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Evaluation of Harmonic Coupling Weights in
Nonlinear Periodicity Preservation Systems
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Abstract—When stimulated by a periodic stimulus, every com-
ponent of a possibly nonlinear periodicity preservation system os-
cillates periodically with the same period as the stimulus. Changes
in the harmonic structure of the the stimulus couples each input
harmonic to, in general, every response harmonic. Knowledge of
harmonic coupling weights (HCWs) allows model free character-
ization of effects of all small stimulus perturbation. This paper
develops foundational methodology for experimentally measuring
the HCWs. The on-frequency method uses small tickle tones at
harmonic frequencies to do this. The off-frequency method places
tickle tones adjacent to harmonic frequencies and is applicable to
PP systems that are locally frequency invariant. Memoryless non-
linear PP systems are an example where the approach works ex-
actly. The off-frequency method also requires fewer experiments.
In some cases, the off-frequency method can be extended to mea-
sure numerous HCWs in a single experiment. Some system types
such as the memoryless nonlinearity, require fewer experiments
than general PP systems. Methods to experimentally measure the
Hessian are also presented.

Index Terms—Affine approximation, efficient, harmonic cou-
pling, harmonics, nonlinear systems, power amplifier.

I. INTRODUCTION

FFINE approximations to nonlinearities have found re-

cent popularity as amplifiers are are being driven into
nonlinear operation to achieve greater efficiency. Of specific
interest in coupling among harmonics imposed by the pertur-
bations around nonlinearities [1]-[24]. In previous papers [3],
we have outlined the affine approximation and the relationships
among time, frequency, and mixed time frequency characteriza-
tions of affine approximations of nonlinear periodicity preserva-
tion (PP) systems. The methodology, developed for single port
networks, was shown to be generalizable to multiport systems.
In this paper, we examine experimental procedures to measure
harmonic coupling weights in a PP nonlinear system around an
operating point. These weights are conventional phasors that
contain the relationship between stimulus and response ampli-
tudes albeit at generally different harmonics.
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In this paper we show the following.

1. The harmonic coupling weights (HCWs), equal to the
Fourier series Jacobian of the nonlinear transformation
about the operating point, can be determined from the
response of the PP system to small amplitude complex
sinusoid tickle tones.

2. Real sine and cosine tickle tones can also be used to exper-
imentally to find the HCWs by superimposing the results
of two experiments. The procedure requires calculating the
perturbation differences in the stimulus and response.

3. When the PP system is a memoryless nonlinearity, a single
set of coupling coefficients is required. Other HCWs are
shifted versions. The response perturbation is determined
by a discrete convolution of Fourier coefficients [3].

4. When the PP system is locally frequency invariant and
there is no cross harmonic interference, an off-frequency
experiment allows placement of the tickle tones adjacent
rather than at the harmonic frequency. The amplitudes
can be measured directly rather than as the difference
between the original and perturbed response at a harmonic
frequency. A single off-frequency experiment replaces the
two required on-frequency experiments (sine and cosine).

5. More generally, tickle tones can be frequency multiplexed.
Under local frequency invariance constraints and no cross
coupling, a generalization of the off-frequency method al-
lows experimental measurement of numerous HCWs in a
single experiment.

6. All memoryless nonlinearities are globally frequency
invariant and display no cross harmonic coupling or
interference.

7. The tickle tone approach can be extended to measure
higher order derivative measures such as the second order
Hessian.

