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Abstract—In their 2001 paper, Pötzsche, Siegmund and Wirth
gave necessary and sufficient conditions for an LTI system on
a time scale to have exponentially stable solutions based on
pole placement. We find simple conditions for the stability of
mu–varying scalar dynamic equations on time scales which
are stochastically generated. As a special case, we examine
the region in the complex plane which will guarantee the
exponential stability of solutions of LTI systems. Via a decay
analysis, we show how the tendency of the solution to grow or
decay at each time step is determined by the pole placement
within the region of exponential stability1.

I. FOUNDATIONS

A time scale, T, is any closed subset of the real line. We
restrict attention to causal, unbounded time scales [5]. The
forward jump operator [3], [7], σ(t), is defined as the point
immediately to the right of t, in the sense that σ(t) = inf{s ∈
T ∀ s > t}. The graininess is the distance between points
defined as µ(t) := σ(t)− t. For R, σ(t) = t and µ(t) = 0.

The time scale or Hilger derivative of a function x(t) on
T is defined as

x∆(t) :=
x(σ(t))− x(t)

µ(t)
. (I.1)

On R, this is interpreted in the limiting case and x∆(t) =
d
dtx(t). The Hilger integral can be viewed as the antideriva-
tive in the sense that, if y(t) = x∆(t), then for s, t ∈ T,∫ t

τ=s

y(τ)∆τ = x(t)− x(s).

The solution to the differential equation

x∆(t) = zx(t); x(0) = 1,

is x(t) = ez(t, 0) where [3], [7]

ez(t, s) := exp

(∫ t

τ=s

Log(1 + µ(τ)z)

µ(τ)
∆τ

)
.

For each t ∈ T, define the Hilger Circle by

Hµ(t) = {z ∈ C||1 + zµ(t)| < 1, z 6= −1/µ(t)}

1This work was supported in part by the National Science Foundation,
CMMI-726996

Note that Hµ(t) is a disc of radius 1/µ(t) contained in the
left half–plane tangent to the imaginary axis.

For an introduction to time scales, there is an online
tutorial [7] or, for a more thorough treatment, see the text
by Bohner and Peterson [3].

II. DEFINITIONS AND PRELIMINARY WORK

Definition II.1. Let t0 ∈ R and {Mi}∞i=0 be a sequence of
random variables with range (0,∞). A stochastic time scale
with initial time t0 generated by {Mi}∞i=0 is the random set

T̃ = {t0} ∪ {t0 +

n∑
i=0

Mi|n ∈ N0}

Note that a realization of the random set T̃ will yield a
time scale as it will be a set of isolated points, and hence
closed in the subspace topology on R.

Definition II.2. Let T̃ be a stochastically generated time
scale with initial time t0 generated by {Mi}∞i=0 and let
λ : [0,∞)→ C. Let Ti = t0 +

∑i−1
i=0 Mi. We say the random

sequence {x(Ti)}∞i=1, where x(Ti) satisfies

x(Ti) = (1 + λ(Mi−1)Mi−1)x(Ti−1) for some λ ∈ C,

is exponentially stable almost surely if and only if with
probability one there exists a constant α < 0 such that for
every Ti ∈ T̃ there exists a K = K(Ti) ≥ 1 with

|x(Tk)| ≤ Keα(Tk−Ti)

for k ≥ i.

Remark II.1. Note that on any realization T of a stochastic
time scale T̃, the realization of the sequence {x(Ti)}∞i=1

as in the above definition is the solution of the dynamic
equation x∆ = λ(µ(t))x on T. Using this fact, we will say
the dynamic equation

x∆ = λ(µ(t))x

is exponentially stable almost surely on T̃ if and only if the
random sequence {x(Ti)}∞i=1 is exponentially stable almost
surely.
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III. MAIN RESULT

Our main result requires a lemma, which is a modest
generalization of proposition 6 from Pötzsche et al. [6].

Lemma III.1. Let T be a time scale which is bounded above
and let λ : [0,∞)→ C. The scalar system

x∆ = λ(µ(t))x (III.1)

is exponentially stable if and only if one of the following
conditions is satisfied:
(i) lim supT→∞

1
T−t0

∫ T
t0

lims→µ(t)
ln |1+λ(s)s|

s ∆t < 0.
(ii) ∀ T ∈ T ∃ t ∈ T with t > T such that 1+µ(t)λ(µ(t)) =
0

Proof: Follow the proof of proposition 6 in Pötzsche et
al. [6]. No step in the proof relies explicitly on λ(µ(t)) being
a constant.

