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Abstract
Wilf and Ewens argue in a recent paper that there is plenty of time for evolution to occur. They base this claim on a mathemati-
cal model in which beneficial mutations accumulate simultaneously and independently, thus allowing changes that require a 
large number of mutations to evolve over comparatively short time periods. Because changes evolve independently and in par-
allel rather than sequentially, their model scales logarithmically rather than exponentially. This approach does not accurately 
reflect biological evolution, however, for two main reasons. First, within their model are implicit information sources, including 
the equivalent of a highly informed oracle that prophesies when a mutation is “correct,” thus accelerating the search by the evo-
lutionary process. Natural selection, in contrast, does not have access to information about future benefits of a particular muta-
tion, or where in the global fitness landscape a particular mutation is relative to a particular target. It can only assess mutations 
based on their current effect on fitness in the local fitness landscape. Thus the presence of this oracle makes their model radically 
different from a real biological search through fitness space. Wilf and Ewens also make unrealistic biological assumptions that, 
in effect, simplify the search. They assume no epistasis between beneficial mutations, no linkage between loci, and an unreal-
istic population size and base mutation rate, thus increasing the pool of beneficial mutations to be searched. They neglect the 
effects of genetic drift on the probability of fixation and the negative effects of simultaneously accumulating deleterious muta-
tions. Finally, in their model they represent each genetic locus as a single letter. By doing so, they ignore the enormous sequence 
complexity of actual genetic loci (typically hundreds or thousands of nucleotides long), and vastly oversimplify the search 
for functional variants. In similar fashion, they assume that each evolutionary “advance” requires a change to just one locus, 
despite the clear evidence that most biological functions are the product of multiple gene products working together. Ignoring 
these biological realities infuses considerable active information into their model and eases the model’s evolutionary process.
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INTRODUCTION
In a paper published in the Proceedings of the National Acad-

emy of Sciences [1], Wilf and Ewens ask a relatively simple 
question. Consider a biological change that requires some 
set of mutations to occur. The evolutionary process necessar-
ily requires time to accumulate these mutations because each 
individual mutation is typically improbable. The question is 
whether or not there is enough time to allow these events to 
occur. Rephrased in algorithmic terms, the question becomes 
whether the time needed for success has exponential or loga-
rithmic dependence on the number of required mutations.

A number of recent papers have attempted to determine the 
evolutionary waiting time for complex adaptations, using a 

variety of mathematical and/or computational methods [2–7], 
and arriving at widely different answers. At least part of the 
reason for the disagreement is the complexity of the problem. 
Numerous biological variables affect the waiting time for new 
adaptations, including the population dynamics of the organ-
ism in question, the shape of the fitness landscape for the trait(s) 
in question, the number of mutations required, the effect of 
epistatic interactions, pleiotropy and linkage on the ability to 
select for a given trait, and the duration and direction of selec-
tion in shaping adaptation (for a review of various models see 
[8,9]). The contribution of Wilf and Ewens suffers first of all 
from a lack of engagement with the literature on these points.
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Description of the model
The evolutionary model that Wilf and Ewens have chosen is 

similar to the problem of guessing letters in a word or phrase, 
as on the television game show Wheel of Fortune. They specify a 
phrase 20,000 letters long, with each letter in the phrase corre-
sponding to a gene locus that can be transformed from its initial 
“primitive” state to a more advanced state. Finding the correct 
letter for a particular position in the target phrase roughly cor-
responds to finding a beneficial mutation in the corresponding 
gene. During each round of mutation all positions in the phrase 
are subject to mutation, and the results are selected based on 
whether the individual positions match the final target phrase. 
Those that match are preserved for the next round.

Wilf and Ewens are not the first to use a language-inspired 
model. In The Blind Watchmaker [10] Richard Dawkins pro-
poses a model where the program evolves a phrase whose 
distance from the Shakespearean phrase METHINKS IT IS 
LIKE A WEASEL is measured after each round.1 Dawkins 
himself acknowledges in the book that a search that includes 
information about the long-range target, as does his, is unreal-
istic, but he still makes the claim that a cumulative evolutionary 
search, reiterated many times with selection based on fitness 
after each query, can find the target quickly.