II. BACKGROUND

Let Z denote a nonlinear operator and

o(t) = Z{i(1)}. 1)

The signal i(t) is the stimulus and »(#) the response. The
affine approximation for a small stimulus perturbation, Ai(%),
is [2], [3]

va(t) i= Z{i(t) + Ai(D)} ~ o(t) + Av(t)  (2)
where
Av(t) = /_x gfg; Ai(r)dr 3)
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There are versions of (3) that use the Fourier transforms of the
stimulus and response [3]. For example,

Qv (1)
J . 91)

Awv(t) = Al (v)dv 4

where the Fourier transform of 4 (7) is

I(v)y= / i(t)e 2T dr (%)
and

8’1)(t) _ e 6?)(75) J2nvT

o)~ ) a9 ©)

The periodicity preservation (PP) class of nonlinear systems
[3] has the property that periodic stimulation will result in a pe-
riodic response with the same period, 7' and fundamental fre-
quency f = 1/T. Temporally, the PP system is represented by
the operator Z with the constraint that the stimulus and response
in (1) are zero outside of a period, say the interval 0 < ¢ < T'.
Each defines a single period of a periodic function. For example
a periodic signal ©(¢) can be defined by replication of a single
period.

oC

> w(t—nT). (7)

p=-oc

(L) =

Since Ai(#) is nonzero only over 0 < ¢ < T, (3) becomes

Au(t) = '/0- g;}((g Ai(T)dr (8)

Let theAvector 2, denote the Fourier coefficients of the periodic
signal [(7) = 372 i(T —nT). That is

1t :
im:TAi&Mﬂmﬁm ©)

and the Fourier series [26] is

oC

Z ,L-me]'Q‘n'mf-rHT(T)

m=—0C

i) = (10)

where TI7(¢) is one for 0 < ¢ < T and is otherwise zero. From
(9), the Fourier coefficients are seen to be samples of the Fourier
transform of a single period of /(¢) That is,

im = fI(mf).

where, since i(7) is identically zero outside of the interval 0 <
t < T, (5) can be written as

(11)

T A
am:/iwpﬂmwﬂ
0

Likewise, let v,, denote the Fourier coefficients of the peri-
odic signal #(¢). Then (8), expressed in terms of Fourier series
coefficients, is the harmonic cross coupling expression [3]

oc

Av, = Z

m=—00

v,

. Aim
Ol

(12)
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where Aw,, and Ad,, are the Fourier series coefficients of
Aw(t). The harmonic coupling weights (HCWs), dv,, [Dim,
measure the coupling strength between the mth stimulus har-
monic and the nth response harmonic. Only a finite number of
experiments can be performed and a finite number of HCWs
experimentally determined. Therefore, in lieu of (12), we
approximate the perturbation of Fourier series coefficients

[n| < N. (13)

Thus, with knowledge of the HCWs, the Fourier series coeffi-
cients of a response perturbation can be estimated for a small al-
beit arbitrary stimulus perturbation. In the sections to follow, we
illustrate a foundational methodology by which the harmonic
coupling weights of a model free PP system can be determined
experimentally.

IIT. MEASURING THE HARMONIC COUPLING WEIGHTS THE
ON-FREQUENCY METHOD

Consider the PP circuit in Fig. 1(a). The stimulus, with
Fourier coefficients i,,, give rise to a periodic response with
coefficients v,. In Fig. 1(b), the kth stimulus harmonic is
perturbed from ¢;, to one with Fourier coefficients ¢y, + Aiy.

Ai(t) = ¢ 22™F (14)
where ¢ is a small amplitude. The response to this small tickle
tone is a perturbation of v,, to an affine approximation of v,, +
Auw,,. The single frequency tickle tone in (14) is complex and
not realizable, but serves as a useful pedagogical introduction
to experimental determination of HCWs. The segue into the use
of real tickle tones follows smoothly.

The tickle tone in (14) has a single Fourier series coefficient,
ie.,

Ay, = € 8[m — k] (15)
where the Kronecker delta, §[£], is one for £ = 0 and is otherwise
zero. Substituting into (12), the response perturbation is

vy,
Oir

Av, =«

(16)

The output’s affine approximation follows as v,, + €dv,,/diy.
The HCWs, dv,, /91y, can therefore be measured for all n by
subtracting the Fourier series of the perturbed response from
the Fourier coefficients at the operating point, v,,, and dividing
by . All coupling weights from the kth input harmonic can be
thereby determined. The process is repeated for every stimulus
harmonic corresponding to different values of & and all HCWs
are found. The result can then be used to estimate the response
to any small stimulus perturbation around the operating point.