Theorem III.2. Let λ : [0, 1] → C and {Mi}∞i=0 be a
sequence of independent identically distributed nonnegative
random variables. Assume further that for all M ∈ {Mi}∞i=0

P [M = 0] = 0 and P [1 + λ(M)M = 0] = 0. Let T̃
be a stochastically generated time scale with initial time
t0 generated by {Mi}∞i=0. Let Ti = t0 +

∑i−1
i=0 Mi. Then

the scalar dynamic equation (III.1) is exponentially stable
almost surely on T if and only if for all M ∈ {Mi}∞i=0,
E[ln |1 + λ(M)M |] < 0.

Proof: “ ⇐′′ If E[ln |1 + λ(M)M |] < 0, then by the
strong law of large numbers,

lim sup
n→∞

∑n
i=0 ln |1 + λ(Mi)Mi|

n

= lim
n→∞

∑n
i=0 ln |1 + λ(Mi)Mi|

n
= E[ln |1 + λ(M)M |] < 0

almost surely. The above implies

lim sup
n→∞

n∑
i=0

ln |1 + λ(Mi)Mi| < 0

almost surely, or equivalently,

lim sup
n→∞

1

Tn − t0

n∑
i=0

ln |1 + λ(Mi)Mi|

= lim sup
n→∞

1

Tn − t0

∫ Tn

t0

ln |1 + λ(Mi)Mi|
Mi

∆t

< 0

almost surely. Thus by Lemma III.1, the dynamic equation
(III.1) is exponentially stable almost surely.

“ ⇒′′ We show the contrapositive. First note for all
t > t0, 1 + µ(t)λ(µ(t)) 6= 0 almost surely since
P [1 + λ(Mi)Mi = 0] = 0, i ∈ N0, thus the second
condition of Lemma III.1 does not hold.

If E[ln |1+λ(M)M |] ≥ 0, then by the strong law of large
numbers,

lim sup
n→∞

∑n
i=0 ln |1 + λ(Mi)Mi|

n

= lim
n→∞

∑n
i=0 ln |1 + λ(Mi)Mi|

n
= E[ln |1 + λ(M)M |] ≥ 0

almost surely. The above implies

lim sup
n→∞

n∑
i=0

ln |1 + λ(Mi)Mi| ≥ 0

almost surely, or equivalently,

lim sup
n→∞

1

Tn − t0

n∑
i=0

ln |1 + λ(Mi)Mi|

= lim sup
n→∞

1

Tn − t0

∫ Tn

t0

ln |1 + λ(Mi)Mi|
Mi

∆t

≥ 0 (III.2)

almost surely. Thus by Lemma III.1, the dynamic equation
(III.1) is not exponentially stable almost surely.

Remark III.3. If M is an a continuous random variable
which admits a probability density function f : D → [0,∞)
with support D, the condition E[ln |1 + λ(M)M |] < 0
becomes ∫

D

f(µ) ln |1 + λ(µ)µ|dµ < 0.

We note that the above gives an up or down test for whether
a given function λ makes (III.1) exponentially stable. The
function space of all such functions λ is quite complicated.
In fact, the space is not even linear. We can, however, study
certain classes of functions. Letting λ(µ(t)) = ezµ(t)−1

µ(t) , the
cylinder transformation, a particularly important function in
the study of time scales, we find

E[ln |1 + λ(M)M |] = E

[
ln

∣∣∣∣1 +
ezM − 1

M
M

∣∣∣∣]
= Re(z)E[M ] < 0

if and only if Re(z) < 0 and M has finite mean. This should
agree with our intuition, as the region of exponential stability
for the equation ẋ = zx on R is {z ∈ C|Re(z) < 0}.

Remark III.4. If M is a discrete random variable with
finitely many possible values µ1, µ2, . . . µn with a probability
mass function g : D → [0,∞), the condition E[ln |1 +
λM |] < 0 becomes

n∑
i=1

f(µi) ln |1 + λ(µi)µi| < 0,

or
n∏
i=1

|1 + λ(µi)µi|f(µi) < 1.
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Consider the special case where λ(µ) is constant, that is, we
have the equation

x∆ = λx. (III.3)

Then the above agrees with the result by Davis et al. in [4]
where the asymptotic weights dk = f(µk). We can view their
concept of asymptotic equivalence class as the set of all time
scales which are distributed the same in the tail.