To what biological process does a query (one round of guess-
ing) correspond in Wilf and Ewens’s model? How long does 
one query take? The paper does not explicitly answer these 
questions. From the construction of the model it appears that a 
query corresponds to a period in which mutations occur in all 
individuals in a population, followed by an additional unspeci-
fied period to allow the beneficial mutations to reach fixation. 
Wilf and Ewens specify humans as the model organism, stating 
that 100–200 new mutations occur in each newborn human, of 
which only about five can be expected to be in either protein-
coding or regulatory regions, and thus have some effect on the 
individual’s phenotype. All other mutations are assumed to 
occur in junk DNA2 and thus have no effect. Assuming a million 
births during each mutation period, they expect approximately 
five million non-junk mutations per round. Taking the human 
genome to have 20,000 genes, they expect approximately 250 
mutations to occur somewhere in the population in each gene 
in each round. They assume that 1 in 10,000 of these mutations 
is beneficial, implying that the probability of a particular gene 
experiencing a beneficial mutation somewhere in the popula-
tion during any given round is 1 in 40.

The only number in the above assumptions for which a ref-
erence is cited is the number of de novo mutations carried by 
newborn humans, which is itself a matter of debate [14,15]. 
The other numbers (proportion of junk DNA, number of 
genes, birth rate (generation size), and rate of beneficial muta-
tions) are ballpark estimates at best. No literature is cited to 
support them.

Wilf and Ewens set the phrase length for their model at 
L=20,000 letters and the size of the alphabet at K=40 letters. 

1 We have critiqued this program elsewhere [11]. 
2 Much of what was previously described as junk has now been shown to be ubiq-

uitously transcribed and regulated, and is increasingly believed to serve important 
functions in the cell. [12,13]

Choosing a correct letter from that alphabet for a given position 
in the phrase corresponds to finding a beneficial (“advanced”) 
allele at the corresponding locus. The number of letters in the 
alphabet was chosen to reflect the supposed 1 in 40 probability 
of a beneficial allele arising at any given locus during any round 
(see above). After each round, all “advanced” alleles in the 
population are treated as fixed, and therefore preserved in the 
next round. Evolution to the fully “advanced” state is complete 
when all 20,000 positions match the target phrase.

ANALYSIS

Time required for evolution by the model
Although the title of Wilf and Ewens’s paper indicates that 

they believe they have solved a potential problem with the 
pace of evolution, they nowhere state an actual amount of time 
that their model would require. They only indicate that it will 
take 390 rounds of guessing to find the target phrase for the 
particular scenario they consider, presumably supposing these 
rounds to be short enough for this to require less than the avail-
able time. However, while they mention the fact that beneficial 
mutations are not necessarily fixed once they appear, they make 
no attempt to factor this in. Because of genetic drift, beneficial 
mutations are often lost before they can become established in 
the population. In fact, the probability of fixation for a ben-
eficial mutation is roughly equal to 2sNe / N, where Ne is the 
effective population size, N the census population size, and s 
is the selection coefficient for that mutation [16]. For humans 
this translates to a probability of fixation for a strongly benefi-
cial mutation of ≤ 0.01 [5]. Consequently a beneficial mutation 
may have to arise a hundred times or more in a human popula-
tion before it becomes established and goes on to fixation.

Furthermore, real biological genes, as opposed to the single-
letter loci in Wilf and Ewens’s model, are composed of stretches 
of DNA hundreds or thousands of nucleotides long, and linked 
linearly into very long strings (chromosomes). Recombination 
between chromosomes does occur between generations, but 
genes close to one another tend not to recombine, and end 
up remaining associated with one another. This genetic link-
age slows the process by which sorting and fixing of beneficial 
mutations occurs (getting all the letters in the population to be 
the same beneficial type), and can lead to competition between 
closely linked beneficial mutations that prevents the fixation of 
one or both [17].

Type of search in the model
The Wilf and Ewens model is, as mentioned above, remi-

niscent of the game show Wheel of Fortune. One technique for 
finding the hidden phrase in Wheel of Fortune is to guess the 
entire phrase and continue guessing phrases until arriving at 
the correct phrase. Because all positions in the phrase must be 
correctly guessed at once, this technique scales exponentially 
with respect to the length of the phrase, meaning that every 
additional letter added to a phrase multiplies the search time 
by some constant factor. For example, obtaining a single let-
ter might take 1 year, whereas obtaining 2 letters would take 
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10 years, three letters would take 100 years, and so on. One 
can see that exponential scaling quickly gets out of hand and 
renders even an intermediate-sized phrase un-guessable. In the 
case of guessing an English phrase, every English letter added 
to the phrase increases the time to guess the phrase by 26 times 
(27 times if the space character is included in the alphabet).