Since the tickle tone is applied directly on the harmonic, this
approach and those similar are appropriately dubbed on-fre-
quency methods.
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Fig. 1. Ilustration of the two methodologies for measuring the harmonic coupling weights. (a) The operating point mapping input Fourier coefficients, 7, to
the output, v.,. (b) For the on-frequency approach, a tickle tone, & /2" is added onto the 72th harmonic. The increments at the nth output harmonic are
approximations of (3., /3., ). (c) For the off-frequency approach, a tickle tone £ 7270 f+25)t i added a frequency interval Ay from the mth harmonic. If

the frequency invariant property holds, the terms a frequency interval A f from the nth output harmonic are now approximations of (v, /Di.., ).

A. Experiments Using Real Signals

The analysis in the previous section requires stimulus of the
PP system with complex sinusoids in (14). Using real signals,
the HCWs dw,, /iy and dv,, /i _; can be found from two ex-
periments using two real tickle tone perturbations.

The first perturbation of the input’s kth harmonic uses the
stimulus

Li(t) = 2e cos(2xk ft) 17
and the second uses the quadrature signal
wi(t) = 2esin 27k ft). (18)

The Fourier series coefficients for these signals are, respectively,

Afiy =e(8[m — k] + 6[m + k])

and

Al = — je(6[m — k] — 6[m + k]).
The affine approximations of the system response from (12)
follow as
v, Juy,
% n = — Y] 5 19
kY €<dlk +dl_k>/ ( )
and
v v
Afv, = —je [ — — —= ). 20
kU JE (0%1«, 01k> (20)

These two values are measured experimentally. From the two
measurements, we evaluate the HCWs

ou,, 1 . s
i, =~ 2z (BkUn +JALn) @1
and
v, 1 .. s
i g = % (Ak,l)’n - ./]Ak-,vn) . 22)

Measurements are repeated for all desired input harmonics cor-
responding to any values of £ and positive 7.

B. Harmonic Coupling for Harmonics With Negative Index

For negative n, note that, for real signals, ¢_; = i}, and
duy, vy,

Oi_p, oy

Likewise, for real v(#), v_,, = v} so that

[ Ov, * | Ov, -
C\9ir ) \9i)
Therefore, negative indices on the output Fourier coefficients

can be evaluated by conjugating the HCWs measured in (21)
and (22) [3].!

du_,, av,
iy, Oty

IAs we have previously noted [3], the use of Wirtinger calculus expressions
as used, for example, in X parameters, is not necessitated.
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Fig. 2. The on-frequency appoximation using, as an input operating point, a
unit amplitude cosine with period 7 = 1. The PP system is a memoryless
nonlinear sigmoid given by (27). A value of ¥ = 0.4 is used. The effect, as
shown in (a), is to flatten the cosine. From this information, the harmonic cou-
pling weights are estimated using the on-frequency method with ¢ = 0.01.
Twenty positive frequency harmonics are used. The matrix of harmonic cou-
pling weights is therefore 41 x 41 (Thus, with reference to (13), N = M = 20)
A triangular wave perturbation is applied as shown in (a). The preturbation
ranges between a minimum of zero and maximum of 0.2. The true PP system
output for the perturbed cosinusoid is shown in (b) using a dashed line. The
output computed using the harmonic coupling affine approximation is shown
by the solid line. Detail of the small shaded box in (b) is shown in (¢). The max-
imum absolute error [the magnitude of the difference between the two curves
in (b)] is shown in (d). The overall RMS error using the affine approximation is
0.0189.