Remark III.5. In the proof of proposition 6 of Pötzsche et
al. [6], a formula for a suitable α in the bounding exponential
function Ke−αt is given by, in our case,

α = − lim sup
n→∞

∑n
i=0 ln |1 + λ(Mi)Mi|

Tn − t0

= − lim sup
n→∞

n∑n−1
i=0 Mi

∑n
i=0 ln |1 + λ(Mi)Mi|

n

= −E[ln |1 + λ(M)M |]
E[M ]

> 0.

Remark III.6. We can view the solution of the deterministic
equation (III.1) on a stochastic time scale as the solution
of the stochastic equation xn+1 = (1 + λ(Mn)Mn)xn on
the deterministic time scale Z. The problem of stability
of stochastic systems has been studied in [1]. It is known
that the stochastic difference equation xn+1 = anxn, where
{an} is a sequence of ergodic scalar random variables is
exponentially stable almost surely if and only if E[an] < 0.
This result matches our result, as the sequence of random
variables {1 + λ(Mn)Mn} is a sequence of independent
random variables, and hence is a sequence of ergodic random
variables. The definition of exponential stability almost surely
for stochastic difference equations differs, however, from the
definition presented in this paper, which is the definition com-
monly used in the time scales literature. The two definitions
may or may not be equivalent.

Corollary III.7. Let {Mi}∞i=0 be states at step i of an
ergodic Markov chain with finitely many states µ1, µ2, . . . µn,
all of which are nonzero. Let λ ∈ C such that |1 +λµk| 6= 0
for 1 ≤ k ≤ n. Let T̃ be a stochastically generated time
scale with initial time t0 generated by {Mi}∞i=0. Define π
to be the unique stationary discrete distribution associated
with the Markov chain. Then the scalar dynamic equation
(III.3) is exponentially stable almost surely on T̃ if and only
if
∑n
i=1 π(µi) ln |1 + λµi| < 0.

Corollary III.8. Let {Mi}∞i=0 be a sequence of nonnegative
independent random variables and let T̃ be a stochasti-
cally generated time scale with initial time t0 generated by
{Mi}∞i=0. Assume, for λ : [0,∞)→ C,

∞∑
k=0

1

(k + 1)2
Var[ln |1 + λ(Mi)Mi|] <∞.

Assume further that P [Mi = 0] = 0 and P [1 + λ(Mi)Mi =
0] = 0 for i ∈ N0. Then the scalar dynamic equation (III.3)

is exponentially stable almost surely on T̃ if and only if
limn→∞E

[∑n
i=0 ln |1+λ(Mi)Mi|

n+1

]
< 0.

Proof: Use Kolmogorov’s Strong Law of Law Numbers
and follow the proof of Theorem 1.

The next proof requires a corollary to the Borel-Cantelli
lemma, which we state here

Lemma III.9. Let {Xn}∞n=0 be a sequence of random
variables and let a ∈ R be such that

∞∑
n=0

P [Xn ≥ a] <∞.

Then
lim sup
n→∞

Xn < a.

We can now prove the following corollary.

Corollary III.10. Let {Mi}∞i=0 be a sequence of nonnegative
random variables and let λ : [0,∞)→ C such that

∞∑
n=0

P

[
n∑
k=0

ln |1 + λ(Mi)Mi| ≥ 0

]

=

∞∑
n=0

P

[∑n
k=0 ln |1 + λ(Mi)Mi|

n+ 1
≥ 0

]
<∞.

Assume further that P [Mi = 0] = 0 and P [1 + λ(Mi)Mi =
0] = 0 for i ∈ N0. let T̃ be a stochastically generated time
scale with initial time t0 generated by {Mi}∞i=0. Then the
scalar dynamic equation (III.3) is exponentially stable almost
surely on T̃.

Proof: Condition (III.4) yields, by (III.9), that

lim sup
n→∞

ln |1 + λ(Mi)Mi| < 0

almost surely. With this, we proceed as in the “⇐′′ part of
the proof of Theorem 1.

IV. EXAMPLES

We now examine the behaviour of (III.3) on a stochas-
tically generated time scale TΓ generated by independently
identically distributed random variables taken from a Gamma
Distribution with shape parameter 2 and rate parameter 2,
whose probability density function we call f . Notice that
such a stochastically generated time scales falls under the
scope of (III.2), and by Remark III.4, given λ ∈ C, (III.3) is
exponentially stable on TΓ if and only if∫ ∞

0

f(µ) ln |1 + λµ|dµ < 0.