A better technique is to make use of information gleaned 
during the guesses—this is the procedure actually used on the 
show. After guessing each of the letters, the oracle tells which (if 
any) of the guessed letters are correct, and then those letters are 
retained. The second round of guessing is applied only for the 
incorrect letters that remain after the first round, and so forth 
[1]. This kind of search has been dubbed partitioned search [18] 
and has, from Wilf and Ewens, a probability of success, q, in Q 
queries of

 ,

where K is the number of characters in the alphabet and L is 
the length of the target message. The game of Yahtzee follows 
essentially the same process, with the player selectively re-roll-
ing any dice that do not have the numbers that are needed. 
Re-rolling only the incorrect dice rather than all of the dice 
should reach the goal much more quickly.

A partitioned search, such as the one proposed by Wilf and 
Ewens, scales logarithmically, meaning that the time required 
for success is proportional to the logarithm of L. As a result, 
each additional locus adds less time than the one before it. In 
terms of Wilf and Ewens’s search, finding a beneficial variant at 
one locus might take one year, at ten loci two years, and at one 
hundred loci only three years. Clearly, the number of genes to 
be changed makes relatively little difference according to this 
model.

In general, more efficient searches require richer sources of 
active information. In the case of the exponential algorithm, 
each guess is, in effect, being presented to a so-called needle in 
a haystack oracle that announces either “yes, this is the phrase,” 
or “no, this is not it.” The partitioned search oracle used by Wilf 
and Ewens, on the other hand, examines each guess letter by 
letter and tells us which of the letters are correct. Thus, Wilf and 
Ewens’s partitioned search has access to more information than 
the exponential algorithm.

Determining the amount of active information used by 
the model

In order to identify the sources of active information implic-
itly included in Wilf and Ewens’s algorithm, we analyze their 
model of evolution3 as an attempt to find a hidden string, 
remembering that this is intended as an analogy for locating 
beneficial mutations. Our method of analysis depends on the 
fact that any technique used to find the phrase is going to have 
to make a number of guesses or queries. We can measure and 
compare the efficiency of different searches by determining the 
number of queries required for success [11,19−22].

3 The methods used in this analysis are derived from those described previously 
[11,19−22].

q =

(
1−

(
1− 1

K

)Q
)L

The total active information that must be added to a search 
in order for it to succeed is:

 I+ = − log
p

q
, (1)

where q is the overall probability of that search succeeding and 
p is the probability of complete success in a single query [18]. 
That single-query success is calculated simply as:

 p = K−L.  (2)

All the searches considered here eventually succeed, which 
means that q = 1. By substituting our values for p and q into 
Equation 1, we therefore obtain:

 I+ = L logK . (3)

However, since some search algorithms will tend to need more 
queries to find the target than others, we can differentiate their 
performance by calculating the active information per query. 
This is calculated by dividing the active information by E[Q], 
the expected number of queries needed for success.

 
I⊕ =

L logK

E[Q]

 (4)

We now examine I⨁ for the two algorithms under consider-
ation.

Exponential Search. First, let us consider the exponential 
search discussed by Wilf and Ewens, where each query aims to 
guess the entire phrase at once. This approach will eventually 
succeed but will take a vast amount of time to do so. The chance 
of identifying a phrase in Qx queries sampling with replacement 
[1,18] is:

 
qx = 1−

(
1−

(
1

K

)L
)Qx  

(5)

The mean of random variable Qx is:

 E[Qx] = KL.  (6)

Using Equation 4, this gives us the active information per 
query as:

 I⊕ =
L logK

KL
.  (7)

This is plotted in Figure 1 as a function of phrase length L for 
an alphabet of size K = 40. As the plot shows, repeated queries 
to the needle in a haystack oracle give little active information 
per query and the amount of active information declines rap-
idly as the phrase gets longer.

