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Abstract— Affine approximation is a technique used to model 
time-invariant periodicity preservation (TIPP) systems, which 
represent a broad class of wireless system nonlinear components.  
This approach approximates the harmonic transfer 
characteristics of a nonlinear system and, as a consequence, is 
expected to be very useful in both waveform design and circuit 
optimization.   While this approach is useful, there are limitations 
of this approximation based on the strength of the nonlinearity, 
the size of the perturbation imposed on the large-signal operating 
condition, and the number of harmonics used to approximate the 
signal.  This paper examines some sample TIPP nonlinearities 
and show that the affine approximation accuracy often degrades 
for increasing perturbation size and when a reduced number of 
harmonics is used to approximate system results for waveforms 
containing significant harmonic content.     

 
 

 
Modeling time-invariant periodicity preservation (TIPP) 

systems using nonlinear network parameters can allow 
prediction of nonlinear system behavior under certain large-
signal excitation conditions [1].  Because this approach 
directly predicts the transfer between harmonics, it is useful 
for waveform design and optimization.  Successfully modeling 
the harmonic transfer characteristics of a system will allow 
optimization of both circuit and waveform to meet spectral 
requirements, in concert with efforts and descriptions provided 
in [2, 3, 4].  Similar groundbreaking nonlinear system 
harmonic coupling characterizations [5, 6, 7, 8, 9] such as 
VIOMAP [10], S-functions [11, 12, 13, 14],  polyharmonic 
distortion (PHD) models [15, 16, 17, 18, 19] and X-parameters 
[20, 16, 21, 22, 23, 24, 25, 26, 27, 12, 28, 29, 30]  have been 
offered as approaches to the “black-box” modeling of 
nonlinear devices.  These approaches differ from more 
traditional nonlinear models such as Volterra [31] and Hermite 
[32] characterizations in that they use straightforward 
harmonic measurements that can be performed in the 
laboratory. [33].  Modeling nonlinear devices as time-invariant 
periodicity preservation (TIPP) systems can result in 
reasonable approximation of the system’s harmonic transfer 
characteristics under large-signal excitation.  The theory of 
TIPP systems has been presented in detail by our group in [1].  
Finding the TIPP parameters of a device is an approach to 
black-box nonlinear modeling that circumvents (in some 
cases, with limited accuracy) the significant measurement time 
and modeling effort required to extract a nonlinear model for 

the device.  A TIPP system operates on the input Fourier 
series coefficients ଓറ and to produce the output Fourier series 
coefficients . This relationship can be interpreted as a 
nonlinear extension of Ohm’s Law [1], which reduces to a 
linear relationship for the linear time-invariant (LTI) case.  
Analysis of the TIPP harmonic mixing requires that the system 
be represented in the frequency domain. The TIPP system can 
be represented by the operator त such that 

റݒ

റ ൌ तଓറ                      

]  

റ୼ݒ ؔ त ሼଓറ ൅ Δଓറሽ .                                       ሺ2ሻ 

റ୼ is the vector of the output Fourier series coefficients given 
by
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A property of TIPP systems is that the output signal must 
possess the same fundamental period as the input. Affine 
modeling of a TIPP system attempts to define a region 
centered on an original large-signal “operating point” for 
which other nearby points can be approximated. 
Superimposing a small perturbation with Fourier coefficient 
vector ∆ଓറ atop the large signal  with Fourier coefficient vector 
ଓറ   produces [1
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 this affine approximation.  For sufficiently smooth 
perturbations,  TIPP system’s can be approximated by  [1]  
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The accuracy of the affine approximation behavior depend  s
significantly on (1) the size of the perturbation and (2) the 
number of harmonics considered in the approximation.  For 
more severe system nonlinearities and for waveforms 
requiring a large number of harmonics for complete 
description, the affine approximation accuracy can be 
significantly reduced.   This paper contains a number of 
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simulations of errors resulting from the approximation for 
various TIPP systems and perturbations.   

 
 
 

A simple operating point and perturbation will be chosen to 
show the effects of perturbation size and nonlinearity strength 
for low harmonic input levels.  The relative error of each 
approximation is measured using percent RMS Error:    
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We consider the case where the temporal output is a nonlinear 
function of the input, i.e. 
 