C. Memoryless Nonlinearities

A memoryless nonlinearity is a special case of the PP system.
We now show that experiments for a single sine and cosine stim-
ulus suffice to completely specify all HCWs for a memoryless
nonlinearity. Let

o(t) = Z{i(t)} = g(i(t))

where ¢(i) is a memoryless nonlinearity. Using the expression
for the Fourier series coefficient of the response v(#) results in

(23)

1 g . - j2mwkut —j2mnut
Vp = T/o g k;wzkcj e’ dt
and differentiating gives
vy,
a. hnfm 24
airn ( )
where
1 e e —j2mwnvt
hy, = T g(i(t))e ™ dt. (25)

Then the HCW series in (12) becomes a discrete convolution.
Avn = Z hnfmA/I.’m = hn * A/I.fn (26)

m=—0C

where the asterisk denotes convolution. This is good news.
Since the HCWs, dwv,,/di,,, are a function of n — m, the
expression in (24) reveals the HCW matrix for memoryless
nonlinearities is Toeplitz and knowledge of one row suffices to
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define the entire matrix. Thus, only two single on-frequency
measurements, one for sine and one for cosine, are required to
define all HCWs from h,,.

1) Example 1: Sigmoid Nonlinearity: Let the PP system be
characterized by a sigmoid parameterized by a positive number
4.

. 14e?
g(i) =

T Tre @7

For a cosine input, as illustrated in Fig. 2(a), the effect is a flat-
tening of the cosine curve. The cosine, which is the input oper-
ating point, is perturbed by the small triangular wave shown in
Fig. 2(a). The true perturbed output (continuous line) is favor-
ably compared to the output estimated using HCW’s (dashed
line) in Fig. 2(b). Detail of the small shaded box in Fig. 2(b) is
shown in Fig. 2(c). The absolute error between the actual output
and the approximation is in Fig. 2(d). Further details are given
in the caption of Fig. 2.

2) Example 2: Polynomial Nonlinearities: Polynomial non-
linearities, a special case of the memoryless nonlinearity in (23),
have HCWs that can be characterized analytically. Define the
Pth order polynomial

r
g(i) = > oyi” (28)
p=0
where the «v,’s are real coefficients. Thus,
r
o(t) = gli(t) = 3 (1)
p=0
and, for small input perturbations,
P
g (i (1) + A (1) = 3 o (i (1) + Ai (1))
p=0
P
A Y ay (P (1) +pi () Ai(1))
p=0
=u(t)+ Av(t) (29)

where we have discarded (Ai(#))” terms when p > 2. The
approximation to the output perturbation follows as

P
Av(t) = oppi? (1) Ai(t). (30)
p=0

In terms of Fourier series coefficients, an equivalent statement
is

P
Avy = aypil? D % A (31)
p=0
where the asterisk denotes discrete convolution and 22 denotes

the p fold autoconvolution of the Fourier series coefficients of
i(t). This is a special case of the convolution in (26) with

P
by =Y oppi? 1 (32)
p=0
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Fig. 3. Illustration of the off-frequency method of determining harmonic cou-
pling weights for a PP system. On top is the spectrum of the stimulus, #(7) and
the spectrum of the response, »(t), is on the bottom. Both signals are periodic
with period T' = 1/f and therefore have their harmonics at integer values of
f. Atickle tone, A7 (1) = 2zcos(2x (mf + Af) 1), is added and appears in
the stimulus spectrum with weight & at the two frequencies &+ (m f + Af). If
the PP system, Z, obeys the harmonic noninterference and frequency invariant
constraints, the harmonic coupling weights, s(dv,, /., ) and &(dv,, [Oi_ )
can be read at the output at frequencies nf + Af and nf — Af for all values
of n.

This example will be continued in the description of the off-fre-
quency method of finding the affine approximation for purposes
of illustrating frequency invariance.

IV. THE OFF-FREQUENCY METHOD

Finding the HCWs by placing the tickle tone a bit off-fre-
quency is dubbed, appropriately, the off-frequency method.
Then, as shown in Fig. 3(c), the responses to determine the
HCWs are likewise displaced in frequency. When a real co-
sine tickle tone is used, there is an additional advantage to
the off-frequency approach. A single experiment suffices to
determine all of the parameters for a specified input harmonic
whereas the on-frequency method requires two.