The linear nature of Figure 1 can be explained by taking the 
log of Equation 7,

 log I⊕ = log
L logK2

KL
= log(L logK)− L logK ≈ O(−L logK) 

 
log I⊕ = log

L logK2

KL
= log(L logK)− L logK ≈ O(−L logK)  (8)
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where ≈ signifies an order-of-magnitude approximation to 
equality. Since K is constant, this confirms the linear depen-
dence of log I⨁ on L with slope –log K.

Logarithmic Search. The expected number of queries in order 
to determine the correct phrase using Wilf and Ewens’s parti-
tioned search is approximately K log L [1]. Using Equation 4, 
we can thus calculate the active information per query as:

 I⊕ =
L logK

K logL
. (9)

A plot of this function can be seen in Figure 2. It shows much 
more active information per query than the exponential algo-
rithm. Although visual comparison with the plot in Figure 1 is 
difficult because Figure 1 uses a log scale while Figure 2 uses a 
linear scale, the numbers indicate over 32 orders of magnitude 
difference in the active information per query even for short 
phrases.

Assuming independence
The basic difference between the exponential and partitioned 

search is that in the partitioned search each letter in the phrase 
can be queried and announced independently and simultane-
ously, preserving the correct answers after each query, while in 
the exponential search, getting the correct answer is contingent 
on getting all positions correct at once. In effect, the partitioned 
search treats each letter independently, while the exponential 
search treats them as an interdependent set. This difference is 
what allows the partitioned search to proceed so rapidly.

In terms of evolution, though, is the assumption of indepen-
dence valid? In natural language phrases, where Wilf and Ewens 
choose to model the evolutionary process, the assumption is 
clearly not valid. Suppose it would be beneficial for the phrase

“all_the_world_is_a_stage___”
to evolve into the phrase

“methinks_it_is_like_a_weasel.”

What phrase do we get if we simply alternate letters from the 
two phrases?

“mlt_ihk__otli__siaesaaw_a_e_.”
Under the assumptions in the Wilf and Ewens model, the 
“fitness” of this nonsense phrase ought to be exactly half-way 
between the fitnesses of “all the world is a stage” and “methinks 
it is like a weasel.” Such a result only makes sense if we are 
measuring the fitness of the current phrase by its proximity to 
the target phrase.

This example reveals two biologically unrealistic things about 
Wilf and Ewens’s model. First, evolutionary processes can only 
depend on the performance of current organisms, not hypo-
thetical target organisms. Only teleological processes have the 
ability to consider future phrases. Yet Wilf and Ewens’s oracle 
has to have knowledge of the target to assess fitness. Second, 
the natural language example also highlights the importance of 
context for assessing fitness, if we think of fitness as the ability 
to convey meaning in a natural language. As we shall see, this 
same phenomenon of context dependence is typical of biologi-
cal systems.

Testing the effect of independence
In order to demonstrate the importance of the assumption 

of independence for their model, we can modify the model to 
decrease the degree of independence, simply by requiring that 
some mutations must occur together. Thus the modified model 
will only reward complete words rather than individual letters 
in the phrase. We expect that it will show less active information 
per query simply because it is harder to guess complete words 
than individual letters. This modified model is not intended to 
be biologically realistic. Rather it is intended solely to show the 
effect that the assumption of independence has on the search.

For simplicity, we assume that every word in the phrase has the 
same length, W. Because entire words have to be guessed, we can 
view that as guessing letters from a larger alphabet, one which is 
KW in size. The length of the message in terms of this larger 
alphabet is thus L/W. Using this in Equation 9 we obtain:

Figure 1: Effect of phrase length on active information per query 
for the exponential search algorithm. The active information 
per query has units of bits. The length of the phrase, L, varies 
from 10 to 200. The number of letters in the alphabet is set at 40.  
doi:10.5048/BIO-C.2012.4.f1

Figure 2: Effect of phrase length on active information per query 
in partitioned search. The length of the phrase, L, varies from 10 to 
20,000. The number of letters in the alphabet is set at K = 40.  
doi:10.5048/BIO-C.2012.4.f2

http://dx.doi.org/10.5048/BIO-C.2012.4.f1
http://dx.doi.org/10.5048/BIO-C.2012.4.f2
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 I⊕ =
L logK

KW log L
W

. (10)

As seen in Figure 3 (a plot of Equation 10), this equation 
shows a very rapid decline in active information per query as 
the amount of independence is decreased. This demonstrates 
that even a small amount of dependency between the mutations 
causes a very sharp decline in the information extracted and 
thus a large increase in the time required to reach the desired 
phrase.