.                                (6) 
 

When  is periodic with period ܶ then, for any function 
 will be periodic with the same period. The Fourier 

coefficients are extracted from these periodic signals and they 
are used to establish the TIPP relationship in (1) about some 
operating point.  Some useful nonlinearities are shown in Fig. 
1.  Fig. 1(a) shows a linear system, given by  
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Fig. 1(b) shows an operation of full-wave rectification, given 
by 
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Fig. 1(c) shows a sigmoid nonlinearity, 
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for α = 1, 2, 3, 4, and 5.  Fig. 1(d) shows an exponential 
nonlinearity, 
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for α = 1, 2, 3, 4, and 5.  In both the case of the hyperbolic 
tangent and exponential ratios, a higher value of α indicates a 
stronger nonlinearity.  The sigmoid nonlinearity, in particular, 
portrays the properties of a saturating amplifier.  
 

A.  Sigmoid Nonlinearity, Cosine Stimulus and  Cosine 
Perturbation 
 

Fig. 2 shows the prediction of the output to a linear system 
with a sigmoid input-output characteristic, using a cosine 
waveform as the input operating point and a cosine 
perturbation of twice the frequency of the operating-point 
cosine (second harmonic).  Fig. 2(a) shows the input, the 
perturbation, and Fig. 2(b) shows the output approximation 
and actual signal, where the perturbation has a peak amplitude 
of one-third of the large-signal amplitude.  It can be seen that 
the output approximation and the signal are nearly identical.  

For this simulation, the amplitude of the cosine is 
insignificant compared to the amplitude necessary to run the 
sigmoid into compression.  Since this nonlinearity is not 
driven very hard, it tends to mimic a linear response. 
Regardless of perturbation size, the error significantly drops 

for levels of harmonics 
greater than 1.  Fig. 2(c) 
shows the percent RMS 
error as a function of the 
number of harmonics 
used in the approximation 
and perturbation size.  
From this plot it appears 
that for all perturbation 
sizes, the error does not 
significantly decrease 
when using more than one 
harmonic for the 
approximation.   

For a sigmoid with 
stronger nonlinearity, the 
affine approximation 
accuracy declines, and 
shows more dependence 
upon perturbation size 
and the number of 
harmonics used in the 
approximation.  Fig. 3 
shows the corresponding 
results for a strong 
sigmoid.  Fig. 3(c) shows 

II. TIPP SIMULATIONS

 
Fig. 1. Nonlinearities, ݃  (a) Linear, ݃  (b) Full wave 
rectifier ݃  (c) Sigmoid, ݃  for ߙ .  (d) 
Exponential ݃   for ߙ    

ሺ݅ሻ for െ 0.5 ൑ ݅ ൑ 0.5 ሺ݅ሻ ൌ ݅.
ሺ݅ሻ ൌ |݅|. ሺ݅ሻ ൌ tanhሺ݅ߙሻ/ tanhሺߙሻ ൌ 1, 2, 3, 4, 5

ሺ݅ሻ ൌ expሺെ݅ߙሻ/ expሺെߙሻ ൌ 1, 2, 3, 4, 5.



 

that there is significant error in the affine approximation for all 
but small perturbation sizes. For low perturbation sizes, 5 
harmonics seems nearly sufficient for accurate prediction of 
the behavior; this is the number of harmonics used in many 
nonlinear network analyzer measurements.  The fact that the 
error does not improve for additional harmonics at large 
perturbation sizes seems an indication that the affine 
approximation is so far from the true response that additional 
harmonics actually make the approximation worse. These 
results show consistency with the assumption that 
perturbations must be small for accurate affine approximation 
in strongly nonlinear systems. 

  

B. Full-Wave Rectified Nonlinearity, Cosine Operating 
Point With Cosine Perturbation 
 
Fig. 4 shows the results for a full-wave rectified 
nonlinearity with a cosine large-signal and a cosine 
perturbation.  As in the first case, the perturbation shown 
in Fig. 4(a) and 4(b) has an amplitude that is one-third of 
the large-signal amplitude.  As expected, the error seems 
to increase with increased perturbation size.  A 
significant error can be seen even for large numbers (15 
to 20) of harmonics for larger perturbations.  The affine 
model is only valid for small perturbations. 
 