The region in the complex plane where this inequality holds,
which we will call the region of stability, is shown in Figure
1.

We choose two values of λ, λ1 = 1 + .25i and λ2 =
−2 + .67i and generate six realizations of the time scale
using each λi,i = 1, 2. The results are shown in Figure 2
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Fig. 1. The region of stability for the stochastically generated time scale
TΓ.

and Figure 3 along with the theoretical decay rate as in a
Remark III.5.

Note that the solution of (III.3) with λ = λ1 decays fairly
regularly and does not require an extremely large multiplier
on the bounding exponential.

The solution of (III.3) with λ = λ2, on the other hand,
is very irregular in its behavior , having swings in the order
of magnitude of x as large as 10100. Amazingly (III.3) is
exponentially stable by (III.2), but it has a very slow decay
rate and does not decay reliably locally.

We note that this analysis is not limited to time scales
picked randomly from a distribution. If we know the fre-
quency with which different graininesses appear in the tail of
the time scale, the same results hold. To see this, we consider
T1,2 = {0, 1, 3, 4, 6, . . . , k, k+1, k+3, k+4, . . .} which is a
time scale where the graininess alternates between 1 and 2.
Thus we can think of this as a particular instance of a time
scale generated by a random variable with probability mass
function

f(t) =

{
1/2 if t = 1

1/2 if t = 2
.

The condition on λ for stability of (III.3) on T1,2 is

2∑
i=1

f(i) ln |1 + λi| < 0

Solutions of (III.3) for λ satisfying the above condition is
shown in Figure 4 with along with the theoretical decay rate
which we mentioned in Remark III.5.

V. DECAY ANALYSIS

The example that showed the exponential stability of (III.3)
with λ = λ2 on TΓ should give us some concern with this
framework. After all, in applications we would not call a
system with a state variable whose magnitude reached 10100

“stable”! We now consider how to analyze the probability
that the state variable will have a magnitude below a certain
tolerance τ > 0. Throughout this section we will denote the

Fig. 4. The solution of (III.3) on T1,2 for λ = −.9 + .4i along with the
predicted decay rate.

conditional probability of an event A given another event B
by P [A;B].

Let {x(Tk)}∞k=0 be the solution of (III.3) with initial
condition x(t0) = k where |k| = 1 on a time scale with
generated by the independent identically distributed random
variables {Mi}∞i=0. Note

P [|x(t0)| < τ ] =

{
0 if τ ≤ 1

1 if τ > 1.

For the sake of the simplicity, assume further that the Mi’s
are continuous random variables which admit a probability
distribution function f with support [0,∞). To find the
probability that the magnitude of the state variable is beneath
the tolerance after one step, write λ = x+ iy and calculate

P [|x(T1)| < τ ]

= P [|x(t0)(λM0 + 1)| < τ ]

= P [|x(t0)||(x+ iy)M0 + 1| < τ ]

= P [(M0x+ 1)2 +M2
0 y

2 < τ2]

= P [M2
0 (x2 + y2) + 2M0x+ (1− τ2) < 0]

= P [M2
0 |λ|2 + 2M0 Re(λ) + (1− τ2) < 0]

= P [c1(τ) < M0 < c2(τ)]

=

∫ c2(τ)

c1(τ)

f(µ)dµ

where c1(τ) =
−Re(λ)−

√
(Re(λ))2−|λ|2(1−τ2)

|λ|2 and c2(τ) =

−Re(λ)+
√

(Re(λ))2−|λ|2(1−τ2)

|λ|2 are obtained via the quadratic
formula with the assumption ci(τ) = 0 if the equations above
yield imaginary or negative numbers, i = 1, 2. We note that
if τ ≥ 1 then c1(τ) and c2(τ) are real–valued. This is not
necessarily the case if τ < 1, since the solution cannot decay
arbitrarily fast. The smallest factor the solution can decay by
is τ̂ such that Re(λ)2 − |λ|2(1− τ̂2) = 0.

Note that since the M ′is are IID random variables, the
method above shows the probability that the solution grows
by a factor bounded by τ on the any single time step. By
letting τ = 1, we obtain the probability that the solution will
not grow the next time step,

p := P [|x(T1)| < 1] = P [|x(Tk)| < c; |x(Tk−1)| = c]
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Fig. 2. log(|x(t)|) with λ1 = −1 + .25i on six different time scales generated from the gamma distribution with shape parameter 2 and rate parameter
2.