The off-frequency method works with locally frequency-in-
variant PP systems. If a system is frequency-invariant [27]-[31],
then for all real values of «,

AV (u)
ol (v)

_OV(u—a)
Oy —a)’ (33)

A system is locally frequency-invariant if (33) is approximately
true for small frequency shifts in the neighborhood about &« = 0.
Let a tickle tone be applied at 8 Hertz.
Ai (1) = e g (7).

Then (3) becomes

T .
. _ du (t) j2n BT
Av(t) = 5. L 9ir) dr (34)
From (6), this can be written as
Av(t)y=¢ Ov (1) (35)

a1 ()
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Fourier transforming both sides gives [3]

oV (v)

AV (u) = EHI([?)

(36)

Since, from (11), sampling the frequency domain gives Fourier
series coefficients, we have, foru = nf and § = mnf.
OV (nf)

AV (nf) = 678I(mf) =

ou,,
&
Dl

(37

This is an alternate description of the on-frequency method.
If the tickle tone, however, is moved to frequency § = m f +
Af, the tickle tone becomes

Ai(r) = eed TR (1) (38)

and attention is focused on the response frequencies v = nf +
A f. Then the off-frequency method assumes

oV(nf+Af) ~ oV(nf)
I (mf+Af) " S (mf)
_ Ouy
~ i,

AViinf+Af)=¢

(39

This is true when the PP system is locally frequency-invariant.
Alternately, a tickle tone can be placed slightly below a har-
monic frequency. If

Ai(7) = ee??FF=ADTIT L (1)

then, following the same reasoning, we measure the HCWs at
frequencies translated A f above each harmonic.

ovV(nf—-Af) ~ oV(nf)
oI (kf —Af) ~ S9I(kf)
oy,

=<o (40)

AViinf —Af)=¢

Likewise, the HCWs corresponding to input Fourier series co-
efficients with negative indices can be measured at intervals A f

below each harmonic frequency. Specifically, if K = —m, then
, IV inf—Af) oV (nf)
AV —Af)y= : ~ :
(nf = Af) =e57 Cmf—Af) S0l (—mf)
dvy,
= ' 41
: 6/1;7777, ( )

Implementing the off-frequency technique is illustrated in
Fig. 3.

Theorem: Memoryless nonlinearities are frequency invariant
in the sense of (33). Thus, for such systems, (39) is exact, i.e.,

vy,
di'rn

AV(nf+Af)y=¢ (42)
Thus, for memoryless nonlinearities, the off-frequency ap-
proach gives the same answer as the on-frequency method.
Likewise, the approximations in (40) and (41) are replaced with
equalities.

The proof is in Appendix A.
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Fig. 4. A simulation illustration the off-frequency method of finding harmonic coupling weights. A period of the stimulus, i(7) = sin{x cos(2x 7)) where

f = 50/4000, is shown in (a) with the tickle tone 2¢ cos(2x(f + Af)7) where Af =

774000 and ¢ = 0.10. The sum of the two signals is shown in (a)

with the dark bold line. The magnitude of the Fourier transform (spectrum) of this signal, shown in (b), is graphically indistinguishable from the spectrum of ()
except for the tickle tones with weight appearing at £( f + A f). (The signal #(7) has only odd harmonics.) Shown in (c) with the light dashed line is the response

v(t) = g1
of the spectra of v(¢) and va

(i(t)) = tanh(3i(¢)). The solid line is the response to the perturbation which is a(t) = tanh(3(i(t) + 25 cos(2x(f + Af)t))). The magnitude
(¢), shown in (d), are again graphically indistinguishable except for the small terms at £A § from each harmonic. The amplitude of

these terms are mined to (for positive frequencies) to obtain the harmonic coupling weights about the operating points of 7(7) and ©().