The Wilf and Ewens model suggests that it will take approxi-
mately 390 rounds of guessing to find 20,000 beneficial 
mutations. However, even the smallest level of dependence, 
with word lengths W=2, rapidly increases the time required, and 
that time increases exponentially as the word length increases.

DISCUSSION
If we provisionally grant the analogy proposed by Wilf and 

Ewens, which likens the evolution of more advanced genomes 
to a search for a phrase, then the question is whether their search 
model is fair, in the sense of not being rigged for success. The 
theory of the conservation of information [23–26], which is 
often associated with the No Free Lunch Theorems [27], shows 
that all search algorithms have the same performance when 
averaged across all search problems. It follows that algorithms 
that significantly outperform others in specific applications do 
so because of active information that has been introduced by 
the programmer. In the case of Wilf and Ewens’s model, active 
information has indeed been introduced by the assumptions 
built into their model.

Most significant in this regard is their assumption that bene-
fit can be acquired at each locus (letter position) independently. 
Each letter in the phrase functions and sorts independently, like 
Scrabble tiles drawn from a bag. With each round, every letter 
in the phrase that has not yet matched the target receives a new 

draw from the bag, and is assessed for a match without regard 
for the surrounding context. In effect, Wilf and Ewens have 
incorporated an information source in their model by assum-
ing that natural selection operates as an “in parallel” process, 
with beneficial mutations at each gene locus being selected and 
retained independently of one another [1].

The overall fitness of individual genomes is assessed after each 
round, with more matches meaning higher fitness and therefore 
preservation for the next round. This is equivalent to assuming 
not just that all loci can be the sites of beneficial change inde-
pendently, but also that these independent benefits are additive. 
As we will see, both of these assumptions fail to square with 
biology.

Unrealistic biology
However, before we consider these problems with the way 

Wilf and Ewens have constructed their search, we should take 
a step back to examine the analogy they offer as the context 
for their search, since a problem here would have the most 
comprehensive implications for their work. The very suggestion 
that the state of a particular genetic locus should be likened 
to the identity of letter at a particular position in a phrase is 
peculiar. Letters are the building blocks for written commu-
nication. They are indivisible elements that come in small sets 
called alphabets. Some letters are used more than others, but 
each finds use. Contrast this with what a genetic locus actually 
is. Each particular locus in a genome is composed of hundreds 
or thousands of nucleotide bases arranged in sequence. The 
internal complexity of each sequence, is so great that the num-
ber of sequence possibilities is staggeringly large—far too large 
for anything but an infinitesimal fraction ever to have existed. 
Furthermore, as Axe has shown experimentally [28], only a tiny 
fraction of those sequences encode proteins capable of folding 
into the three-dimensional structures necessary for biological 
functions. To liken the actual complexity of a genetic locus to 
one letter in an alphabet is to fail to grasp how profoundly dif-
ferent the two things are.

And the difference matters. For evolutionary “advancement” 
to occur, it must be possible for new functions or structures 
to arise by a step-wise process entailing very few mutations, or 
mutations that occur at high frequency in the population. Wilf 
and Ewens assume 1 out of every 10,000 mutations is benefi-
cial, and that a single mutation is all that is necessary for that 
beneficial change. This might be the case if genetic loci were 
composed of single letters as in their model, but since that they 
are not, we need a realistic estimate of how many changes are 
required for a new trait or function to arise in a locus.

Converting an enzyme to a new function is the kind of thing 
that should have occurred thousands of time in the course of 
evolution, given the vast array of biochemical functions car-
ried out by extant enzymes. Yet recent work has shown that 
converting an enzyme encoded by a 1,200-nucleotide gene to 
a genuinely new function4 is likely to require seven or more 
coordinated mutations. This is true even though the starting 
and target enzymes have common three-dimensional protein 
4 A genuinely new enzymatic function would be a new reaction for which the start-

ing enzyme has no activity.