Fig. 3. log(|x(t)|) with λ2 = −2 + .67i on six different time scales generated from the gamma distribution with shape parameter 2 and rate parameter
2.

Fig. 5. All figure are for the stochastically generated time scale TΓ. Left: Contour plot of the decay rate α in the region of stability. Center: Contour
plot of p in the left–half complex plane. Right: Contour plot of p in the left–half complex plane with the decay rate α in the region of stability overlaid.
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for any c > 0. This can be a very useful design parameter, as
we would like to choose λ so that the probability of decay
in the state variable is sufficiently large or one, ensuring
“local stability.” This design parameter may be more useful
than calculating the probability that the magnitude of the
state variable is beneath a tolerance at Tk, as it involves k
integrations, as we now show. Note that

P [|x(T1)| < τ ] =

∫ c2(τ)

c1(τ)

f(µ)dµ := F (τ)

where F (τ) is increasing as c2(τ) is increasing and c1(τ) is
decreasing and f(µ) ≥ 0 for µ ≥ 0. Thus F (τ) is a CDF
for the random variable |x(T1)|. Note

F ′(τ) = f(c2(τ))c′2(τ)− f(c1(τ))c′1(τ)

=
τ(f(c2(τ)) + f(c1(τ)))√
(Re(λ))2 − |λ|2(1− τ2)

:= h(τ)

is therefore a PDF for |x(T1)|. Now, by the law of total
probability,

P [|x(T2)| < τ ]

=

∫ ∞
0

h(l)P [|x(T2)| < τ ; |x(T1)| = l]dl

=

∫ ∞
0

h(l)P [|1 + λM1| < τ/l]dl

=

∫ ∞
0

h(l)P [|1 + λM0| < τ/l]dl

=

∫ ∞
0

h(l)

∫ τ/l

0

h(µ)dµdl

=

∫ ∞
0

∫ τ

0

h(l)h
(µ
l

) 1

l
dµdl

=

∫ τ

0

∫ ∞
0

h(l)h
(µ
l

) 1

l
dldµ

so k(τ) :=
∫∞

0
h(l)h

(
τ
l

)
1
l dl is a probability distribution

function for the random variable |x(T2)|.
By induction it is easy to show

P [|x(Tk)| < τ ]

=

∫ τ

0

∫ ∞
0

. . .

∫ ∞
0︸ ︷︷ ︸

k−1 times

h(s1)h

(
s2

s1

)
· · ·h

(
µ

sk−1

)

1

s1s2 · · · sk−1
ds1 . . . dsk−1dµ.

Rather than calculate the above integral, we may find
the parameter p, an easy–to–calculate number that yields
important information about tendency of the system to decay.
On one hand, choosing λ such that p is near one helps ensure
the magnitude of the state variable will not become extremely
large. On the other hand, this choice of λ may yield a slow
decay rate. The best performance will be had by balancing
the p and the decay rate α according to some metric. For
example, we may wish to maximize the decay rate subject

to p > c with 0 ≤ c < 1. Instead of building an optimization
algorithm for this problem, we simply plot both p and α as
a function of λ. Such a plot is shown in Figure 5 for TΓ.

We note that the value of p is constant along any circle
tangent to the imaginary axis since

p = P [|1 + λM0| < 1] = P [0 < M0 < −2 Re(λ)/|λ|2]

and −2 Re(λ)/|λ|2 = 1/c for each λ on a circle of radius c
tangent to the imaginary axis. Thus the contours of constant
probability of decay are Hilger circles. If the support of
the distribution of graininess is bounded by µmax ∈ (0,∞)
and λ is on a circle of radius smaller than 1/µmax, then
−2 Re(λ)/|λ|2 > µmax. Thus

p = P

[
0 < M0 < −2

Re(λ)

|λ|2

]
≥ P [0 < M0 < µmax] = 1,

so p = 1. This shows if λ is in the smallest possible
Hilger circle, then the solution will decay at each step with
probability one.

Remark V.1. It is well known that the smallest Hilger circle
is contained in the region of exponential stability. In general,
the Hilger circle corresponding to a probability of decay
β < 1 is not contained in the region of stability. To see
this, Consider a time scale generated by the probability mass
function

f(µ) =

{
β if µ = 1

1− β if µ = 2

Then the probability β contour is a Hilger circle of radius
one, but the region of exponential stability is strictly con-
tained in the Hilger circle of radius one because the region
of exponential stability is the weighted geometric mean of a
Hilger circle of radius one and a Hilger circle of radius 1/2
[4].
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