1)

M Mn+l
Z jt= + ( lower order terms in M),
=0 n+1

. (28)

we can write

qln] <j+K—2) (LN k=2

“\ k-2

Now  T(K) @9)

Substituting Egs. (17) and (18) into Eq. (26) gives

pzm(l—q)"—l. Y < 10)}

The endogenous information for the search for the
search

M!. We use I'(-) rather than the factorial because we do not distinguish Igz =—In D2 . (31

between integer and real arguments in our treatment. More rigourously,

the beta function [30], is then

Lo L, TWIR) A
)=/ 0= ldr = Io, = —(K—1)In(1 —g). . (32
Bl = [ =) ey 0, =—(K—1)In(1-4) (32)

takes on the role of the binomial coefficient for noninteger arguments.
Vol.14 No.5, 2010 Journal of Advanced Computational Intelligence 483

and Intelligent Informatics



Dembski, W. A. and Marks II, R. J.

by

o= q

\ i

(o)1
Fig. 5. A three dimensional simplex in {®;,@,,3}. The
numerical values of ay, a; and a3 are one.

Assuming Eq. (17) requires that In(1 — §) A—0> —¢ and,
q—
using Eq. (18)
1
K-—1——>—.
p—0 p

Therefore Eq. (32) becomes

=t

AN

Ig, ~

C.2. Geometric Approach

Define the set of all possible probability density func-
tions on £ as

pdf(Q) = {f (n)

1<n<1<,ff(n):1}.
n=1

The set pdf(Q) lies on a simplex. To illustrate, the sim-
plex equilateral triangle (a,az,a3) is shown in Fig. 5 for
K = 3 in the coordinate system {@;, @, ®3}. We choose
a point on the simplex at random assuming a uniform dis-
tribution. Then

Pr[g > q] =Pr[f(0) > q].

This is equivalent in Fig. S to choosing a point on the
triangle (aj,b;,b;). The ratio the area of this smaller tri-
angle to the area of the simplex triangle is the probability
a successful pdf will be chosen. The two triangles are
congruent. In higher dimensions, the success area will
be congruent with the simplex. The ratio scales with the
dimension, so

pp=Prlg>4=01-9%t. .. ... .33

This is equivalent to Eq. (30), from which the rest of the
derivation follows.

484 Journal of Advanced Computational Intelligence

Appendix D. Proof of the General Vertical No
Free Lunch Theorem

Proof of Theorem 4.3.

The preamble to this proof is identical to the develop-
ment in Appendix C.1 up to Eq. (25), from which point
we continue. For pK > 1, it follows that

p2:=Up(D2) = lim |%Z|
alN) 4
N—j+pK—1y (j+(1-p)K—1
L (ERSY
= lim == Ty .34
N k1)

Similarly, note that
<N —j+pK— 1>
pK—1
(N — j)PK=1  (lower order terms in N — j)
- I'(pK)

and that

()

B JUI=PK)=1 4 (Jower order terms in j)
I'((1-p)K)

so that

N—j+pK—1 (N—j)pE!
pK—1 N—w  ['(pK)

and

Jt(=pK-1 jlrEt
(1-p)K—1 N—o [((1—-p)K)’
Using this and the denominator simplification in Eq. (27),
we find that Eq. (34) becomes

K (1—‘?)1\/1 ] pK-1 ] I((1-p)K)
ri () L w(7) ()

J

This last limit becomes the cumulative beta distribu-
tion [30]:

(5

We now apply Stirling’s exact formula to calculate the
factor in front of the integral in Eq. (35). According to
Stirling’s exact formula, for every positive integer 7,

1/2 - 1/2 ,—n+1/(12
V2an e < nl < 2mn /21 /(020

which implies that there is a function €(n) satisfying 0 <
€(n) < 1 such that [31]

n+l/2efn+8(n)/(l2n) ]

1—0
/ qt(l—p)K—l(l — )P g, . (35)

0

n!=+v2nn

Since I'(n+ 1) = n!, it now follows for all K that
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<K> - r(K)
pk)  T(pK)I'((1-p)K)
L(K+1) (1-p)pK*
CT(1-pK)T(pK+1) K

=p(l-p)K
V2T KKH1/20-K+e(K)/(12K)

V271 (pK)PK+1/2¢—PK+e(pK)/(12pK)

J1=P)K—e((1-p)K)/(12(1-p)K)
X
/Zﬂ((l—p>K)(l_p)K+l/2
PA=p)K (1 a-p K
e(K) e(pK) - p)K)
XexP(lzK 129K 12 1—p)1<
M. 5. P
= 21 er ( p)

—-K

< ValT=pE- (11 *p)“,,,)p,,)

Moreover, the integral in Eq. (35) can be bounded for
large K.

/lqt(lp)Kl(l _ 1)Kl
0

< (1—g)(1—g)-PK-1grk=t
= (1-g) g

How large does K have to be for this last inequality
to hold? Consider the function /(1 —1¢)". Fort =0 as
well as for r+ = 1, this function is 0. Elsewhere on the
unit interval it is strictly positive. From 0 onwards, the
function is therefore monotonically increasing to a certain
point. Up to what point? To the point where the deriva-
tive of (1 —1¢)", namely mt" 1 (1 —¢)" —nt" (1 —1)" 1 =
"Y1 — )" '[m(1 —t) — nt], equals 0. And this oc-
curs when the expression in brackets equals 0, which is
when t =m/(m+n). Thus, letting m = (1 — p)K — 1 and

n = pK — 1, the integrand in the preceding integral in-
creases from 0O to
1-p)K—1 K 1
d-p) = (1=p)— -
(K—2) K-2 K-2

Since p < ¢ and therefore 1 — p > 1 — g, elementary ma-
nipulations show that this cutoff is at least 1 —§ whenever

K> 24’?__[)1 , % since then the right
side is negative. Thus, if
24— 1
k>4 . (36)
g—rp

when integrated over the interval [0, 1 — ], the integrand
reaches its maximum at 1 — §. That maximum times the
length of the interval of integration therefore provides an
upper bound for the integral, which justifies the preceding

Vol.14 No.5, 2010

The Search for a Search

inequality.
It now follows that for large K obeying Eq. (36), we

have

1—q

pr= (i)/ (PEL( _yPKlge o (37)
P JO

(1= p)K (1= p)=7)p7) -

— (1;2 )K ((1 )(lfp)pp)_K
x((1—¢g)Plgrk

6]

IR [ (1) ]

Applying the endogenous information in Eq. (31) to the
inequality in Eq. (38) gives Eq. (23) and the proof is com-
plete.

Appendix E. Proof that the Strict Vertical NFL
is a Special Case of the General

Proof of Theorem 4.3.
When Eq. (17) is true, we will first show that

D
(rllq) ol
p p<gkl

. (38)

Since In(1 —¢) — —t, Eq. (24) becomes
%

D(pllg) —— (1

— —p)—pls.

o p)(@—p)—pls

Since | —p —— 1 and ¢ — p — ¢, the pl; term is
p<l p<yq

dwarfed and we have

D(pllqg) — q.
p<gkl

and

D(pllq) q_ i

p p<gkl p

which is the result of the strict vertical NFLT in Eq. (19).

)
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