A. Using Real Tickle Tones

When real tickle tones are used, the input has stimulus fre-
quencies at the two harmonic numbers +m. For the on-fre-
quency approach, the frequencies are at v = +m f. The output
partials are estimating by examining the perturbations at
n f forn > 0. For the off-frequency method, the stimulus is ap-
plied at the two frequencies v = £(m f + Af) and the outputs
are examined at u = nf + A f for nonnegative n.

In lieu of the two tickle tones in (17) and (18), we now use a
single off-frequency tickle tone

wi(r) =2ecos 2n (mf 4+ Af)T)
—¢ ( )27r(mf+Af)‘r e*j?ﬂ'(k’Tﬂ—i-Af)’T) (43)

Besides frequency invariance, an additional harmonic noninter-
ference constraint is now required. Specifically, consider the re-
sponse to two perturbations

vea ()= 2 (z (r) + 5eij2”(mf+Af)T> .

The constraint requires

Vea (nf — Af) =V (nf — Af)

and

Via(nf+ Ay =V (nf+Af).

In other words, the input perturbation of ee/27(m/+ A7 hag no
effect on the response spectrum at the frequencies u = nf — A f
and ee—927(m/+ANT hag no effect at u = nf + Af. Then the
following harmonic coupling weights can thus be read directly
from the spectrum. Specifically, we read

v,
58,—n at frequency u =nf + Af

ZTT‘L

and
du_

I ‘T

£

" at frequency u =nf — Af.

The off-frequency technique has the advantage of determining
both the harmonic coupling weights dv,, /di,, and dv_,, /Di,,
with a single experiment.

This is further illustrated in Fig. 3.

A simulation illustration using a hyperbolic tangent to model
an amplifier with saturation is shown in Fig. 4. Details are in the
caption.

1) Off-Frequency Method for Polynomial PP Systems: We
illustrate the off-frequency method for cases where the PP oper-
ator can be described by a polynomial in (28). Such systems, we
show, strictly adhere to the harmonic noninterference constraint.

We perturb the system with an mth order harmonic tickle tone
Ai(t) at a frequency offset of A f Using a binomial expansion
about an operating point i(t) gives

va ( Zap t) + 2ecos (27 (mf + Af)t))"
()+AU() (43a)
We show in Appendix B that
. i Oun, pi2m(nf+A L)
n=—oc d?’l’n
+e i vy, T i2w(nf-Af) (44)
e o0 aifm

Therefore, from the single off-frequency experiment using a
single cosine tickle tone, both dv,,/di,, and duv,/di_,, can
be measured. For the on-frequency technique, two experiments
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Fig. 5.

Ilustration of simultaneous multiplexed off-frequency measurement of numerous harmonic coupling weights. As is shown in the top figure, the stimulus,

i(t) has cosinusoid tickle tones applied at frequencies m(f + Af) there I' = 1/ f is the period of the periodic signals ¢(t) and v(t). In this example, all of the

amplitudes are &

were needed: one for a cosine tickle tone and another with a
sine.

V. MULTIPLEXING OFF-FREQUENCY MEASUREMENTS

‘Within the limitations of the model, numerous harmonic cou-
pling weights can be measured simultaneously in a single mea-
surement. Specifically, for some range of n and m, a single ex-
periment suffices to measure O, /01y, and S, [ Oi_y,.

Let

in () =di(r)+ Ai(r)

where i(¢) has a Fourier series in (10). The perturbation, A¢(r)
is assumed to be a trigonometric polynomial [26] with funda-
mental frequency f + Af,ie.,

Z AI /27rm(f+Af)T (45)

m=—M

where M is the number of harmonic coupling weights to be
measured. For the special case where all of the perturbations
are the same, i.c., Ai,, = &, (45) becomes the superposition of
tickle tones

M
Ai(r) =¢ Z ed2mm(f+Af)T
m=—M

= (2M + 1) arraysp, o ((f + Af)7) (46)

. If the PP system conforms to frequency invariant and cross interference constraints, then numerous harmonic coupling weights can be measured
from the response as shown in the bottom figure. At frequencies u = nf £ mA f we measure £(dv,, /i, )

. A simulation is shown in Fig. 6.

where the array function is defined by [26]

sin (mKwv)

array e (7) = K sin(mo)

As M — oc, (2M + 1)array,,,,.1(7) approaches a string of
Dirac deltas [26].
Our goal is to use i (%) to determine

ou,,

i, and

for0 < m < M.