Figure 3: Plot of active information per query for varying phrase 
lengths given the modified model. The length of the phrase, L, is 
20,000. The number of letters in the alphabet is set at 40. W is the length 
of the words in the phrases being guessed. doi:10.5048/BIO-C.2012.4.f3

http://dx.doi.org/10.5048/BIO-C.2012.4.f3
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folds and active-site chemistries— just no shared reaction [29].5 
Getting seven specific changes in a gene 1,200 nucleotides long 
is a 1-in-1022 event, not a 1-in-10,000 event. Even then it is by 
no means clear that significant changes in gene function can be 
had with just seven base substitutions.

But by far the most important problem with the assump-
tion of independence that Wilf and Ewens make is the fact 
that genes don’t act alone—most biochemical functions in 
cells involve multi-step pathways. Making biotin requires four 
dedicated genes, for example. Yet without biotin the cell cannot 
make membranes. One gene is not enough to make trypto-
phan, build a ribosome, or transcribe a gene. One gene is not 
enough to replicate DNA. Getting a genuinely new function 
or structure is likely to require multiple changes to multiple 
genes, or the development of whole new genes. Such a thing is 
many orders of magnitude more difficult than re-engineering 
an enzyme.

Wilf and Ewens have assumed the pre-existence of a model 
organism of 20,000 functioning loci, each of which is repre-
sented by a single letter. They further stipulate that beneficial 
mutations arise 250 times in every generation, with each ben-
eficial change requiring just a single mutation to a single locus, 
and acting additively with the rest. Finally, they assume that all 
beneficial mutations fix the first time they appear. This kind of 
model in no way represents biological evolution.

Unrealistic search
In addition to the overwhelming problems mentioned above, 

the search algorithm they have chosen is unrealistic. Wilf and 
Ewens assume that the fitness landscape is smooth, with each 
beneficial mutation trending upward additively. This is not 
the case in biology. The phenotypic effect of mutations in two 
genes individually may be positive, but the phenotype of the 
two mutations combined may be negative. This epistasis, as it is 
called, can occur between different genes, or between mutations 
in a single gene [32−34]. A set of mutations in one context 
can be beneficial, but in another context deleterious or even 
lethal. In fact, research suggests that epistasis causes diminish-
ing returns among beneficial mutations [35,36]. Therefore, the 
genetic context in which new mutations arise matters, and fit-
ness landscapes may be rough and highly constrained.

Indeed, there is much evidence to suggest that real fitness 
5 Others who have tried to engineer enzymes to new functions have reported 

similar difficulties [30,31].

landscapes have many local fitness optima surrounded by fit-
ness deserts [31,37,38]. If it takes more than several mutations 
to move from one peak to another, adaptation can become 
stalled on a local peak, with no way to move from one small 
fitness peak to a higher one. Because natural selection is blind 
and without foresight, it cannot tell which particular mutations 
are leading to an unrealized goal of maximal fitness (in this case 
a target phrase) some distance away in the adaptive landscape. It 
can only assess the relative local fitness of variants in the popula-
tion.

It is also important to remember that, in terms of natural 
selection, “beneficial” means any mutation that leads to greater 
reproduction, without regard to long-term goals. Under many 
conditions, that can mean that any mutation that increases effi-
ciency, including mutations that inactivate or delete genes, will 
be favored [39−41]. Even though genetic information is being 
lost, such mutations would still be considered “beneficial.” That 
loss of information is a common evolutionary outcome has 
been shown repeatedly [41]. Wilf and Ewens’s model, however, 
assumes that all beneficial mutations lead to more and more 
“advanced” forms.

SUMMARY
Wilf and Ewens’s evolutionary algorithm works quickly 

because of the information sources they provide to the search, 
in the form of a target phrase that is matched to each round 
of guessing. This search process itself creates no information. 
Rather, it mines information from the sources available in the 
search algorithm. Other examples of evolutionary algorithms 
where this is the case include AVIDA [2,20] and ev [3,22].

In addition, Wilf and Ewens present a model of biological 
evolution that is completely unrealistic. Their model vastly 
underestimates the number of mutations required to achieve 
an adaptation at each locus, by compressing to a single-letter 
change what should be an enormous search through sequence 
space for functional variants. They also completely ignore the 
fact that most adaptations are multi-locus features, and neglect 
to consider variables such as generation time, population size, 
the time required for fixation of mutations, the confounding 
effects of epistatic interactions between mutations, and the 
shape of the fitness landscape [42−44]. Because of these prob-
lems, their conclusion that there’s plenty of time for evolution 
is unwarranted.
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