C.  Normalized Exponential Nonlinearity, Cosine 
Operating Point and Cosine Perturbation 
 

Fig. 5 shows results for a weak normalized exponential 
nonlinearity, while Fig. 6 shows results for a strongly 
normalized exponential nonlinearity.  In both cases, the 
time-domain plots show a perturbation with an amplitude 
that is one-third of the large-signal amplitude. The 
normalized exponential appears to be a good candidate 
for the affine model when the nonlinearity is weak. The 
fact that the error is relatively low for even high 
perturbations indicates that the system is nearly linear 
about the operating point. This is, however, shown to not 
be consistent for increasing nonlinearity strength. The 
strong normalized exponential nonlinearity has the most 
dramatic error rates among the tested TIPP operators.  

 

III. CONCLUSIONS 
 

The results of the simple TIPP system simulations 
show that the affine approximation is useful for many 
nonlinear systems provided (1) the perturbations remains 
small (the limit of perturbation size depends on the 
nonlinearity) and (2) a sufficient number of harmonics is 
used. The number of required harmonics is dependent on 
the perturbation used. A square wave, for example, has 
Fourier coefficients that decay as 1/n whereas a 
continuous triangular wave decays as  1/n2. More 
coefficients are therefore required to characterize the 
square wave.  

The accuracy of the affine approximation as the 
perturbation size increases is, as expected, system dependent. 
There are TIPP systems for which the affine approximation is 
ill-suited.    
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Fig. 3. The solid line in (a) is the sinusoid used as the input to a 
sigmoid nonlinearity with parameter ߙ ൌ 5. This simulation
differs from Fig.2 in that the sigmoid is significantly more 
nonlinear.  The output is the dashed line in (a). The input is 
perturbed by the dash-dot sinusoid in (a). The true output due t
the perturbed input  is shown in (b) with a dash-dot  line. The 
TIPP approximation using 15 harmonics is also shown in (b
with a solid line. The discrepancy between the approximation 
and the true output shows the natural limitation imposed by 
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shown in (c) as a function of perturbation size and number of 
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Fig. 4. The solid line in (a) is the sinusoid used as the input t
full-wave rectified nonlinearity. The output is the dashed line in
(a). The input is perturbed by the dash-dot sinusoid in (a). The 
true output due to the perturbed input is shown in (b) with a 
dash-dot  line. The TIPP approximation using 15 harmonics is
also shown in (b) with a solid line. Similar results are seen to 
that in Fig.3, where the approximation is limited by the num
of harmonics simulated.  The percent error is shown in (c) as a 
function of perturbation size and number of harmonics used in
the TIPP approximation. The perturbation in (a) is 30% relativ
to the operating point. 
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Fig. 6. The solid line in (a) is the sinusoid used as the 
input to a exponential nonlinearity with parameter 
ߙ ൌ 5. The output is the dashed line in (a). The input is 
perturbed by the dash-dot sinusoid in (a). The true 
output due to the perturbed input is shown in (b) with a 
dash-dot line. The TIPP approximation using 15 
harmonics is also shown in (b) with a solid line. These 
results verify the limitation of TIPP approximation for 
points of strong nonlinearity, which would require a 
larger number of harmonics. The percent error is 
shown in (c) as a function of perturbation size and 
number of harmonics used in the TIPP approximation. 
The perturbation in (a) is 30% relative to the operating 
point. 
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Fig. 5. The solid line in (a) is the sinusoid used as the input to a 
exponential nonlinearity with parameter ߙ ൌ 1. The output is 
the dashed line in (a). The input is perturbed by the dash-dot 
sinusoid in (a). The true output due to the perturbed input is 
shown in (b) with a dash-dot line. The TIPP approximation 
using 15 harmonics is also shown in (b) with a solid line. The 
percent error is shown in (c) as a function of perturbation size 
and number of harmonics used in the TIPP approximation. The 
perturbation in (a) is 30% relative to the operating point. 
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