Vi

When Ai(7) is real, Ai_,, = Aé¥,. We assume all of the fre-
quency components, as illustrated in Figs. 5 and 6, obey not
only the frequency noninterference constraint, but a cross fre-
quency noninterference constraint, e.g., the tickle tone compo-
nents at, say, m = 2, are assumed to not effect the response
perturbation for m = 1 When this constraint is satisfied and
the frequency invariant property is sufficiently present, then the
stimulus component at v = m(f + A f) with weight A4,,, man-
ifests itself at the response frequencies v = nf + mA f with
amplitude Ad,, (dv,, /i,y ). Likewise, the Ai_,,, = A, stim-
ulus terms v = m(f — A f) appear in the response with weight
Ai_ (00, /0i_y,) at frequencies u nf — mAf. Thus, a
single experiment suffices to measure numerous harmonic cou-
pling weights.

A. Polynomials

The multiplexing off-frequency approach can be derived an-
alytically for memoryless polynomials in (28) and shown to be
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Fig. 6. A simulation demonstrating the multiplexing tickle tones illustrated in Fig. 5. The input operating point is é(t) = cos(2x ft) where f = 50. The input
is subjected to a nonlinearity, g (¢) = tanh (3¢). Two tickle tones are added to the input equal to Aé(t) = 25 cos(2a(f + Af)t) + 22 cos(dn(f + Af)t)

where Af = 7 and 2¢ = 0.0250. The signal i (t) = i(t) + Ai(t) fort = 1

: 4000 is passed through the nonlinearity to give the output, va (t) = g (i(¢)).

The magnitude of the Fourier transform (DFT) of the output, |Va () |, is shown above. The three plots shown are of the same function, albeit over different
ranges. Some harmonic coupling weights are labeled in the middle plot. Note also that the Toeplitz nature of the HCWs is illustrated in this simulation. Since
2 —(=2) =6 — 2, the HCWs duvy /i _y and Dug/Oi- are the same in accordance to (24). Likewise, dvs /di_1 and vy /iy are the same.

exact.2For the polynomial in (28) we obtain the perturbed re-
sponse linearity in (30). In Appendix C, we show the weight of
the spectrum of Aw(¢) at frequency nf + mA f due the pertur-
bation in (45) is

P ,
. (p—1)" A - Ov
AV, Z P (xpzflpfn? Ai, = P =

p=0

Adpy, 47)

Since Ad,, can be measured from the tickle signal, a number
of harmonic coupling weights can be generated from a single
measurement. For polynomial nonlinearities, the multiplexing
off-frequency approach is mathematically exact.

VI. ESTIMATION OF THE HESSIAN

The accuracy of HCW’s in assessing PP systems has been
perfomed on a number of test cases [33]. A overarching the-
oretical measure of the extent to which the HCW approxima-
tion is accurate can be estimated by deviation from a second
order fit at the operating point. Alternately, a Taylor series with
asecond order term will be more accurate than an affine approxi-
mation. Without elaboration, we note that higher order terms can
be experimentally estimated generalizing the technique used for
finding harmonic coupling coefficients.

While the harmonic coupling coefficients represent the Jaco-
bian of the Z operator, the second order measure is the Hessian
with elements

8%,
Digiy,
This can be estimated by placing stimulus tickle tones simul-
taneously at frequencies v = £f and ¥ = m f and measuring

the perturbations at response frequencies v = n f. Extentions to
use of real tickle tones and off-frequency methods are possible.

2In practice, doing so is unnecessary because, for memoryless nonlinearities,
a single set of measurements is needed to specify the defining function in (24).

When ¢ = m the second order Hessian can be estimated from
the difference between first order Jacobian derivatives using
tickle tones with amplitudes ¢ and —e. Estimation of higher
order derivatives becomes more susceptable to measurement
uncertainty [26], [34].

VII. CONCLUSIONS

The impulse response of of an LTI system totally charac-
terizes the system. The response to any stimuli can be found
through a convolution of the impulse response with the stimulus
signal. Likewise, the harmonic coupling weights (HCWs) of a
PP system characterizes response to any small variation about a
fixed point. The HWCs can be measured experimentally using
either on-frequency or off-frequency methods.

APPENDIX

Proof of (42) for Memoryless Nonlinearities: Using in-
verse Fourier transforms, the nonlinearity in (23) can be written
as

Viiu) = /OO g (i (t))e 92t

— 00

= / g (/ I(w)eﬂ”wtdw> e Irmut gy

so that
av(“’) _ > e = 0[(’11)) j2rwt g, —J2mut
o) ./_mg G (/oo o1 M)

— / g(i(t))caﬂvr(ufy)tdt
Let G4y (u) be the Fourier transform of g(é(#)). Then

IV (u)

oI(v)

IV (u — «)

=Gy (v —u) = O —a)
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for any «. Therefore, when a PP system is a memoryless non-
linearity, (39) is true with no approximations

IV (nf + Af)

Vinf+ AN =e5rmisan
B (’)V(nf) 0'Un
d[(m f) alm

Q.E.D.
Proof of (44): From (43) we apply a binomial expansion

valt) = Z ap Z (p) (2¢)? (cos (2w (m f
+Af)E)) P (t).

If < 1, we can discard terms containing 2 or higher. The
result is the affine approximation

)+ 2pei 1 () cos (21 (mf + Af) 1))

~ 0

p=0
=v () + Av(t)

where
P

Av () =2¢ Z payi (t) cos (2 (mf + Af)t)

p=0

Then using Euler’s identity and the Fourier series expansion of
P (),

o)

P
t)=¢ ZP oy, Z i,(lpfl)* gl2raft
p=0

g=—o0c
> (ejQTr(rnf+Af)t +67j27r(mf+Af)t)

20

r
zgzp% Z i) 2 (atm) [+ A

g=—0C
+ 3 im0 anammr-an:

g=—o0

Substitute » = ¢ + m in the first sum over ¢ and, in the second,
n = g — m. Interchanging sums gives

1 72w (n
aoi=2 Y (et ) emerson
n=-oco \p=0
te Z ZPO‘P (p— 1) pI2m(nf—Af)t

Thus, from (24) and (32), we obtain (44).
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The value of du,, /i, can thus be determined at by mea-
suring the value at frequency nf + Af. Likewise, at the fre-
quency nf — Af we can measure dv,, /i, .

r 20 M

Zp ay Z Z‘Igp—l)*ej%rk:ft Z AimchTrm(erAf)t

p=0 k=—oc m=—AM

Proofof (47): Substituting the off-frequency Fourier series
in (45) into (30) gives

P oo M
Aov(t)= Zp p Z i;fﬁl) eI 2k ft Z Ay e? 2 (f A1)
p:O k=—o0 m=—M
M .
_ Zp a, Z Ai,, Z (p—1) (7]277((m+k)f+mAf)t
p=0 m=—M k=—o0

Substituting n = k + m in the & sum gives

oG M
Ap—1)" o - : ) i
Au(l E Dy, E E sz)_m) Ai,, e 2T AT pi2rnft

p=0 n=—oc Lm=—M

M
— (p-1)~ 12w (nf+mAf)t .
- z : E : z :pn/P n—mm el (nf 2 AZTTL
m=—M Ln=—oc0 \p=0

The weights of this signal for exponential sinusoids at frequen-
ciesu = nf + mAf gives (47).
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